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Abstract

As holometabolous insects that occupy distinct aquatic and terrestrial en-
vironments in larval and adult stages and utilize hematophagy for nutrient
acquisition, mosquitoes are subjected to a wide variety of symbiotic interac-
tions. Indeed, mosquitoes play host to endosymbiotic, entomopathogenic,
and mosquito-borne organisms, including protozoa, viruses, bacteria, fungi,
fungal-like organisms, and metazoans, all of which trigger and shape innate
infection-response capacity. Depending on the infection or interaction, the
mosquito may employ, for example, cellular and humoral immune effectors
for septic infections in the hemocoel, humoral infection responses in the
midgut lumen, and RNA interference and programmed cell death for intra-
cellular pathogens. These responses often function in concert, regardless of
the infection type, and provide a robust front to combat infection. Mosquito-
borne pathogens and entomopathogens overcome these immune responses,
employing avoidance or suppression strategies. Burgeoning methodologies
are capitalizing on this concerted deployment of immune responses to con-
trol mosquito-borne disease.
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1. INTRODUCTION

Mosquito immunity provides powerful protection in a range of infections wherein mosquitoes are
victims in entomopathogenic infections, the unwitting vector for mosquito-borne pathogens, or
the symbiotic other for communities of commensal organisms. In the face of so many challenges
to the mosquito immune system, there is an elaborate network of recognition, signaling, signal
modification, and effector pathways elicited and deployed. There has been tremendous progress
on molecular and biochemical characterization of these immune players, particularly with genome
sequence data for major mosquito vector species, including 11 Anopheles species that are major
malaria vectors as well as Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus (12, 48, 124, 168).
Comparative genome analyses reveal contractions and expansions in canonical immunity genes;
the Cx. quinquefasciatus genome encodes 500 such genes, as compared to 417 and 380 in Ae. aegypti
and Anopheles gambiae, respectively (12).

The expansion and diversity of immunity and infection response genes are not functions of
one-to-one adaptation in gene families or pathways to specific pathogens; the mosquito immune
response lacks specificity. For example, the Toll pathway serves a dual function in embryonic
development and innate immunity. In mosquitoes, the Toll pathway is elicited by and important for
the response to entomopathogenic fungi, Gram-positive and Gram-negative bacteria, Plasmodium
parasites, dengue virus (DENV), and Wolbachia endosymbionts (60, 70, 133, 153). Distinct immune
pathways and effectors then are used in the context of various infections and also are deployed
simultaneously. During a septic infection of Ae. aegypti, phenoloxidase (a hallmark of melanization)
and defensin (an antimicrobial peptide) colocalize on bacterial cells (85).

From these examples, it appears that there is strength and efficiency in deploying immune
response pathways and effectors that are co-opted for use in multiple physiologic functions and
in being able to bring to bear the full arsenal of responses on an infection. The demands on
the immune response become particularly clear when considering the spectrum of symbiotic,
entomopathogenic, and mosquito-borne pathogens.

2. CONTEXTUALIZING IMMUNITY IN MOSQUITO HOSTS

2.1. Mosquitoes Are Symbiotic Others for Whole Communities
of Commensal Organisms

Like all animals and plants, mosquitoes are holobionts, consisting of a complex community of or-
ganisms. Deep sequencing technology is revealing new components of the holobiont, particularly
bacteria and viruses, at an exciting pace. The following section provides a snapshot of mosquito
commensals.

2.1.1. Protozoa. Some notable examples of protozoa are apicomplexan gregarines and trypanoso-
matid parasites in the genus Crithidia, which generally are considered nonpathogenic (40). That
said, these are frequently associated with mosquitoes. Ascogregarina barretti, a gregarine that infects
Ae. triseriatus, can reach prevalence of up to 100% in field-caught mosquitoes (138).

2.1.2. Bacteria. The mosquito midgut is populated with bacteria that are of increasing interest for
their role in shaping the immune response. These communities change and shift with mosquito
life stage and nutritional status, geography, and phenology. For example, the mean number of
culturable bacteria in larval stages of field-collected Ae. triseriatus and Cx. pipiens exceeded 36,000
per midgut. From the same populations, newly emerged adults had mean counts of 141 and
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32 bacteria, respectively (56). In An. coluzzii and An. gambiae collected in Ghana, there is evidence
of carryover of bacterial species constituents in adults from larvae, and the diversity of species
populating the guts of these species is more variable during the dry season (4). Eclosion and
disposition of the meconium reduce the number of bacteria retained in adult mosquitoes, but this
changes dramatically with blood feeding. Female Ae. aeygpti midguts are “almost totally occupied
by bacteria” as visualized by scanning electron microscopy at 48 h postfeeding (77, p. 275).

2.1.3. Viruses. Mosquitoes are host to many new viruses that defied detection and description
prior to the advent of high-throughput sequencing technology, because they do not cause overt
pathology in, and may only infect, mosquito hosts (29, 159). The insect-specific flaviviruses (ISFs)
illustrate the symbiotic relationships between viruses and mosquitoes. These viruses depend on a
strictly monoxenous life cycle based on vertical transmission and are not infectious to mammalian
cells. Kamiti River virus was the first ISF, isolated from field-collected Ae. macintoshi larvae and
pupae in Kenya (147); this provided initial evidence for vertical transmission. Studies with Culex
flavivirus (CxFV) show that ISFs have extraordinarily high transovarial (100%) and filial infection
rates (97%). CxFV infects numerous tissues in adult mosquitoes with no apparent pathology (146).

2.2. Victims of Entomopathogenic Infections

Aquatic habitats of mosquito larvae and pupae are rife with phyto- and zooplankta, including
organisms that establish parasitic relationships with mosquitoes. The environment that an adult
mosquito inhabits undoubtedly also puts it at risk for infection. A brief review of some repre-
sentative examples of entomopathogens follows, with emphasis on life history and transmission
strategies, pathobiology, and infection prevalence in field-caught mosquitoes.

