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Abstract

Many fields of evolutionary biology now depend on stochastic mathematical
models. These models are valuable for their ability to formalize predictions
in the face of uncertainty and provide a quantitative framework for testing
hypotheses. However, no mathematical model will fully capture biological
complexity. Instead, these models attempt to capture the important features
of biological systems using relatively simple mathematical principles. These
simplifications can allow us to focus on differences that are meaningful, while
ignoring those that are not. However, simplification also requires assump-
tions, and to the extent that these are wrong, so is our ability to predict
or compare. Here, we discuss approaches for evaluating the performance of
evolutionary models in light of their assumptions by comparing them against
reality. We highlight general approaches, how they are applied, and remain-
ing opportunities. Absolute tests of fit, even when not explicitly framed as
such, are fundamental to progress in understanding evolution.

95


https://doi.org/10.1146/annurev-ecolsys-110617-062249
https://doi.org/10.1146/annurev-ecolsys-110617-062249
https://www.annualreviews.org/doi/full/10.1146/annurev-ecolsys-110617-062249

Random variable:

a variable that takes on
different values based

on the outcome of a
random process
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1. INTRODUCTION
1.1. What Are Models and How Do We Use Them?

Modeling is an exercise in explanation. A good model provides an accessible simplification of
reality that both offers insight into a complex world and, at the same time, makes predictions that
allow different explanations to be weighed against one another. The best models walk an idealized,
if abstract, line. They capture enough reality to offer new insights, while discarding extraneous
detail.

All sciences rely on models to generate hypotheses and testable predictions. Evolutionary
biology is no exception. Our history began with some of the most insightful and poetic verbal
models ever put forward (Darwin 1859). But Darwin (1887, p. 46) recognized the limitations
of strictly verbal models: “I have deeply regretted that I did not proceed far enough at least to
understand something of the great leading principles of mathematics, for men thus endowed seem
to have an extra sense.” Beginning with the Modern Synthesis (Mayr 1982), mathematics has
been applied with great effect to formalize and extend Darwin’s ideas. There is hardly an area of
evolutionary biology that does not now rely on mathematical models.

Given the complexity of the processes involved, evolutionary models are nearly always stochas-
tic. Some portion of these models relies on random variables to define predictions. Depending on
a researcher’s goals, the parameters that define these random variables can be considered focal or
nuisance. Parameters with direct relevance to the hypotheses under consideration are focal, and
those necessary for distinguishing among, but not directly related to, the hypotheses are nuisance.
The same analysis could assign these labels to precisely opposite parts of a model, depending on
the circumstance. For instance, phylogenetic inference often considers the details of sequence
evolution to be nuisance and the tree topology to be focal [e.g., Ren et al. (2005), who inferred
trees using codon models], whereas studies of molecular evolution may do the reverse [e.g., Yang
& Nielsen (2002), who inferred sites under positive selection along particular lineages of a tree
also using codon models].

As a simple example, imagine that researchers are interested in understanding the average size
of members of a species, perhaps for comparison to the average of another species. In this instance,
they may not have much interestin the variability of individual size within the species, but they may
still employ a model that accommodates such variation (Figure 1). Other researchers, however,
may not care about the average size of individuals, but they may be interested in within-species
variation, perhaps to better understand the strength of stabilizing selection. If we assume a normal
distribution of unknown mean and standard deviation as a model, the first researchers would
consider the mean to be focal and the standard deviation nuisance, whereas the second would do
the reverse. Both may also have implicitly considered the number of normal distributions to be a
nuisance parameter, but fixed this value at one (Figure 14). For the example data in Figure 1, the
use of a one-normal model is clearly problematic on the basis of a simple visual inspection, but for
the sake of explication, we assume that these researchers have not performed such an inspection.

1.2. Fitting, Comparing, and Evaluating Models

Models help us learn in a variety of ways. For instance, models with unknown parameter values
actually represent an entire family of models, with each specific set of parameter values corre-
sponding to a different model. By inferring the values of these parameters, we are choosing one
specific model out of this family. Or, if we infer the uncertainty in parameter values, we reduce
the set of acceptable models within the family. For simplicity, we continue to refer to such model
families simply as models with unknown (or free) parameters.

Brown o Thomson



T T T T T T T T T
a b
Males Males
06 Females 7 06 - Females 7
— One-normal — Two-normal
—— Kernel density —— Kernel density
2o4al -
w
c
[
(a]
0.2 -
0.0 1 1 1 1
2 3 4 5 6
Trait value Trait value

Figure 1

Hypothetical example of sexual dimorphism. Male (green) and female (blue) trait values are drawn from two normal distributions with

different means and standard deviations. The light gray line is a kernel density estimate of the overall trait variat

ion across the entire

population. The black line in panel # shows a model assuming one-normal distribution with mean and standard deviation fit by
maximum likelihood. The black line in panel 4 shows a mixture model of two underlying normal distributions with six parameters fit by

maximum likelihood—two means, two standard deviations, and two mixture weights.

