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Abstract

The potato psyllid, Bactericera cockerelli (Šulc) (Hemiptera: Triozidae), trans-
mits the pathogen “Candidatus liberibacter solanacearum” (Lso), the putative
causal agent of zebra chip disease (ZC). ZC is a disease of potato that reduces
yield and quality and has disrupted integrated pest management programs in
parts of the Americas and New Zealand. Advances in our understanding of
the ecological factors that influence ZC epidemiology have been accelerated
by the relatively recent identification of Lso and motivated by the steady in-
crease in ZC distribution and the potential for devastating economic losses
on a global scale. Management of ZC remains heavily reliant upon insecti-
cides, which is not sustainable from the standpoint of insecticide resistance,
nontarget effects on natural enemies, and regulations that may limit such
tools. This review synthesizes the literature on potato psyllids and ZC, out-
lining recent progress, identifying knowledge gaps, and proposing avenues
for further research on this important pathosystem of potatoes.
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INTRODUCTION

The potato psyllid, Bactericera cockerelli (Šulc) (Hemiptera: Triozidae), has been among the most
damaging potato pests in North America for over 100 years. In the species description, Šulc (113)
observed large numbers of nymphs on pepper plants and stated that “we may infer that the in-
sect can become very destructive” (p. 108). This presaged the frequent outbreaks of this pest that
would soon plague potato growers in the western United States and later across the globe. Al-
though psyllid yellows was the primary concern associated with potato psyllids in the early 1900s
(93), potato production currently is threatenedmore by zebra chip disease (ZC) (146).ZC is associ-
ated with “Candidatus Liberibacter solanacearum” (Lso) (also known as “Candidatus Liberibacter
psyllaurous”), which is transmitted by potato psyllids (79). ZC is an emerging disease that re-
duces yield and quality, increases production costs, and complicates integrated pest management
for potato wherever the pathogen and psyllid vector occur. Previous reviews have covered potato
psyllids and ZC (10, 79), ZC in New Zealand (135), and comprehensive overviews of all psyllid
pests of potatoes (146). These reviews should be consulted for earlier work on potato psyllids
and ZC. This review summarizes recent insights into potato psyllid biology and ecology, then
focuses on advances in understanding and managing the ZC pathosystem, synthesizing progress,
and identifying knowledge gaps to set future research directions.

GEOGRAPHIC DISTRIBUTION OF POTATO PSYLLID

Native to western North America, the potato psyllid is present throughout the central to
western United States; most Canadian provinces bordering the United States; Mexico; and
the Central American countries of Guatemala, Honduras, El Salvador, and Nicaragua (146;
https://gd.eppo.int) (Figure 1). Climate models indicate that nearly 80% of global potato-
growing land is suitable for potato psyllids, including more than 96% of such land in South
America, Eurasia, and Australia (142). Several introductions have been reported: in New Zealand
in the early 2000s; Australia in 2014 to 2017; Ecuador in 2017; and, most recently, Columbia
and Peru (14, 146; https://gd.eppo.int) (Figure 1). Potato psyllids are established in all potato-
growing regions of New Zealand, as well as in Western Australia and the Australian territory of
Norfolk Island (135, 146) (Figure 1).

BIOLOGY AND ECOLOGY OF POTATO PSYLLID

Host Range

Potato psyllids have been observed on many plant species across numerous families; however,
reproduction and development occur primarily on plants within the Solanaceae (23, 93, 140).
Solanaceous crop hosts include potato (Solanum tuberosum), tomato (Solanum lycopersicum), pep-
per (capsicum;Capsicum spp.), and eggplant (aubergine; Solanummelongena).Noncrop solanaceous
hosts reported fromNorth America andNewZealand include various nightshade species (Solanum
spp.), groundcherry (Physallis spp.), matrimony vine (boxthorn; Lycium spp.), and several other
weeds and ornamentals (23, 36). Potato psyllids also feed and reproduce on plants in the Con-
volvulaceae, including sweet potato (Ipomoea batatas) and field bindweed (Convolvulus arvensis) (23,
132). Adults may use a wide diversity of other plant species as transient hosts or shelter hosts that
do not support the complete development of immature stages (93, 140).

