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Abstract

Dengue, caused by the dengue virus, is the most widespread arboviral in-
fectious disease of public health significance globally. This review explores
the communicative function of olfactory cues that mediate host-seeking,
egg-laying, plant-feeding, and mating behaviors in Aedes aegypti and Aedes
albopictus, two mosquito vectors that drive dengue virus transmission. Aedes
aegypti has adapted to live in close association with humans, preferentially
feeding on them and laying eggs in human-fabricated water containers and
natural habitats. In contrast, Ae. albopictus is considered opportunistic in its
feeding habits and tends to inhabit more vegetative areas. Additionally, the
ability of both mosquito species to locate suitable host plants for sugars
and find mates for reproduction contributes to their survival. Advances in
chemical ecology, functional genomics, and behavioral analyses have im-
proved our understanding of the underlying neural mechanisms and reveal
novel and specific olfactory semiochemicals that these species use to lo-
cate and discriminate among resources in their environment. Physiological
status; learning; and host- and habitat-associated factors, including micro-
bial infection and abundance, shape olfactory responses of these vectors.
Some of these semiochemicals can be integrated into the toolbox for dengue
surveillance and control.
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INTRODUCTION

Dengue is the most widespread arboviral infectious disease afflicting mankind globally, result-
ing in significant morbidity, mortality, and economic impact in tropical and subtropical regions
(141). Approximately half of the world’s population is at risk of dengue, with an estimated 100–
400 million annual infections (141). The disease is caused by dengue virus, which exists as four
distinct serotypes (DENV 1–4). Dengue infection in humans may present as a mild or acute flu-
like illness (>80%), with only a minor proportion (5–10%) of cases developing severe dengue
characterized by dengue hemorrhagic fever and dengue shock syndrome (141).

The alarming rise and expanding epidemiology of the disease have been facilitated largely
by fast-growing human populations, rapid urbanization without adequate sanitary provision, de-
forestation, increased travel, and climate change (54, 111). As such, the virus has spread and
established in new geographic locations where the competent mosquito vectors Aedes aegypti and
Aedes albopictus contribute to its circulation among a large population of immunologically naive hu-
man hosts.Notably, these mosquito species also vector other arboviruses, such as the chikungunya,
Zika, and yellow fever viruses (111).

To date, only one effective and safe vaccine (CYD-TDV) has been developed to protect hu-
mans against the virus. However, it is recommended for use in seropositive individuals only, that
is, those with a history of dengue virus infection, and approved for use in only a handful of coun-
tries (42, 141). This implies that vaccine rollout in the general population requires prevaccination
screening, making it an unsustainable strategy.With no specific antiviral therapy available, vector
control remains the mainstay tool for dengue prevention (141).

The growing health risk of dengue virus infection has increased the need to investigate the
ecology of the virus vectors (Figure 1) to inform development of surveillance and control strate-
gies. For instance, Ae. aegypti lives in close association with humans, which is an adaptation that
has aided its survival and vectoring potential, fostered through repetitive cycles of human blood
feeding and oviposition close to human dwellings (99, 123). Aedes albopictus is considered oppor-
tunistic in its feeding habits and tends to inhabit more vegetative rural and suburban areas. In most
places, Ae. aegypti continues to be the main dengue vector, but this varies with geography; for ex-
ample, in temperate areas of Europe,Ae. albopictus is the primary vector (51). Furthermore, recent
studies have demonstrated the importance of plant feeding in these vectors, which was previously
unappreciated, especially in the highly anthropophilic Ae. aegypti (123).

In this article, we review the fundamental differences in the biology and ecology of the two
competent dengue virus vectors, Ae. aegypti and Ae. albopictus, and how these differences have
shaped their chemical ecology and relative contributions to virus transmission risk and spread
of dengue. We focus on the contributions of olfaction to specific behaviors of these two dengue
vectors: host seeking for a blood meal from a vertebrate, plant feeding, mating, and oviposition.
We discuss other literature detailing the contributions of olfaction that underlie these behaviors
(for reviews, see 11, 82, 140), albeit minimally described in Ae. albopictus; however, we emphasize
knowledge gaps related to the underlying genetic mechanisms modulating these behaviors. We
include examples from sub-Saharan Africa (SSA) that are often underrepresented in the literature.
Additionally, we present ideas for developing practical semiochemical-based tools for monitoring
and control of dengue vectors.

NATURAL HISTORY AND BIOLOGY OF AEDES AEGYPTI
AND AEDES ALBOPICTUS

Aedes aegypti (Linnaeus), commonly known as the yellow fever mosquito, is native to Africa. Its
spread into tropical areas and, now, the subtropical and temperate regions of the world is thought
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Figure 1

A representation of the key behaviors mediated by semiochemicals and the factors influencing their
response. Question marks indicate roles in specific behaviors not yet defined. Abbreviations: GR, gustatory
receptor; IR, ionotrophic receptor; OR, olfactory receptor; Orco, olfactory receptor coreceptor.

to have occurred in the past five centuries (49), primarily through its eggs, which are known to
withstand desiccation (40, 119). Furthermore, the spread outside of Africa was accompanied by
unique adaptations and ecogenetic divergence resulting in two forms or subspecies—the domestic
Ae. aegypti aegypti (Aaa) and sylvatic Ae. aegypti formosus (Aaf ). Aaa represents the invasive ecotype
outside of Africa, with the ancestral Aaf found throughout most of SSA (75, 108). Aaa has adapted
to breed in human-fabricated water containers and prefers to bite humans (i.e., it is a human
specialist); these traits contribute to its role as an efficient arbovirus vector. In contrast, Aaf breeds
in both natural and human habitats and feeds on diverse vertebrate hosts (75, 108). In East Africa,
both forms co-occur in certain ecologies, as has been described in coastal Kenya (75, 108).Genetic
methods are required to discriminate between the two subspecies (49, 123). The behavioral and
ecological differences between these two forms are believed to impact their transmission of dengue
virus.

