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Abstract

Poverty is associated with changes in brain development and elevates the risk
for psychopathology in childhood, adolescence, and adulthood. Although
the field is rapidly expanding, there are methodological challenges that raise
questions about the validity of current findings.These challenges include the
interrelated issues of reliability, effect size, interindividual heterogeneity, and
replicability. To address these issues, we propose a multipronged approach
that spans short-, medium-, and long-term solutions, including changes to
data pipelines along with more comprehensive data acquisition of envi-
ronment, brain, and mental health. Additional suggestions are to use open
science approaches, more robust statistical analyses, and replication testing.
Furthermore, we propose increased integration between advanced analyti-
cal approaches using large samples and neuroscience models in intervention
research to enhance the interpretability of findings. Collectively, these ap-
proaches will expand the application of neuroimaging findings and provide
a foundation for eventual policy changes designed to improve conditions for
children in poverty.
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INTRODUCTION

Growing economic inequality (Saez & Zucman 2014) and deteriorating mental health among
youth (Keyes et al. 2019) have increased the urgency to better understand how individual
differences in brain development explain the links between environmental conditions and risk for
mental disorders. Poverty has a profound influence on children’s day-to-day experience through
a myriad of processes including increased parental stressors that hamper caregiving practices,
reduced community social support, and elevated neighborhood crime (Brooks-Gunn & Duncan
1997, Conger et al. 2002, Evans 2004, McLoyd 1998). Moreover, poverty and its associated
sequelae diminish human potential and increase the risk for chronic conditions, including mental
disorders, that can last a lifetime (Costello et al. 2003, Lazzarino et al. 2013). Although recent
findings indicate that poverty is robustly linked to brain development (Tomasi & Volkow 2021),
new insights concerning the reliability of brain measures and the small effect sizes linking brain
to phenotypes suggest that we are far from understanding how poverty alters brain development
and increases the risk for psychopathology. This is further complicated by the fact that human
brain development is highly heterogeneous, and there are wide individual differences in the
experience of poverty and its effects on mental health outcomes.

The goal of the present review is to assess the state of the field, characterize methodological
barriers, and identify paths forward. The review is divided into three sections. In the first section,
we briefly review the existing literature on poverty, brain development, and mental health. The
second section focuses onmethodological challenges in conducting this research. Finally, the third
section offers possible paths forward for increasing the reliability, replicability, and interpretability
of the research. These paths include changes to phenotyping, neuroimaging, and analyses. Some
challenges, such as improvements to the data processing pipeline, are relatively easy to address.
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In contrast, other challenges, including the heterogeneity of brain, clinical symptoms, and links
between brain and symptoms, pose more fundamental problems for the field. As part of this sec-
tion, we provide an overview of large data sets that may be used to answer relevant questions and
discuss the strengths and limitations of these data sets. Finally, we discuss possible approaches for
the field to increase interpretability and relevance for policy and clinical applications.

OVERVIEW OF THE EXISTING LITERATURE

Evidence from longitudinal population-based and birth-cohort studies has demonstrated that
poverty is a potent stressor for child and adolescent mental health via many associated risk fac-
tors. To establish causal effects, intervention studies have demonstrated that alleviating poverty
can improve child development and well-being. For instance, quasi-experiments and studies on
earned income tax credits have both shown that providing financial assistance to families can help
improve children’s academic achievement and reduce child behavioral problems (Akee et al. 2010,
Dahl & Lochner 2012). Similarly, experimental studies that provide opportunities to move to
more affluent neighborhoods and increase social support (Axinn et al. 2022, Chetty et al. 2016) or
studies that provide conditional and unconditional cash transfers to families (Duncan et al. 2011,
2014) have found that increased access to resources can reduce risks for subsequent mental health
problems in children.

At the same time, many children who grew up in poverty do not develop mental health prob-
lems, suggesting that there could be individual differences in poverty effects that could have
neurobiological bases (Garmezy 1993, Masten et al. 2021). In particular, the effects of poverty
on individual developmental trajectories could differ through variations in biological sensitivity
to the environment or the interaction between environment and biology (Boyce & Ellis 2005,
Jensen et al. 2017). These findings led to efforts to understand the neural mechanisms that under-
lie the link between poverty and mental health, which could help inform targets for prevention
and intervention efforts.

Much progress has been made on this front. Socioeconomic status has been associated with
differences in whole-brain volume and cortical surface area, white matter structural connectivity
and fiber density, and brain function both during rest and while performing in-scanner tasks
(Brito & Noble 2014, Hackman & Farah 2009, Hair et al. 2015, Rakesh & Whittle 2021).
Recently, in one impressive set of findings, Tomasi & Volkow (2021) systematically examined
cross-sectional associations between measures of socioeconomic status (SES) and structural
magnetic resonance imaging (MRI) measures in the Adolescent Brain Cognitive Development
(ABCD) study and found large, reproducible effect sizes in the association between family income
and cortical thickness.Moreover, they randomly split the full sample into discovery and validation
subsamples (N = 3,892 each) so that reproducibility could be established. Relative to cortical
thickness, the effect sizes were smaller for cortical volume, suggesting that cortical thickness may
be a more promising metric when examining SES–brain associations. These findings suggest that
a standard measure of poverty, specifically family income, may be reproducibly associated with
brain measures in a cross-sectional design.

While most studies have primarily focused on cross-sectional associations, increasing efforts
have been made to examine longitudinal trajectories of brain development as a function of poverty
exposure (Evans 2004,Hanson et al. 2013,Tooley et al. 2021). Furthermore, identifying specificity
across both different experiences of poverty and different neuroimaging modalities (Goetschius
et al. 2020b, Hardi et al. 2022, McLaughlin & Sheridan 2016) has increased understanding of the
mechanisms and processes through which poverty relates to brain and socioemotional develop-
ment. Finally, important work is underway using a randomized controlled trial to examine the
effects of poverty reduction on brain development and cognition (Troller-Renfree et al. 2022).
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METHODOLOGICAL CHALLENGES

Across the research field that examines poverty, brain development, and mental health, there are
multiple challenges that can undermine findings. In this section, issues regarding specific methods
as well as challenges in linking measures across multiple levels are discussed.