2.2.1. Ciliates. Ciliates in the genus Tetrahymena are commonly found in larval breeding sites.
For example, Tetrahymena clarki (syn. Lambornella clarki ) was the most common parasite in Ae.
sierrensis collected in California (167), and up to 8.5% of larvae were infected in breeding sites
in Roraima, Brazil (9). Susceptibility and infection outcomes vary significantly depending on the
host species; T. pyriformis is avirulent in Ae. aegypti but causes high mortality in Cx. tarsalis (76).

Cyst life stages of Tetrahymena species penetrate the cuticle of Ae. sierrensis larvae (Figure 1).
Black melanized spots on the cuticle mark the locations of invasion events, and the invading cells
cause septic ciliatosis (49). In cases where the infection persists to the adult life stage, the parasites
cause sterilization (167).

2.2.2. Fungi and fungal-like organisms. Larval and adult mosquitoes encounter a broad spec-
trum of entomopathogenic fungi and fungal-like organisms (148). Some of these, for which asso-
ciated pathology has been described, are showcased here.

Microsporidia in several genera infect juvenile and adult mosquitoes. Brachiola algerae and
Vavraia culicics exhibit a broad host range and limited tissue specificity. These species infect
mosquito larvae only horizontally and per os. Microsporidia with more complex life cycles exploit
a copepod intermediate host. Others use horizontal, transstadial, and vertical transmission (7, 17).
The pathobiology induced by the infection depends on the parasite’s developmental trajectory.
Larval Ae. cantor are infected by feeding on Amblyospora connecticus spores in the water (Figure 1);
the spores germinate, invade the midgut epithelium, and spread to muscles and oenocytes. This
infection process does not kill the larva, and the parasite proceeds to be transmitted transstadially
to adult mosquitoes. When infected female mosquitoes take a blood meal, A. connecticus spores in-
vade the nurse cells and attain transovarial transmission. The resulting female F1s can perpetuate
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Figure 1
The infectious space for mosquito larvae. Mosquito larvae, represented by this fourth-instar Anopheles gambiae, face a number of
potential pathogens in their aqueous environment. Presumably, the majority of infections occur through the oral route, including
infections with opportunistic bacterial and fungal pathogens, such as Bacillus thuringiensis, B. sphaericus, and several species of
microsporidia, as well as pathogenic baculoviruses in the Nucleopolyhedrovirus group. However, a few pathogens enter their larval
host through the cuticle, including several nematode species in the family of Mermithidae, which enter the hemocoel by direct
penetration especially at the thoracic to abdomen border. In addition, fungi such as Beauveria bassiana or Metarhizium anisopliae and
certain ciliates, including Lambornella clarki, may penetrate the cuticle directly. Finally, anal papillae serve as the entry site for certain
viruses, including densovirus, and possibly mosquito iridescent virus as well as ciliates. For references and further information, please
see Section 2. Image credit: Victoria S. Rhodes.

this life cycle. However, in some female and all male F1s, the parasites destroy fat body tissues,
causing significant mortality. Dead F1 larvae release infectious A. connecticus microsporidia that
are consumed by copepods, in which the infection is also lethal, and so the cycle continues. In the
field, the prevalence of infection with these parasites in Ae. cantor can exceed 90% (7).

The oomycete Lagenidium giganteum exemplifies the potential pathogenic infection of a wa-
termold. Zoospores in the water column encounter the cuticle of a mosquito larva, and molecular
signatures from chitin trigger encystment. Germination and host invasion proceed, and mycelium
filaments consume and completely replace mosquito tissue, leaving only the cuticle; postmortem,
mycelia produce asexual fruiting structures containing zoospores that will initiate new infections
(98).

Coelomomyces are true fungi that infect aquatic larvae of Diptera in a heteroxenous life cycle that
involves copepod intermediate hosts (reviewed in References 65 and 148). Coelomomyces stegomyiae
illustrates the life cycle and pathology of these fungi. Planogametes are released in the water as
a result of lethal infection of a copepod host. A biflagellate zygote encysts on the intersegmental
cuticle and produces a penetration tube that enters the hemocoel (148). Fungal hyphae penetrate
the musculature, hematopoetic organ, gut, Malpighian tubules, and fat body (154). Fourth in-
stars succumb to the infection and release meiozoospores that are infectious to the intermediate
host.
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Beauveria bassiana infects a broad range of insects, including mosquito larvae and adults. In the
original literature, larval-stage mosquitoes were exposed to conidia on the water surface. Infections
initiate when conidia contact perispiracular lobes at the apex of the siphon. The conidia germinate
and send germ tubes into the cuticle. Clark et al. (50) noted “numerous melanized hyphae” shortly
after infection. By four days postexposure, the siphon fills with mycelia, and hyphae were evident
in the hemocoel. Clark and colleagues speculated that death resulted from hyphae blocking the
trachea and inducing suffocation, or by some type of toxin. B. bassiana infection also kills adults in a
number of mosquito species (26). Infection with seven different strains of B. bassiana in An. stephensi
produces a range of mortality phenotypes, with a most virulent strain that induces high mortality
(80% in six days), and sublethal effects that include infected mosquitoes being significantly less
likely to take a blood meal after exposure (27, 38).

2.2.3. Viruses.

2.2.3.1. DNA viruses. The baculoviruses that infect mosquitoes form large inclusion bodies of
replicating virions in midgut epithelial cells in the gastric cecae and posterior stomach (108).
Infections are initiated with ingestion of the occluded virus (see Figure 1), which moves through
the peritrophic matrix to infect the midgut epithelium. The virus replicates and invades new cells
in budded virus form. Within days, the infection produces new occlusion bodies that appear as
white cysts, and destruction of the gut proves lethal to the majority of infected larvae. In some
instances, survivors can maintain the infection transstadially and the occlusion bodies are passed
with the meconium, which could inoculate new aquatic habitats with infectious virions (16). As an
example of the epizootic potential of the baculoviruses, Culex nigripalpus nucleopolyhedrosis virus
infection prevalence reached up to 60% in Cx. nigripalpus collected in Florida (15).

