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Abstract

Cytoskeletal networks are the main actuators of cellular mechanics, and a
foundational example for active matter physics. In cytoskeletal networks,
motion is generated on small scales by filaments that push and pull on each
other via molecular-scale motors. These local actuations give rise to large-
scale stresses andmotion.To understand howmicroscopic processes can give
rise to self-organized behavior on larger scales it is important to consider
what mechanisms mediate long-ranged mechanical interactions in the sys-
tems. Two scenarios have been considered in the recent literature. The first
scenario is systems that are relatively sparse, in which most of the large-
scale momentum transfer is mediated by the solvent in which cytoskeletal
filaments are suspended. The second scenario is systems in which filaments
are coupled via cross-link molecules throughout. Here, we review the dif-
ferences and commonalities between the physics of these two regimes. We
also survey the literature for the numbers that allow us to place a material
within either of these two classes.
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1. INTRODUCTION

Living systems move. On cellular scales this motion is actuated by networks of polymer filaments
cross-linked by molecular-scale motors that exert forces between them.This system is collectively
referred to as the cytoskeleton (1, 2). Understanding how the material properties of the cytoskele-
ton emerge from the properties of cytoskeletal components is one of the great challenges for soft
condensed matter physics and cell biology (3). Solving it will allow biologists to predict the ef-
fects of molecular-scale perturbations on cellular organelles and enable physicists and engineers
to pursue strategies for developing similarly complex and robust materials in the lab. Here, we
take measure of the current state of theory for understanding the emergent physics of cytoskeletal
systems based on filament-scale interactions.

Symmetry-based theories have helped clarify the fields, such as densities, velocities, and order
parameters, through which the dynamics of active materials can be described on long timescales
and length scales (4–6). These theories have also provided means for generating a more or less
complete list of material properties (or phenomenological coefficients), such as viscosities, elastic
moduli, and activity coefficients, which characterize a material. Although this type of information
can be used to relate the effects of molecular perturbations to material properties (7), it does not
address the question how microscale processes set the large-scale physics.

To approach this challenge, physicists and mathematicians have generalized the methods de-
veloped for polymeric and liquid crystalline systems (8, 9), and Boltzmann’s statistical physics for
gases, to incorporate the effects of the microscopic activity of molecular-scale motors. These ef-
forts have led to a set of theories that describe relatively sparsely connected polymeric assemblies
whose large-scale behavior is dominated by momentum transfer via solvent flows (10–12). In par-
allel, other groups have extended the physics of elastic networks to obtain theories for the physics
of cross-linked materials on timescales that are short compared to cross-linker dynamics (13).

However, recent work has increased the awareness that many cytoskeletal systems belong to a
third class of active materials. They are highly cross-linked gels, in which filaments are transiently
coupled by a large number of motors and cross-links, which bind and unbind on timescales that
are fast compared to the long-time, large-scale dynamics of the system. This highly cross-linked
regime is set apart by new physical phenomena. Most strikingly, filaments in highly cross-linked
systems can slide through the gel at speeds that are independent of the structure of their local
surrounding. This phenomenon has been predicted theoretically and observed in vitro (14) and in
vivo (15–17). Theories for highly cross-linked systems take inspiration from early work on actin
bundles (18, 19) and describe larger networks that are cross-linked by molecular motors with
different symmetries and force velocity relations (20).

The goal of this review is to give a perspective on our current understanding of the physics
of cytoskeletal materials. We highlight the differences between highly and sparsely cross-linked
cytoskeletal networks and their models. Where possible from published data, we classify known
examples along these lines. Along the way we identify and highlight some open challenges that
the field needs to address in order to enable a quantitative and predictive physics of these living
materials.

In this review, we focus on continuum models and the microscopic models underlying their
derivations. However, we emphasize that symmetry-based theories (21), continuum models ob-
tained by coarse-graining microscopic models (22, 23), and agent-based models for the same sys-
tems (24–27) have been extensively studied in numerical simulations as well.

In Section 2, we review the key constituents of cytoskeletal materials. Then, in Section 3, we
propose a classification of cytoskeletal structures as either highly or sparsely cross-linked.To guide
us in this, we review the conditions under which a material’s long-range momentum transport
is dominated by cross-link interactions or by solvent flow, respectively. We then classify studied
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cytoskeletal materials given published data. After that, in Section 4, we review the theoretical
descriptions of both highly and sparsely cross-linked materials, highlighting and contrasting
their different physics. We point out how these differences can be used as both predictive and
diagnostic tools.

2. KEY CONSTITUENTS OF THE CYTOSKELETAL NETWORKS

The cytoskeleton is the cellular machinery that enables cells to do mechanical work on their or-
ganelles and on their surroundings. The cytoskeleton consists of polymer filaments, proteins that
cross-link and actuate these filaments, and regulators that help organize and coordinate their func-
tions in time and space. All of these constituents are suspended in cytoplasm, which is the aqueous
slurry that makes up a cell’s interior.

2.1. Cytoskeletal Filaments

Several types of cytoskeletal filaments exist. The two most studied and most abundant ones
are filamentous actin and microtubules (2; see Figure 1). Both are structurally polar, meaning
that their molecular structure differentiates one direction from the other. They are both transient
because they are constantly assembling and disassembling. They are active because filament
assembly and disassembly are driven by energy derived from GTP (guanosine triphosphate).
Though it is sufficient to think of cytoskeletal filaments as polar rods for our purposes here, we
want to emphasize that in typical in vivo systems the lifetime of actin filaments and microtubules
is often much shorter than the timescale of large-scale rearrangements of the system. One typical
example is gastrulation in fruit fly. This process takes about 2 h and is driven by actomyosin, which
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(a) Polar cytoskeletal filaments are coupled and actuated by molecular-scale motors. Collectively they form the cytoskeletal
networks (b), which are the materials that make up many important biological structures (c). Note that the molecular motors
represented here should be read as abstractions for possibly very complex molecular structures. For instance myosin motors
collectively form minifilaments, dyneins act in concert with adaptor proteins, and kinesins often dimerize.
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turns over within minutes (28). Another such process is the separation of chromosomes during cell
division in the nematode worm Caenorhabditis elegans, which takes tens of minutes and is achieved
by microtubules that have lifetimes of tens of seconds (29). There are additional cytoskeletal
filaments beyond actin and microtubules; they are largely called intermediate filaments. Examples
include keratins, which are a large family of proteins that encompass vimentins (which play a
role in cell motility) and lamins (which act as a mechanical scaffolding for the cell nucleus). These
intermediate filaments—so-called because their thickness in the electron tomographs in which
they were first characterized was between that of thin actin filaments and that of thick myosin
minifilaments—are typically longer-lived, apolar, and hypothesized to provide cells with long
time elasticity. Kinesins, myosins, and dyneins that link intermediate filaments to the microtubule
and actin cytoskeleton have been identified, but so far their role remains underexplored.

