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Abstract

Research on early biomarkers and behavioral precursors of autism has led to
interventions initiated during the infant period that could potentially change
the course of infant brain and behavioral development in autism. This article
integrates neuroscience and clinical perspectives to explore how knowledge
of infant brain and behavioral development can inform the design of infant
autism interventions. Focusing on infants <12 months, we review studies on
behavioral precursors of autism and their neural correlates and clinical tri-
als evaluating the efficacy of infant autism interventions. We then consider
how contemporary developmental social neuroscience theories of autism can
shed light on the therapeutic strategies used in infant autism interventions
and offer a new perspective that emphasizes improving child outcome and
well-being by enhancing infant-environment fit. Finally, we offer recom-
mendations for future research that incorporates brain-based measures to
inform individualized approaches to intervention and discuss ethical issues
raised by infant autism interventions. Readers are referred to Supplemental

Table 1 for a glossary of terms used in this article. Supplemental Material >
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INTRODUCTION

As research on early autism biomarkers and behavioral precursors allows for identification of
infants with a higher likelihood of an autism diagnosis, infant autism interventions that could po-
tentially alter the course of brain and behavioral development and lead to more positive outcomes
are being developed. In this article, we integrate contemporary social neuroscience and clinical
perspectives to explore how our knowledge of brain and behavioral development in infants later
diagnosed with autism can inform the design of infant interventions and lead to testable hypothe-
ses about how such interventions influence underlying neural systems. We focus on interventions
with infants <12 months of age who are exhibiting autism-related behaviors and/or have a higher
likelihood of a diagnosis of autism due to genetic factors (i.e., infant siblings of children diagnosed
with autism; hereafter referred to as infant siblings).

We begin by reviewing research on infant behavioral precursors of autism and their neural cor-
relates. This research has identified a set of core domains related to attention, social engagement,
communication, and motor skills in which early differences have been identified in infants who are
later diagnosed with autism. Developmental science has documented the important role of these
domains in typical early social, language, and cognitive development (Tomasello & Farrar 1986,
Warlaumont et al. 2014). Thus, differences in these domains can potentially have cascading con-
sequences affecting the later well-being and quality of life of the child. Similarly, taking a holistic
view on infant development, we describe several early physical health conditions associated with
autism and discuss their potential impact on subsequent brain and behavioral development.
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Next, we review findings from studies that evaluated the efficacy of infant autism interventions.
We then offer a developmental social neuroscience perspective on infant autism interventions by
exploring how current hypotheses regarding the neural basis of autism can shed light on thera-
peutic strategies used in infant autism interventions. This leads to a new perspective on infant
interventions and assessing outcomes that emphasizes enhancing infant-environment fit with a
goal of facilitating meaningful and sustained changes in those skills that improve the child’s quality
of life and well-being and nurture autistic strengths. Finally, we offer recommendations for future
intervention research that incorporates brain-based measures to better inform individualized
approaches to intervention and discuss ethical issues raised by infant autism interventions.

BEHAVIORAL PRECURSORS AND THEIR NEURAL CORRELATES
IN THE FIRST YEAR

Research on behavioral precursors of autism began with studies of home videos of infants later
diagnosed with autism (Adrien et al. 1993, Osterling & Dawson 1994). These studies documented
differences in pointing, social gaze, orienting to name, smiling, facial expressions, motility, and
attention by 1 year of age. One of the first longitudinal case studies of an infant later diagnosed
with autism was based on a neurologist’s detailed medical chart notes from birth through 1 year,
when the infant was evaluated for autism (Dawson et al. 2000). During the first 6 months after
birth, this infant exhibited hypersensitivity to touch and reduced oral motor control, was socially
responsive, vocalized, and smiled at others. During the second half of the first year, hypersensitiv-
ity, poor motor control, and hypotonia continued, and motor stereotypies and reductions in social
gaze, social play, and imitative vocalizations were observed. In the mid-2000s, prospective studies
of infant siblings began, which further shed light on the development of infants with later autism
(Zwaigenbaum et al. 2007). These studies have identified four core domains—attentional flex-
ibility, social attention and engagement, prelinguistic development, and sensory and motor
differences—in which behavioral precursors of autism are consistently documented during
infancy, representing focus areas for intervention. We describe these domains and their neural
correlates next.

Attentional Flexibility

In the first months after birth, as visual acuity increases, interaction with the visual environment via
movements of the eyes and head feeds forward into higher-level brain regions (frontoparietal ori-
enting networks), facilitating the development of top-down modulation of visual attention (Amso
& Scerif 2015). Between 4 and 6 months, visual-orienting mechanisms become more sophisti-
cated, supporting the ability to suppress competing stimuli during attention. The development of
attentional flexibility is reflected in an infant’s ability to engage and sustain their attention to a toy
or person and readily shift their focus of attention when a new object is introduced, alternating
attention between the toy and person.

Attentional flexibility has been studied by the gap-overlap task, which measures saccade la-
tencies to a target either in the face of a competing central stimulus (overlap condition) or not
(gap and baseline conditions). Reaction times to orient to the target are typically slower in the
overlap condition as prior disengagement from the competing central stimulus is required. There
is mixed evidence whether difficulties in attentional flexibility are present by 6-7 months in in-
fants later diagnosed with autism. One study (Elison et al. 2013a) found that 7-month-old infant
siblings with later autism had longer orienting latencies in both the overlap and gap conditions
compared with infant siblings without autism and infants with no family history of autism (lower
likelihood infants). Another study found that 6-month-old infant siblings with later autism did
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not exhibit delayed visual orienting and disengagement (Bryson et al. 2018). While latencies to
disengage attention in the overlap condition decrease in neurotypical development, infants later
diagnosed with autism do not show this gain in flexible control of visual attention, and slower at-
tention disengagement is reliably demonstrated by 12—-14 months (Bryson et al. 2018, Elsabbagh
etal. 2013). An association between visual-orienting latencies and white matter organization along
corticospinal pathways, splenium, and corpus callosum has been reported for 7-month-old infants
without an autism diagnosis; this association was not found for infants with later autism (Elison
etal.2013a).

Alongitudinal study of infant siblings and lower likelihood infants from 6-36 months examined
infants’ ability to engage, disengage, and sustain their attention during play with toys and an adult
(Sacrey et al. 2013). At 12 months, infants with later autism exhibited prolonged staring at a toy
after grasping it and slower attention disengagement from the toy. This made it less likely that
the infant would visually explore their environment and look at the adult after grasping an object
(i-e., shared attention). Consistent with a more focal attention style, superior visual search has
been noted in 9-month-old siblings with later autism (Cheung et al. 2018), suggesting that visual
distractors may have less influence on attention in these infants.

