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Abstract

Studies of cetacean evolution using genetics and other biomolecules have
come a long way—from the use of allozymes and short sequences of mito-
chondrial or nuclear DNA to the assembly of full nuclear genomes and char-
acterization of proteins and lipids.Cetacean research has also advanced from
using only contemporary samples to analyzing samples dating back thou-
sands of years, and to retrieving data from indirect environmental sources,
including water or sediments. Combined, these studies have profoundly
deepened our understanding of the origin of cetaceans; their adaptation
and speciation processes; and of the past population change, migration, and
admixture events that gave rise to the diversity of cetaceans found today.
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Secondary marine
organisms: organisms
of terrestrial ancestry
that have recolonized
marine habitats

1. INTRODUCTION

The evolution of Cetacea (whales, dolphins, and porpoises) from an ancestral terrestrial mammal
to an obligate aquatic lineage, followed by radiation into a diverse array of habitats, provides an
excellent opportunity to study evolution and adaptation. Cetacea comprises one of five extant ter-
restrial mammal lineages (cetaceans, pinnipeds, sirenians, sea otters, and polar bears) that returned
to an aquatic environment (O’Leary & Uhen 1999).

Cetacean evolution is among the best-characterized morphological and ecological transitions
from a terrestrial to an aquatic existence. Cetaceans likely originated ∼52.5 million years ago
(Mya) during the early Eocene (Uhen 2010). The Archaeoceti, which inhabited coastal waters,
represent the earliest group of mammals that evolved into the modern cetaceans (Thewissen &
Williams 2002). The specific driver(s) that facilitated the transition from a terrestrial to an aquatic
existence remains unresolved; current hypotheses include increased availability of marine prey,
competition, and physical stressors, particularly during glacial cycles (e.g., Lipps &Mitchell 1976,
Proches 2001).

The first fossil record of a pelagic cetacean is dated to ∼40 Mya and belongs to the Neoceti,
or crown cetaceans (Buono et al. 2016), which subsequently diversified into a speciose group
including 245 fossil and extant genera (Uhen 2007). The extant cetaceans are represented by
two remaining Neoceti lineages (Figure 1), the Mysticeti (baleen whales) and the Odontoceti
(toothed whales), comprising at least 89 species across 40 genera (Pompa et al. 2011).During their
early radiation, cetaceans came to occupy a wide diversity of habitats, ranging from deep oceanic
to shallow coastal or freshwater habitats and from the tropics to the polar regions (Pompa et al.
2011). Multiple processes have been proposed to underlie the diversification and distribution of
species, including the appearance of geographic barriers associated with the opening or closure
of seaways, restructuring of ocean currents, prey distribution, climatic changes, and historical
processes of speciation and extinction (e.g., Fontaine et al. 2010, Fordyce 1980, Pastene et al.
2007, Steeman et al. 2009).

As secondary marine organisms, cetaceans provide an opportunity to study evolution and adap-
tation associated with aquatic transitions. The presence of many taxa enables the use of a multi-
taxon approach to assess the response among closely related lineages to similar environmental
pressures (e.g., Meredith et al. 2013). Furthermore, the complex social organization and coop-
erative behavior exhibited by many cetaceans facilitate the study of social and mating systems
and mechanisms associated with inclusive fitness or kin selection (e.g., Amos et al. 1993, Kopps
et al. 2014). Although cetaceans are less abundant compared with other marine organisms, their
large body mass makes them essential to the function and structure of marine ecosystems (Bowen
1997). Whales may enhance primary productivity by recycling iron and nitrogen in the upper
pelagic phase via fecal plumes (Roman & McCarthy 2010). Their high mobility and their place-
ment at the intermediate and top of the marine food web render them indicator species of the
overall ecosystem state and, consequently, habitat changes (Braithwaite et al. 2015, Cabrera et al.
2018).

The study of cetaceans in their natural environment can be challenging and costly. Many
cetacean species are highly mobile, with large and remote distributions (Kaschner et al. 2011),
and long generation times (Pacifici et al. 2013), making demographic and evolutionary changes
difficult to detect using field studies. Molecular genetic techniques provide opportunities to in-
vestigate such changes, employing DNA from small tissue samples collected directly or indirectly
from living or deceased organisms.

During the last three decades, the study of cetacean evolution has undergone significant
changes. Advances in molecular technologies and bioinformatic approaches have allowed us to
generate and analyze a diverse range of data, from a single small fragment of the mitochondrial
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Figure 1 (Figure appears on preceding page)

Phylogenetic tree of cetaceans showing genomes available by late 2020. Relationships and branch lengths are based on molecular dating
estimates from McGowen et al. (2020). Branches with dotted lines were not included in the original tree and represent approximate
positions. Genomes that are currently available (black) or in progress (red) are shown; circles indicate species with high-quality reference
genomes at chromosome level, and stars indicate whole genomes at scaffold level. Odontoceti silhouette illustrations by Andrea A.
Cabrera. Mysticeti silhouettes based on illustrations by Ligia E. Arreola and Frédérique Lucas.

genome to nuclear genome-wide data. Here, we review the application of genetic/omics ap-
proaches to study cetacean evolution at various organizational, spatial, and temporal scales, rang-
ing from macroevolutionary aspects, such as early radiation, to microevolutionary processes, such
as temporal changes in intraspecific genetic diversity. We provide examples of molecular studies
regarding adaptation, radiation, and speciation; population structure; and demographic history. In
addition, we highlight new possibilities and future perspectives in the study of cetacean evolution.