2.2. Active and Passive Cross-Linkers

The second class of molecules that are important for the cytoskeleton are cross-linking proteins,
which connect cytoskeletal filaments to each other and to other structures such as chromosomes
and membranes. Too many types exist to do them justice in a review focused on the physics of the
cytoskeleton, so we refer the reader to References 30 and 31 for recent perspectives on actin and
microtubule associated cross-linkers.Many of these cross-linkers aremolecular-scale motors.This
means they have access to a chemical fuel reservoir—in general adenosine triphosphate (ATP)—
from which they can draw power to do mechanical work upon the structures they cross-link.
Motors can walk along cytoskeletal filaments, acting as moving cross-links, which slides filaments
past each other. Or, they can carry a cargo, like a vesicle or a mitochondrion, along filaments. The
most abundant actin-associated molecular motors are myosins. The most abundant microtubule-
associated ones are dyneins and kinesins. Typically motors can exert forces of up to several pico-
Newtons, and their unloaded walking speeds on filaments can vary from nanometers to microns
per second. Finally, motors can be more or less processive. A motor’s processivity measures the
expected number of steps a motor typically takes before it unbinds from the filament to which it
is attached (1, 2).

2.3. Cytoplasm

The last important actor in understanding the physics of the cytoskeleton is the aqueous slurry
in which it is immersed. Although the rheology of the cytoplasm is most certainly complex (32),
most current physical theories for the cytoskeleton ignore this fact—mainly because the detailed
characteristics of cytoplasmic rheology are poorly understood and difficult to model. The theories
that we review thus approximate it as a very viscous Newtonian fluid with a viscosity between
100 and 1,000 times that of water (see, for example, 33).

2.4. Forces and Torques in Cytoskeletal Networks

The goal of a physical theory for the cytoskeleton is to predict how filaments in a cytoskeletal
network rearrange in response to the forces that they experience and produce. The larger goal
is a quantitative understanding of the mechanical processes that allow cytoskeletal structures to
self-organize and perform their complex tasks within cells.

The elementary starting point is characterizing the total force Fi that acts on the ith filament
in the network. We assume that it has the form

Fi =
∑
j

F×
i j + Fsi = 0, 1.
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(a) Interaction between two cytoskeletal filaments i and j via a molecular motor. Filaments are characterized by their positions, xi and x j ,
and orientations, pi and p j . A motor connects a position si on microtubule i with position sj on microtubule j. A motor consists of two
heads that can be different (circle or pentagon) and are connected by a linker (black zig-zag) of length R. (b) The total force on filament i is
given by the sum of the forces exerted by all heads that connect the filament into the network. The shaded area shows all geometrically
accessible positions that can be cross-linked to the central (black) filament. Figure adapted from Reference 20 with permission.

which vanishes because cytoskeletal systems are overdamped (see Figure 1b). The total force on
each filament consists of cross-link mediated forces

∑
j F

×
i j and a contribution Fsi , which comes

from the drag between filaments and a moving solvent. The cross-link-mediated force between
filaments i and j is given by

F×
i j =

∫ L/2

−L/2
dsi

∫ L/2

−L/2
ds j

∫
�(xi+sipi )

d3x δ(x − x j − s jp j )fi j , 2.

where fi j is the force density exerted by cross-linkers between the arclength positions si and sj on
the two filaments i and j, respectively (see Figure 2). Here, �(x) is a sphere centered around the
point x and whose radius R is the size (maximal extension) of the cross-linker. Here, all filaments
are taken to be rigid and to have the same length L. Analogous expressions for the torques and
total torque on filament i hold.

In the following, we argue that modeling of cytoskeletal networks has focused on two dif-
ferent regimes: (a) a highly cross-linked regime in which the long-range momentum transport
through the gel is dominated by cross-linking forces and (b) a regime in which momentum trans-
port through the solvent dominates. Theories for the two limits make very different predictions
for the scaling of important material properties and dynamics.

3. WHICH CYTOSKELETAL MATERIALS ARE HIGHLY CROSS-LINKED?

We now discuss the crossover between the highly and sparsely cross-linked regimes and try to
classify a few well-studied cytoskeletal systems along these lines. For this, we define the density
of cytoskeletal filaments ρ = ∑

i δ(xi − x) and the force density f = ∑
i δ(xi − x)Fi. Because cross-

link-mediated interactions are short ranged we can write the cross-link-mediated forces in terms
of a stress tensor, �:

f = ∇ · � − �ρ(v − vs ) + O (
L4) = 0, 3.
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where L is assumed small compared to the system scale (20), and we have included a drag term for
momentum exchange with the solvent. In the following, we use the word gel to signify the fila-
ments and cross-links and solvent for the cytoplasm in which they are immersed. The gel stress �

encodes the momentum flux through the cross-links that connect filaments, and �ρ is the friction
coefficient between the gel and the solvent. Finally, v and vs are the gel and solvent center of mass
velocities, respectively. If we take the solvent to be a Newtonian fluid with viscosity μ, it obeys the
Stokes equation,