The Asian tiger mosquito,Ae. albopictus (Skuse), originated in the forests of Southeast Asia (75),
where it breeds in tree holes and other natural reservoirs. In recent years, it has become invasive
in certain areas of Africa, Europe, and the Americas. As in Ae. aegypti, the primary route for its
invasion is the trade in tires (51). Studies have shown that eggs of this mosquito species can also
survive periods of dormancy. Compared to Ae. aegypti,Ae. albopictus exhibits a more plastic feeding
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habit on humans and domestic animals and tends to inhabit more vegetative rural and suburban
areas (93). In contrast,Ae. aegypti prefers urban landscapes. Additionally,whereasAe. aegypti thrives
in the tropics and subtropics,Ae. albopictus adapts better to temperate climates and tends to displace
Ae. aegypti in certain ecologies; however, co-occurrence is common, albeit in segregated habitats
(105, 116).

AEDES AEGYPTI AND AEDES ALBOPICTUS VECTORIAL ATTRIBUTES
AND INFLUENCE ON DENGUE

Dengue is an urban and semiurban disease (2, 141).Aedes aegypti thrives in both environments and
is considered the primary vector of the dengue virus. In contrast, Ae. albopictus is less urbanized
and considered a secondary vector of the virus. Blood meal analysis shows that Ae. aegypti con-
sumes multiple partial blood meals, mainly from humans, during a single gonotrophic cycle (56).
As such, this behavioral trait may allow it to sustain virus transmission and contribute to more ex-
plosive outbreaks, in contrast to the mild outcome most commonly known for Ae. albopictus (51).
Nonetheless, frequent isolations of dengue viruses in wild specimens (51) indicate the suscepti-
bility of both mosquito species to the dengue virus. However, in infection assays, Ae. aegypti may
transmit the virus at higher rates than Ae. albopictus (63).

Blood meal analysis of wild Ae. albopictus specimens recorded human feeding rates exceeding
95% (63, 97). Since Ae. albopictus is rapidly expanding its geographic range, it could potentially
replace Ae. aegypti in some of its established areas (51), and its importance in sustaining local
dengue and other arboviral disease outbreaks worldwide could increase. Aedes albopictus is the
driver of dengue outbreaks in temperate areas such as in Europe (51) and similar epidemics in Ae.
aegypti–free regions and countries, including Hawaii and Mauritius. Its unique ecological flexi-
bility has allowed it to act as a bridge vector to aid the movement of arboviruses across a wide
geographic expanse (2).

Aedes albopictus has been predicted to maintain a foothold in Africa since its first detection in
Nigeria in 1991. Since then, it has been implicated in large dengue outbreaks in urban areas of
West and Central Africa (70) and, more recently, in Sudan (3).

For most of SSA, dengue dynamics are intimately linked to Ae. aegypti (2, 108, 111). However,
behavioral divergence among the two subspecies (Aaa and Aaf ), that is, divergence in blood-
feeding preferences and vector competence, should be considered when designing interventions,
including those that are semiochemical based.

HOST SEEKING FOR BLOOD AND ASSOCIATED INFOCHEMICALS

Host seeking in insects is comprised of a sequence of behavioral events, including activation, orien-
tation or attraction, landing, and probing on the host (101). These behavioral events are triggered
by cues that can be visual, tactile, acoustic, chemical, or a combination of these. Olfaction plays
an important role in the host-seeking process, and insects detect odors via a variety of odorant
receptors (ORs) expressed in olfactory sensory neurons (OSNs). The advances made over many
decades in the development of more sensitive tools to collect and analyze volatiles and, more
recently, computing power, statistical software and machine learning techniques, laboratory and
field assays, and molecular and genetic studies have all helped to better understand the roles of
olfactory semiochemicals in the host-seeking processes of Ae. aegypti and Ae. albopictus. In this
section, we focus on vertebrate breath- and skin-derived semiochemicals that trigger behavioral
events.

The need for a blood meal for reproduction drives mosquito vectors to seek and bite verte-
brate hosts, including humans. Evidence for this behavioral trait comes from the first discovery
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implicating carbon dioxide (CO2) as an olfactory cue for mosquitoes (109). A century after this
discovery, a plethora of mosquito semiochemicals from different chemical classes have been
identified in the Aedes mosquito host-seeking process (Table 1).

BREATH INFOCHEMICALS

CO2 represents the most well-known breath semiochemical of importance in the sensory ecology
of many blood-feeding insects. In the behavioral sequence of events, it serves both as an activator
of flight activity and a long-range attractant promptingmovement toward a suitable host (35, 126).
Research has suggested that, as a generic cue emitted by all vertebrates, CO2 is a poor indicator of
host selection. Its importance in Ae. albopictus has not been studied. Nonetheless, its kairomonal
effect in the chemical ecology of blood-feeding mosquitoes is unrivalled by any odorant identified
to date (126). Other breath constituents, such as acetone, octenol, and ammonia (48), elicit attrac-
tion in Ae. aegypti only when combined with CO2 (48, 126). Thus, the search for a CO2 agonist
(activatingOSNs in themaxillary palp) inAe. aegypti and perhapsAe. albopictus remains a priority in
the advancement and use of odor-baited technology in surveillance and control (discussed below).
Octenol exists in two diastereomeric forms [(R)-1-octen-3-ol and (S)-1-octen-3-ol], documented
to elicit sensory specificity and differential behavioral responses in both Aedesmosquitoes (30, 64).
However, the exact role of octenol in attraction, landing, or probing needs to be resolved.