Haplotypes

To date, four genetically distinct haplotypes of potato psyllids have been described based on
high-resolution melting analysis of the mitochondrial CO1 gene and named after their apparent
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Figure 1

Map showing distributions of potato psyllids by country or state (red), approximate distributions of the different haplotypes of
“Candidatus Liberibacter solanacearum” (Lso), and whether zebra chip disease has been confirmed (blue text) or not (black text).
∗Haplotypes F and G were identified, respectively, from one potato tuber sample and an herbarium sample of Solanum umbelliferum
(19, 54–56, 73, 79, 110, 114, 121, 141, 146; https://gd.eppo.int).

geographic associations in North America: Western, Northwestern, Central, and Southwestern
(116, 117). Haplotype occurrence and prevalence have been reported extensively in the United
States (31, 32, 115–120, 144, 148).

Some differences in biology among haplotypes have been observed, particularly concerning
host plant associations, life history traits, and cold tolerance (31–33, 83, 119, 129, 144, 146). Breed-
ing incompatibility has been observed between certain haplotypes (83). However, differences in
the transmission efficiency of Lso have not been observed (122). Despite these among-haplotype
differences, haplotype characterizations are less accurate predictors of population structure rel-
ative to using a broader range of molecular markers such as genome-wide single nucleotide
polymorphisms (SNPs) (43, 65).

Life Cycle and Reproductive Biology

Considerable variation exists in findings published on the life history of potato psyllids, attributed
primarily to differences in biotic and abiotic environmental conditions associated with each study.
Adult longevity in the lab may average approximately 15 days, with some individuals living well
over 100 days (83, 93). Females generally live longer than males, and longevity varies on different
host plants (83).

Females have been reported to reach reproductive maturity on the day of adult eclosion and
males one day after eclosion (79), although earlier reports suggested a longer premating period
(93). Oviposition begins within 1–5 days after mating, with older females beginning oviposition
sooner after mating than younger females (79). Fecundity varies considerably, ranging from
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approximately 200 to over 1,000 eggs (e.g., 83, 93). This variation reflects differences in the host
plants (23, 83, 84, 93), haplotypes (83, 95), and experimental conditions used. At least some of
the variability among these studies might be attributed to changes in psyllid biology related to
host switching (68, 95). Fecundity, longevity, and intrinsic rate of increase in potato psyllids were
found to be greater under laboratory conditions than under field conditions in a study in south
Texas (152), underscoring the need to exercise caution before extrapolating laboratory studies to
the field. Additional studies will be needed to better understand life history traits under different
field conditions in various localities.

Eggs hatch after 4–6 days at approximately 27°C,with each of the five nymphal instars develop-
ing over approximately 2–6 days; potato psyllids tend to develop faster on tomatoes and potatoes
than on eggplants and peppers (146, 152). Potato psyllids may complete one generation in under
three weeks in the lab or slightly longer under field conditions (152). Development time from
egg to adult may be similar or considerably longer on various weed hosts, depending upon their
apparent suitability as host plants (23). The sex ratio of newly eclosed adults has been reported to
be approximately 1:1 (93, 146).

Evidence of olfactory communication has been demonstrated in the potato psyllid, with males
attracted and females repelled by odors from both sexes and a refractory period of diminished
attraction after mating (50). Vibrational cues are also involved in communication between the
sexes, and the potential for reducing mating by disrupting vibrational communication has been
demonstrated in the laboratory (8). The development of applied tools that exploit these be-
haviors warrants further investigation, though the combination of sensory modalities used in
communication between the sexes likely will complicate such efforts.