2. GENETIC/OMICS APPROACHES AS A MEANS TO STUDY
CETACEAN EVOLUTION

The advent of molecular genetic approaches during the early 1990s and omics methods post-
2000 have spurred numerous molecular studies of cetaceans aiming at fundamental and applied
questions in evolution, ecology, and behavior (see the sidebar titled Studying Cetacean Evolu-
tion: From Casual Observation to Molecular Methods). The increasing application of molec-
ular methods in cetacean research (Figure 2a) is evident in the proportion of publications in-
cluding any of the keywords molecular∗, genetic∗, DNA∗, and genom∗ in the Web of Science,
which has increased from 1% to 14% since 1990. Although the use of traditional markers has
remained relatively constant during the past 15 years, the availability of genomic data and bioin-
formatics tools is growing exponentially (Figure 2b). This growth is reflected in the increasing

STUDYING CETACEAN EVOLUTION: FROM CASUAL OBSERVATION
TO MOLECULAR METHODS

Cetacean studies began in prehistoric times with casual observations on beaches and offshore (Allen 2014). The first
formal studies, reported in the twentieth century, focused mainly on anatomical descriptions (Howell 1930). After
the 1960s, research expanded to different fields, including photo-identification, telemetry, acoustics, and molecular
methods.

The first genetic studies on cetaceans were published in the 1970s following the development of allozyme elec-
trophoretic methods (Árnason 1972). This development, along with the introduction of the polymerase chain reac-
tion (Mullis & Faloona 1987), which facilitated DNA sequencing, enabled population genetic diversity, structure,
and phylogeny to be assessed (e.g., Hoelzel 1991).

The discovery of highly variable tandem repeat loci (Tautz&Renz 1984) led to studies of demography, individual
identification, and kinship (e.g., Amos et al. 1993). The combined application of nuclear and mitochondrial DNA
markers enhanced our understanding of the processes driving population structure and migration (e.g., Bérubé
et al. 1998).

The emergence of next-generation sequencing spurred the development of single-nucleotide polymorphism
genotype assays (e.g., Polanowski et al. 2011), which were followed by reduced-representation genome sequencing
and whole-genome (re)sequencing (e.g., Baird et al. 2008), as a means of genotyping a large number of loci across
the genome.
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Publications on cetaceans and molecular methods. (a) Table with number of publications per time bin, including cetaceans and
including both cetaceans and molecular methods, as well as the percentage of studies on cetaceans including molecular methods.
(b) Number of publications on cetaceans from 1990 to November 22, 2020, categorized by primary genetic method: ancient genome
data or paleogenomics (ancient DNA); tandem repeat loci (microsatellites); short fragments of mitochondrial genomes (mitochondria);
entire mitochondrial genomes (mitogenome); or whole genomes, reduced-representation genomes, epigenomes, and transcriptomes
(genome). Web of Science search criteria for each category: same as in panel a + AND TS = (“ancient DNA” or palaeogenetics or
palaeogenomics or paleogenetics or paleogenomics or historic∗); + AND TS = (microsatellite∗); + AND TS = (mtDNA or
mitochondrial); + AND TS = (mitogenome∗ or “mitochondrial genome∗”); + AND TS = (genom∗ or radseq or gbs or epigen∗ or
transcriptom∗), respectively.

number of available cetacean genomes (Figure 1) and the number of publications employing
genomics in cetaceans (Figure 2b).

The application of molecular approaches to the study of cetaceans has been facilitated by the
vast genetic and genomic resources acquired from other mammalian model species (e.g., humans,
cows, and mice) whose genome structure and function are well characterized, thereby aiding in-
ferences drawn from the observed data on gene function and effects of genetic variants. In this
section, we review the current state of knowledge on cetaceans from molecular studies, with re-
gard to selection and adaptation, speciation, intraspecific structure, and demographic history.

2.1. Selection and Adaptation to an Aquatic Existence

The transition from a terrestrial to an aquatic environment represents the defining transformation
in cetacean evolution. The modern cetacean phenotype was likely a product of natural selection as
an adaptation to an aquatic existence (Sun et al. 2013). This unique cetacean phenotype includes
morphological, physiological, and behavioral traits for swimming, diving, thermoregulation, os-
moregulation, and sensorial perception (e.g., Howell 1930).