2.2.3.2. Iridoviruses. The mosquito iridoviruses are large icosahedral dsDNA viruses that infect
fat body cells and produce iridescent coloration. Regular mosquito iridescent virus infects Ae.
taeniorhyncus and causes larvae to turn yellow or yellow-green, sluggish, and moribund. Infection
is most pathogenic to mosquitoes that acquire the virus in early instars. Mosquitoes that are
exposed as third or fourth instars have increased chances of surviving infection and carrying the
infection transstadially to adulthood. Transovarial (as opposed to transovum) transmission occurs
at a very high rate (up to 100%) (107).

2.2.3.3. Densoviruses. The densoviruses exhibit both horizontal and vertical transmission. The
infection begins with densoviruses infecting larvae via the anal papillae (Figure 1); indeed, tissue
tropisms include the fat body, neurons, and hemocytes but not midgut epithelium. Densovirus
infection is most pathogenic to early instars, in a dose-dependent manner, such that up to 92% of
two-day-old larvae are infected, infection disseminates in up to 60% of individuals, and 70% die
as a result of infection. The anal papillae of many Aedes aegypti densovirus–infected mosquitoes are
lost, undergo shrinkage, or show signs of melanization (165). Transstadial transmission is evident
in larvae that survive infection, from which vertical and horizontal sexual transmission occurs.
For example, an Aedes aegypti densovirus (Thailand), AThDNV, is pathogenic for several Aedes
species and readily infects Ae. aegypti and Ae. albopictus. AThDNV infection in Ae. aegypti induces
up to 51% mortality as compared to 82% in Ae. albopictus. In surviving larvae, transstadial and
then very efficient vertical transmission were observed—58% of F1s were infected, and the virus
was maintained for six generations (102). In the field, collections from 11 provinces throughout
Thailand revealed 44% prevalence in adult Ae. aegypti but no natural infections of Ae. albopictus
(102).
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2.2.4. Bacteria. Two of the best known entompathogenic bacteria are in widespread commercial
use for control of mosquito larvae—Bacillus thuringiensis var. israelensis (Bti) and Lysinibacillus
spaericus. Indeed, these biopesticides are in such widespread use that there is evidence of resistance
in the field (175). During spore formation, these bacteria produce crystalline toxins that are highly
pathogenic to gut cells. In Ae. aegypti larvae, ingested Bti spores release toxins that interact with
the midgut epithelial villi and induce an enlargement of intra- and intercellular spaces in the cell.
Endoplasmic reticula disintegrate, mitochondria lose the internal cristae, microvilli disappear,
and the peritrophic matrix is malformed (41). These early observations are explained by toxin
activation and activity, receptor binding, and pore formation, which have been the subject of
intense research efforts and were recently reviewed in Reference 175.

2.2.5. Nematodes. Nematode species, particularly mermithids, are cosmopolitan in distribution
and infect many species in multiple genera, often with a high prevalence. Parasites in a prelarva
stage penetrate the cuticle of a larval mosquito (Figure 1), enter the hemocoel, and grow to
a postparasitic stage that emerges from the fourth instar, resulting in death of the host (137).
For example, Romanomermis iyengari is infectious and lethal to ten mosquito species in five gen-
era, and the infection was most pathogenic if acquired during the second versus fourth instar
(131).

2.3. Unwitting Vector Hosts

Mosquito-borne pathogens (MBPs) enter the mosquito body with the blood meal (Figure 2).
Like the entomopathogens, MBPs have to navigate to and infect various tissue types to achieve
transmission. By necessity, the MBPs cause little pathology in the mosquito host, yet vector–MBP
interactions have been the focus of the vast majority of mechanistic work on infection responses
in mosquitoes.

2.3.1. Viruses. The mosquito-borne arboviruses fall mainly into the Flaviviridae, Togaviridae,
and Bunyaviridae families. By definition, these viruses are heteroxenous and pass from a vertebrate
host to a vector horizontally. In the generalized infection scheme, arboviruses enter the body with a
viremic blood meal (Figure 2) and invade and infect midgut epithelial cells. The infection rapidly
disseminates from small foci to much of the midgut tissue (see, for example, Reference 67) or
sometimes progresses more rapidly, as does Chikungunya virus (CHIKV), which can reach the
salivary glands within two days of infection (58). From the midgut, viruses escape the basal lamina
and disseminate to the hemocoel (69). It is possible that free virions transit to the salivary glands,
but hemocytes are receptive to arbovirus infection and replication (134). Viruses invade salivary
gland epithelial cells and again replicate. This process generally causes little overt pathology.
Exceptions to this rule include, for example, Eastern equine encephalitis virus infection in the
midgut of Culiseta inornata, wherein infection produces corpse-like cells that are sloughed into the
lumen (Figure 3) (170).

Some of the arboviruses also are transmitted vertically and transstadially. LaCrosse virus
(LACV), a member of the Bunyaviridae, has a transovarial transmission (TOT) efficiency of over
50% (169). LACV infection in vertically infected larvae is evident in most tissues, and the virus is
transstadially transmitted to produce infected male and female adults that also can pass the virus
venereally (90). By contrast, transovarial transmission is much less efficient for the flaviviruses. A
recent examination of TOT of Zika virus (ZIKV) in Ae. aegypti yielded no more than 3% infected
F1s (156).