VERTEBRATE SKIN-DERIVED INFOCHEMICALS

The earliest record of vertebrate skin odors serving as infochemicals for mosquitoes was in 1968
(1). Since then, studies have revealed that skin odor is the primary driver of differential mosquito
attraction to humans and discrimination from other animals (34, 36, 124). Carboxylic acids, alde-
hydes, alcohols, and ketones dominate the human skin volatile profile (15, 92). Aedes mosquitoes
respond to these four classes of semiochemicals and, to a lesser extent, low-molecular-weight
nitrogenous compounds such as ammonia. Table 1 lists a selection of the behaviorally active
compounds found in laboratory, mesocosm, and field assays.

Disease vectors tend to orient and land on a host to consume a bloodmeal.How domosquitoes
discriminate between hosts? Behavioral and chemical analyses of human odor identified the acids
2-ketoglutaric acid and L-lactic acid as landing attractants (13) and the latter as a diagnostic cue for
Ae. aegypti to distinguish humans from nonhuman animals (120). However, the domestic form of
Ae. aegypti prefers human odor because it recognizes the human-specific compound 6-methyl-5-
hepten-2-one (sulcatone) (75). Human and animal odors evoke differential activity in the brain of
Ae. aegypti because of selective tuning to the aldehydes decanal and undecanal, which are abundant
in human odor (146). Recently, skin-derived carboxylic acids were implicated in the differential
attraction of Ae. aegypti to humans (34). Likewise, the concentrations of human skin–derived alde-
hydes are important in the sensory ecology of Ae. aegypti as attractants or repellents (16). These
findings suggest that the olfactory cues that mediate intra- and interspecific host discrimination
may be affected by exposure of humans to conditions such as starvation, resting, perspiration, and
pathogen infection.

Apart from humans, and despite the strong innate anthropophilic tendency, other vertebrate
hosts also contribute to the Ae. aegypti host-seeking process, facilitated by different ecological
conditions and host abundance (123). However, the chemical basis for host switch remains poorly
elucidated. Tchouassi et al. (124) identified the monkey skin–derived compound cyclohexanone
as an important signature cue for Aedes mosquitoes to seek nonhuman primates; in field tests,
this compound synergized the attraction of CO2 to attract various Aedes mosquitoes, including
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Ae. aegypti. Aedes albopictus is attracted to rat odors and constituents of the crude odor, including
phenol, 4-methylphenol, 4-ethylphenol, and indole (37). The benzenoid ketone, acetophenone,
isolated from microbiota associated with the skin odors of flavivirus-infected mice and humans,
was found to be a potent attractant for Ae. aegypti (145), suggesting that individuals infected with
a virus are more attractive to mosquitoes. Examination of more nontraditional hosts could reveal
new insight into olfactory interactions of these Aedes vectors and pathogen spread (124), which
may lead to identification of novel semiochemicals.

OVIPOSITION SITE SELECTION

Finding a suitable site to lay eggs is critical to the survival of an insect species; gravid female
mosquitoes lay their eggs in a suitable aquatic site (82, 139). Gravid females must navigate chem-
ical cues released from these sites to lay their eggs. Beyond oviposition, gravid females may also
associate ovipositional chemical cues to the nutritional qualities of these sites to ensure the fitness
of their progeny. Given the natural histories of these two Aedes species as natural and container
breeders, understanding the physiochemical and biotic characteristics of the aquatic site should
help define their chemical ecology of oviposition.

Both Aedes species lay eggs in a wide range of human-fabricated water containers and natural
habitats. These egg-laying sites are critical to offspring survival and determinant of adult popu-
lation dynamics (139). The most decisive cues in oviposition site selection have been difficult to
decipher. Physiochemical factors (e.g., container type, color, size, shape, and volume; fill method;
temperature; pH; lid type; exposure to sun) have been described in relation to container larval
productivity (29, 123, 139, 142). Sources of olfactory cues released from these sites include plant
infusions, conspecific and heterospecific larvae, and microorganisms (82), although how these
sources interact to define specific site choice is less well understood.

Plant infusions and their microbial breakdown products mediate adult mosquito egg-laying
decisions. They influence the growth of microbes used as food for developing larvae. Microbial
culture experiments and chemical analysis identified a blend of the bacterial-derived chemicals
composed of carboxylic acids and their methyl esters as attractive to Ae. aegypti (7, 98, 115)
(Table 1). Bacterial species and concentration may influence the quality and role of the chemical
signal released, but this possibility will require additional research. Laboratory and field assays
identified the alcohol geosmin from cyanobacteria as an attractant for Ae. aegypti (76). Most of
these olfactory semiochemicals are medium-molecular-weight, less volatile chemicals; therefore,
they may serve as reliable signature cues for females to identify oviposition sites. Given the differ-
ent classes of chemicals identified, comparative studies are needed to identify the most potent
individual or synergistic oviposition attractants. Low-molecular-weight, water-soluble organic
compounds may play a role in mosquito oviposition site selection, and whether they serve as
contact oviposition semiochemicals for gravid females is unknown. Previous work has demon-
strated the presence of contact chemoreceptors in the mouthparts and legs of gravid females ofAe.
albopictus (130), but their importance in the chemical ecology of this mosquito species is unknown.