Models may also be compared with one another in terms of their relative fit to the data. In
this context, fit often corresponds to the probability (or probability density) that a model assigns
to observations (i.e., the model likelihood). If we infer the single set of model parameter values
that provide the best fit, and then compare them against one another, we are using the method
of maximum likelihood. However, we may also compare models by calculating the average fit
across many reasonable parameter values. This approach is used in Bayesian inference, where
the average fit (i.e., marginal likelihood) is weighted according to the prior probability assigned
to different parameter values. In either case, if the fit of one model is substantially better than
another, we have evidence that the preferred model is better able to predict some features of the
empirical observations. If our models are thoughtfully constructed, their differences can help us
understand the importance of some biological pattern or process. In this way, we learn through the
comparison of relative model fit (Sullivan & Joyce 2005). Note, however, that biological hypotheses
do not always (or even usually) have a one-to-one relationship with statistical models (discussed in
McElreath 2016, pp. 5-7). Hypotheses and models must be carefully aligned for statistical results
to inform biological understanding. For our example, we might wish to compare our original one-
normal model (Figure 14) to a mixture model of two underlying normal distributions (Figure 15),
perhaps because we suspect the possibility of sexual dimorphism. In this case, the observed trait
values are 366,439,767,643 times more probable under a model with two normal distributions
instead of one, when using maximum-likelihood parameter estimates. Although some correction is
necessary because the two-normal model has more free parameters, and therefore more flexibility,
it remains an overwhelmingly better explanation of these data. By selecting the two-normal model
on the basis of its relatively better likelihood compared with that of the one-normal model, we have
used a comparison of relative model fit to support hypotheses that can explain this distribution.
Methods of relative model fit have received extensive attention in evolutionary biology (e.g.,
Posada & Crandall 2001, Minin et al. 2003, Posada & Buckley 2004, Sullivan & Joyce 2005).
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Relative model fit:
the ability of a model
to predict or replicate
important features of
the data, in
comparison to other
available models
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Absolute model fit:
the ability of a model
to replicate important
features of the data as
created by the true
data-generating
process

Parametric
bootstrap:

a frequentist approach
to assessing absolute
model fit by
comparing an observed
data set to data sets
simulated using
maximum-likelihood
parameter estimates

Posterior prediction:
Bayesian approach to
assessing model fit by
comparing observed
data to data simulated
using parameter values
from the posterior
distribution
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Although both parameter inference and evaluation of relative model fit are valuable tools for
learning, they require the models defined by the researcher (or, perhaps more often, the software
developer) to be able to account for all salient features in the data. If important aspects of the
data-generating process are poorly understood, the available model set may not contain them.
This situation is problematic for two reasons. First, if these shortcomings pertain to focal parts
of the models, we have not given the data the ability to show us support for the true hypothesis.
We have constrained our ability to learn by examining only models that inadequately describe
the process that generated the data. Second, even if these shortcomings are not directly focal,
nuisance portions can still be important in how we use our models to determine support for our
hypotheses. Returning to our example, we may not be directly interested in the fact that our species
is sexually dimorphic (Figure 1), but failing to consider a model that includes dimorphism can
mislead us about the nature of trait variation in our population and, perhaps in turn, the strength
of stabilizing selection. Therefore, a key feature in any framework for model-based learning is
the ability to assess the fit of our models in an absolute sense and thus reject even the best model
under consideration.

1.3. How Do We Critically Evaluate Absolute Fit?

The importance of model realism has been widely appreciated for as long as stochastic models have
been applied, and many approaches for assessing absolute model fit exist. Some rely on researcher
intuition, for instance, regarding inferred parameter values (Gelman et al. 2013). Intuition may
also be compared against data sets simulated from a model (i.e., through parametric bootstrapping
or posterior prediction; described below). Do they have the features one would expect for a new
empirical data set? Although these approaches provide useful sanity checks, by themselves they
are subjective and prone to reinforcing researcher biases. Applied even to our simple example
(Figure 1), these two approaches may not be very effective. If a simple visual summary was
unavailable (often true for more complicated data sets and models) and we examined only the
inferred parameter values or data sets simulated from them, all may appear well unless we have
prior information about the expected distribution of trait values in this, or closely related, species.
The moststraightforward formal statistical approaches to assessing absolute fit rely on analytical
expectations. When available, one can apply standard tests (e.g., normally distributed residuals for
linear regression) to compare features of the empirical data set to these expectations. For our
example (Figure 1), a variety of tests of normality may be employed. The Shapiro-Wilk test
(Shapiro & Wilk 1965) rejects the one-normal model (P < 0.001) (Figure 14). This approach is
both useful and powerful, but it has some limitations. Analytical expectations may be unavailable
for complex models or applicable to only a small set of assumptions. By limiting tests to only certain
aspects of models, there is a danger of overconfidence if these tests accept the fit as reasonable.
More general approaches for assessing absolute model fit employ Monte Carlo simulation
to define expectations (Figure 2). They use the model, along with fitted parameter values, to
generate replicate data sets that are as similar as possible to the empirical data. The empirical
data are then compared with the simulations to see if they represent a reasonable draw from the
distribution defined by the model. When the single set of maximum-likelihood parameter values is
used, this approach is commonly known as parametric bootstrapping (Efron & Tibshirani 1993).
When parameter values are drawn from Bayesian posterior distributions, the approach is known
as posterior predictive simulation (Rubin 1984; Meng 1994; Gelman et al. 1996, 2013; Gelman
2003). Despite deep philosophical divides between the statistical frameworks that underpin these
two methods (a distinction that is beyond the scope of this article, but see Kass 2011 and Bayarri &
Berger 2004 for modern perspectives on their interplay), they are procedurally similar and often
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Example assessments of fit for the models shown in Figure 1. (#,0) Distributions of test statistic values generated by parametric
bootstrapping (color) or posterior prediction (gray) for the one-normal model with a population size of either (#) 100 or (4) 1,000
individuals. Vertical arrows show empirical values. Rows contain different test statistics, each of which summarizes some aspect of the
overall distribution of trait values in a population: (top 0 bottomz) 1st percentile, median, 90th percentile, and mean. (¢,d) Examples of
leave-one-out cross-validation, in which one individual measurement is removed from the data set. Both the one- and two-normal
models are then fit to the remaining trait values using maximum likelihood, and each fitted model is used to predict the single removed
value. This process is repeated for each individual measurement in the population. (¢) Difference in probability density between the two
models for each measurement. (d) Difference in mean squared error between the models for each measurement. Each estimate of the
mean squared error is based on 10,000,000 predicted values.
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Test statistic:

a numerical value used
to characterize and
compare data sets

Cross-validation:

a model validation
approach that involves
fitting a model to data
and evaluating the
model’s ability to
predict independent
data

produce similar distributions of simulated data (Figure 2). In both cases, however, the best method
of comparing simulated and empirical data is not always obvious. Test statistics must be defined
to quantify meaningful features of each data set and allow numeric comparison. The definition
of these statistics, much like model design, relies on user intuition, experience, and goals. Once
test statistics are defined, we can summarize results by calculating P-values as the percentage of
simulations that resulted in test statistic values more extreme than the empirical (Meng 1994).
When empirical test statistic values fall in the tails of the simulated distributions, P-values will be
small, indicating poor absolute fit of the model to the data.