μ�vs − ∇�s + �ρ(v − vs ) = 0, 4.

where �s is the hydrostatic pressure. The characteristic length scale over which momentum is
transported through the solvent, the permeation length, is thus given by

�s =
√
μ

ρ�
, 5.

which decreases as the density ρ of filaments in the gel increases. Conversely, cross-links generate
friction between the filaments they connect, which leads to a viscous contribution μgρ2∇v to �,
i.e., proportional to the strain rate of the gel and to the number of filament–filament interactions
mediated by cross-links (14, 20). Here,μgρ2 is the gel viscosity. Thus, we expect the typical length
scale over which momentum is transported through the gel to be

�g =
√
μgρ2

�ρ
, 6.

which increases with filament density.Note that the dimensions ofμ andμg are different.Whereas
μ has dimensions of viscosity, μg has dimensions of viscosity per square density. The implied
assumption of this calculation is that the number of realized cross-link connections is limited by
the number of geometrically possible filament–filament interactions and not the number of cross-
linking molecules available. However, it can easily be generalized.

In the following, we consider a system highly cross-linked if �g � �s and sparsely cross-linked
if �s � �g. We next review the literature and overview which cytoskeletal systems are highly or
sparsely cross-linked, respectively (see Figure 3).

Solvent flow

Plus end of filament

Cross-link (motor)

Long-range dynamics
determined by solvent flow

Long-range dynamics
determined by active cross-links

a   Sparsely cross-linked network b   Highly cross-linked network

Figure 3

Illustration of the key differences between (a) sparsely and (b) highly cross-linked networks, emphasizing the
dominant mechanisms of large-scale momentum transport.
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3.1. The Cell Cortex

The cell cortex is a thin layer of actin filaments that localize at the cell membrane (see Figure 4a).
It is actuated by nonmuscle myosin 2 and held together by a variety of cross-linkers and proteins,
which regulate assembly and disassembly of both thick (myosin) filaments and thin (actin) fila-
ments (30). Typically the thickness of the cortical layer is 300–1,000 nm (34). Flow of actomyosin
is vital for cell polarity establishment (the process by which cells break the symmetry between
two daughter cells; 35, 36), cell migration and shape changes (37), and cell division (38), as well
as regulating cellular surface tension (39). On timescales longer than filament lifetimes, the cell
cortex is well described as an active fluidic material (7, 35, 40).

Comprehensive estimates of the numbers of cross-links in the actin cell cortex are hard to come
by. That said, many actin filaments are nucleated by the nucleator Arp2/3 which is a cross-linker
itself. In Reference 43, the authors estimate that roughly nine out of ten actin filaments are nucle-
ated by Arp2/3, whereas about one out of ten is nucleated by formins. This finding suggests that
the actin cortex is highly cross-linked starting from its nucleation. Furthermore, actin filaments
are actively cross-linked by myosin motors and other cross-linkers. In Reference 44, the authors
count the numbers of the most important actin binding partners in fission yeast cells. They find
that the number of cross-linkers and motors acting on actin filaments is comparable to (or larger
than) the number of nucleators (Arp2/3 and formins) in the system.Thus, if one estimates that the
number of filaments is roughly proportional to the number of available nucleators, one concludes
that several cross-linking interactions per filament exist at any given time. That is, the actin cortex
is highly cross-linked.

a b c d

200 nm 1 μm 5 μm 100 μm

Figure 4

Biological and artificial cytoskeletal networks: (a) SIM-TIRF superresolution microscopy image of the actin cortex from a kidney
culture cell. (b) Electron tomography reconstruction of the inner spindle microtubules of an embryonic Caenorhabditis elegans mitotic
spindle. (c) Spinning disk fluorescence microscopy image of microtubules and actin in a Xenopus laevis interphase aster in egg extract.
Image courtesy of James Pelletier. (d ) Snapshot from an experiment on an active microtubule nematic synthesized from engineered
multimeric kinesin-1 motors and stabilized microtubules. Throughout the figure, actin filaments are represented in orange and
microtubules in blue. Panel a adapted with permission from Reference 41; panel b adapted from Reference 29; and panel d adapted with
permission from Reference 42.
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3.2. The Spindle

The spindle is the cellular apparatus that segregates chromosomes during cell division. Its
main constituents are microtubules, which are cross-linked and actuated by dynein and kinesin
molecular motors (see Figure 4b). Despite having common constituents and function, spindle
structure can vary widely, even in a single organism.

One spindle whose physics has been studied extensively is the meiotic spindle of Xenopus lae-
vis. This spindle can be reconstituted in frog egg extract, which makes it particularly attractive to
study ex vivo. These spindles are large—about 50 μm long—and consist of microtubules whose
lengths and lifetimes are exponentially distributed around an average length and lifetime of about
6 μm and 20 s, respectively (45). They have been shown to obey the fluctuation spectra expected
for active nematic gels (46). In these spindles, microtubules nucleate by an autocatalytic mecha-
nism in which preexisting microtubules recruit growth factors that initiate the formation of new
microtubules (47–51). This mechanism implies that filaments are created cross-linked to the spin-
dle gel. The details of the pathway controlling nucleation have been investigated (52, 53). The
motor proteins dynein and Eg-5 kinesin cross-link the spindle network further. Although direct
measurements of the number of Eg-5 kinesin cross-links are not available, observations of micro-
tubule motion in spindles allow an estimate. In Reference 17, the authors quantify the motion and
polarity of microtubules in Xenopus spindles. They estimate that two or more motors per filament
are required to explain experimental observations that velocity fluctuations are highly correlated
throughout the whole spindle. In our language, this means that �g is comparable with system size
and, thus, that the Xenopus spindle is highly cross-linked.

Another well-studied spindle is the embryonicmitotic spindle of the nematode wormC. elegans.
These spindles are much smaller—10 μm pole to pole—and have been fully reconstructed using
electron tomography (29; see Figure 4c). Using this structural information, together with light
microscopy and mathematical modeling, the authors in Reference 54 argue that the connection
between spindle poles and chromosomes is indirectly maintained by microtubules cross-linking
to other microtubules. Although the evidence is indirect, it is suggestive of a highly cross-linked
network.