Measuring Poverty

Despite established links, obstacles in measuring poverty have hindered progress and yielded con-
tradictory results. In particular, it has been argued that common proxies of poverty, such as income
and education, are fundamentally flawed as they fail to capture important factors such as gov-
ernment subsidies, wealth accumulation, geographical differences, and educational opportunities
(Duncan & Magnuson 2003, Mueller & Parcel 1981). Furthermore, there are vast differences in
the experience of poverty, even when family income is comparable. For example, children with
similar economic circumstances may experience different levels of parenting and school quality;
such factors may modulate the effects of poverty on child development (Shavers 2007). Poverty’s
impact on development is also likely to vary across different developmental stages as children’s
economic needs change and they gain a more nuanced understanding of social class. Moreover,
SES often changes over time, further complicating our ability to capture poverty’s effects on
development.

Neuroimaging

Accumulating evidence indicates that variability in processing and analytical methods across stud-
ies decreases the likelihood of reproducible results. Variations in neuroimaging data acquisition
and processing methods (e.g., preprocessing pipelines, different scanning parameters during data
acquisition, brain segmentations or motion correctionmethods) can introduce biases in the result-
ing brain estimates (Bloom et al. 2022, Carp 2013, Li et al. 2022, Poldrack et al. 2017). Moreover,
Li and colleagues (2022) found that agreement among different pipelines is especially poor when
used to process data with low reliability, which is a known limitation of many neuroimaging data
with a short scan duration. Neuroimaging pipeline issues are also compounded by problems of
statistical power. Specifically, neuroimaging studies are often underpowered due to small sample
sizes (Button et al. 2013), which in turn leads to inflated effect sizes and replication challenges
(Marek et al. 2022, Schulz et al. 2022).

Linking Brain and Phenotype

Recent papers have raised serious concerns about the field’s ability to link brain structure and func-
tion to mental health symptoms. Specifically, analyses using large data sets, including the ABCD
study, UK Biobank, and the Human Connectome Project, examined the associations between
brain function and structures with mental health symptoms, cognitive assessments, and personal-
ity variables (Chen et al. 2022, Marek et al. 2022, Ooi et al. 2022, Winter et al. 2022). Functional
MRI (fMRI) had stronger associations with behavior than structural MRI, and cognitive measures
had stronger associations with brain measures than mental health and personality measures (Ooi
et al. 2022).Moreover, while associations were identified, the effect sizes, particularly with mental
health measures, were small. This is especially alarming given that the sample sizes of many neu-
roimaging studies are modest, and thus the studies are severely underpowered for detecting these
small effect sizes. As a result, many findings with smaller sample sizes may not replicate.

What might account for the small effect sizes? Four possibilities relate to reliability and
heterogeneity, and it is likely that most or all of these possibilities contribute to the small effects.
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First, the test-retest reliability for diagnostic and symptom measures for relevant mental health
conditions and symptoms is often modest (Regier et al. 2013, Tiego et al. 2023). As detailed in an
exceptional analysis by Nikolaidis et al. (2022), if one phenotypic measure has poor reliability, the
joint reliability of the mental health measure and the biological measure will be compromised,
and this will severely attenuate the effect size and degrade replicability between the biological
measure and phenotype. Moreover, an item response theory analysis of the Child Behavior
Checklist (CBCL), the primary symptom measure of mental health in the ABCD study, showed
that the CBCL had poor reliability at the low levels of psychopathology where most participants
resided (Tiego et al. 2023). Thus, in combination with the issues uncovered in statistical modeling
(Nikolaidis et al. 2022), poor reliability of phenotypic measurement could account for the small
effect sizes in some recent large-scale studies as well.

Second, whereas structural MRI and sensorimotor tasks with fMRI typically have excellent
test-retest reliability (Elliott et al. 2020), other fMRI protocols, such as rest during shorter
acquisition periods and emotion-based tasks with standard fMRI procedures, have modest-to-low
test-retest reliability (Elliott et al. 2020, Gratton et al. 2020). Thus, just as poor phenotype
reliability impacts brain–behavior study replicability, suboptimal test-retest reliability with brain
imaging will severely limit brain–behavior study replicability as well.

Third, mental health conditions are heterogeneous. Specifically, not only can nonoverlapping
symptoms lead to a given diagnosis (Gratton et al. 2020), but also the causal mechanisms, including
the relative proportion of genetic and environmental contributions along with the developmental
timing,may vary within a set of similar symptoms and conditions (Feczko et al. 2019).Given these
dimensions of phenotypic heterogeneity, it is clear that there is not a straightforward relationship
between brain and phenotype.

Fourth, seminal work from a project called the Midnight Scan Club, in which over 20 hours
of high-quality data from 10 individuals were acquired, has revealed tremendous interindividual
heterogeneity in brain function (Gordon et al. 2017, Gratton et al. 2018). These findings suggest
that the relationship between brain and behavior may be even more complex than previously
believed. Moreover, in light of recent concerns regarding small effect sizes, it was proposed that
there is likely tremendous heterogeneity in the relationship between brain and behavior across
individuals (Bandettini et al. 2022). This means that one specific brain pattern may not necessarily
lead to a given outcome. Instead, akin to the concept of multifinality (Cicchetti & Rogosch 1996),
there may be various patterns across individuals that contribute to the same symptom category or
mental disorder. If confirmed, this would increase the challenge of identifying reliable correlates
and point to a pressing need to move away from univariate analyses and toward approaches that
consider heterogeneity.