Forillustrative purposes, we performed both parametric bootstrapping and posterior prediction
for our example using four test statistics that summarize different parts of the trait distribution in
each data set: the first percentile, median, 90th percentile, and mean (Figure 2a,b). These results
illustrate several general features of these tests. First, and most importantly, we are able to reject
the fit of the one-normal model even without having defined a better alternative. This feature
becomes increasingly important as the complexity of models and data increase, and good alter-
native models may not be obvious. Second, posterior predictive distributions tend to be broader
than corresponding parametric bootstrapping distributions. By considering uncertainty in model
parameter values, the variance of posterior predictive distributions will almost always be greater,
rendering these tests more conservative. Third, the difference between statistical frameworks tends
to be much less influential than the choice of test statistic. Whereas differences between posterior
predictive and parametric bootstrapping P-values for each combination of data set and test statistic
are minor, the differences between test statistics are large. For instance, in the 100-individual data
set (Figure 2a), the first percentile and median statistics decisively reject the fit of the one-normal
model, whereas the 90th percentile and mean test statistics do not. Clearly, test statistic definition
requires thought and a clear definition of analytical goals. For instance, the researcher focused
on learning only about the trait mean might be comfortable with these results, while the other
interested in within-species variation might be deeply concerned. Lastly, and not surprisingly, the
power of these tests increases with data set size. Deviations between observed and expected test
statistic values are larger when examining 1,000 individuals (Figure 25) than when looking at only
100 (Figure 24). Note, however, that the mean test statistic still suggests that the empirical data
are entirely reasonable irrespective of sample size. This statistic would clearly be a poor choice
if we want to ensure that our model does a good job explaining the entire distribution of trait
values. In our experience, these four lessons generalize to many other applications of parametric
bootstrapping and posterior prediction.

Cross-validation tests are another class of approaches for assessing model fit, but they focus
on predictive ability (James et al. 2013). Rather than using the entire data set to fit the model,
cross-validation divides the data into training and validation sets. The model is fit to the training
set and then asked to predict some feature of the validation set. Many variants of this general
procedure exist, defined by how much of the original data set is assigned to each set and how
predictive ability is measured. In our example, we applied leave-one-out cross-validation (a data
set of size » is divided into a training set of size # — 1 and a validation set of size 1) to each
observation separately, using two measures of prediction: probability density and mean squared
error (Figure 2¢,d). The two-normal model does a better job of assigning high probability near the
two modes in the empirical distribution, whereas the one-normal model does better at predicting
those values near its single mode (Figure 2¢). Overall, the two-normal model does better because
there are more observations in the data set near its modes. When using mean squared error to
measure predictive ability (which we estimated by predicting 10,000,000 trait values for each
observation and averaging the squared error), the pattern of predictive ability is more equivocal.
The two-normal model is always better than the one-normal model, but only slightly so. This result
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highlights an important lesson about how choices in the metric of model assessment can affect
conclusions. Even though the one-normal model is clearly not the model that generated the data,
it tends not to predict values that are especially far away from the observed, so its mean squared
error remains approximately the same as that of the two-normal model. If prediction of individual
future observations is the goal, both models should perform about the same. A pragmatic challenge
of cross-validation tests is the requirement to fit a separate model for each training set, although
clever analytical solutions can avoid this burden in some circumstances (e.g., Lewis et al. 2014).

Below we review the application of these techniques in some areas of evolutionary biology.
We primarily focus at or above the species level: molecular evolution, phylogenetics, species
delimitation, divergence-time estimation, and comparative methods for traits and diversification.
We do so largely because the models typically used in these fields are unified and there is an
identifiable history of development for the approaches we discuss. However, we note that these
same approaches are broadly applicable and have been (or could be) used successfully in many other
fields, including population genetics, quantitative genetics, hybrid zone analyses, evolutionary
ecology, and epidemiology.

2. SOME AREAS OF APPLICATION IN EVOLUTIONARY BIOLOGY

2.1. Gene Trees and Molecular Evolution

Models of sequence evolution have arguably received the most focused attention in terms of model
evaluation of any application area in evolutionary biology (Felsenstein 2004, Yang 2014). Studies
have repeatedly demonstrated that accurate phylogenetic inference requires realistic models of
sequence evolution (e.g., Huelsenbeck 1995, Huelsenbeck & Rannala 2004, Lemmon & Moriarty
2004, Yang & Rannala 2005, Brown & Lemmon 2007). Developed nearly 50 years ago (Jukes
& Cantor 1969), oversimplifications of the earliest sequence evolution models had some obvious
disconnects with biological reality (e.g., assumptions of equal nucleotide frequencies), leading to
a period of rapid model development as new extensions better accommodated the complexity
observed in empirical data sets (reviewed in Felsenstein 2004). The general model structure for
sequence evolution that is still employed in most modern phylogenetic analyses (the general time-
reversible family of models) was largely developed prior to the mid-1990s (e.g., Tavaré 1986,
Yang 1994). Since that time, various methods for accommodating mixtures of these models have
received considerable attention (e.g., Lartillot & Philippe 2004, Nylander et al. 2004, Pagel &
Meade 2004, Brown & Lemmon 2007, Zhou et al. 2010, Lanfear et al. 2012).

Following several early efforts (e.g., Ritland & Clegg 1987, Kishino & Hasegawa 1990, Navidi
etal. 1991), Goldman (1993a) developed the first general and firmly grounded statistical approach
to assess the absolute fit of sequence evolution models (see also Reeves 1992). Goldman’s (1993a)
approach had several advantages over previous efforts: (#) It tested the overall adequacy of the
model to produce the data, rather than specific model assumptions; (b) it did not require the tree
or branch lengths to be known ahead of time; (¢) it did not rely on an analytical distribution against
which to compare; and (d) by employing a likelihood framework, it was able to use the full data
set, rather than a summary, which gave greater power.

