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Abstract

Global change includes a substantial increase in the frequency and intensity
of extreme high temperatures (EHTs), which influence insects at almost all
levels. The number of studies showing the ecological importance of EHTs
has risen in recent years, but the knowledge is rather dispersed in the con-
temporary literature. In this article, we review the biological and ecological
effects of EHTs actually experienced in the field, i.e., when coupled to fluc-
tuating thermal regimes. First, we characterize EHTs in the field. Then, we
summarize the impacts of EHTs on insects at various levels and the pro-
cesses allowing insects to buffer EHTs. Finally, we argue that the mecha-
nisms leading to positive or negative impacts of EHTs on insects can only be
resolved from integrative approaches considering natural thermal regimes.
Thermal extremes, perhaps more than the gradual increase in mean temper-
ature, drive insect responses to climate change, with crucial impacts on pest
management and biodiversity conservation.
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1. INTRODUCTION

Temperature varies across temporal and spatial scales in terrestrial and aquatic ecosystems (66,
121). Most insect species experience thermal fluctuations that can involve sublethal or lethal ex-
treme high temperatures (EHTs), which affect physiological processes (40) and ecological systems
(35). Frequent EHTs may even lead to adaptive evolution in insects (66). For decades, however,
most studies concerning thermal effects on insects concentrated on the response to mean temper-
ature or to fluctuations within the tolerable range while ignoring variations in the characteristics
of EHTs (91, 108). Recently, researchers have realized the biological and ecological importance of
fluctuating temperature regimes, but little attention has been paid to the impacts of ecologically
relevant EHTs (17).

Global climate change includes a substantial increase in the occurrence of EHTs (1, 61), and
this increase will continue in the near future (99). By contrast, the occurrence of cold extremes
(cold spells, cold nights) is largely decreasing (1, 35).Thus, in a warming world, insects will be chal-
lenged mostly by elevated body temperatures (66). Neglecting daily temperature extremes gener-
ates inaccurate predictions when modeling the impacts of climate warming on populations (91).
The key role of EHTs in the response of insects to warming is now attracting more attention, and
there is an urgent need to synthesize the disparate works. In this review, we provide an overview of
how natural EHTs impact insect performance at individual, population, and community levels by
demonstrating that EHTs are filtered by microhabitats and buffered by insects through behavioral
thermoregulation, phenotypic plasticity (e.g., acclimation), ontogenetic variation, adaptive evolu-
tion, and the resilience of their network (Figure 1). Our synthesis complements previous works
that focused on the effects of low temperatures (130), or on an increase in mean temperature (124)
and fluctuation regimes (27), to finally provide a comprehensive understanding of the impact of
climate change on insects. This review, together with recent work on other animal taxa (98, 131,
134), provides an integrated overview of the impacts of EHTs on the biosphere in the context of
ongoing climate change.

2. HOW DO WE CHARACTERIZE THERMAL EXTREMES?

2.1. Definition and Description of Extreme High Temperatures

Until recently, no unified definition of EHTs existed in an environmental perspective. Meteo-
rologists define EHTs as the temperatures above a given percentile (e.g., the 90th, 95th, or 99th
percentile) of temperature distributions (1, 61), and similar indices are used by ecologists (17).The
definition of EHTs can also be based on their societal impacts. The historical heat wave that hit
Europe in 2003 is often used as a reference (9). Finally, another definition, from biology, is environ-
mental temperature exceeding upper physiological thresholds of focal organisms (99). Overall, a
hybrid definition for EHTs corresponds to an episode where temperature or temperature-driven
conditions trigger a threshold-like biological response. While the impact of EHTs is often ex-
pected to be negative (6), we argue that this definition of EHTs should include the possibility for
positive effects to better integrate EHTs into the whole complexity of living systems, in which
species-, stage- and trait-dependent thermal responses in various seasons and geographic sites are
characterized (91, 94, 151, 152, 155).

The variables used to characterize EHTs vary widely among studies, resulting in difficulties in
directly comparing their results. Most studies on EHTs are opportunistic and usually lack repli-
cation (132). Controlled field experiments often simulate a single level of a given climate extreme
imposed at a small spatial scale (132). The lack of a clear description of characteristics of EHTs
limits our understanding of how such irregular EHTs affect biological systems (47, 89, 94, 127).
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Figure 1

Diagram illustrating how natural thermal extremes are filtered (intensity is often lowered) by microhabitats and buffered by insects
through behavioral thermoregulation, phenotypic plasticity, ontogenetic variations, and adaptive evolution to ultimately increase
survival in response to heat. Even after filtering and buffering, thermal extremes still impact insect performance at the individual,
population, and community levels within and across generations.

Thus, resolving the main components of EHTs becomes more meaningful than providing a
general definition for ecological research (Figure 2). Based on field temperature data including
EHTs (89), several important characteristics can be identified: daily maximum and minimum tem-
peratures, which define the daily amplitude during the EHT events; the frequency of EHT events
over long temporal scales (typically the number of hot days during a given period); and the time
elapsed between each subsequent EHT event, defining the temporal variance of extreme events.
By manipulating values of each variable and their combinations, experimental designs in the lab-
oratory, in mesocosms, or in the field can quantify the impacts of EHTs with varying intensity,
frequency, duration, and temporal variance on fitness-related life history traits and demography
(Figure 2).