Endosymbionts

Associations of the primary endosymbiont “Candidatus Carsonella ruddii” and the facultative en-
dosymbiontWolbachia with potato psyllids have long been recognized (79). Recently, the presence
of other bacterial endosymbionts, including Liberibacter, Sodalis, and Rickettsia, was confirmed in
potato psyllids (24). “Candidatus Carsonella” and Sodalis may benefit potato psyllids by synthe-
sizing essential amino acids lacking in the phloem (24), and the greater abundance of Carsonella
in females is consistent with higher demand for amino acids to support reproduction (28). Con-
versely, Liberibacter is known to have adverse effects on the metabolic processes of potato psyllids
(4, 85). Wolbachia is found in the Central and Western psyllid haplotypes, which might explain
the nonviability of eggs produced when females of the Northwestern haplotype mate with males
of either of these haplotypes (28, 83); however, this possible explanation requires further study
to validate it. Endosymbionts and their interactions with the potato psyllid can be manipulated
to reduce the reproductive fitness of the vector (e.g.,Wolbachia), increase vector susceptibility to
natural enemies (e.g.,Rickettsia), or reduce transmission efficiency (in Liberibacter). Further investi-
gations are encouraged into the interactions among potato psyllids and their endosymbionts both
to improve our understanding of psyllid biology and to develop control methods (see the section
titled Emerging Technologies).

Phenology

The optimum temperature for survival and development of potato psyllids has been estimated
to be between approximately 24°C and 27°C but varies depending on factors such as psyllid life
stage and host plant (67, 93, 133). The lower developmental threshold has been estimated to range
from approximately 4°C to 8°C (67, 133). As temperatures exceed 30°C, oviposition, egg hatching,
and survival decrease substantively, with some variation among studies existing in the intensity of
effects (67, 93, 133).
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Nymphs may be more cold tolerant than adults, but both life stages may survive at least short
exposures to temperatures as low as –20°C, and Lso infection may enhance cold tolerance (146).
More work is needed to clarify the cold tolerances of potato psyllids, including studies of the inter-
actions among psyllids, Lso, and host plants, but potato psyllids appear to survive at temperatures
lower than previously thought (93, 140).

The seasonal phenology of the potato psyllid in potato has been investigated primarily within
its native geographic range in the central and western United States (18, 37, 79, 143, 144, 146).
Phenology patterns have been similar across most potato-growing regions in the United States,
with potato psyllids often found in potatoes at or shortly after emergence and populations peaking
shortly before harvest. Similar patterns have been reported in New Zealand (135).

Inverse-distance-weighted interpolation models have been developed to predict the risk of
psyllid incidence across landscapes (18). Psyllid abundance appears to be higher in landscapes with
high connectivity, low crop diversity, and large natural areas, as well as in areas or years with higher
levels of winter moisture (52). These models could be enhanced with a better understanding of
factors that contribute to high Lso incidence in psyllids and incorporation of this aspect of ZC
risk into prediction tools.

Annual infestations of potato psyllids in potatoes near the Rocky Mountains historically had
been thought to result from long-distance migration (61, 87). However, overwintering has also
been confirmed in this region on bittersweet nightshade (Solanum dulcamara) (81, 144) and mat-
rimony vine (Lycium spp.) (129). Seasonal phenologies across Idaho are consistent with the idea
that many psyllids infesting potato fields come from local overwintering sources (143). Neverthe-
less, the overwintering hosts studied to date cannot fully account for potato psyllid infestations on
crops in this region (143, 146). Successful overwintering may occur on various transient or shelter
hosts (93), and, indeed, autumn-dispersing psyllids feed on a diversity of such plants (26). Further
clarification of the importance of other overwintering hosts, including shelter hosts, is needed.

Potato psyllid phenology has been studied less extensively in areas other than the northwestern
United States. In New Zealand, seasonal migration has not been observed, and all life stages may
be found on noncrop hosts year round, even in areas with frost and snow (135). In regions that
do not feature major seasonal changes during the winter and in which suitable host plants are
consistently available (e.g., parts of Mexico and Central America), potato psyllids might be able
to reproduce and develop year round, but data are needed to test this hypothesis. This hypothesis
would be consistent with observations in New Zealand and with evidence from the northwestern
United States, where potato psyllids overwinter in a temperature-controlled quiescence rather
than in a true diapause (62).

PSYLLID YELLOWS

Psyllid yellows, a condition associated with potato psyllid feeding on potatoes, was widely consid-
ered to be the most destructive of all potato disorders in the western United States in the first half
of the twentieth century (10, 93, 146). However, as chemical control options developed, the out-
breaks faded, as did research into the etiology of psyllid yellows (10, 146).Considerable knowledge
gaps remain, including the identification of the suspected salivary toxin or a possible yet-to-be-
identified pathogen (146). However, recent decades have shifted attention squarely to ZC.