Goldman’s (1993a) approach, which is a form of parametric bootstrapping and based on a more
general procedure given by Cox (1961), involves generating replicate data sets from the composite
null hypothesis formed by a phylogeny and specified model of sequence evolution. Neither the
phylogeny nor the model parameters are assumed known. Instead, maximum-likelihood estimates
are used, and the test statistic is the difference in log-likelihood between the phylogenetic and an
unconstrained, multinomial model. Essentially, this statistic gives the loss in likelihood required
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Site pattern: states of
a character for all taxa
in a phylogeny, usually
one column in an
aligned set of
molecular sequences

Stochastic map:

a history of character
change along a tree
sampled from the
distribution of such
histories defined by a
statistical model

to explain the data as having evolved along a bifurcating tree under the assumed model of sequence
evolution.

Despite its advantages and statistical grounding, Goldman’s (1993a) approach did not become
standard practice in empirical phylogenetic studies. Several reasons probably contributed to this
lack of adoption, especially given the time of its proposal. First, generation of the null distribution
requires both Monte Carlo simulation of replicate data sets and independent maximum-likelihood
inference of parameter values for each replicate. These requirements impose a substantial com-
putational burden. Second, data were expensive and time-consuming to gather. The logical next
step after rejecting the adequacy of a model was not clear. The data were too valuable to discard,
and no adequate model may have been available. Developing a new model was infeasible for most
practitioners, and the test did not naturally suggest how existing models should be extended or
replaced.

Shortly after proposing his general test of model fit, Goldman (1993b) proposed the use of
three more specific test statistics that aimed to provide guidance about how models fit poorly—the
number of invariable sites, the number of unique site patterns, and the number of site patterns
that may have arisen owing to parallel evolution. These statistics were chosen because they could
reveal specific ways in which model assumptions are violated. For instance, the number of in-
variable sites and the number of unique site patterns should be closely connected to the way that
substitution rates vary across sites. This rate variation is presumably controlled by variation in se-
lective constraint across sites, with highly constrained sites experiencing low rates of substitution
and vice versa. We now recognize the importance of accommodating among-site rate variation,
and standard practice in phylogenetics nearly always employs models that account for it (e.g.,
gamma-distributed rate models) (Yang 1994). Goldman’s (1993b) parallel evolution test statistic
was intended to highlight how positive selection could create misleading signal.

Soon after Bayesian methods of inference began to be adopted in phylogenetics (Huelsenbeck
etal. 2001, 2002), Bollback (2002) proposed a posterior predictive test of overall model adequacy.
As with the example in Figure 2, this posterior predictive test tends to be more conservative
than its parametric bootstrapping counterpart (Ripplinger & Sullivan 2010). Bollback’s (2002)
proposal took inspiration for its choice of test statistic from Goldman (1993a) and employed the
multinomial likelihood owing to its generality. However, the multinomial likelihood has since
been criticized for being highly sensitive in some circumstances (e.g., to incorrect branch-length
priors) (Brown 2014) and having low power in other circumstances (e.g., when the number of taxa
is large) (Waddell et al. 2009, Duchéne et al. 2015). Waddell et al. (2009) proposed increasing the
power of the test by binning site patterns, and Koch & Holder (2012) developed a novel algorithm
to speed up these calculations.

Roughly coincident with Bollback’s (2002) posterior predictive approach, Nielsen (2002) de-
veloped a method for sampling stochastic mappings of nucleotide changes along a phylogeny
from the corresponding posterior distribution. He also simulated new mappings from the poste-
rior predictive distribution and compared them with the posterior distributions conditioned on
the observed data. To illustrate the potential of this approach, he compared both the variance in
number of substitutions across sites and the ratio of nonsynonymous to synonymous substitutions.
Framed primarily in terms of molecular evolutionary questions, this approach is closely related to
the sequence-based test statistics proposed by Goldman (1993b) for phylogenetics. In addition,
Nielsen (2002) outlined how inference of mappings for simulated data sets could be used to gen-
erate posterior predictive P-values, which were used by Nielsen & Huelsenbeck (2002) to detect
positively selected sites.

Approaches for assessing fit have been applied periodically, although not frequently, since
Bollback’s (2002) proposal and mostly in a Bayesian framework. One of the earliest applications
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was to test the assumption of constant base composition across a tree. Violations of this assumption
have been implicated in spurious phylogenetic results (e.g., Foster & Hickey 1999). Huelsenbeck
etal. (2001) described a posterior predictive approach using a x? statistic to test models of homo-
geneous base composition, which was later extended by Foster (2004) to models with varying base
composition. More recently, Duchéne et al. (2017) explored the relationship between the results
of this test and misleading phylogenetic inferences.

Opver several years, Lartillot, Philippe, and colleagues developed multiple new tests. Lartillot
& Philippe (2004) used an inference-based approach in testing their CAT mixture model for
accommodating among-site heterogeneity in amino acid frequencies. Comparing the number of
mixture categories inferred from empirical data with those inferred from posterior predictive
data, the authors found that the model stably recovers a large number of heterogeneous cate-
gories in both cases. Lartillot et al. (2007) used both cross-validation and posterior predictive
approaches to assess the relative and absolute performance for their CAT model compared with
a more standard WAG model (Whelan & Goldman 2001) when inferring metazoan phylogeny.
For cross-validation, they divided their phylogenomic data set into halves and assessed the pre-
dictive ability of the two models to assign high likelihoods to each half as a validation set when
trained on the other half. They also used posterior prediction to assess the ability of each model
to replicate realistic numbers of substitutions and degrees of homoplasy [termed measures of sat-
uration and calculated using Nielsen’s (2002) method], as well as the sets of different amino acids
found in each alignment column. In their tests, CAT consistently outperformed WAG. Rodrigue
et al. (2007) focused on site-interdependent models of protein evolution and also used posterior
prediction with test statistics that capture among-site rate variation as well as residue-specific ex-
changeabilities. They found that, despite some improvements in absolute fit when modeling site
interdependence, elements of existing independent models (gamma-distributed rate variation and
realistic exchangeabilities) could not be replaced by considering interactions alone.