Social Attention and Social Engagement

Social attention, pertaining to increased salience of and attention to faces, eyes, and voices, is
reduced by 6-8 months of age in infants later diagnosed with autism (Chawarska et al. 2013,
Jones & Klin 2013, Jones et al. 2016). Reduced social attention and gaze following have been
hypothesized to contribute to early differences in face processing in infants later diagnosed with
autism (Dawson et al. 2005, Jones et al. 2016, Mundy & Bullen 2021). In a longitudinal study of
infant siblings during social interaction, infants with later autism showed declining trajectories of
attention to an adult’s face, looking less to the adult’s face than neurotypical infants by 12 months
(Ozonoff et al. 2010). Another study reported reduced attention to faces during social interaction
in 6-,9-,and 12-month-old infants later diagnosed with autism. This difference was most apparent
when interactions involved speaking and tickling versus singing and playing with a toy (Macari
et al. 2021). Speaking and tickling are less predictable and potentially more arousing. Consistent
with this, in a study of toddlers with versus without a sibling with autism, toddlers who were later
diagnosed with autism looked at faces more when the interaction was more predictable (Vernetti
et al. 2018). These findings and earlier similar results suggest that social attention in infants and
toddlers diagnosed with autism increases when interactions are more predictable and immediately
contingent on the child’s behavior (Lewy & Dawson 1992). In addition to reduced attention to
faces, reduced responding to name is observed by 9 months and strengthens as a predictor of
autism during toddlerhood (Miller et al. 2017), becoming specific to autism after one year (Hatch
etal. 2021).

Infants later diagnosed with autism exhibit diminished social engagement during social inter-
action, including reduced positive affect, by 6 months of age (Garon et al. 2022). By 9 months,
reduced eye gaze, facial expressions, gestures, and vocalizations during interaction are observed
(Bradshaw et al. 2021).

Neurophysiological measures, including event-related potentials (ERPs), electroencephalog-
raphy (EEG) spectral power densities and microstates, and near-infrared spectroscopy, have
identified reduced responsiveness to faces in infants later diagnosed with autism (Gui et al. 2021a,
2021b; van Noordt et al. 2022), evident by 4-6 months of age (Jones et al. 2016, Lloyd-Fox et al.
2018). These findings point to early differences in activity of the fusiform face area in the in-
ferior temporal lobe and related brain regions [e.g., amygdala, superior temporal sulcus (STS),
temporoparietal junction].
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Prelinguistic Development: Vocalizations, Gestures, and Joint Attention

Infants typically transition from nonsyllabic to syllabic vocalizations by 7 months and increasingly
use canonical vocalizations (speech-like consonant-vowel combinations) over the next several
months. Nine-to-twelve-month-old infants later diagnosed with autism produce fewer canoni-
cal or speech-like vocalizations and more frequent noncanonical or nonspeech-like vocalizations
(Plate et al. 2022). Caregivers respond more frequently to canonical vocalizations, which shapes
babbling development (Warlaumont et al. 2014). Infant siblings with later autism are less likely to
socially direct their vocalizations (Garrido et al. 2017).

On the basis of functional magnetic resonance imaging (fMRI), a lack of right hemisphere
specialization of the temporal and medial frontal regions for human voice processing was found
in infant siblings (Blasi et al. 2015). In another fMRI study, hyperconnectivity between auditory
and somatosensory regions involved in language was found in 9-month-old infant siblings (Liu
etal. 2020). EEG power and nonlinear EEG features, collected at 6 and 12 months while listening
to phonemes, predicted later autism in infant siblings (Peck et al. 2021).

The use of gestures and joint attention is also delayed in infants later diagnosed with autism.
Gaze following, a precursor of joint attention, is reduced in 8-month-old infant siblings (Bussu
et al. 2021). From 8 to 14 months, infants with later autism show slower growth in gestures and
gesture—vocal coordination (Bradshaw et al. 2021). At 12 months, infant siblings with later autism
produce fewer gestures, especially gestures integrated with speech, and gesture use is predictive of
later receptive language skills (Choi et al. 2020). Lower rates of initiating joint attention are also
observed in infant siblings with later autism (Mundy & Bullen 2021).

Neural sensitivity to eye gaze has been linked to activity of the temporal lobe (fusiform gyrus,
STS, and amygdala) (Hooker et al. 2003). White matter pathways connecting the amygdala to
the ventral-medial prefrontal cortex and anterior temporal pole in 6-month-old infants have been
associated with later joint attention skills at 9 months (Elison et al. 2013b). Weaker functional
connectivity between the cortex and cerebellum at 9 months of age predicted later language and
joint attention skills and autism-related behaviors in infant siblings (Okada et al. 2022).

Sensory and Motor Differences, Including Object Use

Differences in sensory processing, including hyper- and hyposensitivity to visual, auditory, and
tactile stimuli, are observed at 6 months in infants with later autism (Sacrey et al. 2015, Wolff
et al. 2019). Differences in how objects are used, such as intense visual inspection, repetitive play,
and reduced exploration, are observed by 9-10 months in infants with later autism (Miller et al.
2021). These differences persist to 12 months of age, when stereotyped body and head movements
are also observed (Dimian et al. 2017).

On the basis of MRI at 6 months, fractional anisotropy of the genu in the anterior corpus callo-
sum and cerebellar pathways predicted later levels of repetitive behaviors and sensory responses,
respectively, in infant siblings later diagnosed with autism (Wolff et al. 2017). Reduced neural
repetition suppression to tactile input in 10-month-old infant siblings was associated with later
autism (Piccardi et al. 2021).

Differences in motor development are present by 6 months and likely earlier (Dawson et al.
2000). By 6-9 months, infant siblings later diagnosed with autism exhibit delayed sitting, pull-to-
sit, reach-to-grasp, and goal-directed reaching. By 12 months, fine and gross motor delays exist
and predict later expressive and receptive language abilities (LeBarton & Landa 2019). Difficulties
in postural control and frequent head movements appear early and continue into toddlerhood
(Krishnappa Babu et al. 2022).

In 12-month-old neurotypical infants, fMRI functional connectivity of motor and default mode
networks has been found to be associated with onset of walking, whereas dorsal attention and
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posterior cingulo-opercular networks are associated with gross motor skills by 24 months, under-
scoring the dynamic nature of brain changes and motor development (Marrus et al. 2018). Little
is known about the brain systems related to motor development in infants with later autism. The
correlation between early motor skills and later language acquisition underscores the involvement
of cortical motor regions in the production of syllabic vocalizations (Bouchard et al. 2013).