Understanding the genetics of adaptation requires the ability to identify the genes and genetic
pathways that underlie specific traits and to identify the variants subjected to natural selection
(Barrett &Hoekstra 2011). Although this might prove difficult in cetaceans, as in other nonmodel
organisms, available information from closely related model species, such as humans, has been
used as an indirect means of obtaining insight into the function of specific genes, which is crucial
for understanding adaptation to an aquatic existence. In the following subsections, we present
some examples of what we have learned so far from employing genetics to study adaptation.
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2.1.1. Changes that affect phenotype: gene function loss. Loss of gene function appears to
be a common phenomenon in cetacean evolution (e.g., Chen et al. 2013, Meredith et al. 2011).
Gene function losses have been associated with key phenotypic changes in cetaceans, such as loss
of hair, functional teeth in baleen whales, taste, smell, and color vision (e.g., Chen et al. 2013;
McGowen et al. 2008; Meredith et al. 2011, 2013). Kishida et al. (2007) estimated a significant
increase in the proportion of nonfunctional olfactory receptor genes among cetaceans (68%)
compared with the semiaquatic sea lion (37%) and terrestrial cow (17%), suggesting that loss of
function of olfactory genes in cetaceans occurred in large numbers during the transition to a fully
aquatic existence. Similarly, all modern cetaceans lost function in genes associated with sweet,
umami, and bitter taste receptors prior to the divergence of Mysticeti and Odontoceti ∼35 Mya
(Kishida et al. 2015).

Even though loss of function has been identified in the same genes across cetaceans, it could be
due to either the same or different mutations. Examples of taxon-specific mutations in cetaceans
include loss of function of the SWS1 and LWS opsin genes, associated with color and light vision
(Meredith et al. 2013), and of the Hr gene, associated with hair loss (Chen et al. 2013). For in-
stance,Meredith et al. (2013) identified parallel mutations (i.e., the samemutations in independent
lineages) of SWS1 in Odontoceti andMysticeti, as well as five independent inactivating mutations
of LWS in deep-diving cetacean lineages.

The above examples illustrate the advantage of employing a multitaxon approach to assess
the response among closely related lineages to changes in natural selection, such as convergent
evolution. This multispecies approach can also be applied among marine mammal lineages.
Genome-wide studies on convergent evolution among marine mammals (Foote et al. 2015, Zhou
et al. 2015) found very few parallel substitutions in adaptive candidate genes. Instead, these genes
exhibit distinct sequence changes in each taxonomic group (Zhou et al. 2015), suggesting that
independent lineage-specific mutations led to convergent changes in coding genes associated
with an aquatic existence.

2.1.2. Transition to an aquatic existence and subsequent radiations: two major events in
cetacean evolution. The transition to the aquatic environment and the subsequent radiation
of cetaceans have been associated with signatures of positive selection. Shen et al. (2012) studied
the mechanisms and processes driving cetacean immune response to the aquatic transition. These
authors found strong signatures of positive selection in the TLR4 immune response–associated
gene during two time periods. The first period, represented by the transition from a terrestrial to
a semiaquatic existence and then to a fully aquatic existence, was detected along the joint lineage of
hippopotamus and cetaceans and in the cetacean lineage, respectively. The signature of selection
during this period likely reflected a response to different pathogens in land and water. The second
period, detected along the lineage of oceanic dolphins, was associated with a rapid diversification
and dispersal in waters around the world and with response to microbial pathogens from different
environments (Shen et al. 2012). Similarly, evidence of positive selection acting on the branches
that represent the origin of Odontoceti and the diversification of Delphinidae have been found in
the ASPM gene, associated with brain size enlargement in cetaceans (Xu et al. 2012). Evidence of
positive selection was not detected during the transition, suggesting that brain size enlargement
occurred during the radiation and not immediately after the transition (Xu et al. 2012).

The transition to an aquatic existence also appears to have been characterized by changes in
evolutionary rates. Chikina et al. (2016) analyzed hundreds of genes in 59 mammal genomes,
including those of cetaceans, and identified hundreds of genes with an elevated number of muta-
tions, which they inferred as evidence of accelerated evolutionary rates during the transition to an
aquatic existence.These genes were associated with the control of functional adaptation to aquatic
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life in both loss of gene function and adaptive evolution, as observed in genes associated with skin
and lung.

These examples show how the combination of single-gene and genome-wide molecular ap-
proaches with multispecies analyses can improve our understanding of the mechanisms and pro-
cesses underlying the transition of cetaceans to a fully aquatic existence.

2.2. Radiation and Speciation

The transition to an aquatic existence was followed by radiation and subsequent diversification
into a wide range of habitats. However, it has proven challenging to identify the factors and pro-
cesses driving the initial radiation due to an incomplete spatial fossil record and the difficulty of
identifying barriers in marine environments (Norris & Hull 2012, Steeman et al. 2009).

Several studies suggested that cetacean radiations coincided with large-scale oceanographic
restructuring and tectonic events (e.g., Fordyce 1980, Steeman et al. 2009). Steeman et al. (2009)
estimated a fossil-calibrated phylogeny of 87 extant cetacean species from mitochondrial and nu-
clear DNA sequences.They found that periods of pronounced physical restructuring of the oceans
might have led to elevated rates of diversification of extant cetaceans during two main periods:
(a) the opening of the Drake Passage and the establishment of the Antarctic Circumpolar Current
∼35 Mya, which coincided with the initial radiation of Odontoceti, as suggested by Fordyce
(1980), and (b) increased speciation rates ∼13–4 Mya, coinciding with the diversification of Del-
phinidae, Phocoenidae, and Ziphiidae, which was characterized by the closure (Central American
and Tethys) or restriction (Indo-Pacific) of seaways, an increase in ocean productivity, and intensi-
fication of ocean circulation (Steeman et al. 2009). These examples illustrate some key forces that
have driven speciation, but what are the mechanisms involved in this process? In the following
subsections, we present some examples of studies that have advanced our understanding of the
mechanisms driving speciation.