150 Bartholomay · Michel



EN63CH09_Bartholomay ARI 6 December 2017 14:18

Salivary glands
Alimentary canal
Malpighian tubules

Bacteria
Viruses
Fungi
Protozoa
Nematodes

Figure 2
The routes of infection in adult mosquitoes. Adult mosquitoes are exposed to a number of entomopathogens, including viruses, bacteria,
and fungi, in their environment while sugar feeding, resting, or ovipositing. In addition, female mosquitoes, represented by the Anopheles
gambiae depicted in this image, are potentially exposed to blood-borne pathogens, including viruses, protozoa, and filarial nematodes,
while feeding on their mammalian host. Current knowledge suggests that the vast majority of pathogens infect via the oral route. In
addition, entomopathogenic fungi such as Beauveria bassiana or Metarhizium anisopliae may penetrate the cuticle directly after the spores
are picked up by contact with the cuticle. For references and further information, please see Section 2. Image credit: Victoria S. Rhodes.

2.3.2. Plasmodium parasites. Many species of Plasmodium parasites are transmitted by
mosquitoes; the best studied of these are transmitted by Anopheles species. In a susceptible mosquito
host, gametocyte-stage parasites are ingested with a blood meal (see Figure 2). The midgut en-
virons trigger exflagellation and production of male and female gametes that undergo sexual
reproduction in the gut lumen. The end product is a motile ookinete that invades midgut epithe-
lial cells and proves lethal to cells in the migration path. These cells are repaired by an actin-driven
restitution mechanism (79, 161). In the extracellular space of the subepithelial basal labyrinth, the
parasites undergo meiotic and mitotic divisions in the oocyst form to produce sporozoites. These
break out of the oocyst (129), traverse the hemocoel with the flow of hemolymph (83), and invade
the salivary glands with seemingly little to no pathological impact (135).

2.3.3. Nematodes. Filarial worms that are transmitted by mosquitoes inflict more damage on
the mosquito than do the other MBPs. Here, the pathobiology of infection is described for the
dog heartworm parasite, Dirofilaria immitis. Mosquitoes ingest microfilaria-stage parasites from
the blood of an infected host (see Figure 2). Microfilariae traverse the midgut lumen, migrate up
the Malpighian tubules, and become intracellular within the distal cells. Parasites transform into
first-stage larvae, molt to the second stage (L2), and begin to actively feed. Parasites go from 250
to 950 µM in length in approximately 10 days—all within primary cells (132). When development
is complete, L3s break out and migrate through the head and into and out of the proboscis for
transmission. The primary cells witness significant mechanical damage as the nematodes enter,
grow, and exit (132). With high parasite burdens, infection results in increased mortality of the
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(a) Mosquito immune reactions against incoming pathogens. Mosquitoes mount humoral, cellular, and intracellular immune reactions
against the range of pathogens they encounter as larvae or adults (discussed in detail in Section 3). Major immune-competent tissues in
mosquitoes are epithelia such as the midgut, the fat body, and hemocytes. Antimicrobial peptides (AMPs) are produced by all three of
these tissues in response to infection with bacteria, fungi, and eukaryotic parasites as well as the damage ensued by injury. AMPs
secreted into the hemocoel and midgut lumen affect both bacteria and the ookinete stage of malaria parasites. Melanization is crucial in
the process of wound healing, under certain conditions limits filarial worm and malaria infections, and is also mounted against bacteria.
Hemocytes are the sole source of key enzymes for melanization, are critical for wound healing, and are critical for phagocytosis of both
bacteria and sporozoite-stage Plasmodium parasites, while forming loose capsules around filarial worms as well as blastospores and
hyphal bodies of fungi in the hemocoel. Midgut epithelial cells provide important intracellular immune responses that limit pathogen
entry. (b) Malaria ookinetes may be marked for destruction by nitration of their surface through the action of two key enzymes, heme
peroxidase (HPX2) and NADPH oxidase 5 (NOX5). (c) Virus infections are impeded by RNA interference (RNAi) through cleavage of
dsRNA genomes or replication intermediates. Finally, midgut, fat body, and hemocytes are producers of nitric oxide (NO), which itself
is toxic and limits bacterial and malaria infections. In addition, it may serve as a signaling molecule within the innate immune system,
linking humoral, cellular, and epithelial immunity. Abbreviations: dsRNA, double-stranded RNA; PM, peritrophic matrix; RISC,
RNA-induced silencing complex; siRNA, small interfering RNA; TEP, thioester-containing protein. Image credit: Victoria S. Rhodes.
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mosquito. Interestingly, microfilariae rarely infect all five of the Malpighian tubules (44). From the
host perspective, the parasite burden can be limited by an active melanization immune response
that limits the parasite load, as is seen in Ae. trivittatus infected with D. immitis (44).

A parallel course is taken for Wuchereria bancrofti and Brugia species of parasite that cause
lymphatic filariasis, wherein microfilariae-stage parasites penetrate the midgut epithelium, traverse
the hemocoel, and take on an intracellular existence in the indirect flight muscles (64). Worms
invade individual myofibers and grow and molt as described above. The thoracic musculature
of Armigeres subalbatus does not appear diseased as a result of the infection process with Brugia
pahangi, and no obvious voids are left in the musculature as worms migrate through and out of
the tissue (5).

3. MECHANISTIC PERSPECTIVES ON MOSQUITO IMMUNITY

Much attention has focused on the immune repertoire deployed against MBPs, especially malaria
parasites and mosquito-borne viruses, which has been reviewed elsewhere (e.g., 128, 171). Brief
descriptions of humoral, cellular, and intracellular immunity effector mechanisms are provided
for MBP and commensal and entomopathogenic interactions wherever possible.

3.1. Humoral Immunity

Symbionts and pathogens face an onslaught of humoral immune effectors in the midgut lumen and
hemocoel. In these spaces, there is threat from antimicrobial peptides, production of eumelanin,
and elements of the complement-like pathway.