Beyond their possible causes, the issue of small effect sizes themselves in linking brain and
behavior poses problems for clinical translation. In particular, small effects make it unlikely that
current brain-based approaches can be used to develop biomarkers for improved diagnosis and
treatments for mental disorders (Gratton et al. 2020, Schmaal 2022). This is because the interindi-
vidual heterogeneity and poor reliability that contribute to small effects make neuroimaging
imprecise at the individual level (Gratton et al. 2020).

Conclusion

In summary, although promising findings show that measures of poverty and brain indices yield
reliable results, there are specific concerns around neuroimaging measures as well as approaches
that link neuroimaging andmental health.These issues are limiting the potential for neuroimaging
to lead to translational breakthroughs in diagnosis and treatment. The following section identifies
directions to improve replicability.
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PATHS FORWARD TO INCREASE REPLICABILITY

Introduction

Despite recent findings showing that the association between poverty, specifically family income,
and brain development has large and reproducible effect sizes (Tomasi & Volkow 2021), substan-
tial challenges and opportunities for improvement exist broadly in the field. Problems such as
small effect sizes, heterogeneity, and reliability are not unique to this area of research. For exam-
ple, although the effect sizes of lead exposure and attention problems are small (Goodlad et al.
2013), they are still important and relevant for policy. Moreover, as pointed out in Marek et al.
(2022), the small brain–behavior associations based on the ABCD Study, the Human Connec-
tome Project, and the UK Biobank are larger than genome-wide association studies linking genes
to behavior. Nevertheless, the major goals of neuroimaging are to contribute to diagnosis as well
as to identify best courses of treatment for patients. These goals require individual-level precision,
which is presently not possible. Below we discuss approaches to increase reproducibility and reli-
ability in research involving the measurement of poverty, brain development, and mental health.
Some of these solutions will take years to implement, while others are relatively straightforward.
Figure 1 outlines a summary of changes that can be implemented immediately, in the medium
term, and over the long term. The terms noted in Figure 1 are further discussed in the sections
below.

Open Science

As persuasively and broadly argued in recent years, incorporating open science approaches, includ-
ing preregistration, data sharing, and code sharing, curtails problems related to scientific practices,
such as p-hacking, analytic flexibility, and underpowered studies, along with human error (Lindsay
2015). In this field of research, especially with the increasing prevalence of big data where thou-
sands of variables can be examined and tested, continuing the use of open science will increase the
rigor of the work and increase the likelihood of replication.

Economic and Poverty Measures

To improve the reproducibility of poverty measures, it is important to include indices other than
self-report questionnaires. Adding sources such as administrative data across generations or census
tract data (Chetty et al. 2016,Milne et al. 2022) offers a more holistic measure of poverty. Further-
more, consideration should be given to co-occurring measures of inequality such as immigration
or refugee status as well as interpersonal and structural racism, which present unique challenges to
individuals that could limit access to resources and worsen the severity of poverty (Viruell-Fuentes
et al. 2012). In addition, the inclusion of experiential data, such as material hardship, would bet-
ter capture the lived experience of poverty (Gershoff et al. 2007). To integrate these multilevel
data, a structural equation approach can be employed to capture the shared variance between dif-
ferent poverty measures, or combined scores can be computed to capture cumulative effects of
poverty exposure (Mueller & Parcel 1981). Another approach is to test whether specific measures
of poverty have unique contributions for brain development, such asmaterial hardship (Hardi et al.
2022), household instability (Hardi et al. 2023b), and neighborhood-level poverty (Taylor et al.
2020) over and above family income or other metrics of poverty. Evidence for both the poten-
tial accumulated effect and specificity of poverty experience is important for informing targeted
interventions.

Finally, more work is needed to test the developmental timing effects of poverty. The effects of
poverty may vary depending on the developmental stage of children, as their perception of social

314 Monk • Hardi



DP05CH14_Monk ARjats.cls November 17, 2023 11:26

IMMEDIATE CHANGES

MEDIUM-TERM ALTERATIONS

Changes implemented to existing data

Changes implemented to existing data that will take longer

• Administrative data
• Co-occurring measures 

of inequality
• Developmental timing

Existing economic
measures

Pipeline

• Standardized data structure
• Enhanced motion correction
• Nonanatomical alignment
• Crossing-�ber estimation

External replication

• Compare �ndings across 
similar and dissimilar
samples

• Big data
• Weighting

LONG-TERM IMPROVEMENTS

Changes requiring new data collection

Open science

• Preregistration
• Data sharing
• Code sharing

Analyses

• Person-speci�c
• Multivariate, other 

computational 
approaches

• Latent factors

• Subdivide data sets
• Randomly draw 

subsamples

Within-sample
replication

Improved sampling

• Representative samples
• Community outreach, 

engagement
• Longitudinal samples

Poverty measures

• Experiential data
• Development timing
• Randomized controlled 

trials

Neuroimaging

• Precision fMRI
• Multiecho fMRI
• Naturalistic paradigms
• Multiple MRI modalities

Phenotypic data

• Multiple instruments,
time points, reporters

• Positive measures, resilience
• Ecological momentary

assessments
• Digital phenotyping

x

x

%%

$

Figure 1

Toward a reproducible neuroscience of poverty, resilience, and mental health. Changes are broken down by the time horizon in which
they can be implemented, showing immediate, medium-term, and long-term changes for improving research. Abbreviations: fMRI,
functional MRI; MRI, magnetic resonance imaging.

class changes considerably with age (McLoyd 2019). Moreover, parents may be better equipped
to shield younger children from certain aspects of poverty, resulting in differing experiences of
poverty as children grow older. Additionally, changes in income and resources across time could
also have important implications. Experimental research found that moving to a more affluent
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neighborhood could have a greater positive impact for younger children (Chetty et al. 2016).At the
same time, changes during later childhood are linked to worse outcomes (Natl. Inst. Child Health
Hum. Dev. Early Child Care Res. Netw. 2005). This suggests that changes occurring during late
childhood may be more egregious even though evidence indicates a sensitive period for brain
development occurs during early childhood when the brain is rapidly developing (Giedd et al.
1999, Hensch & Bilimoria 2012).