ZEBRA CHIP DISEASE

Symptoms

ZC was first reported in potato fields near Saltillo, Mexico, in 1994 (79). Aboveground symp-
toms are like those of psyllid yellows and include chlorosis and purpling of foliage, twisted stems,
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swollen nodes, aerial tubers, vascular discoloration, and scorching and wilting of leaves. Below-
ground symptoms include collapsed stolons and enlarged lenticels on tubers. However, the main
tuber symptom is brown discoloration of the vascular ring and medullary rays; these are ini-
tially expressed at the stolon attachment end but eventually extend through the tuber. Striped
necrotic patterns run through the length of tubers, a diagnostic symptom that separates ZC from
other potato diseases and led to the name “zebra chip.” Tuber symptoms are more pronounced in
fried potato products, making them unmarketable due to a burnt appearance and unpleasant taste
(79).

Liberibacter, the Putative Causal Agent of Zebra Chip Disease

The bacterium associated with ZC was first detected in 2008 (10, 79). The synonyms “Candida-
tus Liberibacter psyllaurous” and “Candidatus Liberibacter solanacearum” are both used in the
literature. “Candidatus Liberibacter” species are Gram-negative α-proteobacteria, and to date,
pathogenic liberibacters have not been cultured in vitro (74). Potato psyllids were implicated in
the transmission of the putative causal agent of ZC as early as 2006–2007 and confirmed as the
vector of Lso shortly thereafter (10, 79).

Lso Haplotypes

To date, 13 different haplotypes of Lso have been described by SNPs on the 16s rRNA, 16s/23s
ISR and 50s rplJ, and rplL ribosomal protein genes: A, B, C, D, E, F, G, G(Api), H, H(Con), U,
Cras1, and Cras2. Haplotypes A and B are confirmed to be associated with the potato psyllid and
ZC in potato (79).Haplotypes F andGwere identified, respectively, from one potato tuber sample
fromOregon (121) and an herbarium sample of Solanum umbelliferum (73), so transmission details
are unknown. Haplotype B has been shown to cause more severe ZC symptoms in solanaceous
hosts than haplotype A (57, 58, 122). Numerous weeds, primarily in the Solanaceae, have been
found to harbor Lso and/or to be infected with Lso by potato psyllids, though the haplotype has
not been identified in all studies (19, 23, 80, 105, 130, 132, 135).

Available evidence suggests that the other Lso haplotypes are of lesser importance in the epi-
demiology of ZC. The risk may be mitigated by the limited effects of these haplotypes on potato
and/or the lack of an efficient psyllid vector that feeds on both potato and other Lso hosts. For
example, haplotypes C, D, and E infect apiaceous plants in Europe and the Mediterranean region
(5, 6, 54, 55, 79, 86, 114, 146), but Bactericera nigricornis (Förster), a vector of haplotype E, is the
only psyllid species in Europe known to reproduce on potato (6, 7). Preliminary evidence showed
transmission of haplotype E by B. nigricornis to potato (6). However, extensive surveys in Spain
suggested low ZC risk for potatoes due to scarcity of B. nigricornis, low Lso incidence in potential
vectors (7), and lack of haplotypes A and B (110). More work is needed to clarify the risk in other
parts of Europe. Another species, Bactericera trigonicaHodkinson, transmitted Lso haplotype E to
potato at low rates and showed very limited settling, oviposition, and feeding rates on potato, sug-
gesting limited epidemiological importance for this species as well (5). In Finland, Lso haplotype
C was found in potato, but with no ZC symptoms (55).