Apart from bacteria, other microbes, such as fungi, and their odors may influence oviposition
of gravid females. It is thought that certain fungi, such as entomopathogenic fungi, could mod-
ify the chemical composition of oviposition sites to make them either attractive or repellent to
mosquitoes (112). This work is more advanced in malaria mosquitoes than in dengue vectors; in
malaria vectors, fungi such as Bacillus sphaericus and Bacillus thuringiensis var. israelensis are widely
used in vector control and known to cause larval death within 48 hours (43, 74). It has been pro-
posed that the fungi-derived odors that attract mosquitoes to lay eggs in infected sites may provide
benefits to fungi for their propagation (84).
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The presence of immature conspecifics in a breeding site is a stronger attractive signal for
gravid Ae. aegypti than either abundant food or potential competitors (139). It is anticipated that
immature-derived compounds could offer species-specific attraction as pheromones. Examples
include the hydrocarbon n-heneicosane, isolated from the larval cuticle of Ae. aegypti and impli-
cated in laboratory and field assays as stimulating and attracting gravid females (8, 78). Additional
studies are needed to determine whether n-heneicosane is specific to the cuticle of Ae. aegypti or
a generalist chemical in the cuticle of other arthropods, including Ae. albopictus (50), and plants
(82). Chemical analysis of egg and larval extracts identified carboxylic acids and methyl esters
as mediating oviposition responses of Ae. aegypti gravid females (7, 46). Nonetheless, gaps ex-
ist in demonstrations of their presence in the emissions of water-containing immatures through
headspace sampling collections.

The presence and influence of certain aquatic-inhabiting organisms in the mosquito oviposi-
tion process have been demonstrated. For instance, gravidAe. aegypti females are attracted to odors
released by the crustaceanMesocyclops longisetus, which has been used as a biological control agent
for mosquitoes (22). Compounds identified in the odors of this crustacean include the monoter-
penes 3-carene and α-terpinene and the sesquiterpenes α-copaene, α-cedrene, and δ-cadinene
(129). Remarkably, water that had been conditioned with carpet shells (Paphia undulate) and gi-
ant tiger prawns (Penaeus monodon) attracted gravid Ae. albopictus females (128). These organisms
are thought to release odors to attract ovipositing mosquitoes (as in mangrove ecosystems with
vegetation) so that they can eat their larvae. The developmental stage, source, and composition of
these chemicals and their applications in vector control await full elucidation.

MATING: SWARM AND MATING CUES AND THE ROLE
OF HOST ODORS

In both Aedes species, mating usually occurs in male-dominated swarms, near a blood-meal host
where females are attracted to copulate (57). However, the factors and mechanisms that un-
derlie this process are not adequately understood. Acoustic cues produced by females through
their wing beats are the primary signals that attract males to copulate (25, 26, 77). Behavioral
and physiological analyses indicate that Ae. aegypti can respond to sound up to 10 m away
(77). Additionally, chemical cues have also been the subject of intense research. Fawaz et al.
(41) reported evidence of aggregation pheromones impacting swarm formation of Ae. aegypti.
Chemical analysis of odors collected from confined adults of both sexes followed by behavioral
assays identified 2,6,6-trimethylcyclohex-2-ene-1,4-dione, 2,2,6-trimethylcyclohexane-1,4-dione
(found in females only), and 1-(4-ethylphenyl) ethenone as pheromones mediating swarm forma-
tion.However, only 2,6,6-trimethylcyclohex-2-ene-1,4-dione stimulatedmale swarming behavior
(41), indicating the importance of olfactory cues in the reproductive biology of Aedesmosquitoes.
Laboratory and field assays showed that swarming Ae. aegypti males responded to host odors (21,
57), but themediating chemical cues were not identified.Males can be captured in traps baited with
synthetic host-associated volatiles (6, 133). This may be associated with the adaptation of males to
use hosts for finding mates. Aedes aegypti male captures increased with an increase in the number
of mice used as bait (69), although it is unclear whether the response was related to increased
CO2 output (emitted by more mice) or their skin volatiles. In Ae. aegypti, optimal attraction
to human odor depended on the male mating status. Mated males responded more strongly
to human odors than their unmated counterparts (31). These findings suggest that males re-
spond to vertebrate host kairomones (96, 137). Cuticular hydrocarbons have been proposed as sex
pheromones in several mosquito species including Ae. aegypti (58).Wang et al. (135) found distinct
profiles of extracts of different life stages of Ae. aegypti following chemical analysis, although the
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behavioral values of the constituents were not analyzed. Aedes aegypti and Ae. albopictus engage in
mating activities (otherwise known as reproductive interference or satyrization) in the laboratory
and at low rates in the field (131), but the offspring are generally nonviable. The cues involved in
such a heterospecific behavior should be a subject of further research.

PLANT FEEDING AND ASSOCIATED OLFACTORY CUES

Like most mosquito species, adults of both sexes of these Aedes species require a sugar meal as
an energy source for survival and various behavioral activities such as flight and reproduction;
males are exclusive sugar feeders (87, 88, 100).Aedes aegypti could contribute to plant reproductive
success as a pollinator, as has been reported in field studies (68). Sugar sources are mainly plant
derived, including from plant tissues, ripe fruits, tree sap, and honeydew (83, 95). Plant feeding
associations in these vectors have largely been determined through detection of fructose in the
gut via biochemical assays (cold-anthrone test) (88, 121, 136). Advances in DNA-based approaches
have improved our knowledge of specific plant species important in the trophic habits ofAe. aegypti
(88, 136). Such DNA-based approaches and behavioral studies (83) have revealed the preference
for certain plant species, but whether this behavior is related to plant nutritional content (28, 110)
or other benefits (e.g., vectoring ability) remains unclear. Plant selection could be facilitated by
the mosquito’s sense of smell, a possibility that should be further investigated.