Neuroimaging

Over the years, procedures have been developed to improve the replicability of neuroimaging
data. These procedures, which include improvements to data collection, data pipeline processing,
and analysis, are described below. Although not a panacea, implementation of these procedures is
expected to lead to substantial improvements in the replicability of neuroimaging data.

Data collection.To mitigate the problems of low reliability and heterogeneity in neuroimaging,
acquiring larger quantities of data per subject is important. To that end, precision fMRI and dense
sampling, an approach whereby hours of data are collected per participant, have yielded marked
increases in reliability (Birn et al. 2013; Gratton et al. 2018, 2020; Noble et al. 2017).However, this
approach is not feasible for younger participants who are less likely to be willing or able to undergo
hours of data collection. In addition, due to cost constraints, precision fMRI makes collecting data
on a large sample impractical. A more promising approach is multiecho fMRI. In standard fMRI
acquisition protocols, an excitation pulse is applied to the brain and a single picture (or single
echo) of the whole brain is acquired. In multiecho fMRI, multiple pictures of the whole brain are
acquired following each pulse (Kundu et al. 2013, Poser et al. 2006). Whereas the physiological
signal of interest decays, noise from motion and other sources does not. Therefore, multiecho is
more effective than single echo at isolating the relevant fMRI signal, resulting in more reliable
and reproducible findings compared with single-echo acquisition (Cohen et al. 2021). Moreover,
10 min of data collection with multiecho yielded superior test-retest reliability compared with
30 min of single echo, and, thus, this procedure may help point to a way forward for conducting
precision MRI without a long acquisition time that is not feasible for children (Lynch et al. 2020).
Of note, although findings from these procedures were first published in 2006 (Poser et al. 2006),
multiecho was initially challenging to implement in many MRI centers, but technical advances
have now made it broadly available (Elliott et al. 2020).

Beyond the amount and form of fMRI acquisition, the procedures that the participant under-
goes (i.e., the brain state) (Greene et al. 2018) are also important for linking brain to phenotype.
Since it was first described in 1995 (Biswal et al. 1995), resting-state functional connectivity,
spontaneous fMRI signal in the absence of a task (Fox et al. 2005), has come to play a prominent
role in fMRI research (Finn 2021). Advantages to resting-state functional connectivity are that
instructions are minimal and participants will not make errors that will force them to be removed
from the analysis. More importantly, unlike in task-based fMRI where there are many variations
on similar tasks, most resting-state data procedures are the same; thus data from different sites
may be easily combined (Biswal et al. 2010). This is a major advantage when pooling large
data sets from different groups. Nevertheless, recent findings show that task-based functional
connectivity explained the variance of the target phenotype more than threefold compared with
the resting state (Greene et al. 2018). Relatedly, naturalistic paradigms, such as movie watching,
yielded functional connectivity estimates that predicted cognitive and emotional function better
than the resting state (Finn & Bandettini 2021). Why might task-based functional connectivity
outperform the resting state? The unconstrained nature of the resting state allows for more
unaccounted-for variability in the data, possibly from changes in attention and arousal (Greene
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et al. 2018). In contrast, tasks constrain the mental state and possibly tap into the brain processes
that are relevant to the phenotype of interest (Greene et al. 2018).

Another potential approach for increasing reliability is combining multiple MRI modalities
(e.g., task-based fMRI, resting state fMRI, diffusionMRI, anatomicalMRI), whichmay yield more
comprehensive measurement of brain development and provide more replicable findings linking
brain to behavior. To date, results utilizing this approach have been somewhat promising, but they
require further testing. Whereas analyses that combined different modalities predicted cognitive
function better ( Jiang et al. 2020, Schulz et al. 2022), other studies reported that the inclusion of
diffusion and anatomical data did not provide more predictive power on top of functional con-
nectivity measures (Ooi et al. 2022). Nevertheless, additional predictive power has been shown to
be achieved through multimodal fusion, which allows for more complete use of data from each
modality (Sui et al. 2020) and has been successfully used to predict cognition in schizophrenia
(Sui et al. 2018). Finally, identifying common connectivity patterns within individuals across rest
and tasks has also shown promise for increasing reliability (Elliott et al. 2019), but further work is
necessary to examine using this approach with mental health measures.

Data pipeline improvements. Possible biases introduced by variations in data acquisition
and preprocessing pipelines can be mitigated by using standardized methods and open science
approaches that could improve replication efforts. Standardized data structures, such as the Brain
Imaging Data Structure (Gorgolewski et al. 2016), provide a generalized way to organize and
describe neuroimaging data, improving data interpretation and sharing within or across research
groups. In addition, enhanced motion correction provides more reliable neuroimaging markers
(for comparisons across commonly used denoising techniques for fMRI data, see, e.g., Parkes et al.
2018); however, stringent criteria of motion can also lead to participant exclusions, which can lead
to biases in the results (Gard et al. 2023). This is especially important given evidence showing that
children from more disadvantaged backgrounds move more in the scanner (Cosgrove et al. 2022).
Thus, stringent motion correction could inadvertently limit the representation of children of
interest in research on poverty. As such, while more research is needed to establish best practices
in quality control for motion, all studies should establish detailed quality control procedures,
report any differences in findings associated with motion, and include motion parameters as a
part of the analytic or study design (Parkes et al. 2018).