The third example that we want to highlight here is the female meiotic spindle, also in C. el-
egans. This spindle is about half the size of the mitotic one and has also been reconstructed in
tomography. The findings from tomography studies (55, 56) suggest that it consists of short and
short-lived microtubules and is structurally quite similar to the X. laevismeiotic spindle. It is thus
tempting to speculate that this spindle too is a highly cross-linked network.

3.3. Microtubule Asters

In cells, spindles are positioned for cell division by microtubule asters, which emanate from the
spindle poles and grow out toward the cortex (see Figure 4c). In smaller cells, microtubules inter-
acting with cortex are important for spindle positioning (33, 57, 58). Recent work in C. elegans em-
bryos suggests that dynein-mediated pulling forces from cortically bound dynein are crucial (59).

In larger cells, such as theXenopus zygote, the situation is somewhat more complicated, because
cytoskeletal filaments are in general much shorter than the typical cell radii (60). Thus it has
been proposed that in these cells spindles are positioned by cytoplasmic pulling, that is, by dynein
motors, which carry a cargo from the aster periphery toward its center. This would cause an active
drag against the cytoplasmic fluid, which would ultimately cause spindle centering (61, 62). To
test this hypothesis the authors of Reference 63 coimaged the cytoskeletal actin, microtubules,
and membranous networks. They find that these networks move against each other near aster
boundaries, but move together near the aster’s center. It is thus tempting to ask what explains
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these different behaviors. One appealing hypothesis is that these asters are highly cross-linked
near their centers, and less cross-linked near aster cores.

3.4. Artificial Systems

Given the complexity and the sheer number of different constituents of cytoskeletal networks
in living cells, biophysicists have developed simplified in vitro systems made from cytoskeletal
components (see Figure 4c).Here, the physics of cytoskeletal networks can be studied at a reduced
complexity and in amore controllable environment. Beyond that, they have provided foundational
examples of out-of-equilibrium materials.

One prominent system discussed in Reference 64 is made from stable microtubules and
kinesin-1 motors joined by engineered linkers. This same mixture has been used to study active
materials in bulk and on two-dimensional interfaces (64), and in vesicles (65), rigid confinements
(66, 67) and droplets (68). The same system has also been adapted to study disclination loops in
three-dimensional active nematics (69). It is surprising, given the importance of these systems,
that the structure and number of cross-links that bind microtubules remain relatively unexplored.
More studies are needed to solidly classify these particular systems as either highly or sparsely
cross-linked.

Somewhat more recently, actin-based active networks have been synthesized. Many of the key
findings of this line of research is summarized in Reference 70.These systems are in general driven
by the molecular motor myosin and require the admixture of passive cross-linkers to generate
active contractions.This peculiarity has been attributed to a liquid–gel transition,whichmay imply
that the contractile states of these actomyosin networks are in the highly cross-linked regime.

There is a growing list of in vitro systems using different motors and filaments assembled in
cell extract or fully reconstituted such as those in References 71 and 72 or the ones reviewed in
References 70 and 73. For most of these systems, it remains unclear where they fall on the range
from sparsely to highly connected systems.

4. THEORETICAL DESCRIPTIONS OF CYTOSKELETAL SYSTEMS

Much of our current theoretical understanding of cytoskeletal active matter derives from the re-
markable success of extending the broken-symmetry hydrodynamic theory for liquid crystals (9)
to active materials in which microscale nonequilibrium processes can generate force and torque
dipoles (4–6). These theories have clarified the fields (densities, velocities, order parameters, etc.)
through which to describe the dynamics of a cytoskeletal material on long-wave hydrodynamic
scales (see Figure 5), and which material properties, such as the viscosities and activity coeffi-
cients, are needed to characterize these materials. More microscopic theories derive the values of
material properties and their microscopic origins.

We start by reviewing the fields and material properties that we use to characterize cytoskeletal
materials.We then review theoretical predictions for how thesematerial properties are determined
in highly and sparsely cross-linked networks.

4.1. Hydrodynamic Variables

We seek to describe the evolution of a cytoskeletal systemwith a small number of continuous fields.
At large timescales and length scales, the fields needed to sufficiently characterize a material are
those associated with conserved quantities and those associated to continuous broken symmetries
(74; see Figure 5a). We first introduce the fields associated with conserved quantities.
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(a) Illustration of the important hydrodynamic variables. (b) Illustration of externally strained and self-strained materials.

The first is the total mass density ρtot(x, t ) of the material. Because mass can be neither created
nor destroyed,

∂tρ
tot = −∇ · gtot, 7.

where gtot(x, t ) denotes the total mass flux, which is also referred to as momentum density. In the
cytoskeletal systems of interest here, the total mass density consists of solvent and gel contribu-
tions, such that ρtot = ρ + ρs, where ρ is the gel contribution, by which we mean the mass of
filaments and proteins attached to filaments. In general, chemical processes, such as filament nu-
cleation and polymerization and the binding and unbinding of proteins, can convert solvent mass
into gel mass and vice versa. Thus, we can write

∂tρ=−∇ · ρv + R, 8.

∂tρ
s =−∇ · ρsvs − R, 9.

where R is the mass conversion rate from chemical reactions, and we have defined the gel and sol-
vent velocities by gtot = ρv + ρsvs. In living materials, the dominant contribution to R is filament
polymerization and depolymerization, which in general is highly regulated. For instance, in Xeno-
pus’s meiotic spindles the dominant mode of filament creation is autocatalytic, and new filaments
nucleate in a branching process from preexisting ones (47–53).