Summary

Research based on home videotapes, clinical case reports, and observations of infant siblings has
demonstrated that, during the period from 6-12 months, infants later diagnosed with autism ex-
hibit differences in four behavioral domains: (#) attentional flexibility, (§) social attention and
engagement, (¢) prelinguistic development, and () sensorimotor behavior. These domains rep-
resent focus areas for early intervention and are highly integrated such that development in one
domain (e.g., attentional flexibility) impacts others (e.g., joint attention).

Studies examining the neural correlates of behavioral precursors of autism underscore the
widespread differences in brain development apparent during infancy. fMRI studies have docu-
mented differences in the functional connectivity of cerebellum corticospinal pathways, splenium,
corpus callosum, auditory and somatosensory regions, amygdala, anterior temporal cortex, and
ventral-medial prefrontal cortex. EEG studies have pointed to differences in the neural networks
supporting face, eye gaze, and phoneme processing and habituation to sensory stimuli involving
the temporal lobe, amygdala, ST, and fusiform gyrus. The neural systems related to behavioral
precursors of autism are highly interconnected and mutually influential during development.

PHYSICAL HEALTH DURING INFANCY

Autism is associated with higher rates of co-occurring medical conditions (Alexeeff et al. 2017),
and many of these conditions are present during the first year of life (Engelhard et al. 2020).
Preterm delivery, low birth weight, and perinatal stroke due to hypoxia are associated with higher
rates of autism (Carlsson et al. 2022). A retrospective study using electronic health records found
that, before 12 months, infants later diagnosed with autism are more than three times as likely
to visit an ophthalmologist, gastroenterologist, or neurologist than those without an autism di-
agnosis (Engelhard et al. 2020). Another study reported that, in the first 3 years after birth,
infants and toddlers later diagnosed with autism had increased rates of neurological; nutrition-
related; genetic; ear, nose, and throat; and sleep conditions (Alexeeff et al. 2017). Compared with
neurotypical infants, 10-month-old infant siblings have more night awakenings and longer sleep-
onset latencies (De Laet et al. 2022). By 6-12 months, infants diagnosed with autism have higher
rates of caregiver-reported sleep-onset problems, which have been associated with differences in
hippocampal volume trajectories (MacDuffie et al. 2020).

A holistic intervention approach that promotes behavioral development while simultaneously
addressing existing medical conditions could enhance the efficacy of infant autism interventions.
For example, evidence suggests that unique changes in sleep physiology and patterns occur during
infancy, which influence structural and functional brain development (Lokhandwala & Spencer
2022). Sleep also enhances learning via sleep-dependent memory consolidation in young children
(Spano et al. 2018).

FINDINGS FROM STUDIES EVALUATING THE EFFICACY OF INFANT
AUTISM INTERVENTIONS

Research on autism intervention with infants <12 months is still in its early stages, with relatively
tew randomized clinical trials with replicated findings (see Supplemental Table 2 for more detail
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on published studies). The first intervention studies with infant siblings and/or infants exhibiting
autism-related behaviors were case reports (Green et al. 2002, Vismara 2008) and small feasibility
studies with sample sizes ranging from 3-17 (Baranek et al. 2015, Green et al. 2013, Koegel et al.
2014, Rogers et al. 2014, Steiner et al. 2013). These showed encouraging results with improve-
ments found in language abilities and functional communication (Baranek et al. 2015, Koegel et al.
2014, Rogers et al. 2014, Steiner et al. 2013), social engagement (Koegel et al. 2014, Rogers et al.
2014), sensory responsiveness, and the quality of caregiver—infant interaction (Baranek et al. 2015).

Randomized clinical trials of caregiver-mediated interventions for infants <12 months range
from small to adequately powered, with varying results. In a study of 1-year-olds exhibiting
autism-related behaviors (N = 87), Watson et al. (2017) found minimal effects on child out-
comes of a caregiver-coaching intervention, Adaptive Responsive Teaching (ART) (30 sessions
across 8 months). However, caregivers showed greater responsiveness to their infant’s cues after
the intervention, and changes in responsiveness mediated the positive effects of the interven-
tion on children’s communication abilities and sensory processing. In a randomized trial with
9-month-old infant siblings evaluating a caregiver-coaching intervention [an adapted version of
Video-Feedback Intervention to Promote Positive Parenting (VIPP); N = 54, 12 sessions across
5 months] (Green et al. 2015, Juffer et al. 2017), caregivers in the intervention group showed
less directiveness during interactions with their infants. Infants who received the intervention
showed increased attentiveness to their caregiver and exhibited fewer autism-related behaviors,
faster attention disengagement on the gap-overlap task, and improved caregiver-reported social
abilities. A follow-up assessment of the same sample at 3 years of age found the intervention was
associated with fewer autism-related behaviors and increased attentiveness and communication
initiations during caregiver—infant interactions (Green et al. 2017). Although the study was not
adequately powered to detect group differences in autism diagnoses, a higher percentage of chil-
dren were diagnosed with autism in the intervention group [4 of 27 participants (15%)] compared
with the nonintervention group [2 of 26 participants (8%)]. This pattern of results is consistent
with improving outcomes without changing rates of clinical diagnosis. No effects were found on
standardized assessments of cognitive and language abilities.

In a larger (N = 103) randomized clinical trial of the same caregiver-coaching intervention
(adapted VIPP, 10 sessions across 5 months) with 12-month-old infants exhibiting signs of autism,
the earlier effects of intervention on levels of autism-related behaviors were not replicated, and
there were no intervention effects on caregiver—infant interactive style, infant attentiveness, or
standardized measures of language and cognitive ability (Whitehouse et al. 2019). However, a
follow-up assessment of this sample at 3 years of age found that children in the intervention group
had reduced odds of receiving an autism diagnosis [3 of 45 participants (6.7%)] compared with
the usual care group [9 of 44 participants (20.5%)] (Whitehouse et al. 2021). Positive effects of
caregiver responsiveness continued but attenuated over time, and there were no intervention ef-
fects on infant attentiveness, infant positive affect, or standardized assessments of language and
cognitive abilities.

Measuring and Testing Neural Correlates in Infant Intervention Studies

To our knowledge, only two intervention studies have examined whether an autism intervention
with infants was associated with measurable changes in infant brain activity. A randomized trial
of a caregiver-mediated intervention (VIPP) with 9-month-old infant siblings (Green et al. 2015)
included an auditory oddball ERP designed to measure the infant’s ability to detect changes in
speech sounds and the gap-overlap task to measure attentional flexibility. Results showed no sig-
nificant intervention effects for the auditory ERPs, although there was a trend toward reduced

www.annualreviews.org o Neuroscience and Infant Autism Interventions

95



96

neural responsiveness to speech sounds in the intervention group. A moderate positive effect
was found on attention disengagement, indicating the intervention resulted in increased infant
attention flexibility.