The study of the chemical ecology of plant feeding in these vectors is in its infancy. Few studies
have identified olfactory cues of plant origin that mediate attraction to and discrimination among
certain plant species by Ae. aegypti (68, 88). In electrophysiological studies of mosquito–host plant
interactions, Ae. aegypti was found to detect the benzenoids benzyl alcohol and indole released in
its preferred host plant volatiles, in addition to the monoterpenes β-myrcene and (E)-β-ocimene
(88). Furthermore, the monoterpene linalool oxide attracted Ae. aegypti in both laboratory and
field trials (86, 90), and it may attract Ae. albopictus, given that it attracts other vectors like malaria
mosquitoes (60), although this remains to be confirmed in future studies. Since linalool oxide exists
in diastereomeric forms, it is unknown whether there are species- and sex-specific differences in
Aedes responses to these chemicals. Lahondère et al. (68) demonstrated that the discrimination of
Platanthera obtusata from other sympatric Platanthera species byAe. aegypti has a chemical basis that
is strongly mediated by the compounds nonanal and lilac aldehyde. Both floral scent compounds
are robustly detected in the mosquito antennae and attract this mosquito and other mosquito
species in laboratory assays. Field assays are required to confirm the semiochemical roles of these
compounds in Ae. aegypti chemical ecology.

Plants identified as repellent for mosquitoes in chemical ecology studies are scarce. Most
studies report the screening of plant essential oils, obtained by hydrodistillation, whose formu-
lations are compared with the protection times found for the synthetic mosquito repellent DEET
(N, N-diethyl-m-toluamide) (65, 73). Despite DEET not being a semiochemical, its repellency
has been shown to be olfactory based (122). Similar methods can be used to establish the mode of
action of mosquito semiochemicals that are repellent.

GENETIC MECHANISMS INFLUENCING MOSQUITO
OLFACTORY BEHAVIORS

The distinct genetic forms of Ae. aegypti vary in their specialization on humans and their selection
of oviposition sites. In contrast,Ae. albopictus exhibits more relaxed (plastic) habits in these behav-
iors. Studies have revealed the underlying mechanisms that enable these mosquitoes to recognize
and discriminate humans from other animals and other nutrient sources.
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Research found a direct link between olfactory receptors and odor sensing in these and other
mosquito species (18, 47, 71, 101). The olfactory receptors located within hair-like sensilla on the
antennae and, to a lesser extent,maxillary palps and proboscis (101) are of three distinct types: ORs,
ionotropic receptors (IRs), and gustatory receptors. As in other insects, ORs form heterodimers
with a coreceptor to aid binding to single odorantmolecules and/or to blends of odorantmolecules
(18, 47, 71, 101). Aedes aegypti possesses 110 receptors, while Ae. albopictus is predicted to have
158 (18, 27). Mosquito receptors are narrowly or broadly tuned to respond to specific odorants
belonging to different classes (101). How differences in the number of ORs between the species
contribute to behavioral differences is less well defined.

Both ORs and IRs seem to play a critical role in mosquito host discrimination. McBride et al.
(75) demonstrated that the preference for human over animal odors in the Ae. aegypti domes-
tic form has a genetic basis associated with differential expression of the olfactory receptor gene
(AaegOr4) that recognizes the human-specific odorant sulcatone (6-methyl-5-hepten-2-one). A
recent study showed that Ae. aegypti discriminated between humans based on skin-derived car-
boxylic acid levels, which were abundant in attractive individuals and sensed by the ionotropic
receptors Ir8a, Ir25a, and Ir76b (34, 102). Mutant Ae. aegypti with loss of Ir8a generated through
the gene editing technique CRISPR/Cas9 had reduced mosquito attraction to humans and their
odor (34).

Attention is growing on efforts to gain a deeper understanding of neural processing that
controls mosquito behavioral responses by recording and characterizing activity of individual
glomeruli in the antennal lobe in response to odor stimuli. A striking example of this is the study of
the neural basis of specialization on humans over animal hosts by domestic Ae. aegypti. In vivo cal-
cium imaging experiments revealed distinct activation of olfactory glomeruli by human and animal
odors within the Ae. aegypti antennal lobe (146). Further studies revealed that the human-sensitive
glomerulus was selectively tuned to the long-chain aldehydes decanal and undecanal, which were
enriched in human odor. Both odorants were found to enhance long-range host-seeking behavior
in wind tunnel assays. A similar neural basis of mosquito discrimination in oviposition and nectar-
seeking behaviors has been described recently. In Aedes spp. mosquitoes, including Ae. aegypti,
specific odorants such as nonanal and lilac aldehyde mediated plant nectar choice and discrimi-
nation of Platanthera orchid species by differentially activated specific antennal glomeruli (LC2
and AM2) (68). Both odorants, which vary in relative abundance in the volatile emissions, appear
to drive differential attraction among sympatric species of Platanthera orchids, yet they share the
same scent constituents. A similar glomerular (PD3) response to geosmin, an oviposition attrac-
tant, was recently demonstrated in Ae. aegypti (76), indicating the existence of a single olfactory
circuitry in biological processes.