The second field that arises from conservation considerations is the momentum density itself.
In the absence of external forces, themomentum density gtot(x, t ) can only change by amomentum
flux,

∂tgtot = ∇ · �tot, 10.
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where �tot(x, t ) is total stress in the material. Like the mass flux, we can write �tot = � + �s and
force balance equations for the gel and solvent components of the material separately. Under
the assumptions that the solvent is Newtonian, that inertial terms can be neglected, and that the
force exerted between the gel and fluid phases is linear in the gel density and their velocity dif-
ference, one recovers Equations 3 and 4. Thus, the fields that we need to keep track of, because
they are associated to conserved quantities, are ρ, ρs, v, and vs. We next introduce the fields that
are associated with continuous broken symmetries.

Order parameter fields characterize the conformational state of the material. For our purposes
here, we assume that cytoskeletal filaments are rod-like and rigid. Then the tensor orientation
order parameterQ(x, t ) naturally arises. The scalar orientation order parameter and director field
devolve from Q. Unlike purely nematic systems, cytoskeletal filaments like microtubules or actin
are polar, as are the motor-mediated forces acting upon them. Hence, we also need a polar order
parameter P(x, t ). If the system were characterized at the microscopic level by a particle distribu-
tion function ψ (x,p, t ) (8) with p being the particle orientation vector on the two-sphere, then
these order parameters arise as its p-moments, P = 〈

p
〉
/ρ and Q = 〈

pp
〉
/ρ, where the angular

brackets denote a distributional averaging over the p-sphere.
We emphasize that P andQ are independent fields, and a complete description of cytoskeletal

networks is needed to keep track of both. To understand this, consider two filaments coupled by
a motor protein with two heads, with each attached to one of the filaments and walking toward
a plus-end. If such a motor were to couple two antialigned filaments, it would induce relative
sliding. However, if it coupled two aligned filaments, then the filaments would not move. As a
consequence, on large scales the material properties of cytoskeletal networks can depend on P
and Q in different ways, and in particular the active stresses generated by molecular motors will
often be different between polar and nematic regions in the same system. This is clear in the
particular theories we discuss below. In general, higher-order symmetry fields exist, but we ignore
them here for simplicity.

In summary, we seek to describe the cytoskeletal systems in terms of just a few coarse-grained
continuous fields. They are the densities ρ and ρ s, the velocity fields v and vs, and the order pa-
rameter fields Q and P. Thus, the next task is to arrive at expression for the stresses �tot and �,
the transport operators for the order parameter fields Q and P, and the chemical reaction rate R,
in terms of hydrodynamic variables. In this review, we are concerned with the expressions for the
stresses first and foremost.

4.2. Material Properties of Active Cytoskeletal Networks

Given the set of hydrodynamic variables, symmetry-based theories postulate material laws for all
unknown quantities by writing down all symmetry-allowed terms that respect the invariances of
the systems, such as translation and rotation invariance. How to obtain symmetry-based material
equations from symmetry considerations or from nonequilibrium thermodynamics considerations
is reviewed elsewhere in great detail (6, 21).

For our purposes here, it is sufficient to express the total stress by the equation

�tot = χ v : ∇v + χ s : ∇vs + χ a : ∇P +�aI + A(P)PP − A(Q)Q + �̄, 11.

which obeys the symmetry constraints discussed in References 21 and 6. Here, χ v is the fourth-
rank gel viscosity tensor, χ s is a fourth-rank solvent viscosity tensor, and χ a is a fourth-rank tensor
that quantifies active polar stresses proportional to gradients in gel polarity P. The coefficients
A(P) and A(Q) quantify the magnitude of active polar and active nematic stresses in the material,
respectively. Furthermore,�a acts as an active pressure and �̄ denotes other stresses in the system,
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which stem from hydrostatic and steric exclusion and alignment effects. For an in-depth discus-
sion see References 9 and 6. Together, χ v ,χ a,χ s,�a,A(P), and A(Q) are the material properties of
the cytoskeletal filament network. They in turn depend on the state of the network, that is, the
hydrodynamic variables, and need to be either measured in an experiment or derived from micro-
scopic considerations to allow a complete description of the material. Symmetry-based theories
also elucidate the form of the transport equations for P and Q. We refer to References 6 and 21
for a more complete discussion.

In this review,we are concerned with theories that derive expressions for the phenomenological
coefficients in Equation 11 from microscale considerations of motors and filaments. In particular,
we want to contrast theories for highly cross-linked and sparsely cross-linked systems. We high-
light that the functional dependencies of χ v ,χ a,χ s,�a,A(P), and A(Q) change between these two
regimes.

4.3. The Highly Cross-Linked Regime of Cytoskeletal Networks

Wefirst review theories for the hydrodynamic limit of the highly cross-linked regime of cytoskele-
tal networks.We consider a cytoskeletal material to be highly cross-linked if �g � �s. The hydro-
dynamic limit of such amaterial is dominated by cross-link interactions, and thus solvent-mediated
interactions can be ignored because the length scale of momentum transport associated with � is
much larger than that associated with�s (seeFigure 3).Thus, these theories assume that�tot = �,
which implies vs = v and that �s is negligible.

To our knowledge, this limit of active gels was first discussed in the context of studying actin
bundles (19, 75), where the authors proposed a one-dimensional model for describing actin struc-
tures in the cortex. Only recently have these ideas been extended to larger three-dimensional
systems. In References 14 and 20, a phenomenological model for the force density fi j , generated
by cross-links between filaments, was proposed. In this model, the force density is given by

fi j =K (si, s j )
(
xi + sipi − x j − s jp j

)
+ γ (si, s j )

(
vi + siṗi − v j − s jṗ j

)
+ [

σ (si, s j )pi − σ (s j , si )p j
]
. 12.

The functions K(si, sj), γ(si, sj), and σ (si, sj) characterize the types of forces exerted by cross-link
populations between the arclength positions si and sj on filaments i and j.The coefficientK captures
effects of cross-link elasticity, the coefficient γ acts as an effective frictional coupling between
filaments, and σ characterizes the active forcing from motor stepping (see Figure 2). The main
conceptual advance between this phenomenological model and the ones proposed in earlier work
is that here fi j explicitly depends on the velocities and rates of rotation of filaments i and j. With
this dependence, in a dense system the dynamics of all filaments in the system become tightly
coupled. In contrast, earlier work (11, 18, 23, 76) had posited motor interactions that depend
only on the relative orientations and center of mass positions of filaments, effectively constraining
themselves to pairwise interactions.