More recently, Zhou etal. (2010) implemented a mixture model for covarion processes (a form
of heterotachy where sites switch between on and off states) and developed three discrepancy
variables to assess the fit of their model with respect to rate variation across sites and branches in
a posterior predictive framework. These variables also rely on substitution mapping. Compared
with standard test statistics, discrepancy variables are functions of both the data and the param-
eter(s) (Gelman et al. 1996). Zhou et al. (2010) applied these tests to five empirical data sets and
demonstrated both support for and the utility of covarion processes. This study is one of the
few in phylogenetics to employ discrepancy variables for posterior prediction. Future work could
investigate how discrepancy variables in general perform relative to test statistics based only on
data.

As an approach to assessing specifically when inadequate models of sequence evolution might
compromise inference of reliable gene trees, Brown (2014) proposed a set of posterior predictive
test statistics that were inference based. Rather than using site mappings, Brown’s (2014) approach
used statistics based on inferred posterior distributions of trees (e.g., the dispersion of trees in tree
space). One advantage of this approach is its direct dependence on focal inferences, meaning thata
model will be assessed as inadequate only if it has a noticeable influence on the resulting inference.
Estimation of posterior distributions for all the simulated data sets can be time-consuming, but
faster approximations (e.g., likelihood ratios based on a few targeted topologies) may lower the
computational burden. One application of these tests compared model fit for different genes in
each of two phylogenomic data sets and concluded that focusing on genes with better absolute fit
resulted in trees that are more consistent and more accurate (Doyle et al. 2015). This study also
suggested the use of effect sizes, rather than posterior predictive P-values, as a way to compare
absolute model fit in a more meaningful way. Posterior predictive effect sizes are calculated by
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Covarion: a model of
molecular sequence
evolution where
codons can switch
between on (changing)
and off (unchanging)
states across a tree

Discrepancy variable:
a numerical value used
to characterize data
sets in a Bayesian
analysis, whose value
depends on data and
corresponding
parameter values

Heterotachy:
character-specific
changes in rate of
evolution across
branches in a
phylogenetic tree

Gene tree: a tree that
represents the history
of allelic descent
within a population (or
populations)
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Species tree:
a phylogenetic tree
representing

relationships among

species, which may

differ from gene trees

for genes sampled
from those species’
genomes
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examining how far away an empirical test statistic is from the median of the posterior predictive
distribution, normalized by the standard deviation of the distribution. In this way, tests that all
give P-values near zero can be distinguished by the degree of mismatch between the empirical and
expected test quantities.

Lewis et al. (2014) proposed a novel cross-validation approach for Bayesian phylogenetics,
by generalizing a technique known as conditional predictive ordinates (CPOs) (e.g., Chen et al.
2000). CPO values represent the probability of site 7 conditioned on the rest of the data, p(y;lys)),
where y is the alignment. Conveniently, CPO values can be estimated as the harmonic mean of
the site likelihoods resulting from Markov chain Monte Carlo (MCMC) analysis of the entire
data set. Lewis et al. (2014) advocated the use of these values as an exploratory technique to
suggest modeling strategies, although CPO values tend to be strongly influenced by a site’s rate
of evolution (i.e., sites with higher rates are harder to predict). CPO scores can also be combined
into a pseudomarginal likelihood that is easily calculated from a single MCMC run and can be
compared across models.

2.2. Species Trees and Species Delimitation

All the studies mentioned above focus on the fit of models of sequence evolution either to infer
accurate gene trees or because they are testing molecular evolutionary hypotheses. However,
methods for inferring species-level phylogenies now recognize that gene trees are expected to
vary, at a minimum due to variation in patterns of coalescence (Maddison 1997). Several software
packages now explicitly model coalescent variation when inferring species histories (*BEAST,
MrBayes, RevBayes) (Edwards et al. 2007, Heled & Drummond 2010, Ronquist et al. 2012,
Hohna et al. 2016). These models are hierarchical in nature. Probability distributions on species
trees influence the distribution of gene trees, which in turn inform the interpretation of sequence
data. Assumed distributions at each level of this hierarchy can influence the overall species tree
inference.

Joly et al. (2009) proposed a test of absolute model fit for multispecies coalescent models,
with the goal of identifying introgression. This test is an example of assessing a specific violation
of model fit to provide information about focal hypotheses. Their chosen test statistic is the
minimum sequence divergence between two species, and they used posterior prediction to generate
the expected distribution of this statistic under incomplete lineage sorting alone. This approach
seems to have good statistical properties. However, the ability to reliably infer hybridization when
the coalescent model is rejected assumes that gene trees are well estimated and other coalescent
assumptions are met.

Reid et al. (2014) also used a posterior predictive framework to investigate the multispecies
coalescent model, but with the aim of testing the reliability of species tree inference, rather than
detecting introgression. They designed two sets of test statistics to examine fit for two levels of the
hierarchical model. One set tests the fit of gene trees to the distribution imposed by the species tree,
and the other set examines fit between sequence alignments and gene trees. At this lower level, the
statistics draw heavily from Goldman (1993a,b). Applying these tests to a series of empirical data
sets, Reid et al. 2014) found some evidence of poor fit at the level of coalescent genealogies, but
much more evidence of poor fit using the sequence-based tests. Interestingly, they showed that in
some cases removing loci with evidence of poor fit changed the inferred species tree. Additionally,
some evidence of poor fit at the sequence level seemed to be driven by coalescent assumptions.
When gene trees were inferred independently, sequence-based tests no longer showed evidence
of poor fit. On the basis of these results, Reid et al. (2014) recommended removing loci that
are inferred to violate assumptions of the coalescent process and rerunning species-tree analyses.
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They also called for increased development of approaches that incorporate multiple sources of
gene tree variation. These tests are now available in an R package (Gruenstaeudl et al. 2015).