Another study collected measures of face encoding (habituation) and two EEG measures (ERPs
to faces and toys and spontaneous EEG while watching dynamic social and nonsocial videos) at
6, 12, and 18 months from a group of infant siblings (N = 33) (Jones et al. 2017). Between 9
and 11 months, infants were randomized to receive a caregiver-mediated intervention, Promoting
First Relationships, which has been shown to increase caregiver responsiveness and contingent
responding (N = 19) (Booth-LaForce et al. 2020) versus ongoing monitoring without intervention
(N = 14). Compared with infants who did not receive the intervention, infants in the intervention
group exhibited faster habituation to faces, ERPs (P400) to faces that were more comparable to a
neurotypical group of comparison infants, and increased frontal EEG theta power (a measure of
attentional engagement) while watching dynamic videos. This study is encouraging in suggesting
that a relatively brief caregiver-mediated intervention can promote neural systems involved in
social processing.

Summary

Current evidence reveals mixed results from preliminary trials and randomized clinical trials eval-
uating the efficacy of interventions for infants with a higher likelihood of an autism diagnosis,
delivered with infants <12 months. This conclusion is broadly consistent with a meta-analysis of
the efficacy of very early autism interventions on neurodevelopmental outcomes for infants and
toddlers under 3 years, which suggested there is low-to-moderate certainty evidence that such in-
terventions have limited impact on neurodevelopmental outcomes by age 3 (McGlade et al. 2023).
Despite encouraging findings from smaller, preliminary studies, a larger randomized clinical trial
of a caregiver-coaching intervention with 12-month-old infants showed no clear benefit immedi-
ately after the intervention. When children were followed up with at 3 years of age, children who
received the intervention exhibited fewer autism-related behaviors and were less likely to receive
an autism diagnosis, but no positive benefits were found in terms of children’s cognitive, language,
or adaptive behavior, domains that have been correlated with positive long-term outcomes. Evi-
dence to date suggests that more research is needed to refine and further test the efficacy of infant
autism interventions before recommendations for their broader use in clinical practice can be
made. Few studies to date have included brain-based predictor and/or outcome measures. Inclu-
sion of brain-based moderators, mediators, and outcomes will provide a better understanding of
the neural systems involved in infant interventions.

A DEVELOPMENTAL SOCIAL NEUROSCIENCE PERSPECTIVE
ON INFANT AUTISM INTERVENTION

Therapeutic Strategies Used in Infant Autism Interventions

Progress in developing effective infant autism interventions will require a better understanding
of the essential components of such interventions and how they relate to early infant brain de-
velopment. Therapeutic approaches commonly used in infant autism interventions draw heavily
on developmental science, particularly the notion that joint engagement in caregiver-infant
interactions is fundamental for early social and communication development. Distinct from joint
attention, joint engagement occurs when the infant and caregiver are actively focusing on shared
activities and usually involves affective sharing (Adamson et al. 2004). Joint engagement is essen-
tial for promoting the development of social brain networks (Dawson et al. 2005, Johnson et al.
2005).
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Most infant autism interventions use caregiver coaching, often delivered in weekly sessions
for several months, with a core focus on increasing caregiver sensitivity and responsiveness to in-
fant cues to support joint engagement. In neurotypical development, caregiver responsiveness has
been found to enhance joint engagement and the acquisition of joint attention skills and language
(Tomasello & Farrar 1986). Studies of young autistic children have shown that the frequency of
caregivers’ contingent responses to the child’s actions and utterances is associated with rate of lan-
guage acquisition (McDuffie & Yoder 2010). Importantly, during caregiver-infant interactions, the
infant’s responses influence caregiver responsiveness, which in turn can have cascading effects on
social and language development, known as the social feedback loop (Warlaumont et al. 2014).

Infant autism interventions encourage caregivers to adapt their interaction style to enhance
the fit between the infant and their unique way of processing information and their environment,
with a goal of optimizing the infant’s joint engagement and learning. For example, VIPP (Juffer
et al. 2017, Whitehouse et al. 2021) uses video feedback to encourage the caregiver to recognize
the pace and pattern of the infant’s behaviors and match their own responses, thereby increasing
synchrony. Reciprocal vocalizations are supported by promoting contingent, attuned responses to
the infant. In Infant Start (Rogers et al. 2014), based on the Early Start Denver Model (Rogers et al.
2019), caregivers are coached to position themselves for optimal face-to-face orientation, follow
the infant’s interests and preferred activities, respond contingently by imitating and elaborating
on the infant’s behavior, optimize the infant’s state of arousal and positive affect, and maximize
opportunities for positive shared affect and turn-taking. In the ART model (Watson et al. 2017),
caregivers are coached to use responsive strategies involving contingency, matching, and affective
responding. Infant interventions based on Pivotal Response Training encourage caregivers to pair
themselves with the infant’s preferred activity to increase the infant’s motivation to engage in social
interaction, interspersing highly preferred activities that are associated with positive affect with
more neutral activities (Koegel et al. 2014).

In these examples, caregivers and the coach reflect together on the interaction between the
infant and caregiver and discuss strategies designed to enhance social engagement and communi-
cation. Common strategies include (#) increasing the salience of social information by removing
distracting objects and positioning themselves to maximize face-to-face interaction, (b) following
the infant’s lead by engaging in infant-preferred activities rather than directing the interaction,
thereby following the pace and interests of the infant, (¢) responding contingently to the in-
fant’s behaviors, often by mirroring the infant’s facial expressions, vocalizations, and actions, and
(d) increasing enjoyment of the shared experience by participating in infant-initiated activities and
being sensitive to the infant’s affective state and arousal levels. These elements are among those
identified as common to naturalistic developmental behavioral interventions that have been shown
to be effective with toddler- and preschool-aged autistic children (Frost et al. 2020).

Implications of Developmental Social Neuroscience Theories of Autism
for Understanding Infant Autism Interventions

We now consider how contemporary developmental social neuroscience theories of autism can
shed light on the therapeutic strategies used in infant autism interventions. These theoretical
perspectives on brain function in autism are not mutually exclusive but rather are expected to
interact in synergistic ways.

Predictive coding hypothesis. The predictive coding hypothesis posits that autism affects
the infant’s ability to make predictions about sensory inputs and evaluate the correspondence
between predictions and experience in order to build a coherent model of the social world
(Cannon et al. 2021). The acquisition of social and communication abilities depends on the ability
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to perceive predictable patterns in the environment via pattern learning (Faust et al. 2020). In-
fants detect and learn patterns of sensory information, including speech, actions, and visuospatial
patterns, by noticing recurrent regularities (e.g., co-occurrence probabilities and distributional
properties), which are then generalized to other situations (Saffran 2020). Through experience,
infants track the patterns present in their environment to identify meaningful distinctions in the
sensory input around them that allow them to process speech and faces (Krasotkina et al. 2018).