From Equation 12, one calculates the stress in the network using

� = −1
2

∑
i, j

⌊
δ(x − xi )δ(x′ − x j )(

xi − x j + sipi − s jp j
)
fi j

⌉i j

�(xi )

, 13.
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where the brackets �· · · �i j
�(xi )

denote the coarse-graining operation

�φ�i j
�(xi )

=
L
2∫

− L
2

dsi

L
2∫

− L
2

ds j
∫

�(xi )

dx3φ. 14.

Here,�(x) is a sphere centered around the point x, whose radius R is the size (maximal extension)
of the cross-linker. In this version of the theory, all filaments are taken to have the same length
L. Thus, the operation �· · · �i j

�(xi+sipi ) integrates its argument over all geometrically possible cross-
link-induced interactions.

The emergent material properties turn out to depend on a small set of s-moments of the phe-
nomenological coefficients K, γ, and σ . These moments are given by

Xnm(x) = �X (si, s j )sni s
m
j �i j�(x), 15.

where X can be K, γ, or σ . More explicitly,

K0 =K00 = ⌊
K (si, s j )

⌉i j
�(xi )

, 16.

K1 =K10 = K01 = ⌊
siK (si, s j )

⌉i j
�(xi )

, 17.

γ0 = γ00 = ⌊
γ (si, s j )

⌉i j
�(xi )

, 18.

γ1 = γ10 = γ01 = ⌊
siγ (si, s j )

⌉i j
�(xi )

, 19.

σ0 = σ00 = ⌊
σ (si, s j )

⌉i j
�(xi )

, 20.

σ10 = ⌊
siσ (si, s j )

⌉i j
�(xi )

, 21.

σ01 = ⌊
s jσ (si, s j )

⌉i j
�(xi )

. 22.

The coefficients K0, γ0, and σ 0 quantify the net elastic, friction, and motor force, respectively, that
cross-links exert between two filaments. The coefficients γ1, σ 10, and σ 01 quantify how nonunifor-
mity in friction and motor forces effect the coupling between filaments. For instance, the friction
anisotropy is positive, γ1 > 0, if most of the friction is exerted near the end of the filament that the
motor walks toward. Similarly, σ 01 and σ 10 are positive if most of the motor force is exerted toward
the end that the motor walks toward. In practice, all these coefficients can depend in complex ways
on filament geometries and the biochemical environment of the system.Detailed experiments are
needed to infer the values of these coefficients in specific contexts and understand the mechanisms
that set them on microscopic scales.

With these definitions, and dropping explicit cross-link-mediated torques such as the ones that
would emerge if cross-links also acted as torsional springs, the authors of Reference 20 find for
the viscosity tensor

χ v
αβγμ = ρ2γ0

[
3R2

10
δαγ δβμ + L2

12
γ0

(Qαγ δβμ−QαβQγμ

)]
, 23.

and, very importantly, that

χ aαβγμ = σ0

γ0
χ v
αβγμ 24.

for the coefficient quantifying the active polar stress.
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The relation between Equations 23 and 24 implies that we can combine the first two terms of
Equation 11 into

�ss = χ v :
(

∇v + σ0

γ0
∇P

)
, 25.

which we call the self-straining stress. In this type of material, σ 0/γ0 is essentially the free velocity
of the motors and cross-links coupling filaments. Thus, the state of zero self-straining stress is one
in which the viscous stress exactly balances the active polar stress, which can be achieved when all
filaments in the material move at the motor speed in the direction in which they point (14). This
self-straining state is a consequence of the fact that the same active cross-links that drive filament
motion also couple the dynamics over long length scales. In essence, in a material in which the
cross-linking is provided by active cross-links, filaments can move through the material at the
preferred speed of the motor without stressing the material (see Figure 5).

The same calculation also makes predictions for other active stresses in the material (20). One
finds

A(Q) = ρ2
(
σ10 − σ0

γ1

γ0
+ L2

12
K0

)
, 26.

A(P) = ρ2
(
σ01 − σ0

γ1

γ0

)
, 27.

�a = ρ2 3R
2

10
K0. 28.

These expressions capture, in a continuum setting, the physics of stress generation by
motor–filament interactions. Such effects were also discussed in the context of a discrete model in
Reference 77.The signs of the coefficients in Equations 26–28 are set by the anisotropies ofmotor-
mediated filament interactions. In particular, the balance between anisotropy of motor force (σ 10,
σ 01) and anisotropy of motor friction (γ1) is important. How the coefficients γ1, σ 10, and σ 01 are
set remains an open question. Some specific cases can, however, be worked out from microscopic
models. For instance, if one considers a molecular-scale motor with two identical heads, one finds
that this motor would generate no active stress because σ 1 = γ1/γ0σ 0 by construction.One can ar-
gue further that adding a passive cross-link to the system allows γ1/γ0 to change without changing
σ 1. Thus, such a motor can generate active stress, but to do so requires the presence of a passive
cross-linker.

An analogous calculation provides expressions for the filament speed vi and rotation rate ṗi in
the lab frame:

vi − v = σ0

γ0
(pi − P) + O(L2) 29.

and

ṗi = (I − pipi ) ·

⎧⎪⎨
⎪⎩
(∇v + σ0

γ0
∇P) · pi

+ 12
γ0L2ρ2

E · pi
+ 12
γ0L2

A(P)P

⎫⎪⎬
⎪⎭ , 30.

where E is the steric distortion field (9).We refer the reader to Reference 20 for additional detail.
Note that our discussion here largely ignores the fact that filaments in cytoskeletal networks

are elastic and deformable. Of course whether this is important is a matter of filament length
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scales and applied forces (short filaments are hard to bend relative to long ones). That said, fila-
ment deformability may have important consequences for the large-scale physics of cytoskeletal
materials. In particular, it has been argued that the buckling or plucking of elastic filaments (78–
80) can modify active stresses in cytoskeletal networks. In the context of microscopically based
continuum theories, these effects remain unexplored.