The multispecies coalescent model has also been extended to delimit species (Yang & Rannala
2010, Yang & Rannala 2014, Rannala & Yang 2017). Barley et al. (2017) proposed posterior
predictive tests specific to species delimitation. Their test statistics are inference based and closely
related to those proposed by Brown (2014). Application of these new tests to a series of empirical
data sets showed a range of model fit, with poorest fit for those data sets that had previously been
suggested to violate coalescent assumptions. Barley & Thomson (2016) also applied both data-
and inference-based test statistics to species delimitation in the context of DNA barcoding, where
decisions about species boundaries are primarily based on levels of sequence divergence. They
showed that the commonly assumed K2P (Kimura 1980) model often shows poor fit to barcoding
sequence data, whereas other models from the general time-reversible family provide much better
fit. Importantly, different models also change the inferred number of species.

2.3. Inference of Divergence Times

Molecular clock models provide a description of how substitution rates vary (or not) across the
branches of a phylogenetic tree. These methods began with the molecular clock hypothesis of
Zuckerkandl & Pauling (1962, 1965), which posits that all branches in a tree share a single evo-
lutionary rate. This so-called strict clock allows for the estimation of branch lengths in terms of
relative time, or if independent information about absolute time is incorporated (e.g., by calibrat-
ing node ages using fossils), it is possible to convert branch lengths from relative to absolute time.
Rates of molecular substitution are now known to vary across the tree of life, which has motivated
the development of a wide range of relaxed clock models that allow rates of substitution to vary
in diverse ways (reviewed in Heath & Moore 2014, Ho & Duchéne 2014). This development has
been driven by the desire to develop models that provide a closer description of biological reality.
However, the diversity of available models, coupled with the observation that substitution rates
may vary both across an alignment and across branches, makes selection and assessment of clock
models a challenge.

Duchéne etal. (2015) introduced approaches to assess the adequacy of clock models. They used
posterior predictive simulation and inference-based statistics to identify branch lengths that may
be implausible under a particular clock model. The approach begins by sampling from the joint
posterior distribution for a substitution and clock model. This provides samples from the marginal
posterior distributions for branch-specific rates and time. For each branch, samples are uniformly
chosen from the marginal distribution of these two parameters and multiplied, yielding (for each
branch) a product in units of substitutions per site. These products are taken as the branch lengths
of a phylogram and used, along with samples from the remaining parameters of the substitution
model and the tree, to simulate new data sets. Finally, a phylogram is inferred for each of these
simulated data sets as well as for the initial empirical data set.

This procedure allows adequacy of the clock model to be assessed in multiple ways. For exam-
ple, the length of each branch in the empirical phylogram can be compared with the distribution
of lengths for the corresponding branch in the posterior predictive phylograms, allowing calcu-
lation of a P-value for each branch. Using simulations, Duchéne et al. (2015) identified bias that
arises from several forms of model violation including overly simplistic substitution models, clock
models, and other aspects of the analysis such as misleading node age calibrations. In empirical
analyses, these authors detected substantial variation in model fit across four different data sets.
The method was able to highlight particular branches in the empirical trees that may be reli-
able even when there was overall evidence of bias. Several extensions to these methods should be
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possible, including integration across tree topologies, application to the large and growing set of
available clock models, and further exploration of possible test statistics.

The fit of clock models has also been explored using cross-validation methods analogous to
those developed for substitution models (Duchéne et al. 2016). This approach divides an empirical
alignmentinto training and validation sets, uses MCMC to collect samples from the joint posterior
distribution for the model conditioned on the training data set, and then uses these samples to
compute the phylogenetic likelihood of the validation set. This approach can be used for model
selection, choosing the model that yields the best average likelihood for the validation sets, or to
assess the absolute fit of the model, by asking how well the trained model can predict the features
of the validation data. Both the posterior predictive and cross-validation methods highlight that
model underparameterization, in particular, is likely to result in biased inferences (Duchéne et al.
2015, 2016), similar to what has been observed for models of substitution (Huelsenbeck & Rannala
2004).

2.4. Model Adequacy for Comparative Methods

Explicitassessments of model adequacy are increasingly being applied to phylogenetic comparative
methods. Inferences about how diversification rates vary, how traits evolve, or how the two may
be linked depend critically on stochastic models, and all may be biased when the corresponding
models are inadequate. For example, stochastic models of the branching process are well known to
fit empirical trees poorly. Phylogenies estimated from empirical data tend to be more imbalanced
and contain deeper branching times than expected under commonly used homogenous branching
process models (Heard 1992, Mooers 1995, Blum & Frangois 2006, Etienne & Rosindell 2012,
Stadler etal. 2016). This mismatch has prompted several studies into potential causes investigating
possible deficiencies in diversification models as a way to guide model elaboration (e.g., Heard
& Mooers 2002) or potential biases that arise in how data sets are assembled and analyzed (e.g.,
Heath et al. 2008).

Recently, researchers have developed explicit assessments of model adequacy that allow for
measurement of the fit of diversification models to individual empirical data sets. For example,
Hohna et al. (2015) implemented a set of flexible models that allow diversification rates to vary
continuously or episodically through time. In addition, they implemented posterior prediction
using test statistics based on tree shape or other aspects of the inference. Although these methods
have yet to be widely applied to analyses of diversification rates, they hold promise for enhancing
the accuracy and reliability of studies of diversification rate variation.