In the field, insects experience temperature cycles with a single or several successive hot days
alternating with a few mild days (89, 156). Diurnal cycles also alternate several hot hours around
midday with mild hours (91, 155). Thus, the effects of EHTs depend largely on characteristics that
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Figure 2

Characterizing extreme high temperatures (EHTs) in the field. (a) A temporal series of microclimatic temperature for a theoretical
insect illustrates the different metrics used to describe the occurrence of EHTs (red) and mild periods (blue): their intensity [maximal
and minimal temperatures of hot days (HTmax and HTmin) and mild days (MTmax and MTmin)], frequency (the number of consecutive
hot days and the frequency at which hot periods occur), temporal variance (the timing of occurrence of hot and mild phases), and the
biological threshold (temperature inducing thermal stress in a given organism, or CTmax). The dichotomy between hot and mild events
hides a large range of possibilities when designing experiments to simulate natural thermal extremes. (b–c) In particular, the maximum
and minimum temperatures of mild and hot days vary within their own range. (d) These complex thermal extremes with a daily subunit
are embedded in naturally fluctuating temperature regimes that can be described by their temporal variance of EHT occurrence and
their frequency (e.g., the number of consecutive hot or mild days). In this case, the temporal arrangement of hot and mild days varies
across two axes defined by the number of hot days during a period of 10 days (frequency) and the variance in the number of mild days
between each hot day (temporal variance). Note that the global mean and variance of temperature remain the same across all
configurations at a given frequency of hot days.

are complex to describe and to simulate in the lab or mesocosms due to the stochastic nature of
EHTs.

Intensity, duration, and frequency are often used to link ecological performance and EHTs (47,
94, 127), despite the high uncertainty in these metrics. Simple statistical characteristics describ-
ing EHTs were designed to explore the impact of different temperatures during daytime (91) and
nighttime (155), different frequencies of hot days (88, 153), and different amplitudes of fluctuation
(148). During hot events, insects can be injured by EHTs approaching their physiological thresh-
olds, but the mild temperatures between hot events allow insects to repair (5, 89). The temporal
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sequence of hot and mild phases is therefore an important characteristic of EHTs (89, 156). The
impact of EHTs should be a subtle balance between heat injury and recovery (5, 89, 156).

2.2. Thermal Extreme Versus Mean Temperature

Thermal performance curves (TPCs) are often used to describe the response of biological perfor-
mance to temperature based on constant temperature treatments (129). TPCs are asymmetrical
and nonlinear, thereby generating Jensen’s inequality (125),which is used to describe the biological
effects of environmental variability (31). TPCs, combined with Jensen’s inequality, are frequently
used to compute insect performance under fluctuating or changing temperatures, contributing to
predictions of climate change impacts (15, 74, 108, 129, 142). Based on Jensen’s inequality, the
effects of temperature variation would be positive, small, and dramatically negative at low, in-
termediate, and high temperatures, respectively (31, 78). The left-skewed TPCs show that the
thermal optimum (Topt) is close to the critical thermal maximum (CTmax), meaning that even a
small variation in mean temperature above Topt can push insects over CTmax, leading to dramatic
declines in performance and fitness (108).

By causing increases in thermal variance and in the strength of the Jensen’s inequality, EHTs
negatively impact insect fitness even if mean temperature remains near the optimal range (89, 91,
108). Indeed, the impact of increasing variance on key traits related to fitness can be larger than the
impact of an increase in mean temperature (91, 108, 148). Greater variance caused by EHTs can
lead to decreased maximum performance, truncated thermal performance breadth, and narrow
thermal safety margins (108, 142). However, ambient temperature fluctuates, usually with reason-
able amplitude up to sublethal daily maxima. Near-optimal temperatures may occur during some
parts of the day (e.g., morning, night), thus providing an opportunity for insects to recover from
heat injuries occurring around midday (89, 156). Better performance is therefore expected under
variable regimes than under constant high temperatures. For example, temperature variation can
improve rather than depress the development of aphids when mean temperature is higher than
the Topt for development, thereby challenging the Kaufmann effect (155). Importantly, the use of
TPCs derived from constant temperatures to predict insect fitness in field conditions requires the
unrealistic assumption that performance is independent of thermal history, rates of temperature
change, and exposure times (129). More work on the thermal responses to EHT characteristics
will certainly help to design novel approaches to draw TPCs that could incorporate the influence
of EHTs on insect performance and fitness.

2.3. The Seasonal and Diurnal Patterns of Extreme High Temperatures

The amplitude of warming, including more frequent and intense extremes, is higher in spring,
autumn, and winter than in summer (1, 61). However, the biological impacts of EHTs in these
seasons are relatively overlooked.EHTs in spring affect the phenological synchronization between
plants and herbivore insects (79, 119) and parasitoids (38). EHTs in autumn may affect diapause
induction, subsequent overwintering survival, and spring population growth (140).EHTs in winter
may influence survival during diapause and postdiapause development (11, 135). Individuals of
univoltine species can experience EHTs across different seasons (123).