OR systems also mediate plant nectar–feeding signaling in mosquitoes, as has been described
in the malaria vector Anopheles gambiae (23) and is only beginning to be elucidated in Aedes
mosquitoes (144). To date, olfactory receptor neurons responsive to plant volatiles such as α-
pinene and α-thujone have been identified in Ae. aegypti (47, 74), but the associated receptors
are not known, as is the case for many other plant-derived attractants. Given that some odorants
are stereoisomers (e.g., linalool oxide), there is a need to define their sensitivity and specificity to
specific ORs.Gaps exist in our understanding of the mechanisms that underlie olfactory sensing in
oviposition site choice in these mosquito species (76). Recently, a maternally heritable and zygotic
effect was demonstrated in response to dissolved oxygen that has allowed the domestic Ae. ae-
gypti to selectively breed in human-provided artificial containers with higher oxygen content than
in tree holes (80).Whether there is a link between higher oxygen content and microbial commu-
nities in these aquatic environments and, in turn, an influence of oxygen content on the chemical
ecology of this mosquito species is unknown.
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Olfactory learning can contribute to a mosquito’s ability to discriminate among odors, hosts,
and oviposition sites. In Ae. aegypti, Vinauger et al. (132) showed that the relationship between
learning experience and host preference had a neurophysiological basis dependent on dopamine-1
receptor signaling in the antennal lobes.Curiously, while odors like 1-octen-3-ol could be learned,
others, such as β-myrcene and benzyl alcohol, could not be learned. Likewise, learned responses of
dengue virus–infected gravid Ae. aegypti varied between p-cresol and skatole, and loss of olfactory
response to the latter correlated with altered gene expression in the mosquito’s head (45). While
mosquitoes may learn to associate specific odors with rewards or aversive behaviors, the findings
suggest a heterogeneity in encoding different odors into memory, which needs to be resolved.
More experimentsmay clarify which constituents of host or habitat odors, perhaps in combination,
could be involved in learning association, since volatiles emitted by such substrates are composed
of complex mixtures of compounds.

It is clear from these studies that, in the quest for survival, Ae. aegypti uses olfaction to find
human and plant hosts, and it has developed robust neural and molecular mechanisms to locate,
process, and discriminate odor stimuli to explore these resources.The available literature is skewed
toward Ae. aegypti, and we are only beginning to appreciate the similar mechanisms in Ae. albopic-
tus. In addition, the receptors responsive to other odor substrates (plants, oviposition sites) and
associated cues are yet to be elucidated. The genetic architecture of odor sensing is extremely
complex, and specific behavioral responses to odor stimuli may depend on multiple genes inter-
acting with environmental factors, which necessitates studies on the mechanisms for sensing odor
contrast in different ecological landscapes. The divergent behaviors inherent in the species call
for comparative studies to distill and identify specific targets in neural circuits to guide targeted
strategies to disrupt resource-seeking behaviors in these mosquitoes, even as the feasibility and
utility of such an approach remain to be investigated.

MICROBIAL INFLUENCE OF OLFACTORY CUES AND VECTOR
BEHAVIORAL RESPONSES

Increasing evidence indicates that microorganisms (symbionts and pathogens) produce volatiles
that influence mosquito responses to hosts (plant and vertebrates) and oviposition sites. Verte-
brate hosts infected with the malaria parasites have different host odor profiles that are more
attractive to mosquito vectors; this suggests that the pathogen may be manipulating the host odor
to attract its vector (33, 67). Likewise, Zhang et al. (145) demonstrated that infection with the
flaviviruses (dengue and Zika viruses) increased Ae. aegypti attraction to virus-infected mice and
humans. Behavioral and chemical analyses revealed that the attractive response in Ae. aegypti was
associated with enhanced production of acetophenone by skin microbiota of virus-infected hu-
mans and mice. The results of this study represent an unusual example of a multitrophic chemical
signaling relationship (host–vector–pathogen–bacterial microbe) and a coevolutionary adaptation
wherebymosquito-transmitted flaviviruses canmanipulate host skinmicrobiota to produce a scent
that attracts mosquitoes. This could be applicable to other pathosystems, including plants.

Another example of microbial influence in volatile emission is geosmin, an oviposition attrac-
tant associated with microbes present in the larval aquatic habitat (76). Plant nectar feeding is
an obligate behavior of both Aedes species (88, 136), although interaction with nectar microbes
is poorly understood. Bacteria and fungi are well-known inhabitants of the floral nectar of many
angiosperm species worldwide that mosquitoes host seek for sugars (52, 81, 94). These microbes
can alter a suite of traits in floral nectar important for the plant’s signaling to insects, includ-
ing its volatile emission profile (103). Of these microbes, bacteria have attracted more attention
than fungi and viruses because of the volatile organic compounds that they produce (52, 81, 94),
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which mediate specific behaviors of Aedes mosquitos, in particular oviposition (see the section ti-
tled Oviposition Site Selection). The roles of fungi and viruses in vector behavior are yet to be
fully explored.Microbes such as yeast can secrete byproducts of fermentation, including CO2, that
function as signals for mosquitoes to identify food sources. Cumulatively, such microbe-induced
volatiles can be used in vector monitoring. They can also serve as biomarkers for disease diagnosis
or predictors of disease infection status in humans.

DENGUE SURVEILLANCE AND CONTROL USING INFOCHEMICALS

Preventive control of dengue relies on controlling the vector populations; to date, no effective
tools exist to sustainably prevent human infections.New solutions are urgently required to address
the threat posed by dengue, which has increased over the past two decades. Interest in vector
biology has continued to grow, and semiochemicals that mediate vector interaction with fitness-
enhancing resources are among the promising tools that could be deployed in vector surveillance
and control.

Vector surveillance is considered a cornerstone of arboviral disease risk assessment (62). It as-
sesses the existing epidemiological situation to predict the likelihood of outbreaks in humans and
preemptively deploy appropriate interventions (111). In mosquito-based arbovirus surveillance,
trapping techniques are used to monitor adult mosquito populations. Next, captured mosquitoes
are tested for virus infection via virus-isolation, immunoglobulin, or polymerase chain reaction
assays. To improve dengue monitoring, given that high populations of vectors usually precede
human disease cases, chemical attractants can be deployed in existing traps to increase Aedes
catches (39). High rates of mosquito catch could maximize virus detection probability, which
is critical during the interepidemic period, normally characterized by low vector numbers and
sporadic transmission foci (53, 125). This is also helpful in areas of potential disease emergence,
where there may be lower vector densities (harder to detect) but high susceptibility (due to naive
immune population).