4.4. The Sparsely Cross-Linked Regime of Cytoskeletal Networks

We now review theories of the sparsely cross-linked regime of cytoskeletal networks.We consider
a cytoskeletal material to be sparsely cross-linked if �s � �g, so that the hydrodynamic (long-wave)
limit is dominated by fluid-mediated interactions and the viscous transport of momentum though
the gel is negligible (see Figure 3). Thus, these approaches proceed from Equation 4. Given a
microscopicmodel of how the gel deforms in the fluid, thesemodels proceed to calculate the active
stresses�a, typically reflecting force dipoles acting on the solvent.Thus,�ρ(v − vs ) � ∇ · �a.This
implies �tot = �s + �a. The motion of the gel generally takes the form vs − v ∝ P, which allows
polar pieces of gel to swim through the solvent.

One such line of models devolves from the mechanics of swimming suspensions. To study the
dynamics of suspensions of hydrodynamically interacting swimmingmicroorganisms, Saintillan&
Shelley (81, 82) developed a kinetic theory coupling a Smoluchowski equation for particle position
and orientation to a forced Stokes equation (see also 22, 83, 84).At the particle level, free swimmers
(which are force dipoles in the solvent) are treated as rod-like particles swimming in a locally
linear flow, propelled by a prescribed active surface stress. The swimmer velocity, rotation rate,
and entire surface stress can be calculated in terms of the background flow, with the background
flow itself determined through solution of a forced Stokes equation. The forcing is through an
extra stress found using Batchelor’s adaptation (85), for dilute suspensions, of Kirkwood theory.
In its simplest formulation, Saintillan & Shelley find the coupled Smoluchowski equation for the
particle distribution function ψ (x,p, t ):

∂tψ + ∇x · (ẋψ ) + ∇p · (ṗψ ) = 0, where ẋ = vs(x) +U0p and ṗ = (I − pp)∇vs(x)p, 31.

where p is swimmer orientation andU0 is its undisturbed speed, and the last expression is Jeffrey’s
equation (cf. Equations 29 and 30). The solvent velocity vs is found through solution of a Stokes
equation driven by an active dipolar stress �a:

− ∇x�
s + μ�vs = −∇x · �a and ∇x · vs = 0, with �a = α0ρQ. 32.

Here, α0 is the so-called dipole strength whose sign reflects whether the swimmer force dipole is
extensile (α0 < 0) or contractile (α0 > 0).This categorization depends upon the detailed placement
of thrust and no-slip regions on the effective swimmer body. This theory predicts instabilities of
both aligned suspensions (86, 87) and isotropic extensile suspensions when swimmers exceed a
critical concentration (82, 87, 88). In later work (87), interparticle aligning torques and conse-
quent stresses, based on Maier–Saupe theory (8), were introduced to capture sterically induced
concentration effects (see 22 for a review).

Gao et al. (12, 89) adapted this approach to treating immersed assemblies of microtubules un-
dergoing polarity sorting by multimeric motor complexes such as the engineered kinesin-1 com-
plexes used in Reference 64. To do this, as the basic unit they considered nematically ordered local
clusters of microtubules, say, with n of them pointing rightward and m pointing leftward [hence,
P = (n−m)/(n+m)x̂; see Reference 12, their figure 1]. It is assumed that every microtubule pair
in the cluster is connected by active, plus-end directed cross-linkers moving at speed vw on each

www.annualreviews.org • Cytoskeletal Materials 379



microtubule.The coupling between the antialigned populations induces a minus-end directed rel-
ative sliding for each. By using Stokesian slender-body theory (90) and assuming that the solvent
drag thus calculated is the only force resisting microtubule motion, they calculated the velocities
of the left- and rightward pointing microtubules to be vL = (2n/n + m)vw and vR = −(2m/n +
m)vw. This yields vR − vL = −2vw. Slender-body theory again yields the forces each rod exerts
upon the fluid, and hence the induced extra stress tensor arising from polarity sorting within the
bundle can be calculated and is found to be proportional to vwmn/(m+ n)x̂x̂.

Thus, in a cluster with m = n, the two populations are pulled past each other with equal speed
vw while producing a maximal polarity-sorting stress. If most microtubules point rightward, so
that m ≈ 0, then vL ≈ 2vw and vR ≈ 0, and the polarity sorting extra stress is small (with a like
statement if n ≈ 0). That the microtubule speeds depend upon the polarity is a consequence of
the micromechanical model wherein only solvent drag resists microtubule translocation.

Adapting this cluster picture to a more general setting in which the cluster also moves with the
background fluid velocity, Gao et al. give the analogous result to Equations 31 and 32, where the
microtubule flux and active stress tensor, induced by polarity sorting of antialigned microtubules
(aa), are given by

ẋ = vs(x) + vw (P − p), and �aa = αaaρ(Q − PP). 33.

These forms for ẋ and �aa reproduce exactly the nematic cluster results above, and show the
dependence–polarity sorting of the microtubule velocity upon the local polarity P(x).

This theory was further informed by detailed Brownian/Monte-Carlo simulations of nematic
assemblies of rigid filaments interacting through multimeric kinesin-1 motors, thermal noise, and
steric interactions. From these simulations were gleaned estimates of the activity coefficient αaa

giving that αaa < 0, i.e., that polarity-sorting dipolar stresses were extensile (12, 89).The stochastic
simulations also showed the presence of an additional subdominant, active and extensile stress,
having the form αpaρ(Q + PP), arising from the relaxation of cross-link tethers of multimeric
motors connecting polar-aligned ( pa) microtubules (91).With this continuummodel in hand, they
analyzed and simulated the dynamics of a thin layer of active material at the interface between two
fluids.Their analysis demonstrated the existence of a characteristic finite length scale of instability
due to the external drag of the outer fluids and of orientational instabilities for aligned states.Their
simulations of the full kinetic theory showed a nonlinear dynamics of fluid and material flows, and
of nucleating/annihilating disclination defect pairs, with a structure qualitatively similar to that
observed experimentally in Reference 64.