New methods have been developed to address other limitations in neuroimaging analyses.
For instance, a known problem in neuroimaging research is that most commonly used methods
assume anatomical and functional coherence across individuals, even though brain function is
highly individualized (Gordon et al. 2017, Gratton et al. 2018). Thus, mapping individual brain
images onto a normalized standard space may obfuscate important individual differences in brain
function. To mitigate this problem, nonanatomical alignment methods, such as hyperalignment
(Haxby et al. 2011), have been developed to map functional data into a shared high-dimensional
space such that neural regions are aligned functionally as opposed to anatomically. This would
overcome the significant source of variability stemming from anatomical differences across
participants and has been shown to increase effect sizes of associations with measures of cognitive
function (Feilong et al. 2021). While this method has mostly been tested using functional data
collected during naturalistic viewing, there is promise for its application for fMRI data in general.

For structural connectivity modeling using diffusion data, new advances in techniques have
been developed as an alternative to conventional tractography methods, which are prone to prob-
lems in estimating white matter in regions of crossing fibers (Tournier et al. 2012). Techniques
that utilize methods optimized for crossing-fiber estimation, such as probabilistic tractography
or fixel-based analysis, are effective in establishing a more reliable marker for white matter
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development (Dhollander et al. 2021).Additionalmethods (e.g.,Bayesianmultitensormodel selec-
tion) are currently being tested to optimize such estimation even further (Seider et al. 2022), thus
advancing our ability to track white matter fibers that facilitate communication across the brain.

Analytic approaches. Advances in analytics also provide exciting ways forward that would im-
prove linkages among poverty, brain, and phenotypes. Heterogeneity in brain function indicates
that common statistical approaches that average brain function across participants may not be op-
timal in capturing individual differences (Elliott et al. 2021, Fair et al. 2021, Feczko et al. 2019).
Similarly, as discussed above, psychopathology may manifest in individuals in person-specific
ways. These factors suggest that reliable understanding of how poverty affects brain develop-
ment and mental health may require person-specific analyses (Feczko et al. 2019, Gratton et al.
2020, Molenaar 2004) that model individualized brain networks. Personalized brain network ap-
proaches, such as fingerprinting (Fair et al. 2021, Finn et al. 2015, Miranda-Dominguez et al.
2014,Mueller et al. 2013), that establish an individual neural signature have been used to examine
person-specific differences in functional networks. Another person-centered approach is to iden-
tify specific neuroimaging-based subtypes by clustering individuals within a sample using their
neural patterns. This method, which simultaneously minimizes similarities between individuals
within the same group and maximizes differences between subgroups, can be used to classify in-
dividuals for prediction of risk factors or prospective outcomes. For example, network models
using functional connectivity identified adolescents who were susceptible to anxiety six years later
(Hardi et al. 2023a) and those who were exposed to violence early in life (Goetschius et al. 2020a).
A similar approach has also been taken to distinguish clinically depressed from nondepressed indi-
viduals on the basis of brain function (Drysdale et al. 2017, Price et al. 2017). Future investigations
may wish to combine these person-specific approaches with an examination of developmental tra-
jectories. Such an approach is comparable to charting developmental trajectories of individuals on
pediatric growth charts (Marquand et al. 2019, Rutherford et al. 2022). Similar to other analyses,
this method aims to reduce reliance on group averages when making comparisons across patients
or healthy groups.

Improving reproducibility for prediction of individual differences also requires methods that
better index the reliability of brain data as well as improve existing analytic approaches. For in-
stance, stable variability in the functional signal across a large number of trials may be necessary
for meaningful phenotypic prediction of individual differences and can be better estimated using
trial-level variability (Chen et al. 2021, Månsson et al. 2022). Furthermore, mounting evidence
indicates that methods that are based on multivariate analyses increase power in predictive analy-
ses. As demonstrated by multiple studies (e.g., Kragel et al. 2021, Spisak et al. 2022), multivariate
network analyses that aggregate information across the connectome can enhance statistical power
and improve the ability to detect effects with smaller samples. For instance, approaches such as
canonical correlation analysis (Hardoon et al. 2004,Wang et al. 2020) that maximize the linear re-
lationship between a set of predictors and outcomes can achieve reproducible results with a sample
size of 300–1,000 (Tiego et al. 2023).This approach has been shown to be successful in identifying
specific network patterns that map onto dimensions of psychopathology (Xia et al. 2018).

To achieve a similar goal of identifying reproducible and reliable neural markers that could
account for heterogeneity, computational models that use both unsupervised and supervised ma-
chine learning methods are also becoming increasingly popular (Bzdok & Meyer-Lindenberg
2018, Rutherford 2020). These methods typically include a cross-validation process where models
are trained and established using a set of data, which are then used for prediction on an indepen-
dent test sample. Support vector machine classifiers, for instance, have been used to distinguish
between healthy and patient samples using brain features and patterns (for a review, see Orrù
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et al. 2012), potentially providing a way to predict disease without behavioral data. Similarly, deep
learning neural network algorithms can also be used to develop predictivemodels formore reliable
representation of disorders (Durstewitz et al. 2019).

Phenotyping

The reliability of symptom and diagnostic measures of mental health conditions is modest and
often poor. For example, as discussed above, the CBCL may have poor reliability in nonclinical
samples (Tiego et al. 2023). As for pediatric diagnostic instruments, the Kiddie Schedule for Af-
fective Disorders and Schizophrenia (K-SADS) was found to have excellent or good interrater
and test-retest reliability across mental health conditions, but the sample size was small and the
number of patients who participated in the reliability testing was even smaller (Kaufman et al.
1997). Thus, more work is needed to assess the reliability of the K-SADS. However, since the
K-SADS typically relies on multiple reporters (i.e., the child and a parent), it may provide rea-
sonable reliability. For adults, the Structured Clinical Interviews for the DSM (SCID), a standard
instrument for adult diagnoses, had only modest reliability for categorizingmanymental disorders
(Shankman et al. 2018). This poor reliability substantially contributes to small effect sizes when
linking brain to symptoms, and thus, increasing phenotypic reliability offers marked increases in
effect size independent of the reliability of the MRI data (Nikolaidis et al. 2022).