2.2.1. Speciation: not a simple process. The formation of new species involves the diver-
gence of lineages due to reproductive isolation in allopatry, sympatry, or parapatry. In allopatric
speciation, geographic isolation is thought to have restricted gene flow within Mysticeti (e.g.,
Pastene et al. 2007) and within Odontoceti (e.g., Hare et al. 2002). Dolphin species of the genus
Lagenorhynchus, the dusky dolphin (Lagenorhynchus obscurus) in the Southern Hemisphere and the
Pacific white-sided dolphin (Lagenorhynchus obliquidens) in the Northern Hemisphere, are a clear
example of allopatric speciation.These temperate species with antitropical distributions seemingly
evolved from a common ancestor with a wide distribution over both hemispheres.The warm equa-
torial waters during the interglacial periods may have acted as a physical barrier, generating geo-
graphic and reproductive isolation facilitating the divergence of these species (Hare et al. 2002).

Killer whales (Orcinus orca) appeared to have evolved into reproductively isolated ecotypes in
sympatry (Ford et al. 1998). Three killer whale ecotypes (transient, resident, and offshore) show-
ing different diet specializations have overlapping distributions in the eastern North Pacific. It
has been proposed that the maintenance of the three ecotypes was due to differences in prey pref-
erences, which are culturally transmitted in matrilineal pods, in turn reducing gene flow among
ecotypes (e.g., Ford et al. 1998, Hoelzel et al. 2007). However, alternative hypotheses such as di-
vergence in allopatry and secondary contact have also been proposed (Foote et al. 2011). On the
basis of genome-wide data from 50 individuals, Foote et al. (2016) suggested that differentiation
into different ecotypes among killer whales worldwide was facilitated by a combination of factors.
Behavioral plasticity likely facilitated the colonization of new ecological niches by a small number
of individuals. These founder effects, followed by population expansion, likely promoted a rapid
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shift in allele frequencies between pairs of ecotypes due to genetic drift. Stable social transmission
of behavior within the novel nichesmay have altered natural selection pressures and led to adaptive
divergence in genes associated with diet, climate, and reproductive isolation (Foote et al. 2016).

Although most cetacean species arose several million years ago, studies have identified signa-
tures of introgression between species (Árnason et al. 2018, Westbury et al. 2021), and contem-
porary hybrids between several cetacean species have been reported (Bérubé & Palsbøll 2018,
Skovrind et al. 2019). Such hybrids occur between Mysticeti species, such as the fin (Balaenoptera
physalus) and the blue whale (Balaenoptera musculus) (e.g., Árnason et al. 1991), as well as between
the common (Balaenoptera acutorostrata) and the Antarctic minke whale (Balaenoptera bonaerensis)
(Glover et al. 2013). Notably, pregnant female hybrids have been documented for both crosses
(Árnason et al. 1991, Glover et al. 2013) and a putative second-generation fin and blue whale
hybrid (Pampoulie et al. 2021). In Odontoceti, hybrids have been observed primarily between
the common bottlenose dolphin (Tursiops truncatus) and other Delphinidae species (Bérubé &
Palsbøll 2018). Hybrids have also been reported within Monodontidae and Iniidae, including a
hybrid between narwhals (Monodon monoceros) and beluga whales (Delphinapterus leucas) (Skovrind
et al. 2019) and between the two Amazonian freshwater dolphin species (Inia boliviensis and Inia
geoffrensis) (Gravena et al. 2015).

Employing whole-genome sequences of nine species from three families (Delphinidae, Pho-
coenidae, and Monodontidae) of cetaceans, Westbury et al. (2021) analyzed the presence of post-
divergence gene flow across their genomes and addressed the speciation processes that led to the
diversity observed today. The authors found multiple ancestral gene flow events both within and
among families, which continued for millions of years after initial divergence. These postdiver-
gence gene flow events may also explain the presence of contemporaneous hybrids between several
species (Westbury et al. 2021). The documented cases of hybridization, together with the identi-
fied signals of introgression among species, provide unique examples of the complex evolutionary
history of cetaceans.

2.3. Demographic History

Evolution can be explained in terms of genetic changes that occur within populations, which can
lead to the formation of new species, if the changes are large enough. In this section, we review
how population genetic analyses of cetaceans have advanced our understanding of intraspecific
population structure, size, and dispersal.