The other recently discovered haplotypes [G(Api), H, H(Con), U, Cras1, and Cras2] might
also pose little risk to potatoes given their associations with nonsolanaceous hosts and/or psyllids
that do not feed on potato (19, 54–56, 114). Lso was recently detected in cottony ash psyllids
[Psyllopsis discrepans (Flor)], but the haplotype was not reported (141). As more Lso haplotypes will
almost certainly be discovered, the complex interactions among plant and psyllid hosts of these
haplotypes must be further explored and considered with respect to ZC epidemiology and other
diseases that may be associated with these haplotypes.
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Geographic Distribution of Zebra Chip Disease

Following the first report of ZC in 1994, the disease was not reported in the United States until
2000, when it was found in commercial potato fields in Texas (10, 79). By 2004, ZC was causing
considerable damage in southwest Texas, and incidence was as high as 80% in some fields in
Mexico (10, 79). By 2007, ZC symptomatic potatoes had been reported fromNebraska, Colorado,
Kansas, New Mexico, Arizona, Nevada, and California. During the 2011 growing season, ZC
was reported in Idaho, Washington, and Oregon (79), which together make up a region that
produces more than half of US potatoes. ZC has since been reported in Wyoming and Utah,
as well as Alberta, Canada (146; https://gd.eppo.int). The Lso haplotypes A and B have been
observed widely in North America, with individual samples of haplotypes F and G also found
(Figure 1).

ZC similarly spread south through Central America. Having been previously reported from
Guatemala, ZC was reported fromHonduras as early as 2006,Nicaragua in 2011, and El Salvador
in 2012 (79, 146). Lso haplotypes have not been reported from Central America (Figure 1).

At least three countries outside of the vector’s apparent native range have reported introduc-
tions of both the potato psyllid and Lso on solanaceous hosts. Lso was reported in potatoes in
New Zealand not long after the initial detection of the potato psyllid and was soon widely ob-
served across the country (135). In 2013, Lso haplotype A was collected from tomato plants on
Norfolk Island, Australia, and the next year, potato psyllids were collected from potato and tomato
plants (146). Potato psyllids (in 2017), Lso, and ZC-infected potatoes (in 2019) were reported for
the first time in South America (Ecuador) (11, 14). Only Lso haplotype A has been reported from
these introductions (Figure 1).

To date, the Lso haplotypes typically associated with ZC symptoms (A and B) have not been
found in Europe or the Mediterranean region, limiting the current risk of ZC for potato crops
(see the section titled Lso Haplotypes). However, numerous other Lso haplotypes that have not
been reported to cause ZC symptoms in potatoes are present in these areas (Figure 1).

Epidemiology

Potatoes are vegetatively propagated, which facilitates tuber transmission of many other potato
pathogens. However, despite some conflicting results in previous studies, it is clear that, when
Lso-infected tubers are planted, plant emergence, development, and Lso infection in daughter
tubers are severely diminished (102, 123, 149). Thus, the risk of Lso spread through infected seed
pieces is negligible.

The spread of Lso by potato psyllids is of primary epidemiological importance. Transovarial
transmission of Lso has been reported, and both nymphs and adults can transmit the pathogen (27,
79). However, adults play a more important role in pathogen spread given their typically higher
Lso titer (27, 79) and capacity for long-distance dispersal (140).

After acquisition through feeding, Lso multiplies (111) and circulates through the psyllid’s
body, reaching the salivary glands in approximately two weeks (112). Following this two-week
latent period, the insect is infective for the remainder of its life. Lso is inoculated into a new host
plant within an hour of feeding, during the salivation stage, and inoculation success increases with
feeding duration (79, 111) and vector density (100).

The onset of ZC symptoms in the field typically occurs after three to four weeks in foliage but
within two weeks in tubers (101). Higher vector density may shorten ZC incubation time (100)
but has little effect on symptom severity or disease progression (44, 145).

Relative to Lso haplotype A, Lso haplotype B exhibits faster replication in the psyllid gut,
a shorter latent period, a higher transmission rate, and higher virulence, causing more severe
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symptoms and tuber yield reduction (57, 58, 122, 128). These differences between haplotypes
could explain the greater prevalence of haplotype B in some areas (31, 32).

The heterogeneous distributions of Lso within the host plant and psyllids on their hosts (10,
20, 79, 136) may influence psyllid exposure to the pathogen. Although limiting psyllid access to
specific plant tissues did not elucidate such relationships (100, 135), unrestricted access to the plant
resulted in greater acquisition (100).