To make comparisons to the highly cross-linked regime, the total stress in the Gao et al. model
has the form

�tot = �s + �a = −�sI + μ
(∇vs + ∇vs T

) + (αpa + αaa )ρQ + (αpa − αaa )ρPP + �̃s, 34.

where �̃s contains stresses arising from steric interactions (fromMaier–Saupe theory) and particle
rigidity (compare to Equation 11). Here, the microtubule flux in Equation 33 is of the same form
as in the highly cross-linked case but with the solvent velocity rather than the material velocity
v (14) (compare Equation 29). Unlike the stress in the highly cross-linked regime, the expression
in Equation 34 does not depend upon ∇P. It is the relation between ∇P and ∇v revealed by
Equation 24 that underlies the self-straining state of the highly cross-linked state (see Figure 5).

The cluster picture in Reference 12 can be generalized by allowing cluster–cluster interactions
that can lead to additional stresses proportional to the gradient in the local polarity. Efforts along
these lines were first made in References 76 and 92–94. There the key assumption is that pairs
of filaments interact via sparse coupling of constant velocity motors. This theory also provided
an initial understanding of the origin of contractile behaviors found in many early experiments of
filament–motor mixtures.
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5. SYNTHESIS AND OPEN CHALLENGES

Cytoskeletal networks are the drivers of basic biological functions like cell division and cell motil-
ity.The constituents of cytoskeletal networks also provide foundational examples in the field of ac-
tive matter. In this review, we highlight the differences between the physics of highly cross-linked
and sparsely cross-linked cytoskeletal networks. In highly cross-linked systems, the long-ranged
transport of momentum is mediated through the cross-links themselves (�g � �s), whereas in
sparsely cross-linked systems it is the solvent that plays that role (�s � �g) (see Figure 3).

This has important implications for the resulting material properties. In highly cross-linked
materials, the same cross-linkers that generate the driving forces between filaments also generate
the frictional coupling that keeps the networks coherent. Consequently, active stresses and the
viscosity of the material are intimately linked. In particular, the polar active stress proportional to
polarity gradients is linked to the viscosity tensor by Equation 23. For these materials, the viscous
and polar stresses exactly balance when all filaments in the material move at the preferred motor
velocity σ 0/γ0 in the direction to which they point (14). Because χ v and χ a vary together, the
properties of this state are not sensitive to protein concentrations. This self-straining state is not
just a theoretical curiosity; it has been observed in vitro (14) and in spindles (17, 95).

In contrast, in the sparsely cross-linked regime the viscosity tensor χ v of the material is largely
set by the viscosity of the solvent in which filaments are suspended and is thus independent of
concentrations and properties of the cross-linking molecules, whereas the values of active stresses
depend on protein concentrations. This provides a possible diagnostic for differentiating highly
cross-linked and sparsely cross-linked active materials by modulating cross-link concentrations.
Furthermore, in the self-straining state of activematerials filaments canmove through thematerial
at speeds that are independent of the local polar and nematic order (14), whereas in more sparsely
cross-linked systems (12) the motion of filaments throughout the system depends on the local
polarity.

A second striking difference between the highly cross-linked and sparsely cross-linked materi-
als is the form of the other active stresses,A(Q) and A(P). It has long been known that contractile
(or extensile) stresses can be generated only if motors act in a way that breaks the symmetry be-
tween extending and contracting single filament pairs. This could, for instance, be achieved by
end-clustering or end-binding affinities of motor proteins (18, 93, 94). On top of that, the math-
ematics of the highly cross-linked regime require that σ 1 � γ1/γ0σ 0 (see Equations 26 and 27).
This means that the anisotropy of friction (γ1/γ0) along filaments needs to be different from the
anisotropy of motor drive (σ 1/σ 0) to generate active contractions. In practice, this can be achieved
by either mixing several types of cross-links or creating a cross-link with two different motor heads
(20). This prediction might shed insight into the well-known—but so far poorly understood—
observation that in many actomyosin systems contractions only occur if a small amount of passive
cross-linker is added to the system (96).

A third important difference between the highly and sparsely cross-linked regimes comes from
the fact that the solvent is incompressible, whereas the network itself can be compacted by active
processes. As a consequence, sparsely cross-linked theories predict incompressible material flow
fields,whereas highly cross-linked theories can predict active bulk contraction.Thus, it is tempting
to speculate that contractile systems like those in References 71 and 72 are highly cross-linked. In
contrast, many classic active nematic experiments show no clear signs of compaction (42, 64, 67).

In Section 3, we sought to classify biological and experimental active matter systems as being
either highly or sparsely cross-linked. We believe that many important systems, such as the cell
cortex and many spindles, are highly cross-linked. For most systems, however, this assertion re-
mains an educated guess rather than an experimental certainty. Given the increasing awareness
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that the physics of active cytoskeletal networks can be drastically different for different numbers
of cross-links, we hope that this review will serve to highlight the need for experiments that will
answer this question more definitively.

Finally, we want to conclude by remarking that many active systems are likely to live in the
intermediate regime between highly and sparsely cross-linked. One example is the microtubule
asters studied in extract (63), which are probably highly cross-linked in their bulk but are more
sparsely cross-linked near their boundaries. These structures are biologically important and rev-
elatory of new physics in an intermediate cross-linking regime that is so far barely explored.

In summary, we firmly believe that the science of biologically active materials will benefit
greatly by simply enumerating the number of cross-links active in the materials of interest. This
enumeration will help identify important and distinct physical regimes and help make theories of
quantitative and living systems engineerable.
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