2.3.1. Genetic structuring and dispersal: result of multiple processes. Most species are
spatially structured into populations that are genealogically linked. Although strong genealogical
structure characterizes species with low dispersal capacities, cetaceans, which generally have high
dispersal capacities and wide ranges, can be genetically structured even at relatively fine spatial
scales (e.g., Bayas-Rea et al. 2018, Gravena et al. 2015). Dispersal in cetaceans can reflect either
recurrent migrations, such as seasonal migrations between feeding and breeding grounds in large
Mysticeti (Lockyer & Brown 1981), or dispersal from one population to another, resulting in gene
flow. Here we present some of the driving forces of genetic structure and dispersal in cetaceans,
and summarize some general patterns observed in both Mysticeti and Odontoceti.

Population genetic structure and dispersal are the result of contemporary and historical pro-
cesses.For instance, glacial oscillations during the Pleistocene [2.5Mya to 11.7 kya (thousand years
ago)] had a large influence on the distribution, genetic structure, and connectivity of cetacean
species and populations from both hemispheres (e.g., Jackson et al. 2014, Pérez-Alvarez et al.
2016). During glaciations, some cetacean populations became contracted and isolated, reducing
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gene flow and promoting genetic differentiation. Wang et al. (2008) proposed that the ancestral
population of finless porpoises (genusNeophocaena) was divided by the emergence of a land bridge
between Taiwan and China during the Last Glacial Maximum (LGM; 26–19 kya). However, fur-
ther genomic analysis estimating an older divergence (50–40 kya) suggested that sea level changes
before and after the LGM contributed to the divergence and isolation of the freshwater finless
porpoise population (Zhou et al. 2018).

Physical processes that influence prey availability may have also played an important role in
shaping genetic structure and dispersal.Changes in prey abundance caused by oceanographic tran-
sitions during the Pliocene and Pleistocene affected the distribution and, hence, the phylogeog-
raphy of dusky dolphins (Harlin-Cognato et al. 2007). Current environmental variations such as
cryptic or complex habitat breaks may drive the genetic structure of species with limited capac-
ity to store energy, such as harbor porpoises (Phocoena phocoena). The genetic structure of harbor
porpoises in the eastern North Atlantic has been correlated with limited dispersal abilities across
less productive areas, where food resources are likely scarce (Fontaine et al. 2007).

A combination of environmental variation and behavior may drive and maintain contemporary
genetic structure and dispersal in cetaceans.Many odontocetes are highly social species, and calves
stay with their mothers for several years. They learn foraging techniques from their mother and
conspecifics (e.g., Kopps et al. 2014). These social bonds and habitat specialization may promote
philopatry, as well as genetic differentiation among individuals with different ecologies (e.g., Foote
et al. 2016, Kopps et al. 2014). For instance, maternal transmission of tool use and habitat-specific
feeding techniques may explain fine-scale geographic population structure of mitochondrial DNA
in Indo-Pacific bottlenose dolphins (Tursiops aduncus) in Western Shark Bay, Australia (Kopps
et al. 2014). Fidelity to feeding and mating grounds, which are transmitted by mothers to calves,
likely contribute to genetic structure, particularly of mitochondrial DNA, as has been observed
in right whales (Eubalaena australis) (Carroll et al. 2015) and humpback whales (Baker et al. 2013,
Palsbøll et al. 1995).

A diverse array of mating strategies have been observed in cetaceans, which may influence
patterns of genetic diversity and levels of gene flow among social groups or pods (Chesser 1991).
For instance, inmatrilineal long-finned pilot whales (Globicephalamelas) and killer whale pods, both
males and females stay in their natal pods. However, males do not generally mate with females
inside their pods, which leads to gene flow among pods (Amos et al. 1993, Pilot et al. 2010).
The opposite occurs in Atlantic spotted dolphins (Stenella frontalis), where mating occurs mainly
within the social group or with females from the geographically closest group (Green et al. 2011),
potentially reducing gene flow and hence population genetic differentiation (see the sidebar titled
Sex, Individual Identification, and Kinships).

SEX, INDIVIDUAL IDENTIFICATION, AND KINSHIPS

Knowledge of sex, individual identity, and relationships among individuals is crucial for understanding cetacean
evolution, including social systems and reproductive behavior. Sex determination of cetaceans using morphological
traits is difficult in the wild, particularly in species without sexual dimorphism (Miller 2007). Small tissue samples
from biopsies, sloughed skin, and feces can be used to determine the sex of individuals according to the presence
of X and Y chromosomes (Palmer et al. 2019, Palsbøll et al. 1992). The same tissue samples can be employed to
identify individuals through the use of genetic markers at multiple loci, known as genetic tagging (Palsbøll et al.
1997). Genetic tagging can also be used to identify related individuals by employing parentage and kinship analysis,
as well as to estimate abundance or monitor cetacean populations (e.g., Palsbøll et al. 1997, Pilot et al. 2010).
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Historical population size changes can also influence the rate of population genetic differentia-
tion (Rogers & Harpending 1992). Huijser et al. (2018) analyzed the population genetic structure
of North Atlantic and North Pacific sei whales (Balaenoptera borealis), and found that a recent his-
torical population expansion might have contributed to the low levels of genetic differentiation,
as genetic drift occurs more slowly in larger populations.