Research on olfactory cues has been central to ongoing efforts to develop more effective
surveillance tools. However, only a few of these olfactory semiochemicals have been field tested
to understand their ecological relevance. To date, the synthetic host-derived attractants that have
been evaluated are only effective when they are synergized with CO2 (126).The cost and logistical
constraintsmake the use of CO2 impractical in routine surveillance in remote and resource-limited
settings. In theory, the use of plant-derived volatiles as lures could target adult mosquitoes of both
sexes and females of different physiological states (unfed, gravid, blood fed) (85, 89).However, this
hypothesis remains to be tested and validated in field trials. Additionally, it remains to be deter-
mined whether plant-derived attractants may be more sensitive in attracting arbovirus-infected
vectors than other attractants. Research on CO2 alternatives is a priority in advancing odor-bait
technologies that utilize host-derived attractants in disease surveillance or control.

It has been proposed that the sensitivity of virological surveillance in mosquitoes can be im-
proved by targeting gravid mosquito cohorts. Because of their previous blood-host encounters,
targeting gravid females increases the likelihood of virus detection in them. Knowledge of olfac-
tory cues involved in oviposition site choice could similarly be exploited to increase gravid female
collections in existing traps (e.g., ovitraps and Aedes gravid traps). Surprisingly, the chemical signa-
ture of an idealAe. aegypti orAe. albopictus oviposition site is unknown, and no promising attractants
exist that have been rigorously validated in field trials (Table 1).

Attractants can be used to mass trap Aedes, a pull system that could be combined with sublethal
doses of insecticide, biopesticide, or sticky adhesive in an attract and kill strategy (12). For example,
CO2-based barrier trap systems (i.e., removal outdoor trapping) have been shown to reduce the
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human-biting rate ofAe. albopictus (4). Another example is the use of lethal traps that suppress adult
populations of container-breeding mosquitoes like Ae. aegypti and Ae. albopictus (Table 2). The
highlighted shortcomings of some of these strategies have increased the urgency of developing
and applying novel technologies that may optimize surveillance and control.

CONCLUSIONS AND PROSPECTS FOR FUTURE RESEARCH

Dengue and otherAedes-borne arboviral diseases are expanding rapidly across the globe, facilitated
by amyriad of factors, among them climate change and human activities.These factors are likely to
affect the chemical ecology of host seeking, oviposition, mating, and plant feeding of the key vec-
tors of these diseases, which they depend on for survival. In this review, we show that, irrespective
of the physiological stage, olfaction plays a major role in the behavioral ecology of the two driving
vectors of dengue, Ae. aegypti and Ae. albopictus. These vectors have developed robust neural and
molecular mechanisms to locate, process, and discriminate odor stimuli to explore these diverse
resources. However, research remains to be conducted to unravel the full repertoire of olfactory
cues used by these two vectors to survive in the human environment.Nonetheless, current knowl-
edge on olfaction provides opportunities for developing tools and techniques for surveillance and
control of these Aedes populations as part of disease management. Some of these (e.g., lethal traps,
attractive toxic sugar baits, smart traps) have shown promise but require further large-scale evalu-
ations in diverse settings. Control applications targeting genes that regulate the olfaction process
in mosquitoes, as well as other developing or hypothetical applications highlighted in this review,
need further research.

Increasingly, research is highlighting the importance ofmicroorganisms inmediating the olfac-
tory cues that influence mosquito interaction with different substrates and the ensuing behaviors.
Human activities are impacting the planet’s climate and ecosystems (i.e., the Anthropocene),
in turn altering the distribution of mosquito vectors and interactions with microorganisms
(pathogens and symbionts) and hosts (plants and vertebrates). The consequences could include
changes in mosquito olfactory signaling. For instance, increasing levels of Anthropocenic ozone
has been found to alter the configuration of male-specific pheromones in the fruit fly Drosophila
melanogaster (61), an indication that climate change has a clear impact on mate recognition and
pheromonal communication.

Thus, many unanswered questions remain in this Anthropocene Era. For example, how do
xenobiotics such as organic and inorganic pollutants influence the olfactory profiles of oviposition
sites? How does a climate change scenario, such as a rise in temperature, affect all of the behavioral
attributes of the vector and the fitness of its progeny?Would an increase in the rate of dissolution
of gases and certain environmental pollutants, and changes in microbial species composition, alter
the semiochemical profiles mediating vector behavior? Finally, new and more robust polymer
container materials are increasingly being introduced into the consumer market. The interactive
effects between these new container materials and specific chemicals in water, such as adsorbed
metal ions, may modulate interfacial affinity for certain microbial chemicals and environmental
pollutants released into the aquatic environment. For example, plastic containers may degrade into
particles, including secondary microplastics and nanoplastics, which may combine with certain
container additives or microbial-derived chemicals to form complexes.When these complexes are
released into the aquatic environment, mosquito larvae that are exposed to them may emerge as
adults that are less or more susceptible to biorationals; these possibilities require further research.

Excitingly, the information gained from understanding chemical sensing systems inmosquitoes
such as Ae. aegypti (75, 80, 142, 146) is helping us to understand the evolution of different popula-
tions or subspecies (e.g., Aaa versus Aaf ) and how this evolution may shape adaptation in different
environments and natural history traits including habitat and seasonal preferences.
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Table 2 Emerging and proposed tools for Aedes surveillance and control

Technology Description Role of olfactory cues
Settings for appropriate use

and/or limitations

Lethal trap (LT) LTs represent an attract and kill
strategy (population
suppression) that exploits the
ovipositing behavior of
container-breeding
mosquitoes.