For models of trait evolution, recognition of the importance of model adequacy dates to some
of the earliest papers in comparative methods. Mere paragraphs after describing the justification
and procedure for calculating phylogenetically independent contrasts, Felsenstein (1985) raised a
series of reasonable concerns about the adequacy of Brownian motion as a model for the evolution
of continuous traits. A large set of later studies explored the absolute fit of models applied to
traits (see Pennell et al. 2015 for a summary) either by using analytical tests based on specific
assumptions (e.g., Garland et al. 1992) or through more general Monte Carlo-based tests (e.g.,
Slater & Pennell 2014). Pennell etal. (2015) explored posterior prediction to assess the adequacy of
trait models, both in simulation and with 337 empirical data sets for angiosperm functional traits.
They failed to detect some form of bias in only 133 of the 337 sets and found model violations
far more frequently than in simulation (where violations are relatively simple and known as part
of the study design). Intuition suggests that larger phylogenies contain a more complicated and
heterogeneous mixture of evolutionary processes, making the analysis of traits on such phylogenies
more difficult. Accordingly, Pennell etal. (2015) found that model violations were more frequently
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detectable for larger clades. This finding could be driven by increased power in larger data sets,
but further development and application of these tests is clearly warranted, particularly as the field
moves to analyses of larger segments of the tree of life.

One of the most conspicuous areas of recent progress in comparative methods includes models
that recognize that traits may influence the probabilities of speciation and extinction (Maddison
2006). In these cases, attempts to model the evolution of traits or diversification dynamics without
accounting for their interdependence are prone to being seriously misled. A growing family of
state-dependent speciation and extinction (SSE) models that allow diversification rates to vary
as a function of traits or geography has been proposed (Maddison et al. 2007; Fitzjohn et al.
2009; Fitzjohn 2010, 2012; Goldberg et al. 2011). Though specifically proposed to address a
major potential source of bias in empirical analyses, SSE models also highlight the importance
of ongoing evaluations of model performance. Rabosky & Goldberg (2015) pointed out that SSE
models assume all diversification rate heterogeneity in a tree arises in association with the trait
being modeled. If diversification rates vary at all (regardless of whether linked to a trait), an SSE
model that allows for diversification rate variation will often be selected over simpler homogenous
rate models. This may lead researchers to the erroneous conclusion that diversification is mediated
by a trait when it is not.

Recognition of these issues has led to SSE model extensions that seek to (at least partially)
alleviate the problem (Beaulieu et al. 2013, Beaulieu & O’Meara 2016, Rabosky & Goldberg
2017). Beaulieu & O’Meara (2016) extended the simplest binary SSE model to allow diversification
rates to vary in ways not related to the trait under study. This hidden SSE model helps alleviate
the inability of binary SSE models to capture complicated changes in diversification rates and
provides a useful set of related null models that allow true character-dependent diversification to
be distinguished from false positives (Beaulieu & O’Meara 2016, Caetano et al. 2018).

The growing availability of complex and realistic models of character-dependent diversifi-
cation provides an example of the role that evaluating model fit plays in evolutionary biology.
These studies have not always been carried out as explicit assessments of model adequacy (using,
e.g., cross-validation or posterior prediction). However, each major step of progress arose from
the recognition that available models did not capture biological reality in some important way,
demonstrated the bias that resulted, and then led to model elaboration that sought to alleviate the
bias.

3. PROSPECTS AND OPPORTUNITIES
3.1. How Can We Learn About Evolution by Assessing Absolute Model Fit?

Evaluation of model performance has a long history in many areas of applied statistics and deserves
a place in the standard tool kit of evolutionary biologists. Assessments of absolute model fit can
lead to greater biological insight or improve modeling efforts in a number of ways. Precisely how
to best use these results depends on the nature of the tests and the goals of the study. Generally,
we can categorize the tests as assessing overall or specific fit, as applying to the entire data set (e.g.,
parametric bootstrapping and posterior prediction) or a specific subset of the data (e.g., cross-
validation), and we can categorize their application as pertaining to either the focal or nuisance
portions of a model.

Ideally, we would have available for our model of interest an entire suite of tests that have
been thoughtfully chosen in light of our research goals. As one example, imagine that we are
conducting a multispecies, coalescent-based phylogenetic analysis to infer a species tree. The
alignments are informative, and tests of fit indicate that our models of sequence evolution seem

www.annualreviews.org ¢ Evaluating Model Performance

107



108

to be sound, meaning that our gene tree estimates are informative and reliable. However, tests
of fit for the coalescent process indicate that alleles at some loci consistently coalesce earlier than
expected given inferred species boundaries. Cross-validation tests could also identify the loci that
are the strongest outliers relative to coalescent expectations. Even without an explicit model of
gene flow, we might conclude that introgression has occurred and highlight the loci that probably
introgressed. Alternatively, we can extend our modeling framework to accommodate our new
insight. In this case, we could build models of gene flow that would accommodate the type of early
coalescences seen when rejecting the coalescence-only model.

Such applications are now feasible for many types of evolutionary analyses. An increasingly
rich and flexible set of tools is being developed (e.g., Brown & ElDabaje 2009; Zhou et al. 2010;
Hohna et al. 2015, 2017; Duchéne et al. 2018) both to conduct tests of model fit and to extend
the available set of evolutionary models (Hohna et al. 2016). Coupled with the increasing size
and diversity of available data, these tools provide an opportunity to increase both the depth and
rigor of the conclusions we draw. Some considerations to bear in mind when applying such ap-
proaches include the matching between the test statistic and the question of interest (i.e., will
the outcome of this test narrow the range of plausible biological hypotheses or suggest unex-
plored directions), the power of the test, whether the test is of overall fit or a specific assumption,
and whether the primary use of the model is inference based on current observations or pre-
diction of future observations. If the goal is inference from current observations, one may wish
to use analytical tests of assumptions (when available), parametric bootstrapping, or posterior
prediction to evaluate model fit. If prediction is more important, cross-validation may be more

useful.

3.2. Remaining Opportunities and Research Priorities

Assessment of absolute model fit has the potential to be much more broadly and creatively applied
than is currently the norm. Here, we outline some ideas that strike us as particularly timely.