In more solitary baleen whales, genetic structure is observed at relatively large spatial scales
(Baker et al. 2013, Bérubé et al. 1998), and correlates with migratory behaviors, as detailed above.
In contrast, fine-scale genetic structure is observed in many coastal delphinids with sympatric or
adjacent ranges (e.g., Ansmann et al. 2012,Gariboldi et al. 2016),while offshore odontocetes living
in more homogeneous habitats usually show lower levels of genetic differentiation, at ocean-basin
scales (e.g., Thompson et al. 2012). This difference in the degree of fine- and large-scale genetic
structure in species of coastal and offshore habitats, respectively, is also observed within the same
species using both habitat types (e.g., bottlenose dolphins or Atlantic spotted dolphins; Louis et al.
2014, Viricel & Rosel 2014). Such observations reinforce the hypothesis that habitat or foraging
specializations may play a role in driving dispersal and population structure.

2.3.2. Changes in population size: role of glacial–interglacial periods. The level of ge-
netic variation within a population is dynamic and reflects the ever-changing balance between
random and deterministic processes adding or removing genetic variation. Effective population
size (Wright 1931) is a key determinant of genetic diversity. Several studies have employed esti-
mates of genetic diversity to infer past, long-term changes in effective population size in order to
assess the impact of the glacial cycles (e.g., Cabrera et al. 2018, Louis et al. 2020, Skovrind et al.
2021).

During glaciations, the polar regions expanded and the temperate and tropical regions con-
tracted toward the equator. After the LGM, the population size of multiple temperate and polar
cetacean species increased, most likely in response to increased prey availability and an expansion
of suitable habitat as the sea ice coverage retreated and temperatures increased (Cabrera et al.
2018, Foote et al. 2013, Louis et al. 2020, Skovrind et al. 2021). Signatures of post-LGM popu-
lation expansion in previously inhabitable high-latitude areas are evident in both Mysticeti and
Odontoceti (e.g., Bérubé et al. 1998, Nykänen et al. 2019). Cabrera et al. (2018) detected a global
increase in baleen whale abundance and their prey in theNorth Atlantic and SouthernOceans dur-
ing the Holocene warming (12–7 kya). The timing of the increases in abundance coincided with
the increasing temperatures and higher primary productivity. The observed increases in baleen
whale abundance were oceanwide and continued for several millennia while global temperatures
stabilized (Cabrera et al. 2018). The effects of Holocene warming also changed the environmen-
tal conditions in the Mediterranean Sea (∼600 years ago), where the waters became warmer and
oligotrophic (i.e., with poor nutrients). These conditions likely became unsuitable for harbor por-
poises as populations began to fragment and collapse (Fontaine et al. 2010).

Industrial-scale whaling in the last few centuries severely depleted many cetacean popula-
tions, particularly the larger Mysticeti. Estimates of genetic diversity have been employed to infer
prewhaling abundance in gray whales (Eschrichtius robustus) (Alter et al. 2007, Jackson et al. 2008)
as well as in several North Atlantic baleen whales and Antarctic minke whales (Roman & Palumbi
2003). In all instances, the genetic diversity–based estimates of prewhaling abundance exceeded
prewhaling abundances inferred from other types of data (Alter et al. 2007, Jackson et al. 2008).
These discrepancies are probably due in part to the complexity of inferring recent abundance
from genetic diversity; for example, most genetic diversity–based estimates represent long-term
averages, rather than abundance estimates at a specific point in time (Palsbøll et al. 2013).
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3. FUTURE PERSPECTIVES

The study of cetacean evolution with molecular methods has permitted us to address long-
standing key questions and has provided new insights. Methodological developments have ex-
panded the source material to include ancient and environmental samples, such as water or sedi-
ments (Figure 3). Similarly, constantly evolving molecular methods enable analyses of non-DNA
biomolecules, such as transcriptomes, proteins, lipids, and metabolites (Figure 4). As a result, the
number of available data and analytical tools are growing exponentially, a trend that will continue
in the near future.

As genomic data and bioinformatics tools continue to grow,new challenges and paradigms arise
(see the sidebar titled A Cautionary Note). A major challenge is balancing the capacity to generate
vast quantities of data against the need to make rigorous biological interpretations (Tautz et al.
2010). Deciding which experimental and analytical approaches are best suited to address a specific
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Figure 3

Advances in molecular methods enable new and deeper insights into cetacean evolution. Genetic material can be obtained from living
and deceased organisms, environmental samples, or ancient and historical remains. Shown are examples of applications and biological
questions that can be addressed using the three different sources of material including (a) living and deceased organisms;
(b) environmental samples, and (c) ancient and historical samples. Examples of biological questions are shown as bullet points, and
sources of the DNA material are listed at the bottom of each panel. Humpback whale silhouette based on an illustration by Ligia E.
Arreola. The figure includes some elements inspired and modified from Swift et al. (2019).
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The omics approach is a holistic approach, which aims to understand the relationship between the genome of an organism and its
phenotype. The omics approach involves acquiring a comprehensive, integrated understanding of biological processes through the
identification of all involved molecules, rather than each individually. The figure shows the omics cascade and interaction across
genomics, transcriptomics, proteomics, and metabolomics that can be translated into the structure, function, and dynamics of an
organism. Humpback whale silhouette based on an illustration by Ligia E. Arreola.