The technique uses fermented
infusions that emit volatiles that
attract gravid female mosquitoes.
Killing is achieved by the use of an
adhesive strip or toxicant.

The technique has shown promise in
suppressing Aedes population
densities and disease incidence (12)
but needs more large-scale trials in
diverse disease settings.

Infusions are cumbersome and
produce an offensive smell that
could hinder deployment in human
dwellings.

Identifying the oviposition attractants
offers avenues to develop
user-friendly synthetic lures for
possible commercialization.

Benefits of the LT system include
being passive and low cost and
having the potential for
implementation by communities to
control Aedes populations.

Attractive toxic
sugar baits
(ATSBs)

ATSBs represent an attract and
kill method that targets both
sexes of mosquitoes seeking a
nectar source.

ATSBs employ fruit scents or visual
cues as attractants (10, 117),
sucrose solution to stimulate
feeding, and an oral toxin or
insecticide of low vertebrate
toxicity (e.g., boric acid, eugenol,
spinosad, dinotefuran, ivermectin)
to kill mosquitoes.

ATSBs have been largely evaluated on
Aedes aegypti and Aedes albopictus in
lab, semifield, or small-scale trials
(10, 104, 113, 117, 118, 127).

Sugars alone are odorless, and cut
flowers lose their potency to attract
insects over time.

Potent synthetic attractants (e.g.,
L-lactic, 1-octen-3-ol) are essential
to augment bait effectiveness (113).

Smart traps Smart traps integrate
technological advances (e.g.,
geographic information
systems) into a trap to estimate
mosquito densities and can sort
and identify mosquitoes to
species level and sex. They can
reveal spatiotemporal trends
and areas of high Aedes
infestations for timely decision
making. Subsequent screening
of viruses in trapped
mosquitoes could employ
(a) high-throughput
technologies such as portable
DNA sequencers (e.g.,
Nanopore MinION) as
effective rapid diagnostic tools,
with the added advantages of
discriminating variants and
gaining insights into the
epidemiologic relevance of
virus genetic variations (44), or
(b) sugar-baited nucleic acid
preservation cards (FTA cards)
whereby, as infected vectors
attempt to feed on the sugary
solution in a trap, they
expectorate viruses whose
nucleic acids are trapped on the
cards and then processed for
testing (55).

To prevent fishing without bait,
mosquitoes can be lured with
potent attractants into traps to
access FTA cards. Other traps that
target oviposition behavior can be
used (e.g., ovitraps, gravid traps).

Smart traps are suitable for
worldwide-scale implementation
with minimal infrastructure or
expertise required, although they
can be limited in certain settings
without constant internet access.

The sensitivity of trapping devices
could be a key issue.

The cost related to manpower for
trap inspection and running
molecular assays for virus detection
could hamper large-scale
deployment, especially in
developing countries.

(Continued)
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Table 2 (Continued)

Technology Description Role of olfactory cues
Settings for appropriate use

and/or limitations

Sterile insect
technique (SIT)

The SIT is a potential tool for
area-wide pest management of
mosquitoes based on the
release of sterilized males (69).
The monitoring of the
abundance, distribution,
movement, and ratio of
released sterile and wild fertile
males is a fundamental
requirement for its successful
implementation.

It is conceivable that olfactory cues
that primarily mediate the exclusive
plant-feeding habit in males could
be exploited as attractants in this
endeavor to monitor the
establishment of released males,
although no commercial lure exists.
Potential chemical attractants
could be combined with acoustic
visual signals in sound traps to
make this a reality (9).

The SIT is a species-specific and
environment-friendly method for
area-wide vector control.

Strategies exist to enhance survival
and mating competitiveness of
released males in the wild.

Investments have been made into
tools for improved surveillance of
male populations.

Microbiota-
associated
cues

Most host volatiles (human) are
microbiota derived, and
differences in microbiota
composition correlate with
human attractiveness to
mosquitoes.

Skin microbiota (or diagnostic cue)
could be re-engineered to alter the
human scent composition, thereby
minimizing exposure to mosquito
bites and preventing the spread of
mosquito-borne diseases.

Sensitive monitoring techniques, such
as use of unmanned aerial vehicles
fitted with spectral sensors, could
be developed to detect microbial
profiles and olfactory fingerprints
from potential breeding sites for
interventions with environmentally
friendly biocides against larvae.

Research investment is needed into
defining the microbial signature
cues of suitable breeding sites.

Molecular screens
targeting
olfactory
receptors

High-throughput screening
assays akin to pharmacologic
drug discovery have been
described to identify odors that
modulate mosquito olfactory
receptor function to specific
behaviors (147). Advances in
molecular olfaction and
neurophysiology are expected
to contribute to knowledge of
specific codes underlying
behavior in disease vectors and
to aid in the identification of
important attractive and
aversive odorants.

Recent developments in genome
editing tools, such as
CRISPR-Cas9 RNA-guided
nucleases, zinc finger nucleases,
TALE-effector nucleases, and the
GAL4-UAS system (101), provide
opportunities to achieve these
interventions. High-throughput
screening assays can be used to
identify synthetic and natural
compounds that activate receptors
associated with repellency or
inhibit receptors associated with
attraction. In addition, efforts are
needed to develop a new
generation of repellents that
(a) block multiple chemosensory
pathways to make humans invisible
to mosquitoes or (b) overstimulate
a specific chemosensory pathway
for mosquitoes to avoid humans
(101).

Knowledge of the specific receptors
that enable mosquito attraction
and repellency is required.
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