3.1.1. Antimicrobial peptides. Antimicrobial peptides (AMPs) are small charged peptides that
were characterized in extracts of hemolymph that had demonstrable antibacterial and antifungal
activity ex vivo. The suite of AMPs that is encoded in mosquito genomes includes defensins,
cecropins, attacins, holotricin, and the mosquito-specific gambicin (168). There is little doubt that
these are potent, inducible infection-response genes that play an important role in overall innate
immune capacity. Interestingly, although these peptides have distinct activity against bacterial
types in vitro, the genes are strongly induced by a number of types of pathogens. Ae. aegypti
defensin, for example, is inducible upon septic infection with bacteria and during infection with
B. malayi and D. immitis, and it is abundant in callow pupae (11).

Coggins et al. (53) noted that Ae. aegypti is better equipped to survive septic bacterial infection
than An. gambiae, and this correlates with increased transcriptional induction of AMPs and other
humoral factors. This plays out at the peptide level too; in Ae. aegypti, defensin concentrations
in the hemolymph can reach 45 µM (113). In An. gambiae, defensins reach a range of 1 to 5 µM
(143). Additionally, suppression of Ae. aegypti defensin does not impact mosquito survivorship
postinfection, and many bacteria in a septic infection are cleared before defensin expression reaches
its peak (11). In contrast, An. gambiae mosquitoes challenged with high doses of Staphylococcus aureus
succumb to infection after defensin knockdown (23).

The anterior midgut of An. gambiae larvae and adults constitutively expresses antimicrobial
peptides (125, 166). Commensal bacteria in the mosquito midgut likely continuously encounter
AMPs that shape the community structure of the midgut microbiome. Indeed, knockdown of
AMPs in An. gambiae increases midgut bacterial counts (59).

Blood-meal-induced expression of cecropin A and defensin A in septic systemic infection of
Ae. aegypti lowered the colony-forming units of P. aeruginosa and increased survivorship (103).
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The role and impact of AMPs also has been explored for B. bassiana infections. Expression of
antimicrobial peptides is strongly upregulated upon B. bassiana infection (60, 152).

Finally, AMPs significantly affect survival of several MBPs, and augmenting AMP production
is a provocative strategy for reducing MBP transmission. Defensin injected into the hemocoel
of Ae. aegypti kills oocysts and hemolymph sporozoites of P. gallinaceum (149), and septic injury
dramatically reduces infection prevalence and intensity of B. malayi and P. gallinaceum in Ae. aegypti
(111, 112). Blood-meal-induced expression of An. gambiae cecropin A in the midgut of transgenic
mosquitoes reduces the P. berghei parasite load (99). Similar results were obtained using blood-
meal-induced expression of cecropin A and defensin A (103).

3.1.2. Melanization. Melanization is a biochemically conserved process but is uniquely used
by arthropods as an immune response mechanism to contain and kill foreign invaders (39, 47).
Melanization is thought to kill pathogens through nutrient starvation and/or direct toxic effects
of reaction intermediates and by-products (42, 123).

The biochemical pathway that leads to melanization involves enzymatic and nonenzymatic
reactions that convert tyrosine to 5,6-dihydroxyindole (DHI) to eumelanin (reviewed in Refer-
ence 122). Monophenoloxygenase phenoloxidase (PO) is the key enzyme of this pathway (123).
Although most insect genomes encode two to three POs, mosquito genomes encode nine to ten
prophenoloxidase (proPO) systems with high sequence similarity (12, 124, 168), each with distinct
expression patterns (2, 119), implying functional differences. Mosquito proPO systems are highly
expressed in hemocytes (84, 119), thereby linking cellular and humoral immunity.

Melanization occurs readily in the hemolymph, the extracellular space of the subepithelial basal
membrane labyrinth of the midgut, and the integument but not the midgut lumen. It is plausi-
ble that commensal midgut bacteria avoid this immune reaction through compartmentalization
and sequestration. Small melanotic capsules are sometimes observed in the midgut subepithelial
labyrinth of An. gambiae mosquitoes, which may result from intestinal bacteria breaching the
midgut epithelium during blood feeding.

In contrast to the microbial gut flora of mosquitoes, melanization of entomopathogens is
readily observed. The penetration path through the larval cuticle by the ciliate T. clarki (see
Section 2.2.1) is visible as black spots, revealing wound healing by melanization. Ultrastructural
examination of the infection revealed some extensive melanization in resistant mosquitoes and
no melanization in highly infected individuals (49). Similarly, infections by entomopathogenic
fungi elicit a melanization response. Hyphae of L. giganteum in Ae. aegypti larvae or B. bassiana in
adult An. gambiae are partially melanized in the hemocoel and/or the integument (30, 174). The
robustness of the melanization response correlates positively with better survivorship in larval
infections of Ae. aegypti, Cx. pipiens, and An. gambiae. Although 99% of Aedes and Culex larvae
succumb to the infection, 44% of An. gambiae larvae survive (74). Thus, melanization may be a
resistance mechanism in this interaction and places strong pressure on the entomopathogen to
evade or suppress this immune response.

Melanization also has received considerable attention, as it is a phenotype often observed of
nonpermissive infections in several MBP–mosquito vector species combinations (18, 55, 66, 78). In
addition, it is a readily selectable phenotype of refractoriness to allochthonous malaria and filarial
worm parasites in otherwise permissive species combinations (43, 54, 93). Like entomopathogens,
MBP must either actively suppress melanization or employ evasion strategies, both of which have
been observed (28, 114).