Some analyses benefit from including different types of data (e.g., sequences and morphology
for phylogenetic inference). Different models will often be necessary for different data types, and
model fit may vary substantially. By assessing fit for all data types independently, we can identify
those that are most likely to produce misleading inferences. This insight into varying model fit may
lead us to downweight certain conclusions or to prioritize improvements for those combinations
of models and data types that match most poorly.

Some evolutionary processes may be difficult to model explicitly, but they may exhibit consistent
and recognizable departures from a simpler model. By employing tests of model fit that look
specifically for these recognizable signatures, we can begin to understand how common and strong
these processes might be. For instance, convergent molecular evolution can be difficult to model,
since we often do not understand when taxa will experience similar selective pressures at the
molecular level or, when they do, how similar the evolutionary response will be. However, we can
anticipate that convergence will produce more similarity in distantly related taxa than expected by
chance (e.g., Goldman 1993b), and these patterns are clearly identifiable in some circumstances
(e.g., Castoe et al. 2009). By applying genome-wide tests of model fit that look specifically for an
excess of these types of sites, we can gain a better understanding of how often convergence occurs
without explicit models.

A third application of these tests is to attempt to resolve long-standing conflicts where dif-
ferent methods or data sets consistently and strongly support different answers (e.g., the debate
over whether sponges or ctenophores are sister to the remaining animals) (Lartillot et al. 2007,
Lartillot & Philippe 2008; reviewed in Dunn et al. 2014). Continuing attempts to address many

Brown o Thomson



of these questions rely primarily on generating new or larger data sets, but with little change in
the underlying models. Especially for challenging questions, overly simplistic models seem likely
to drive much of the conflict. Critical and creative evaluation of model fit with existing data may
offer new insights and more rapidly bring about consensus.

Several aspects of model performance tests are also understudied, and additional, focused
investigation offers the potential to expand the scope and application of these tests. When model
extension is difficult, what is the best way to use these tests? One possibility is to focus attention on
subsets of the data thatalready match model assumptions well (e.g., Doyle etal. 2015). This strategy
should work best when we expect our observations to result from the same process. Examples
include genes that we expect to have evolved along the same tree topology (e.g., Richards et al.
2017) or fossils from the same fossilized birth-death process. Outlying genes or fossils may have
been subject to unique evolutionary processes and could bias inferences if used to try to understand
a process from which they were not drawn (e.g., Brown & Thomson 2017). Identification of these
outliers also presents the opportunity to understand the underlying processes that led to their
unique pattern.

Another area of opportunity relates to the evaluation of hierarchical models (e.g., Reid et al.
2014, Duchéne et al. 2015), most common in Bayesian inference. The levels of these models
(e.g., see Figure 1 of Reid et al. 2014) are coupled, such that changes at one level (e.g., different
prior distributions) can have cascading effects at others. Reid et al. (2014) investigated species-tree
inference under a multispecies coalescent model using tests that focused on different levels of the
model hierarchy. In their tests, poor fit between coalescent expectations and the actual distribution
of gene trees could appear at the level of sequence evolution, if the coalescent prior had a strong
influence on the inferred gene tree. Conversely, a poorly specified model of sequence evolution
could produce an erroneous gene tree that then affects the inferred species tree. At present, it is
unclear when we expect such cascading effects to occur and how best to incorporate them. Further
investigation into hierarchical model evaluation offers the potential to simultaneously explore
different scales of biological processes.

Lastly, how do we know if poor fit really matters? Simplifying assumptions require that our
models will never precisely replicate reality, so testing the “truth” of our model is not productive.
We should focus on assessing fit with respect to model utility. Brown (2014) employed poste-
rior prediction with test statistics designed around model-based inferences (i.e., inference-based
statistics) in an attempt to directly identify cases where model reliability is compromised. Duchéne
etal. (2015) also used such an approach to identify problems with molecular clock models and the
inference of divergence times. In both of these studies, the inference-based test statistics outper-
formed a general test based on the multinomial likelihood (Bollback 2002) in many circumstances.
However, the trade-offs between data- and inference-based tests in terms of computation time,
power, and relevance need further exploration.

3.3. The Future of Evaluating Model Fit in Evolutionary Biology

Despite advocacy for their adoption as an integral component of applied statistical modeling
(Gelman et al. 2013), tests of absolute model fit are not currently standard practice in our field.
We recommend that assessment of absolute model fit become standard practice in evolutionary
studies, since most of our models do not lend themselves to intuitive visual inspection and have
potentially restrictive assumptions. Establishment of these approaches as standard practice will
depend on researcher motivation and reviewer diligence. Because of the flexibility and diversity
of model evaluation tests in general, precise prescription is difficult. Their use will always require
judgement, perhaps even more than most statistical procedures.
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Many historical constraints on the adoption of these approaches (e.g., limited computing
power, lack of implementation, small data sets) are no longer major barriers. For instance,
many researchers are now able to design their own models in flexible statistical languages (e.g.,
R, RevBayes). In addition, the computational demands of these approaches are naturally accom-
modated by highly parallel computing systems. Modern data sets (particularly genetic data sets)
are often enormous and offer unprecedented opportunities to find subsets that are not well suited
to model assumptions, highlighting interesting and potentially novel biological processes.

Both the opportunity and need for tests of absolute model fit have never been greater. Because
of the size of many modern data sets, resulting statistical power is enormous. In addition, the het-
erogeneity inherent to such large data sets makes them challenging to understand. Paradoxically,
also because of their size, many modern analyses have reverted to the use of simpler models. This
situation creates the potential for bias when precision is greatest and may explain ongoing debates
that are not easily resolved by adding more data. Conversely, there is also now great opportunity
for using such tests to identify particularly interesting exceptions to model assumptions, whether
they are nucleotides, fossils, traits, or individuals. By identifying these exceptions, careful evalu-
ation of model fit offers opportunities for new insights. Ultimately, by explaining these residual
effects (Stigler 2016), evolutionary science will advance.
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