Contingency detection is a fundamental way in which infants use statistical learning to develop
social and communicative skills, including the ability to predict another person’s actions, which
is central to joint attention. Neurotypical infants whose caregivers provide contingent vocal
responses to their babbling are more likely to incorporate their caregiver’s phonological patterns
compared with infants who receive the same number of noncontingent responses (Goldstein &
Schwade 2008). Other contingent responses to babbling, such as smiling or being touched, also
increase the number and quality of infant vocalizations. As infants notice predictable actions of
their caregivers, this influences their attentional focus and preferences. Infants prefer and attend
more to actions by their caregiver that are reliable (Tummeltshammer & Kirkham 2013). Infants
who receive a high ratio of jointly focused contingent responses by caregivers prefer the objects
their caregiver is holding, thus facilitating shared attention (Mason et al. 2019b). For these reasons,
contingent responding is a key intervention strategy that supports the development of infant self-
regulated attention. However, social responding by others is rarely perfectly contingent. Thus,
promoting a tolerance, or even a preference, for high but imperfect contingency is also important.

Detecting and learning statistical regularities in the context of social interaction occurs via pre-
dictive processing. Contemporary computational neuroscience models posit that a fundamental
principle of brain function and learning is to minimize prediction errors (Clark 2013). Predic-
tions are made within a hierarchical system from motor responses to mental representations and
include predictions about one’s own actions and the actions of others, as well as shared actions,
rewards, and emotions (Brown & Briine 2012). Mismatches between prediction and outcomes
are opportunities for learning. Predictions involving biological motion that include inferences
about the goals of others’ actions involve the STS (Jellema et al. 2000) and mirroring network
(Molenberghs et al. 2012). The mirroring network, which plays a central role in forming shared
action representations, is a widely distributed brain system involving the inferior parietal lobe,
inferior frontal gyrus, ventral premotor cortex, primary visual cortex, cerebellum, and parts of the
limbic system (Molenberghs et al. 2012). Several of these brain regions have been implicated in
studies of infants with a later diagnosis of autism (Elison et al. 2013b, Okada et al. 2022, Wolff
etal. 2017).

Bayesian accounts of autism hypothesize that differences in predictive processing underlie
autism-related behaviors (Sinha et al. 2014, Van de Cruys et al. 2014). Evidence supporting this
model of autism is summarized by Palmer et al. (2017) and Cannon et al. (2021). From a Bayesian
perspective, social interaction is challenging for autistic persons because of the high degree of
uncertainty (unpredictability) of human behavior, which inherently involves a greater number of
prediction errors, especially if predictions (Bayesian priors) are imprecisely matched to sensory
inputs (Lawson et al. 2014). This perspective posits that any stimulus or environment involving a
high degree of uncertainty will be challenging, not solely those of a social nature.

The predictive coding hypothesis posits that, whereas neurotypical infants apply differential
weights to prediction errors during social interactions to determine whether new learning is neces-
sary, the infant who will be diagnosed with autism assigns disproportionate weight to nonrelevant
prediction errors, resulting in a higher number of instances in which the infant perceives the so-
cial input as being novel. According to this view, the neurotypical infant uses aggregated input to
assign weight to prediction errors, while the infant with early signs of autism places higher weight
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on the most recent input, such as immediate sensory information (Koster et al. 2020). This not
only would affect how the infant makes sense of social and linguistic information but also could in-
fluence sensory processing (van Laarhoven et al. 2020) and help explain findings that infants with
later autism fail to suppress neural responses to repeated sensory stimuli (Piccardi et al. 2021).
Studies of 6-month-old neurotypical infants show that infants’ neural responses to repeated au-
ditory stimuli are modulated by the degree of predictability when they experience such stimuli
(Emberson et al. 2019). A tendency to place higher weight on recent sensory input could also lead
to overselectivity, involving local versus global processing biases (Leader et al. 2009).

Early differences in predictive processing would also be expected to influence the development
of multisensory representations of peripersonal space and shared action spaces (Noel et al. 2022,
Pezzulo et al. 2013). Infants continuously form models to predict both their own and another’s
actions, successively integrating multisensory information to form an action plan that includes
both partners, which is necessary for real-time coordination. Autistic individuals have been found
to have diminished ability to update representations of their peripersonal space in response to a
changing social context (Noel et al. 2022).

Multisensory temporal perception hypothesis. Recent conceptualizations of autism have pro-
posed that altered multisensory processing may help explain many core features of autism,
including social and communication difficulties and sensory sensitivities (Siemann et al. 2020).
Multisensory processing involves integrating sensory input from different modalities to form a
unified perception, which can enhance perception, especially in noisy environments (Stevenson
etal. 2014). Numerous studies have documented differences in multisensory processing in autistic
individuals (Siemann et al. 2020), including decreased strengthening of speech perception when
congruent auditory and visual information is provided (i.e., the McGurk effect) (Irwin et al. 2011).
Research suggests that the multisensory temporal binding window might be unusually wide in
autistic individuals (Foss-Feig et al. 2010). Alterations in temporal processing of multiple stimuli
might change how the brain differentially weights two inputs and whether they should form an in-
tegrated percept. In support of this perspective, reduced visual orienting to audiovisual synchrony
in 10-month-old siblings predicted a later autism diagnosis (Falck-Ytter et al. 2018).

Integration of multimodal information can enhance speech perception and has a central role
in language learning (Mason et al. 2019a). Multisensory processing of speech has been found to
involve the STS, a highly interconnected hub brain region that has also been shown to have both
structural and functional differences in neuroimaging studies of autistic individuals (Redcay 2008).
As a multimodal and rapid temporal integration hub, the STS may be differentially engaged by
social stimuli as their complexity necessarily requires its computational ability, although the de-
bate about the degree to which it is dedicated only to social stimuli continues (Lahnakoski et al.
2012). Infant-directed speech by the caregiver, characterized by auditory prosody exaggerations, is
often temporally synchronized with exaggerated visual facial movements and expressions (Green
et al. 2010). Similarly, caregivers’ use of gestures and object movements is often temporally syn-
chronized with infant-directed speech and word labels. Studies of neurotypical infants highlight
the importance of the caregiver’s role in coordinating their speech with the infant’s attention and
actions. During the first year after birth, infants are much better at extracting information from
their caregivers, including word learning, when the caregiver responds to the infant’s prelinguistic
vocalizations within a 2-5 second time window (Goldstein & Schwade 2008).