At the field scale, ZC prevalence is often initially higher on the edges, likely related to the early
season buildup of vector populations in natural vegetation (25, 135, 146) and in volunteer potatoes
from the previous year’s crop (140). Many noncrop solanaceous hosts can serve as reservoirs of
potato psyllids and/or Lso in host plants or the psyllids themselves (25, 33, 80, 104, 106, 130, 135,
144).Within fields, the pattern of Lso distribution is influenced by the spatiotemporal movement
of infective potato psyllids, typically exhibiting a nonrandom pattern (59). As psyllids reproduce
and disperse over the season, ZC appears in the inner parts of the field (79, 146).

Dispersal of potato psyllids and Lso may be affected by pathogen manipulation of the vec-
tor. Lso-negative psyllids preferentially settle on Lso-infected plants, and after Lso acquisition,
potato psyllids preferentially colonize healthy plants (34, 71). Lso-positive psyllids reach the sieve
elements more quickly and exhibit increased salivation, probing, and phloem ingestion (134).
These behavioral shifts should accelerate pathogen spread, suppressing overall yield and reducing
economic return from repeated insecticide sprays (41).

Lso is also pathogenic to psyllids, negatively affecting reproduction and survival (4, 85, 131).
The evolutionary development of this seemingly antagonistic relationship has yet to be clarified
but might contribute to cyclical population dynamics in psyllids among years (143). Negative
effects of Lso on psyllid biology are influenced by the host plant (85, 131), emphasizing the
importance of considering the host plant when studying vector–pathogen interactions.

Lso can be transmitted between Bactericera maculipennis (Crawford) and potato psyllids when
they are feeding on the same Convolvulaceae host plant (132).This and similar cross-transmission
between potato psyllids and other psyllid species via shared hosts (e.g., B. nigricornis that feeds on
potatoes and carrots; 6) needs further investigation with respect to ZC epidemiology.

Economics

Factors contributing to economic losses from ZC include lower yield and lower quality resulting
in reduced or lost market value, as well as increased input costs associated with insecticide
applications (48, 49, 51). Losses from ZC were initially sporadic but, by the mid-2000s, reached
tens of millions of dollars in the United States, Mexico, and Central America (146). Insecticide
applications targeting potato psyllids were estimated to exceed US$700 per hectare in the
southcentral United States (51) and US$11 million across the northwest United States (49).
Detailed examinations of the economic effects of ZC in other countries are lacking, but these
effects likely have been substantial, especially in New Zealand.

MANAGEMENT

Monitoring

Monitoring potato psyllids is key to informing decisions on insecticide application, the primary
means of managing potato psyllids and ZC. Yellow sticky traps are the most widely used moni-
toring tool for adults, having been found to be more efficient than other methods (143, 144, 153).
Vacuum and beat sheet samplingmay be preferred when sampling adults on alternative host plants,
where active dispersal may be less likely (129, 144).Direct inspection of leaf samples is the standard
approach for monitoring immature stages of potato psyllids (39, 143, 146). Nymphs may be more
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abundant in the top or middle of the potato plant canopy (136, 146). Correlations between psyllid
densities and ZC incidence have generally not been clear (39, 147), likely due to the high temporal
and spatial variability in Lso incidence among psyllids (31–33, 143, 144). Action thresholds have
been proposed in New Zealand (137), and binomial sequential sampling plans have been proposed
in California (10), but these remain to be more rigorously tested in other regions. Any threshold
should consider both psyllid numbers and incidence of Lso, which would require a rapid diag-
nostic assay.Monitoring protocols should consider the aggregated distribution of psyllids and ZC
infection within fields, including likely greater densities on field edges (10, 59, 140). In addition,
refinement of phenology models will aid in developing risk prediction tools (18, 52).