How might the reliability of the mental health measures be increased? First, acquiring data
using multiple instruments, multiple time points, and multiple reporters (e.g., self-report, parent
report, clinician report) effectively increases reliability (Nikolaidis et al. 2022). Second, generat-
ing latent factors from multiple instruments also increases reliability (Tiego et al. 2023). Third,
combining a clinician interview approach along with inclusion of symptom severity may increase
reliability. For example, Shankman and colleagues (2018) adapted the SCID to assess symptom
severity and found that it substantially increased the psychometric properties of the instrument.
A similar approach with an instrument such as the K-SADS may also be effective. Fourth, the in-
clusion of ecological momentary assessment data, which provides self-reported information about
mood and experiences throughout the day, may provide rich, contextual information that would
further enhance the stability of subjective experiences. Finally, data from participant smartphones,
including app use, exercise, sleep, and social interactions, provide a digital phenotype that may
complement existing clinical measures (Montag & Quintana 2023). In summary, single question-
naires with modest amounts of data do not provide sufficient reliability. Moving forward, it will
be crucial to collect data from multiple time points and multiple informants that will yield more
reliable indices of emotional experience.

Big Data Approaches

Over the last 12 years, there has been a proliferation of large, publicly available data sets. The
Philadelphia Neurodevelopmental Cohort helped usher in this era by collecting and sharing neu-
roimaging data on an impressive number of children, adolescents, and young adults (N = 1,145)
(Satterthwaite et al. 2014). Moreover, relevant to the present review, this study was particularly
groundbreaking because many of the participants were from low-income backgrounds, a segment
that had often been ignored in research. More recently, sample sizes have dramatically expanded.
Examples of pediatric studies include the ABCD and Healthy Brain Network (HBN) studies.
Along with consortia that curate previously collected data, such as Enhancing Neuro Imaging
Genetics Through Meta-Analysis (ENIGMA) and the Autism Brain Imaging Data Exchange (Di
Martino et al. 2014, Novak et al. 2012), large-scale studies have transformed the way that brain
research is done. No longer do individual labs collect and retain data sets; now, many aspects of
the large data sets are shared so that novel research questions can be addressed without additional
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data collection. These large-scale studies provide a huge resource for the broader neuroimaging
community. Although none of these studies were explicitly created to examine possible effects of
poverty on brain development, these large-scale studies can be used to address these questions.
Moreover, due to their immense size, these endeavors will play a crucial role in resolving issues
of reproducibility. Below we discuss the advantages and disadvantages of specific samples.

Adolescent BrainCognitiveDevelopment.TheABCD study collected data from almost 12,000
9- and 10-year-olds from 21 sites across the United States and is now following the sample by col-
lecting lab-based measurements every year and MRI data every other year (Casey et al. 2018,
Garavan et al. 2018). Additionally, the project was thoughtfully sampled, with the demographics
roughly approximating US demographics (Garavan et al. 2018). Even though it is not the central
focus, the ABCD study is suitable for examining poverty, brain development, and mental health.
It is estimated that the ABCD study includes approximately 1,034 children who live below the
poverty line with acceptableMRI data and complete income data (Ellwood-Lowe et al. 2021). Fur-
thermore, several indices of poverty were collected at multiple time points, including household
income; the Parent Reported Financial Adversity Questionnaire, which assesses whether fam-
ilies have enough money to pay for essentials (Taylor et al. 2020, Tomasi & Volkow 2021); and
neighborhood-level povertymeasures such as the AreaDeprivation Index created using residential
addresses (Taylor et al. 2020).

Despite well-sampled poverty measures and good representation of individuals below the
poverty line, there are several limitations of the sample for linking brain to phenotype. First, the
administration of only two types of mental health assessments, the K-SADS and CBCL, may not
be adequate in capturing mental health outcomes. The ABCD study used a self-administered,
computerized version of the K-SADS in which the child reported on themselves and the parent
reported on the child, and it was not administered by clinically trained individuals. The concor-
dance among the self-administered versions and the clinician version is generally modest across
conditions based on the Cohen’s kappa, but stronger based on Gwet’s AC1 (Townsend et al. 2020),
raising questions about the diagnoses. Furthermore, at least following the first wave of data col-
lection, symptom levels based on the CBCL scores were low (Chen et al. 2022, Ooi et al. 2022).
This could have contributed to the small effect size in brain–behavior association in the sample
(Marek et al. 2022) as the CBCL has poor reliability when used to measure mental health out-
come in samples with low levels of psychopathology (Tiego et al. 2023). The CBCL was designed
to examine clinical samples and so it may lack the sensitivity to measure individual differences in
healthy individuals. Lastly, while longitudinal data spanning across multiple developmental stages
will become available in the future, data collection began when participants were 9–10 years of
age and so any information acquired about prior developmental periods was based on retrospec-
tive accounts, which are less reliable (Hardt & Rutter 2004). Despite these limitations, the ABCD
study includes an exceptionally large sample of participants from diverse economic backgrounds
who are being followed longitudinally. Thus, this project provides important data that has the
potential to yield highly reproducible findings.