Multisensory integration has also been shown to modulate arousal. In a study of 4-month-old
neurotypical infants, electrodermal activity was reduced when the infant experienced a combina-
tion of a socially relevant visual stimulus and affective touch (Nava et al. 2021). Thus, for infants
with early signs of autism, difficulties in multisensory temporal integration would be expected to
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impact sensory processing, arousal levels, perception of facial expressions and speech, and early
vocalizations and language learning.

Social motivation hypothesis. Social motivation accounts of autism posit that autism involves
differences in evolutionary biological mechanisms that bias an infant to preferentially orient to
social information (social orienting) and to approach and experience reward from social interac-
tion (Chevallier et al. 2012, Dawson et al. 2002, Dawson et al. 2005, Schultz et al. 2000). Neural
circuitry involved in social motivation includes the orbitofrontal-striatal-amygdala circuit and is
mediated by neuropeptides such as oxytocin and vasopressin, as well as other neuromodulatory
systems involved in reward, such as dopamine and the endocannabinoid system (Walum & Young
2018). Recent evidence suggests that differences in reward salience and activation in autism are
not specific to social stimuli (Keifer et al. 2021). A meta-analysis of fMRI studies during processing
of social versus nonsocial rewards by autistic individuals supports a broader interpretation of the
social motivation theory that implicates both social and nonsocial reward (Clements et al. 2018).
From this point of view, the infant with early signs of autism would be expected to have reduced
motivation to engage in both social and nonsocial aspects of their environment.

The role of social motivation during infancy in autism is supported by reduced attention to
faces, positive affect, and eye contact during social interaction (Bradshaw et al. 2021, Garon et al.
2022, Macari etal. 2021) and diminished response to name (Hatch etal. 2021, Miller et al. 2017) in
infants later diagnosed with autism. Cortical networks supporting social attention develop during
infancy, including the salience network (anterior insula and dorsal anterior/midcingulate cortex),
which allocates attention to preferred stimuli, along with its connection to the amygdala, which
plays a key role in emotion, arousal, and motivation (Gao et al. 2015). In autism, suboptimal states
of arousal (hyper- or hypoarousal) could influence attention to and encoding of social information
and acquisition of social and communication skills (Tonnsen et al. 2018).

A study of resting-state functional connectivity of neurotypical infants found that differences
in connectivity between the amygdala and salience network mediated the relationship between
caregiver affect and infant smiling (Phillips et al. 2021), supporting the role of these networks in
affective and social engagement during infancy. Differences in patterns of early amygdala growth
have been found in infant siblings with a later diagnosis of autism (Shen et al. 2022).

Common Elements of Infant Autism Interventions Reconsidered

The predictive coding hypothesis suggests that the infant with a later diagnosis of autism ex-
hibits reduced social engagement and positive affect because of the high degree of uncertainty
in social behaviors, leading to a high level of prediction errors, which are experienced as novel
events. The infant might overly weight information not directly relevant to the social interaction,
making it more difficult to detect statistical regularities in social patterns, such as the caregiver’s
actions, speech, and facial expressions. A common intervention strategy is to minimize attention
to nonessential information and emphasize the information that is most relevant by removing
distracting information and increasing the salience of the key information most relevant to social
interaction (e.g., encouraging face-to-face positioning where the caregiver is in the center of the
infant’s visual field).

By responding in a highly contingent manner to the infant’s behavior, including mirroring the
infant’s behaviors, the caregiver provides a highly predictable interaction and reduces noise and
uncertainty. The use of songs and games, often incorporated into caregiver-mediated interven-
tions, provides highly predictable, repeatable social experiences. As the infant notices the statistical
regularity of the contingent responses, the infant will often begin testing these predictions by in-
tentionally vocalizing or moving to see if this elicits a response from the caregiver. In this way,
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the infant’s increased use of social behaviors facilitates responses from the caregiver, thereby en-
hancing the social feedback loop. Another strategy is to establish highly predictable joint activity
routines and then slowly introduce variation into the joint activity while still maintaining a rela-
tively high level of predictability. These types of experience are expected to stimulate a wide range
of neural networks (e.g., salience and mirroring networks, networks supporting face processing).
In an intervention study of toddlers diagnosed with autism, children who received a naturalistic
developmental behavioral intervention (Early Start Denver Model) exhibited a faster ERP re-
sponse and increased cortical activation (reduced alpha and increased theta spectral power) when
viewing faces (Dawson et al. 2012) and increased activity of the mirroring network, as evidenced by
increased EEG mu rhythm suppression while watching an action performed by a familiar person
(Aaronson et al. 2022).

The multisensory temporal perception hypothesis posits that the infant showing early signs of
autism has difficulty processing social information due to its multisensory and temporal nature.
The infant is not readily integrating the caregiver’s facial expressions and actions with their words
and sounds, thus diminishing perception of this social information. If the infant has an unusu-
ally wide time window for multisensory temporal binding, the infant might mistakenly integrate
information that is not meaningfully related (e.g., facial expression with a background sound).
Increasing the salience and the regular temporal concurrence of relevant visual (the caregiver’s
facial expressions) and auditory (vocalizing to the infant) information would potentially increase
the chances of temporal binding. Simultaneous mirroring of the infant’s body movements might
promote the infant’s ability to integrate proprioceptive information with the visual information of
watching the same movement in another person. Songs and infant games provide opportunities
for experiencing high temporal congruence of movement, sound, and visual input.

The social motivation hypothesis suggests that diminished social attention and engagement are
influenced by a reduced level of reward assigned to social experiences. This perspective puts high
value on the infant experiencing the person and interaction as pleasurable. Following the infant’s
lead and participating in the infant’s self-initiated and preferred activities ensures that the infant
already has a high level of interest in the shared activity. Associating preferred activities, such as
songs, physical games, and toys, with the caregiver (paired-associate learning) enhances the re-
ward value of the caregiver. Sensitivity to the infant’s affective state and arousal level maximizes
opportunities for attentional engagement and shared positive affect and minimizes experiences
that are overly arousing and stimulating for the infant. From this point of view, increasing the
reward value of social interaction is expected to naturally draw the infant’s attention to the care-
giver’s face, voice, and actions, thereby stimulating activity in brain networks involved in face and
voice processing (Dawson et al. 2002).

In summary, contemporary developmental social neuroscience provides a strong foundation
for current infant autism interventions, illustrated in Figure 1. We posit that the goal of infant
autism intervention is for the caregiver to learn to make adaptations to the infant’s social and
nonsocial environment to enhance infant-environment fit (Edwards et al. 2006). A higher degree
of fit is expected to promote social engagement and learning. In this sense, both the infant and
their caregiver are mutually engaged in a dynamic process of adaptation to optimize development
and outcomes for the infant.