3.1.3. The complement-like pathway. In An. gambiae, the complement-like pathway results in
activation and deposition of a thioester-containing protein 1 (TEP1), a complement-like opsonin
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that is structurally related to vertebrate C3 complement factor (14, 106). The pathway consists
of at least four additional players, including two leucine-rich repeat proteins, APL1C (144) and
LRIM1 (130), and two clip domain serine protease homologs, SPCLIP1 (139) and CLIPA2 (173).
TEP1 contains a highly reactive thioester-binding motif that enables covalent binding to a wide
variety of substrates. The current model of the complement-like pathway goes as follows: Upon
initial proteolytic cleavage of TEP1 in the hemolymph, TEP1 is stabilized as a heterotrimer
bound to APL1C and LRIM1 (68, 140). Deposition of cleaved TEP1 on the microbial surface
triggers the formation of a TEP1 convertase, which rapidly opsonizes by recruiting full-length
TEP1 molecules from the hemolymph and converts it to the active form on the microbial sur-
face. TEP1 accumulation is regulated positively by SPCLIP1 (139) and negatively by CLIPA2
(173). Activation of the complement pathway may ultimately lead to killing by lysis. Ookinetes
subjected to opsonization show evidence of lysis, including membrane blebbing, fragmentation,
and the release of hemozoin granules (24, 160). The molecular specifics of lysis are currently not
understood, so it is unclear whether TEP1 merely initiates lysis and/or executes lysis by killing
the parasite.

The extent to which the complement-like pathway affects the midgut microbial flora in
mosquito larvae and adults is unknown. Transcriptomic studies show that members of the
complement-like pathway, including TEPs, are expressed in the midgut of adult mosquitoes (91,
125, 164), suggesting that commensal microorganisms may encounter the complement-like path-
way. In addition, knockdown of TEP1 significantly increases the number of CFUs in An. gambiae
(59).

Data on the role of the complement-like pathway in infections with entomopathogenic infec-
tions are starting to emerge. TEP1 binds to hyphae of B. bassiana growing in the hemolymph of
adult An. gambiae. Knockdown of TEP1 in An. gambiae mosquitoes almost abolishes melaniza-
tion of growing hyphae, increases hyphal growth, and decreases mosquito survival (174). Similarly,
knockdown of TEP22 in Ae. aegypti decreases survival of adult mosquitoes infected with B. bassiana
(164). These data confirm that, at least for B. bassiana, infection engages the complement-like path-
way and, in turn, melanization. However, rapid hyphal growth seems to outrun melanization, as
proPO is readily detectable on the apical parts of the hyphae, but no melanization is observed
(174). This observation may explain not only why B. bassiana–infected mosquitoes ultimately suc-
cumb to infection but also why distinct fungal isolates vary in their ability to rapidly kill mosquito
hosts (27, 158).

The effects of the complement-like pathway on MBPs has been explored extensively in the
context of malaria parasites, where it constitutes a major ookinete-killing mechanism dependent
on the genetic background of the mosquito and parasite (22). In terms of the genetics of the
parasite, variation in the susceptibility to Plasmodium falciparum depends in part on the Psf47
gamete surface protein (117) but does not fully explain the range of immune evasions observed
in experimental infections (62). In addition, infection outcome is influenced by allelic variants
of TEP1 (25). Whether the complement-like pathway is required for melanization of filarial
worms (see section above) is unknown. Given that opsonization by TEP1 is key to melanization
of bacteria, fungi, and Plasmodium parasites, the likelihood of a comparable role in filarial worm
infection is high.

3.2. Cellular Immunity

Cellular immune responses in mosquitoes are executed by hemocytes, the primary immune cells
that circulate in the hemolymph. In contrast to humoral immune reactions, cellular immunity
provides immediate responses that are triggered and executed within minutes of pathogen
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exposure by virtue of phagocytosis, encapsulation, and nodulation (see Figure 3; reviewed in
References 21 and 87). Approximately 2,000 to 5,000 hemocytes are present in an adult mosquito,
but only a small proportion circulate freely (87, 101). However, infection can alter the number
of hemocytes dramatically by cell proliferation. In Ae. aegypti, the number of hemocytes in
circulation rapidly increases upon infection with D. immitis or Escherichia coli (46, 101). Although
P. berghei infection does not increase hemocyte numbers in An. gambiae, (13), blood feeding itself
strongly increases hemocyte proliferation, de facto providing a hemocyte-enriched hemocoel for
malaria parasites crossing the midgut epithelium (31, 32, 35).

Several distinct mosquito hemocyte classifications have been proposed, but the current consen-
sus distinguishes three cell types—granulocytes, oenocytoids, and prohemocytes (37, 87). Of the
circulating hemocytes in adult mosquitoes, 80% to 95% are granulocytes. These phagocytically
competent cells express many immune factors, including AMPs, members of the complement-like
pathway, and PO. Oenocytoids are nonphagocytic cells and express PO at high levels. Prohemo-
cytes were originally thought to be hemocyte progenitor cells. However, these cells were recently
found to be phagocytically active, potentially arising from asymmetric cell division of differentiated
granulocytes (101).

In the context of bacterial infections, it is unlikely that hemocytes interact with the gut micro-
biome. However, they may interact with intestinal bacteria after a blood meal if bacteria leak into
the hemocoel with stretching of the midgut epithelium. Activation and proliferation of hemocytes
within the first day post–blood feeding (31, 35) could be attributed to temporary bacteremia;
this hypothesis awaits experimental support. Mosquito hemocytes readily phagocytize bacteria,
yeast cells, and malaria sporozoites that enter the hemocoel (Figure 3; reviewed in Reference 87).
Hemocytes also form cell aggregates around bacteria and are referred to as nodules (100, 116).

In addition, mosquito hemocytes are associated with melanotic capsules around filarial worms
(44, 45), entomopathogenic fungi (174), and artificial surfaces like glass beads (114). However,
capsules formed by mosquito hemocytes tend to be looser and less stratified than capsules observed
in other insects, and it is likely that encapsulated parasites die as a result of melanization of
the capsule. In addition, hemocytes contribute to wound healing by release of proPO and rapid
phagocytosis of invasive bacteria (Figure 3) (105).