Healthy Brain Network.With the goal of collecting data from 10,000 children, adolescents, and
young adults, HBN is another large study that will provide valuable insight into brain and behav-
ior associations (Alexander et al. 2017). Relative to the ABCD study, HBN has some advantages
along with a few disadvantages. A major advantage concerns recruitment. Through advertise-
ments, HBN seeks families who have concerns about psychiatric symptoms in their child, and the
study team offers comprehensive diagnostic evaluations along with recommendations for treat-
ment when relevant. The expected result is that the sample will be enriched with many young
people with a psychiatric diagnosis and elevated symptoms. Another advantage is that participants
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undergo a clinician-administered K-SADS along with clinical consensus, which is thought to yield
a more accurate diagnosis (Zelenina et al. 2023). In addition, with people between the ages of 5
and 21 being recruited, the project has a broad age range, making it possible to cross-sectionally
examine how clinical conditions relate to brain function at different ages of development. Finally,
because the catchment area is New York City, the sample is expected to be racially, ethnically, and
economically diverse. As for disadvantages, it appears that data will be collected at only one time
point, so longitudinal analysis will not be possible. Also, HBN is not a population-based sample,
and so generalizability is an issue. An additional disadvantage is that since the social environment
is not a focus of the work,measures of poverty are likely limited.Overall, because the large sample
has high rates of psychopathology and a more reliable version of the K-SADS was used,HBNwill
provide an important contribution to the field.

Emerging data sets. Important new data sets will also become available soon including the
HEALthy Brain and Child Development Study (HBCD), the Human Connectome Project—
Development (HCP-D), the Study of Adolescent-to-Adult Neural Development (SAND), and
ENIGMA-Environment. HBCD is analogous to the ABCD study, but it will span the first decade
of life (Volkow et al. 2021). Moreover, the project will recruit people who used substances dur-
ing pregnancy, and the 7,500 families in the sample from across the United States are expected
to be diverse, including many participants who have been exposed to poverty. Therefore, given
that data will be collected very early in development, often in the prenatal period, and data from
multiple time points will be collected, this study will provide an incredibly rich resource for in-
vestigators to probe developmental associations among social environment, brain development,
and mental health. HCP-D is expected to be composed of 1,300 healthy children, adolescents,
and young adults (ages 5–21) from four cities, St. Louis, Boston, Los Angeles, and Minneapolis
(Harms et al. 2018, Somerville et al. 2018). In addition, an adolescent subset is participating in
a three-wave longitudinal component. Thus, developmental brain trajectories can be examined.
Because much of the data are cross-sectional over a broad age range, the data will nicely comple-
ment the ABCD study. Moreover, the project is expected to have diversity with respect to SES,
with ample representation of families with lower income.

SAND is recruiting participants from the Future of Families and Child Wellbeing Study (for-
merly called the Fragile Families and Child Wellbeing Study) (Reichman et al. 2001). Therefore,
SAND has economic and socioemotional data at birth and at 1, 3, 5, 9, and 15 years (Hein et al.
2020).Moreover, although a full range of incomes is represented in the sample, there is substantial
enrichment for low-income families, and, thus, it is well suited to examine correlates of poverty
and development. The sample is also composed of two-thirds Black Americans, a population that
is particularly underrepresented in research. The study is collecting mental health and MRI data
from approximately 600 participants at two time points in young adulthood, with 237 having
participated in adolescence for a total of three time points. Finally, within the ENIGMA Con-
sortium framework (Novak et al. 2012), ENIGMA-Environment is bringing together a growing
list of international contributors to examine potential effects of poverty-relevant variables, such as
neighborhood economic markers, green spaces, and pollution levels, on brain structure and func-
tion (Ferschmann et al. 2022). Thus, along with the ABCD and HBN studies, these new data sets
will provide important contributions to the field.

Randomized Controlled Trials

A common takeaway from recent work documenting small effect sizes for associations between
brain and behavior is that the only path forward is to do large, consortia-based studies.However, in
an excellent assessment of the field,Gratton and colleagues (2022) argue that the key to increasing
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replicability is statistical power.One approach to increasing power while also separating cause and
effect is to conduct randomized controlled trials (RCTs) with repeated measures before, during,
and after the intervention or treatment. Of relevance to the present review, RCTs could be done
using treatments or interventions, such as cash transfers, and in the context of environmental as-
sessments, neuroimaging, and phenotyping.While there is enthusiasm in the field for conducting
such RCTs, such enthusiasmmust be tempered due to findings whereby the treatment conditions,
including prekindergarten education and vouchers to move out of poverty, were linked to worse
outcomes (Durkin et al. 2022, Kessler et al. 2014). These findings highlight the complexity of the
issues and the need to have a more complete understanding of the relevant variables. In particular,
these inconsistent results emphasize the need to gain a deeper comprehension of the underlying
mechanisms that may explain the varying outcomes of poverty exposure.

Improved Sampling

Establishing representative samples is an important step in improving replicability. A sample or
subset is representative if it reflects the population of interest. If the sample is not representative of
a population (e.g., a convenience sample), it is unknown towhom the findings will generalize, and it
may not be possible to recreate the sample to test for replication. Related to representativeness, we
need greater consideration for the intersectionality of identities and experiences, including with
minoritized groups such as individuals who have been exposed to interpersonal and structural
racism. This requires representative samples that include more individuals who are historically
underrepresented in neuroscience research (Falk et al. 2013,Garcini et al. 2022,Ricard et al. 2023).
Several recommendations have been put forth to facilitate the recruitment of diverse samples.
One is to improve community outreach and engagement in order to recruit underrepresented
groups (Ocloo&Matthews 2016), and another is increased transparency in communication so that
research could be disseminated in a way that would provide educational benefits for community
members.To sustain research engagement, barriers to research participation should be reduced by
diversifying the scientific community and improving cultural competence in research staff. These
efforts would be beneficial for building trust between the scientific community and communities
of color that were harmed in the past through participation in research. Moreover, this work
is especially important for poverty research given that social class highly intersects with racial
identity in the United States.