research question is often the result of balancing resources (e.g., samples, funding), capabilities
(e.g., skills and facilities), and novelty and scientific interest. For instance, Cabrera et al. (2019)
analyzed the genealogy of North Atlantic, North Pacific, and Southern Hemisphere fin whales;
the authors compared a previously published data set with entire mitochondrial genomes but small
sample sizes (n = 154) against a data set with a larger sample size (n = 1,676) but only the control
region of the mitochondrial genome. In the latter data set, the authors identified a North Atlantic
lineage that was not detected in the former data set of longer sequences but fewer individuals and
concluded that the tentative monophyly of the North Atlantic fin whales based on mitochondrial
genomes was a result of small sample size.

Other issues that should be addressed relate to the quality and reproducibility of the data.These
include the development of robust laboratory protocols that ensure minimal error rates and max-
imal reproducibility; standardized reporting of quality measures of the data, such as sequencing
quality and accuracy of raw base calls; scripts to analyze the data; and detection and prevention of
systematic error patterns.
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A CAUTIONARY NOTE

Most genetic-based inferences in cetaceans are of an exploratory nature; consequently, the reported results should
be viewed as hypotheses, rather than definitive proof. Scientific inquiries compare hypotheses to falsify those that
are incorrect or assign relative probabilities to competing hypotheses. Genetic analyses of cetaceans (and most
nonmodel species) compare observed data with analytical or in silico–generated null expectations derived from
a parameterized statistical model. Such assessments necessitate specifications of multiple, often poorly known,
nuisance (necessary but not the targeted) parameters to conduct the analysis (e.g., Haldane 1964, Wakeley 2004).
Consequently, the observed scenario will differ from the null expectations and alternate hypotheses in many aspects
in addition to the targeted effect, adding substantial uncertainty to the final outcome. For example, the prewhaling
humpback whale abundance estimate went from 245,000 (Roman & Palumbi 2003) to 112,000 (Ruegg et al. 2012)
due to an adjustment of a single nuisance parameter, the mutation rate.

Foote et al. (2016) detected genetic variants in Antarctic killer whales, which were inferred as selection on me-
thionine metabolism. However, detecting an apparent correlation between a genotype and a specific phenotype or
ecotype is not necessarily evidence of cause and effect or an increase in phenotype or ecotype fitness (Barrett &
Hoekstra 2011). In rare cases, these common caveats can be partly mitigated by careful experimental consideration,
such as pseudoreplication (i.e., assessing multiple populations or species, and regarding each as a replicate), addi-
tional substantiation with nongenetic data, and thorough assessment of the possible effects of realistic deviations
from the assumptions made during analysis (e.g., Hoban et al. 2012).

3.1. Emerging Fields in Cetacean Research

The study of cetacean evolution is likely to break new ground in the near future. In this section, we
outline a selected few research directions that are likely to make significant advances with respect
to evolutionary inference.

3.1.1. Paleogenomics and paleoproteomics: a window into the past. Ancient DNA (aDNA)
is the study of DNA extracted from historic or prehistoric biological materials, including bones,
teeth, baleens, and sediments (e.g., Solazzo et al. 2017) (Figure 3). Analyses of aDNA may enable
assessment of the geneticmakeup of species at specific time points in the past, such as human–fauna
or climate–fauna interactions. Although the field of aDNA emerged three decades ago (Higuchi
et al. 1984), aDNA analyses of cetaceanmaterials are still relatively uncommon.Analyses of aDNA
enable species (Speller et al. 2016) and sex identification (Sinding et al. 2016) in materials in which
molecular techniques developed for modern materials are infeasible and for which a morphologi-
cal approach is nonviable. Such approaches have been applied to identify species in single cetacean
bones (e.g., Rey-Iglesia et al. 2018) as well as in samples with multiple species, such as sediment
cores or kitchen middens (e.g., Seersholm et al. 2016).

aDNA can be applied to compare extinct species and populations with their extant counterparts
(e.g., Nichols et al. 2007), to gain further insight into the impact of past climate change (e.g.,
Alter et al. 2015, Foote et al. 2013), and to assess anthropogenic effects (e.g., Béland et al. 2020,
Borge et al. 2007). Alter et al. (2015) combined modern and aDNA data from the Late Pleistocene
to the Late Holocene with habitat modeling to analyze the demographic history of the extinct
Atlantic and extant Pacific gray whale populations. These authors suggested that dispersal took
place between the two populations during the Pleistocene and Early Holocene, when warming
periods and sea level rise allowed the opening of the Bering Strait. Estimates of genetic diversity
indicated that the Atlantic population was smaller than the Pacific one for an extended period of
time and that its decline began prior to historical whaling (Alter et al. 2015).
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Like most molecular approaches, aDNA analyses are also subject to limitations, such as tem-
poral and spatial biases in the available fossil materials (Bernal-Casasola et al. 2016, Speller
et al. 2016), difficulties in radiocarbon dating marine remains due to the marine reservoir effect
(Ascough et al. 2005), and poor preservation (Carpenter et al. 2013). The pelagic habitat of many
cetaceans greatly limits the fossil record compared with that of terrestrial species (Speller et al.
2016). There are only a few documented archeological sites and species with several fossil records
(Alter et al. 2015, Foote et al. 2012). In addition, in cases of limited endogenous DNA, approaches
that enrich the content of endogenous DNA may be required (e.g., Carpenter et al. 2013).