Hemocytes likely also play a role in arbovirus immunobiology in the mosquito host. Circulating
hemocytes in several Aedes and Culex species rapidly take up and serve as a site of replication for
Sindbis virus (134). Therefore, hemocytes may serve a role in shuttling viruses through the hemo-
coel or in achieving a replication hurdle to infect the salivary glands, as was predicted previously
(80). Hemocytes also could play a role in the salivary gland infection barrier. Hemolymph titers
of Western equine encephalitis virus titers are significantly higher in susceptible, as compared to
refractory, Cx. tarsalis (80).

Interestingly, although hemocytes do not physically interact with malaria parasites in the
midgut, these cells express and secrete several key agonists and antagonists that hinder ookinete
and oocyst development, including opsonins, PO, antimicrobial peptides, and nitric oxide (13, 86,
109, 110, 136). Delivery of these molecules to the site of infection may involve localized release of
microvesicles from hemocytes (36). These cells contribute greatly to the developmental bottleneck
encountered during midgut passage (75, 155).

Although the different branches of the humoral, cellular, and intracellular immune systems are
presented here as distinct entities, they often act in concert on the same organism across the range
of microbial interactions. For example, defensin colocalizes with PO on melanized Micrococcus
luteus bacteria in the hemocoel of Ae. aegypti (85). TEP1 colocalizes with PO on the surface of
melanized rodent malaria parasites in the midgut of An. gambiae (24) and most likely also does so
on the surface of B. bassiana hyphae and blastospores, as TEP1 is required for their melanization
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and most likely hemocyte encapsulation (174). This integration occurs at least partially during
processes upstream of the immune effector mechanisms, including the activation of immune signal
transduction pathways and proteolytic cascades.

3.3. Intracellular Immunity

In addition to humoral and cellular effector systems, the mosquito immune system deploys in-
tracellular effector mechanisms, including programmed cell death (PCD) and RNA interference
(RNAi). The following section highlights specific examples of intracellular immune mechanisms
in the context of infection with intracellular entomopathogens and MBPs that are transiently or
permanently intracellular during infection.

3.3.1. Programmed cell death. Two types of PCD have been described during infection in
mosquito hosts: apoptosis and autophagy. Apoptosis leads to cell shrinking and blebbing and is
evidenced by chromatin condensation and DNA fragmentation, as well as caspase activity. Au-
tophagy is characterized by the formation of large autophagic vacuoles; unlike apoptosis, autophagy
is not characterized by caspase activity or chromatin condensation and does not always equate to
cell death.

Apoptosis as a function of innate immunity to MBPs has been explored as a response to malaria
parasites in Anopheles mosquitoes (92). Midgut cells of An. stephensi or An. gambiae infected with
P. berghei ookinetes undergo apoptosis and are expelled into the midgut lumen. Parasite infection
is terminated unless the ookinete migrates quickly through the epithelium and escapes apoptotic
cells (79, 162). Even if escape is timely, ookinetes experience oxidative stress caused by apoptosis,
which causes nitration of proteins within midgut epithelial cells (104). Nitration of parasite surface
proteins could mark the parasite for destruction through the complement system once it reaches
the basal labyrinth of the midgut epithelium (Figure 3; 127). Functional genomics analysis of An.
stephensi infected with P. berghei malaria parasites shows that caspase E497 is upregulated during
midgut infection, and E517 caspase and a bax-like inhibitor of apoptosis peak in expression as the
parasites burst out of the gut (172). Although the ovaries are not infected during malaria parasite
development, P. yoelii infection causes a significant decrease in the number of developing follicles,
and apoptosis in the atretic follicles is evident (3, 89). Autophagy may also play a role in dictating
the outcome of An. stephensi–P. falciparum infection. Overexpression of peptide phosphatase and
tensin homolog, an inhibitor of the insulin/insulin-like growth factor signaling cascade, increases
expression of autophagy genes and significantly decreases P. falciparum oocyst prevalence and
intensity (81).

The extent to which apoptosis functions in immunity to arbovirus infection in the mosquito
host, as opposed to a strategy manipulated by the virus for dissemination, is not clear (52, 69).
Arbovirus infection certainly can induce apoptosis in vivo in mosquito hosts. Cx. quinquefasciatus
infected with West Nile virus (WNV) show ultrastructural evidence of apoptosis in the salivary
glands (71, 72). Apoptotic activity also is evident in salivary glands of Ae. albopictus infected with
Sindbis virus (SINV) (97, 157) and Ae. aegypti infected with Chikungunya virus (58). In the context
of apoptosis as an infection-limiting response, caspase expression was higher in the midgut of a
DENV refractory strain of Ae. aegypti (126), and hallmarks of apoptotic activity are evident in
midgut epithelial cells of a WNV refractory strain of Cx. pipiens (157). RNAi suppression of the
initiator caspase AeDronc results in less dissemination of SINV (163) and DENV (63); in the latter
case, Eng and colleagues speculate that this effect is due to dysregulation of autophagy. Autophagy
is relatively unexplored as an antiviral immune response in mosquitoes, but there are intriguing
leads in D. melanogaster to suggest that autophagy suppresses virus replication (151).
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3.3.2. RNA interference. Arguably, the first evidence of the antiviral nature of RNAi came from
in vitro studies of arbovirus–mosquito interactions. Cells infected with an expression vector for an
antisense segment of LaCrosse virus (LACV) were superinfected with LACV and yielded far less
LACV than controls (141). This capacity was effective in suppressing infection of several species
of virus, and the orientation (sense or antisense) of the sequence did not affect virus suppression
(1). Hoa et al. (88) identified Dicer 2, Argonaute 2 (Ago-2), and Argonaute 3 as drivers of the
RNAi response in an Anopheles cell line. Ago-2 suppression in An. gambiae increased replication
and dissemination of O’nyong-nyong virus (Togaviridae) (96) and so provided conclusive evidence
of RNAi as an antiviral that protects the mosquito host from uncontrolled virus replication (see
Figure 3).