Insecticides

ZC management is heavily reliant on insecticide applications to suppress the vector. Insecticide
programs—at least in the United States and New Zealand—typically feature a neonicotinoid at-
plant followed by repeated foliar sprays over the season until shortly before vine kill or harvest
(38, 49, 51, 135), when potato psyllid abundance typically increases (18, 37, 143). Ideally, insec-
ticides will kill psyllids quickly and/or reduce Lso transmission. Laboratory demonstration of
reduced pathogen transmission has been rare (but see discussion of imidacloprid in 10); however,
several chemistries, including abamectin, pymetrozine, cyantraniliprole, sulfoxaflor, and tolfen-
pyrad, alter feeding activity, which is expected to negatively affect Lso transmission (10, 40, 82,
135). Abamectin exhibits effective knockdown against psyllids, whereas other chemistries, includ-
ing cyantraniliprole, imidacloprid, spinetoram, spiromesifen, and sulfoxaflor, may show stronger
residual activity (10, 40, 135). To reduce ZC under high disease pressure, the specific insecticide
program used might be less important than the need to continue spraying for the duration of the
season (38).

Reliance on insecticides is not sustainable given that resistance to one or more chemistries—
including neonicotinoids, spinosad, and abamectin—has been reported throughout North
America (16, 17, 98, 124). Moreover, use of broad-spectrum insecticides is associated with higher
densities of potato psyllids, likely related to the negative effects on natural enemies (96, 108).
Alternatives to synthetic insecticides, including kaolin particle film, crop oils, essential oils,
nanoparticles, and bactericides, have shown some efficacy against potato psyllids, Lso transmis-
sion, and/or ZC incidence, at least in the laboratory (10, 45, 53, 135, 150). However, among these,
only kaolin particle film and crop oils have been evaluated in the field (10, 150); thus, more work
is needed to confirm field efficacy and incorporation into integrated pest management programs
with traditional insecticides.

Cultural and Physical Control

Cultural and physical options for managing potato psyllids and ZC are limited and, at present,
impractical formost situations.Delayed plantingmay reduce psyllid densities and/or ZC incidence
(140) but would be unacceptable for most growers. Elimination of spring breeding hosts has been
proposed, but our incomplete understanding of these hosts and the geographic scale at which
such an approach would need to be implemented limit its practicality (23, 25, 144). Mulches,
UV-blocking screens, and mesh row covers have been shown to reduce potato psyllid densities in
small field plots (75, 146), but efficacy against ZC remains to be demonstrated, and all of these
approaches face challenges of scale.

Biological Control

Parasitoid wasps, generalist predators, and entomopathogenic fungi have been reported to attack
potato psyllids, but practical recommendations for their use in field settings are lacking.Tetrastichus
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triozae (Burks) (Hymenoptera: Eulophidae) provided unreliable control in the United States (9,
10, 93). More potential was observed in Mexico, especially in fields with lower insecticide use
(108), which is not surprising given this species’ high susceptibility to insecticides (69, 78). Other
factors, including hyperparasitism and a broad host range, likely limit the effects of T. triozae on
the potato psyllid (10). Nevertheless, this parasitoid was released for biocontrol in New Zealand
(135), but reports on long-term efficacy have yet to be published. Another parasitoid,Metaphycus
psyllidis Compere (Hymenoptera: Encyrtidae), has been observed in Southern California but at
even lower parasitism rates (9).

Many generalist predators, including coccinellids, chrysopids, anthocorids, geocorids, nabids,
mirids, syrphids, and predatory mites, have been reported to feed on potato psyllids in the field
(10, 93, 146) and in the laboratory or greenhouse (3, 12, 13, 35, 47, 64, 70, 89, 91, 92, 99, 125,
151). However, more work is needed to understand the roles of generalist predators in the field.
Undoubtedly, reliance on insecticides for ZC management has limited the effectiveness of natural
enemies given their high susceptibility to insecticides (2, 15, 69, 77, 78, 108). Aside from reduc-
ing insecticide applications to conserve natural enemies, we lack practical recommendations for
implementing biocontrol with parasitoids and predators.

Several species of entomopathogenic fungi have been shown to be effective against potato
psyllids, but primarily in the laboratory (1, 72, 79, 88, 107, 125, 126). More work is needed to
confirm field efficacy and to facilitate widespread implementation of this approach across different
growing areas.

Host Plant Resistance

Resistance to Lso or the potato psyllid vector has yet to be identified in or developed for com-
mercial potato cultivars in the United States (29, 66, 79). However, potential sources of resistance
have been found in several germplasms with wild Solanum species in their pedigree (94). In this
section, we exclude screening trials that relied solely on visual symptoms to characterize resis-
tance or tolerance and consider only a selection of recent studies that characterized symptom
expression along with Lso concentrations and/or physiological shifts in plants following infection
(94).