FUTURE DIRECTIONS AND CONCLUSIONS
Considerations for Designing Future Intervention Studies

We review above the state of the evidence supporting the efficacy of autism infant intervention
for improving children’s outcomes and describe current approaches to infant autism interventions
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INFANT NEURAL AND BEHAVIORAL DEVELOPMENT INFANT AUTISM INTERVENTION STRATEGIES
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« Increase regular temporal concurrence of relevant
multisensory information (e.g., face, voice)
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and movement

+ Engage in mutual imitation and mirroring of
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Figure 1

Follow infant’s lead and pace

Use infant-initiated preferred activities with shared
positive affect

Pair adult partner with infant’s preferred activities
and objects

Modulate adult’s behavior to optimize infant arousal
and attention

Enhancing infant-environment fit to promote social engagement and learning. A wide range of genetic and physical health factors
beginning during the prenatal period lead to changes in brain development, including brain growth, specialization, connectivity, and
responsiveness to various stimuli. These are manifest in infant information processing differences, including differences in predictive
coding, multisensory temporal perception, and social motivation, and multiple behavioral precursors to autism, observable by

6-12 months of age. Infant autism interventions involve therapeutic adaptations to the infant’s unique style of information processing,
with a goal of enhancing infant-environment fit, thereby promoting infant social engagement and learning.
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from the perspective of contemporary neuroscience theories of autism. We now consider how
a developmental social neuroscience perspective can inform future directions for infant autism
intervention studies and discuss ethical considerations raised by infant autism interventions.

Using brain-based measures to inform individualized approaches to intervention. Given
that autism is a heterogeneous condition, tailoring interventions to the specific needs of each indi-
vidual may improve outcomes, as individual infants may benefit from adaptations of interventions
to their unique way of interacting with others and the broader environment (Hartman & Belsky
2016). Incorporating infant neural biomarkers or behavioral precursor profiles may identify in-
fants who will most benefit from specific types or intensities of intervention. Table 1 describes
several neural correlates of behavioral precursors of later autism that are developmentally appro-
priate for use in infant intervention studies. Incorporation of such neural correlates into infant
intervention clinical trials could elucidate which interventions work for which infants and en-
hance our understanding of the neural mechanisms underlying behavioral change in response to
intervention.

Better established biomarkers. To better understand the effects of interventions and their influ-
ence on underlying brain systems, we need robust biomarkers of these systems. We discuss above
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Table 1 Potential infant brain-based and attention measures for use in clinical trials evaluating infant autism

interventions
Earliest age
documented in infants
later diagnosed with
Behavioral precursor autism (months) Potential infant brain-based biomarker
Reduced attention to faces and gaze 6 ERPs to faces (Jones et al. 2016)
following (Macari et al. 2021) Intertrial coherence during face processing (van Noordt et al.
2022)
Social attention-related EEG microstates (Gui et al. 2021a)
Eye tracking of social gaze (Chang et al. 2021, Jones & Klin
2013)
Lower positive affect (Garon et al. 6 EEG alpha asymmetry during reward anticipation
2022) (Stavropoulos & Carver 2014)
Frontal EEG asymmetry (Campagna et al. 2021)
Multisensory and sensory 6 Orienting to multisensory stimuli (Falck-Ytter et al. 2018)
differences (Sacrey et al. 2015) Repetition suppression of evoked gamma (Kolesnik et al. 2019)
Somatosensory mismatch negativity (Shen et al. 2018)
Pupillary light reflex (Nystrom et al. 2018)
Motor imitation (LeBarton & 6 EEG mu rhythm suppression to familiar action (Marshall &
Landa 2019) Meltzoff 2011)
Increased negative affect (Pijl et al. 8 Frontal EEG asymmetry (Campagna et al. 2021)
2019) Mu rhythm suppression to emotional faces (Quadrelli et al.
2021)
ERPs to emotional faces (Quadrelli et al. 2019)
Reduced gaze following (Bussu 8 Predictive learning of goal-anticipatory gaze shifts (Gumbsch
etal.2021) etal.2021)
Reduced response to name (Hatch 9 Mismatch negativity to speech sounds (Paquette et al. 2013)
etal.2021) NIRS responses to human sounds (Braukmann et al. 2018)
Increased repetitive behaviors 9 EEG functional connectivity (Haartsen et al. 2019)
(Miller et al. 2021)
Reduced social affective 9 EEG mu suppression to emotional faces (Quadrelli et al. 2021)
engagement (Bradshaw et al. ERPs to emotional prosody (Grossmann et al. 2005)
2021) Frontal EEG asymmetry (Campagna et al. 2021)
Reduced canonical vocalizations 12 Mismatch negativity to speech sounds (Cheour et al. 2001)
(Yankowitz et al. 2022) NIRS responses to human sounds (Braukmann et al. 2018)
Attention disengagement during 12 Gap-overlap task (Elsabbagh et al. 2009)
play (Sacrey et al. 2013)
Reduced initiating joint attention 12 ERPs to eye gaze shifts (Bussu et al. 2021)
(Franchini et al. 2019)

Abbreviations: EEG, electroencephalography; ERPs, event-related potentials; NIRS, near-infrared spectroscopy.

a variety of behavioral, electrophysiological, and neuroimaging measures that have had utility in
predicting a later diagnosis of autism. Some of these measures are conceptually linked with infant
behavioral precursors to autism and would be expected to change along with behavioral improve-
ments (see Table 1). Currently, there are no formally established biomarkers for autism. However,
one electrophysiological measure has been the subject of preliminary qualification as a stratifica-
tion biomarker by the European Medicines Agency and the US Food and Drug Administration:
the N170 ERP response to faces (Kala et al. 2021, Mason et al. 2022, McPartland et al. 2020).
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As discussed earlier, several infant studies have implicated neurophysiological responses to faces
and other social stimuli as associating with later autism, at least as a group predictor (Jones et al.
2016, Lloyd-Fox et al. 2018), and prediction is strengthened when combined with genetic factors
(Gui et al. 2021b). Further exploration of this infant brain marker for social attention and engage-
ment is merited and promises to index activity consistent with multisensory temporal perception
(STS being one component of the core face network) and/or social motivation systems. Similarly,
reduced social attention measured via eye tracking shows promise as a viable autism biomarker
(Shic et al. 2022). Recent studies based on computer vision analysis have demonstrated the ability
to detect differences in social attention in autistic toddlers on the basis of eye-gaze patterns using
an application administered on a smartphone or tablet in clinics or homes (Chang et al. 2021).
These novel computational approaches offer promise for scalable, quantitative social attention
biomarkers that can be collected remotely in natural settings.