This type of Dicer-driven RNAi results in virus genome cleavage into small [21 nucleotides
(nt)] interfering RNAs (siRNAs) (121). The PIWI-interacting RNAs (24–27 nt) also are produced
during infection with many of the arboviruses and play an unresolved role in antiviral immunity,
as reviewed recently (115). Most recently, a mechanism for tolerance and persistence has been
proposed whereby arbovirus infection and innate reverse transcriptase activity produce genome-
integrated viral DNAs through which the RNAi response is reinforced; suppression of reverse
transcriptase activity in Ae. aegypti infected with either CHIKV or DENV results in increased
susceptibility to infection (73).

4. IMMUNITY IN THE CONTEXT OF THE MOSQUITO HOLOBIONT

4.1. Effect of the Resident Microbiota on Mosquito-Borne
Pathogen Transmission

The resident microbiota has significant impact on the outcome of infections across all kinds of
multicellular organisms. In mosquitoes, intestinal bacteria influence the development of several
MBPs, including viruses and malaria parasites (51, 57, 82, 95). In An. gambiae, dysbiosis induced
by feeding an antibiotic cocktail significantly increases the number of developing P. falciparum
oocysts. This effect was abolished in mosquitoes with a reconstituted microbiota, demonstrating
that the effect on infection was not due to off-target effects of antibiotic treatment (59). Similarly,
experimental dysbiosis in Ae. aegypti leads to higher DENV (142) and SINV titers (8). In con-
trast, ONNV infection in An. gambiae partially depends on an intact microbiota, as experimental
dysbiosis reduces virus titers (34). Multiple mechanisms mediate the effect of dysbiosis on viral
infection, including resource competition and vector immunity (reviewed in References 57 and
82). Dysbiosis significantly reduces expression of immunity genes in the midgut, including AMPs.

In turn, MBP infection can have a reciprocal impact on the resident microbiota, as seen in Ae.
triseriatus and Ae. japonicus (120), where infection with LACV decreased operational taxonomic
unit (OTU) richness and evenness of resident fungi, whereas bacterial OTUs increased. In Ae.
albopictus, CHIKV infection significantly altered relative intensities of Gammaproteobacteria, es-
pecially within the Enterobacteriaceae (176). Interestingly, DENV causes the only known MBP
infection that significantly reduces the midgut bacterial load as determined by 16S sequencing
(142). Whether any of these microbiome shifts are due to the impact of viral infection on the
immune system is currently unknown.

4.2. The Impact of Coinfection on Mosquito-Borne Pathogen Transmission

The deleterious effects of the microbiome on MBP infections levels has been interpreted as
immune priming, where the microbiota continuously provides a priming event, which elicits a
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low-level immune response that increases the efficacy of anti-MBP immunity (57). The effects
of immune priming by experimentally induced septic bacterial infections have been explored in a
number of MBP–mosquito species combinations. Systemic E. coli and M. luteus infection in An.
gambiae and Ae. aegypti significantly induced a humoral immune response and reduced oocyst
levels of P. berghei and P. gallinaceum, respectively (112). The same experimental setup reduced
infection of Ae. aegypti with B. malayi filarial worms (111). However, experimental infections of
immune-primed Cx. pipiens with field-collected W. bancrofti did not augment infection inten-
sity or prevalence (10). In addition to septic bacterial infections, priming using the same MBP
can reduce the infectious burden of subsequent infections, as observed for P. berghei and P. fal-
ciparum infections in An. gambiae (145); this effect is dependent on the presence of an intact
microbiota.

The most dramatic impact on MBP transmission has been achieved by transfections with the
rickettsial endosymbiont Wolbachia pipientis (reviewed in Reference 33). Transinfection with the
wALb strain of Wolbachia blocks P. berghei and P. falciparum infections in An. stephensi (20, 94),
and the wMelPop strain blocks P. gallinaceum infections in Ae. aegypti (118). An. gambiae and An.
coluzzii thus far have been impervious to transinfections. Naturally occurring infections with the
wAnga strain of Wolbachia are negatively correlated with P. falciparum infection in field-collected
An. coluzzii (150). Although the wAnga strain lacks the ability to induce cytoplasmatic incompati-
bility, which limits its utility as a control agent for malaria, its discovery emphasizes the potential
for the malaria parasite–blocking ability of Wolbachia (150). Transinfections of several Wolbachia
strains into Ae. aegypti and Ae. albopictus impair viral MBP infection and transmission, includ-
ing DENV, CHIK, YFV, and WNV, and are influenced by the combination Wolbachia strain,
mosquito vector, and virus (Reference 33 and references therein). Transinfection with the wMel
strain also protected Ae. aegypti from ZIKV (6, 61). Ae. aegypti mosquitoes transinfected with the
wMel strain are currently being used in multiple Southeast Asian and South American countries to
reduce DENV, CHIKV, and ZIKV disease burden (reviewed in Reference 33). Initially, immune
priming was proposed as the underlying mechanism of Wolbachia pathogen interference. How-
ever, recent findings have brought this notion into question, and data from Drosophila suggest viral
replication as a target of pathogen interference (19). Whether these findings transfer to mosquitoes
is currently unclear, and the search for the molecular underpinnings of this phenomenon
continues.

5. CONCLUSIONS

The mosquito holobiont encompasses organisms that passively populate, aggressively infect and
cause disease, or infect and use mosquitoes as a vehicle for transmission. The sum of these in-
teractions has shaped the mosquito immune system to maximize mosquito survival and minimize
deleterious side effects of overly zealous immune responses. As a result, the mosquito immune
system consists of effector mechanisms that defy narrow specificity in favor of cleverly co-opting
physiology. Not only MBPs but also commensals and entomopathogens must strike an arrange-
ment that allows them to survive and thrive in the context of mosquito immunity. The field is ripe
with opportunity to understand immune response capacity in mosquitoes beyond the canonical
immune responses that are well described only for MBP–vector interactions.
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