Although antibiosis resistance to potato psyllids has been documented in Solanum verruco-
sum and Solanum bulbocastanum, these traits have not been incorporated into cultivated potatoes
(21, 22). Antixenosis resistance to ZC in some potato genotypes has been demonstrated (10).
Later studies further inferred potential ZC resistance through antixenosis by quantifying differ-
ences in oviposition, feeding, and probing behavior (42, 97). The breeding clone family A07781,
with Solanum chacoense in its ancestry (US Department of Agriculture Agricultural Research Ser-
vice, Small Grains and Potato Germplasm Research, Aberdeen, ID), has emerged as a promising
candidate for future incorporation into commercial cultivars (42).

Recent studies have used symptom severity, Lso titer (29, 103), and/or analytical quantification
of physiological responses (109, 138, 139) to determine potato host susceptibility to ZC. Wallis
et al. (138) identified 29 genotypes that expressed few or no symptoms following Lso infection.
The absence of drastic shifts in amino acids, reducing sugars, and phenolics concentrations were
used to explain this observed tolerance in the examined genotypes (138). Developing potato cul-
tivars with reduced defensive and hypersensitive responses may reduce losses to ZC; however,
resistance that limits the replication of the bacterium in its host is the preferred goal. Recent stud-
ies suggested that siblings from the family A07781 exhibit ZC tolerance or resistance in both the
greenhouse (103) and the field (29).
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Emerging Technologies

More sustainable alternatives to traditional chemical controls are needed. Progress is being made
with the development of RNA interference (RNAi)-based approaches affecting potato psyllid
molting, mortality, and Lso acquisition and transmission (90, 127). Although conventional RNAi
technologies would not work against bacteria, a novel RNA-silencing technology called FANA
has been shown to suppress liberibacter titers and disease symptoms in potatoes and citrus (63).
Paratransgenic approaches that disrupt pathogen transmission through manipulation of vector
microbial communities offer another avenue that is being pursued for the Asian citrus psyllid,
Diaphorina citri Kuwayama (76), and should be evaluated in the potato psyllid. Genetically en-
gineered potatoes could be a powerful tool to confer host plant resistance to the vector and/or
pathogen, but public skepticism and marketing restrictions currently limit such applications. Re-
cent technological advances in spectral imaging tools facilitate ZC monitoring in the field (30) or
on tubers at harvest (46, 60, 154); further development of such technologies could aid in remov-
ing field inoculum and culling infected tubers after harvest. Artificial neural network classifiers
can be used with spectral imaging as a tool in high-throughput potato screening, facilitating plant
breeding efforts to detect sources of resistance to ZC (60).

CONCLUSIONS

A tremendous amount of research progress has beenmade recently on the ZC pathosystem,which
is especially remarkable given that the causal agent of ZC was only identified in 2008.Despite this
progress,many areas require further research to develop sustainable approaches for managing ZC.
Several aspects of the epidemiology of the ZC pathosystem need to be clarified, including the role
of alternative host plant reservoirs for Lso, the transmission of various Lso haplotypes to potato by
other psyllid species, and potential effects of cross-transmission of the pathogen to potato psyl-
lids from other psyllid species via shared alternative host plants. A better understanding of the
sources of bacteriliferous potato psyllid infestations in potato would contribute to the improve-
ment ofmodels aimed at predicting regional and seasonal variation in risk to the crop.Clarification
of the relationships among potato psyllid densities, Lso incidences, and ZC prevalence will be
needed—along with rapid diagnostic assays for Lso—to develop economic thresholds and en-
sure that insecticides are applied only when justified by risk. Such decision support tools would
be well complemented by new insecticide options and emerging technologies that are conducive
to preserving natural enemies. More needs to be known about the role of biocontrol agents un-
der field settings, and practicable cultural control options are almost entirely lacking. Ultimately,
new potato cultivars are needed with both durable resistance to Lso and commercially acceptable
agronomic traits.
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