Time course of intervention. To date, interventions have typically focused on the age range of
7-12 months and usually involved 10-12 sessions over 3—5 months. A strong possibility is that a
more prolonged period of intervention, or a tiered approach in which intervention continues if
little or no change occurs, would yield stronger intervention effects. Given our understanding of
infant brain development in autism and the potential impact of early physical health conditions,
another option for future studies is to begin intervention at an earlier stage, even during the neona-
tal period. Recruiting infants to intervention only after screening reveals early emerging autism
signs may result in a missed optimal window for commencing intervention. Future research is
needed to better understand when the optimal time is to begin intervention and how to monitor
progress and adapt interventions to address the individual needs of each infant and their family. An
intervention study with autistic toddlers suggests that even a small difference in the timing of inter-
vention onset (18 versus 27 months) may influence developmental outcomes (Guthrie et al. 2023).

Multifaceted intervention, including infant-directed intervention. Current interventions
have focused on caregiver—infant interaction as the route to effect change. However, based on
examples from other conditions, it is plausible that a multifaceted intervention that includes
infant-directed components would be more successful. A broader array of interventions can ad-
dress multiple developmental pathways that may have interactive or additive influence on the
infant’s trajectory. For example, disrupted sleep patterns and other physical health difficulties are
known to have detrimental effects on learning and affect and thus could cause or compound
social interaction difficulties. Other infant-directed interventions using new technology could
also facilitate the development of underlying brain systems. Trials of attention training using
gaze-contingent eye tracking have been conducted with neurotypical 11-month-old infants (Wass
et al. 2011). The infants interacted with a series of enjoyable games in which their looking pat-
terns determined the presentation of attractive rewarding stimuli in a contingent way. Relative
to a passive-viewing control group, the intervention group showed positive change in cognitive
control and sustained attention, saccadic reaction times, and attention flexibility. However, a subse-
quent proof-of-concept randomized controlled trial conducted in more naturalistic settings failed
to replicate these findings (Goodwin et al. 2021). Results from ongoing trials and longer-term
follow-ups are yet to be reported. If proven effective, such infant-directed interventions could be
conducted alongside a caregiver-mediated intervention.

Ethical Considerations

Early neurodevelopmental studies and intervention trials require particular ethical considerations.
Infant autism research gives rise to questions about the potentially conflicting rights and priorities
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of the infants concerned, caregivers and families, and autistic adults (Manzini et al. 2021). While
for scientists, research into early detection and predictors in early infancy is sometimes motivated
by a desire to understand early causal pathways to later autism, for the participating families its
value lies in the opportunity for subsequent intervention to improve outcomes for their child. As
discussed earlier, progress is being made to develop stronger individual infant predictors of later
autism, and this will consequently reduce the likelihood of false alarms and missed cases. The risk
associated with false positives (intervening when unnecessary) can also be mitigated through the
use of more generic interventions, which are thought to be beneficial for a broad range of infants
and have few, if any, known adverse effects (van Leeuwen et al. 2020). It is recommended that
studies of infant autism intervention monitor and report adverse effects to better assess both the
benefits and potential harms of such interventions.

Historically, autism has been viewed from a biomedical model, with interventions prior to di-
agnosis intended to reduce the likelihood of a later diagnosis (Whitehouse et al. 2021). In contrast,
proponents of the neurodiversity movement argue that defining autism in terms of impairments
and deficits, without consideration of its positive traits, is discriminatory. From this point of view,
the purpose of intervention should be to adapt the infant’s environment to better fit the infant’s
unique profile with the goals of promoting social, language and communication, self-regulation,
and adaptive skills and nurturing autistic strengths (Dawson et al. 2022).

Future consideration should be given to the selection of primary outcomes for intervention
trials. We recommend a focus away from later autism diagnosis as a target for change and a shift
toward measures that reflect the child’s communication and learning skills, self-regulatory and
adaptive behavior, and quality of life (Dawson et al. 2022). Ideally, the intervention should be
associated with meaningful and sustained change in distal measures that indicate generalization of
abilities across environments (unbounded) rather than solely a change in the skills directly targeted
in the intervention (proximal) (Franz et al. 2022). Following infants into childhood and assessing
levels of anxiety and other mental health conditions will also be important, as these outcomes
significantly impact quality of life. Finally, children from some infant studies are now old enough
to be interviewed. Their views and those of others with lived experience should be considered in
planning future research studies (Manzini et al. 2021).

1. A wide range of genetic and pre- and postnatal physical health factors influence brain
development in infants later diagnosed with autism.

2. Alterations in brain development in autism affect neural systems underlying infor-
mation processing, including differences in predictive coding, multisensory temporal
perception, and social motivation.

3. Changes in the way the infant processes information are manifest in behavioral
precursors of autism, observable from 6-12 months of age.

4. Behavioral precursors to autism are observed in the domains of attention flexibility, social
attention and engagement, prelinguistic behavior, and sensory and motor function.

5. The therapeutic strategies used by caregivers in most infant autism interventions, such
as increasing the salience and predictability of social information, reflect specific envi-
ronmental adaptations to the infant’s unique way of processing information designed to
enhance the fit between the infant and their environment.
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6. Clinical trials evaluating the efficacy of infant autism interventions have generated some
positive findings, albeit with mixed results and a lack of replication.

7. Infantautism interventions can be consistent with a neurodiversity perspective on autism
when a strengths-based approach is used and outcome measures focus on well-being and

quality of life of the child and family.

1. Tailoring interventions to the specific needs of each infant could improve outcomes, as
individual infants may benefit from distinct therapeutic strategies adapted to their unique
way of interacting with others and the broader environment.

2. Incorporation of brain-based biomarkers into infant intervention clinical trials could
elucidate which interventions work for which infants and enhance our understanding of
the neural mechanisms underlying behavioral change in response to intervention.

3. Future studies of infant autism intervention should evaluate the effects of timing and
dose of intervention and consider a tiered approach that adjusts these factors depending
on the infant’s response to the intervention.

4. Multifaceted interventions that include infant-directed approaches, such as those using
gaze-contingency eye tracking, might improve children’s outcomes if used alongside a
caregiver-mediated approach.

5. Addressing the physical health conditions associated with autism present during infancy,
such as sleep disruptions, could improve responses to caregiver-mediated interventions
and children’s outcomes.

6. Future trials of infant autism interventions should include a broad range of outcomes, in-
cluding assessments of social communication, language, learning, adaptive skills, autistic
strengths, and overall quality of life.

7. Implementing autism interventions with infants raises important ethical considerations
about the rights and priorities of the infants, caregivers and families, and individuals with
lived experience, and as such, involving these stakeholders in the future design of infant
intervention studies is important.
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