The study of ancient proteins or paleoproteomics is an emerging field that may open new
venues for cetacean research. Proteins have a much greater postmortem longevity compared with
that of DNA (Demarchi et al. 2016). Consequently, paleoproteomic analyses may yield data from
very old material, providing a great opportunity to investigate systematics and macroevolutionary
processes.

3.1.2. Environmental DNA: an indirect approach to detect rare and cryptic species. En-
vironmental DNA (eDNA) is genetic material obtained from environmental samples (Figure 4)
(Willerslev 2003). With the aid of genetic methods such as shotgun sequencing, metabarcoding,
or design of species-specific primers, eDNA surveys can reveal the presence and habitat range of
species (e.g., Székely et al. 2021, Valsecchi et al. 2020).

eDNA analyses can be employed to detect rare, elusive, cryptic, and endangered cetacean
species (e.g., Ma et al. 2016). Studies based on eDNA can also be employed to monitor species
communities when traditional, observation-based survey methods are challenging (e.g., Closek
et al. 2019). For instance, Closek et al. (2019) analyzed the marine vertebrate community from
water samples off the coast of California and detected an increase in marine mammal diversity
from 2016 to 2017 that coincided with a change in oceanographic conditions.

Furthermore, eDNA metabarcoding of scat can provide insight into trophic interactions and
prey preferences (e.g., Carroll et al. 2019, Jarman et al. 2002). Carroll et al. (2019) compared
data from systematic zooplankton surveys with eDNA metabarcoding analyses of Bryde’s whale
(Balaenoptera edeni) scat and found no evidence of seasonal changes in Bryde’s whale diet. These
results indicated specific prey preferences in Bryde’s whales (Carroll et al. 2019). Future studies
on eDNA will likely increase our understanding not only of trophic interactions but also of the
biodiversity interactions within an ecosystem, for instance, by connecting cetacean assemblages
with microbial, invertebrate, and vertebrate assemblages.

Despite its promise, eDNA poses several challenges. eDNA is degraded and fragmented as a
result of specific characteristics of the marine environment (e.g., salinity, pH, temperature, UV).
Furthermore, environmental samples are dominated by the most abundant marine organisms,
such as prokaryotes, and cetacean DNA fragments are lost needles in the haystack. However, an
increased amount of target DNA has been retrieved from the “footprints” of diving cetaceans
(Amos et al. 1992, Székely et al. 2021) that contain traces of sloughed skin. From the footprints
of bowhead whales, Székely et al. (2021) were able to capture the most common mitochondrial
control region haplotypes of the species. A possible though challenging use of eDNA will be to
collect population genetic data (Adams et al. 2019, Sigsgaard et al. 2020), which would provide
insight into the genetic composition of elusive cetaceans.

3.1.3. Omics: a holistic approach to understanding the structure, function, and dynamics
of organisms. Omics is the study of biological molecules; the suffix -omics (Figure 4) includes
analyses of the genome (genomics), transcriptome (RNA; transcriptomics), proteins (proteomics),
andmetabolites (metabolomics).The omics approach aims to understand the relationship between
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the genome of an organism and its phenotype (Fritsche-Neto & Borém 2014) by acquiring a
comprehensive, integrated understanding of the biological processes through the identification of
all involved molecules rather than each individually.

Recent studies have shown how the use of different biomolecules can provide a more coherent
approach to address certain evolutionary issues in cetaceans.These issues include analysis of adap-
tation using transcriptomics (Toren et al. 2020), organ or system function employing proteomics
(Kershaw et al. 2018), and speciation and hybridization processes using comparative genomics
(Westbury et al. 2021). They also include the study of coevolution between cetaceans and mi-
crobial communities using metagenomics (Li et al. 2019) and age estimation using epigenetics
(Polanowski et al. 2014), among others. Although these single-omics studies alone will not be
sufficient to address the complexity of organisms (i.e., structure, function, and dynamics), they
provide insights into new possibilities.

The next step will be to describe and elucidate the evolution of cetaceans by employing a
holistic approach that can be translated into the structure, function, and dynamics of an organism.
Such holistic approaches include integrating analyses of different biomolecules with environmen-
tal and behavioral data in order to provide unprecedented insights into the evolution of cetaceans.
As technologies and algorithms continue to improve, omics analyses are and will continue to be
performed across organisms, individuals, cell types, and conditions, and eventually at the level of
individual cells (Berger et al. 2013). Although this approach will encounter big challenges and it
will take some time before it can easily be applied in cetaceans, it is likely to be especially fruitful
in revealing the molecular landscapes underlying observed phenotypic variations.
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