Although work using representative samples could facilitate generalizability and reproducibil-
ity, the goal of identifying robust and universal biomarkers of behavior may be more difficult to
achieve in more diverse samples. This is because the issues concerning heterogeneity described
above become even more complex in large, diverse samples. In particular, some neural markers
may be idiosyncratic and person-specific depending on the multitude of complex interactions
during the course of development between genetics and environmental conditions. Of note, an
important recent study found that individuals who fall outside of predictable patterns (i.e., their
stereotypical profile) are more likely to be misclassified using predictive models linking brain to
behavior (Greene et al. 2022). This suggests that we need to be careful when drawing inferences
about universal biomarkers that were obtained using large data sets because the environment,
brain, and phenotypes are highly heterogeneous; resulting neural markers may not apply to a large
number of people who defy normative patterns. Thus, in light of this limitation, it is important
not only to identify to whom the findings generalize but also to determine to whom the findings
do not generalize. This is especially important if we are interested in identifying markers of
resilience to adversity because resilience in essence indicates a deviation from expected outcomes.

A final and crucial consideration for improved sampling is the inclusion of well-sampled lon-
gitudinal studies that allow for the analysis of developmental variables and trajectories. Given the
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importance of the developmental timing of poverty experience as well as individual differences in
how the brain develops, longitudinal data that provide information about poverty exposure and
brain measures at multiple time points would allow for a better understanding of their interac-
tions as well as increase reliability. Furthermore, cross-sectional data preclude inferences about
causal associations and within-person change over time, which are important in identifying the
long-term effects of poverty on brain and behavior.

Examining Resilience

In addition to examining risk, it is vital that we take a holistic approach and also look at resilience to
poverty (Arredondo 2021, Arredondo et al. 2022).Within a dynamic system framework, resilience
is defined as the ability to adapt to challenges that threaten the functioning, survival, and/or de-
velopment of the organism (Masten et al. 2021). Fifty years of research on the topic has identified
an array of factors across multiple systems that confer resilience, including sensitive caregiving,
social support, sense of belonging, and optimism (Masten et al. 2021). By ignoring resilience and
the socioeconomic variables that contribute to it, we not only do a disservice to the communi-
ties we are studying by losing the possibility of identifying routes for prevention and intervention
strategies but also likely reduce reproducibility, since these variables are not accounted for in the
model.

Replication Testing

In recent years, there has been a call to conduct out-of-sample or external replication testing
(Gratton et al. 2022). Clearly, if findings are confirmed in another sample, faith is increased in
the reliability of a particular finding, which moves us toward a more reproducible science. How-
ever, since demographic indices, environmental conditions, and other unaccounted-for variables
may interact and impact brain development and mental health, it is a challenge to identify two or
more samples that are comparable for replication testing. Vast differences in demographics and
age ranges would make replication less likely. Nevertheless, if findings across samples do repli-
cate, it provides powerful evidence for the finding. At the same time, if a replication fails, it may
not be the case that the original finding was wrong; rather, the finding may accurately reflect
conditions in one sample but not the other. Relatedly, borrowing from established procedures in
epidemiology, neuroimaging researchers can implement a weighting approach to adjust for demo-
graphic differences between samples (Gard et al. 2023, Heeringa et al. 2017) to reduce sampling
bias and increase generalizability of neural markers. One can also evaluate which demographic
variables between samples may have prevented the findings from generalizing from one sample
to the other.

New methods for external replication, such as meta-matching, have shown promise in lever-
aging neural network models that were trained using large samples that could be applied to
behavioral prediction in smaller samples (Chopra et al. 2022, He et al. 2022). Recently, meta-
matching was trained on the UK Biobank and then applied to small clinical samples where large
data sets are not possible (Chopra et al. 2022, He et al. 2022). It was found that meta-matching
increased the prediction of brain connectivity to cognitive function. Investigators may wish to be
cautious in this approach as it makes the large data sets the ground truth.Nevertheless, it does offer
a way for small studies to establish greater replicability between brain and behavior associations.

When the features of a sample are unique, and it does not seem reasonable to expect that the
findings can replicate in another sample, within-sample replication may be the best option. There
are two ways to accomplish this. First, split-half reliability can be done by subdividing data sets
in two (Hardi et al. 2023a, Pronk et al. 2022). Second, one may randomly draw subsamples of
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participants from the sample to assess the stability of the original findings (Hardi et al. 2023a,
Tomasi & Volkow 2021). Thus, while not as optimal as out-of-sample replication, within-sample
replication allows for the assessment of replicability in samples that are more distinct.

Increasing Interpretability

As we work toward developing reproducible links among poverty, brain, and behavior, one im-
portant challenge is to continue to center our research on benefiting individuals and families who
are living in poverty. To this end, it is important that the discovery of neural markers of poverty
and mental health disorders has relevance for interventions and policy. When work on develop-
mental human neuroscience began, it often used neuroscience-driven hypotheses from animal
models to facilitate interpretation and provide a bridge to applications. However, as sample sizes
become larger in the era of big data, and neural models become increasingly complex, there are
trade-offs between model complexity and interpretability. For instance, increasing the number of
features in machine learning approaches can boost predictive ability but result in an increase in
model complexity that makes it more difficult to precisely identify targets for interventions or to
test theory-driven hypotheses (Nielsen et al. 2020, Tejavibulya et al. 2022). Thus, as the field pro-
gresses to adopt these novel methodological approaches, striking a balance between complexity
and interpretability is important. In particular, we suggest that the field integrate data science ap-
proaches with hypotheses from animal models and interventions, such as cash transfer RCTs. The
integration of these three elements will increase reliability and replicability while also helping to
ground findings in mechanisms and applications.

CONCLUSION

Despite the rapid expansion of the field linking brain measures to poverty and mental health, con-
cerns about replicability remain. Some compelling evidence indicates that poverty has replicable
links to brain development, but associations between brain and mental health are less consistent.
Heterogeneity in brain, mental health symptoms, and links between the two may contribute to
this inconsistency. The incorporation of large data sets can increase replicability, but they, too,
have limitations. Moving forward, we suggest that integrating data science, neuroscience models,
and intervention research is essential for facilitating greater replicability, interpretability, and links
to policy.
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