However, we have little information on seasonal stage-specific responses and their conse-
quences at the population level.Moreover, the amplitude of nighttime warming is higher than that
of daytime warming (1, 61). Nighttime warming leads to contrasting effects on thermal perfor-
mance and fitness, contradicting the predictions based on constant temperatures (155) or daytime
warming (8, 91). To date, however, few studies have explored the specific effects of diurnal versus
nocturnal patterns of EHTs on insects (5, 8, 91, 155).
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3. HOW DO INSECTS RESPOND TO THERMAL EXTREMES?

3.1. Physiological, Biochemical, and Symbiont Responses

EHTs can lead to heat injury, as well as to a series of changes at the molecular, biochemical, and
physiological levels. Moreover, the endosymbionts of insects can also respond to EHTs.

3.1.1. Mechanisms underlying heat damage. Heat damage in insects involves a series of dis-
orders at themolecular, biochemical, and physiological levels (13, 25). Extreme heat causes protein
denaturation (72).Heat-induced changes in the fluidity of phospholipidic membranes and cellular
homeostasis initiate heat damage (13). The oxygen and capacity limitation of the thermal toler-
ance (OCLTT) hypothesis proposes that performance is constrained by the capacity for oxygen
delivery relative to oxygen demand. The delivery of oxygen is the limiting factor during EHTs
(36, 118). This hypothesis was confirmed in several aquatic species (143). However, it is not gen-
erally applicable to terrestrial insects since they are unlikely to become oxygen limited (13, 81)
unless they live in closed microenvironments such as plant galls (112). Finally, EHTs can disrupt
the cellular ion balance (hyperkalemia), thereby impairing neurophysiological functions (106) and
damaging mitochondria (13). EHTs can also generate damage indirectly by driving an increase in
water loss and causing death by desiccation (26).

3.1.2. Physiological and molecular responses. Insects can produce and accumulate particular
molecules to prevent protein denaturation or cell inactivation during EHTs. Polyols, e.g., manni-
tol in Aphis gossypii and sorbitol in Bemisia argentifolii, are accumulated to cope with daytime EHTs
(55).Mannitol and sorbitol quantities were higher at noon than during early morning.Heat-shock
proteins (Hsps) (40, 87) and cuticle proteins (105) are induced and/or accumulated to deal with
EHTs. Apple maggots express Hsp increasingly from midday to a peak in late afternoon, paral-
leling the dynamics of air and fruit temperature in summer (87). Locusts are more heat tolerant
at low than at high latitudes as a result of their expression pattern of Hsp70 and Hsp90 (22). The
potato aphid increases concentration of several exoskeletal proteins during heat stress (105).

3.1.3. Symbiont-mediated responses. Bacterial endosymbionts provide essential nutrients to
their insect host.EHTs depress the diversity, abundance, and activity of endosymbionts, decreasing
heat tolerance and fitness of the host insect (39, 71). For example, EHTs decrease the quantity of
symbiotic bacteria, lowering heat tolerance in ants (39) and aphid species (150) and altering fitness-
related traits in stinkbugs (71). Nevertheless, endosymbiosis may assist insect hosts to adapt to
natural EHTs. In aphids, clones with heat-tolerant symbionts develop faster than clones without
under EHTs (53). Mutants of the symbiont Buchnera aphidicola with lower expression of the heat-
shock gene ibpA decrease heat tolerance of pea aphids (150). In addition, facultative symbionts, e.g.,
Serratia symbiotica and Acetobacter, can protect B. aphidicola from short-term heat shock, improving
aphid fecundity and offspring survival under EHTs (103).

3.1.4. Morphological responses. EHTs can induce changes in the body size of insects. High
developmental temperature generally produces small individuals due to enhancedmetabolism and
fast development (4, 20, 139). This temperature–size rule arises due to phenotypic plasticity or
selection for smaller body sizes (4, 42), although smaller individuals are more vulnerable to dehy-
dration and overheating (45). However, small body size may facilitate heat damage in the insect
gut or gut symbionts, thus depriving the insect of nutrients and water (71).Nevertheless, we know
little about growth trajectories under repeated EHTs and the underlying physiological mecha-
nisms. For example, frequent heat exposure sometimes produces large individuals (128, 148). The
selective advantage of smaller size might become disadvantageous under repeated EHTs (45).
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3.2. Fitness-Related Life History Traits and Demography

EHTs alter fitness-related life history traits such as survival, development, and reproduction.Gen-
erally, the effect size depends on the thermal conditions previously experienced, focal traits, stage-
specific thermal responses, and immediate or subsequent consequences. Collectively, these effects
translate into demographic changes.

3.2.1. Stage-specific responses. All stages of insects may experience EHTs. Meanwhile, dif-
ferent stages or instars often have different thermal sensitivities (14, 76, 154). Therefore, EHTs
may produce stage-specific thermal responses. Generally, thermal responses relating to develop-
ment, survival, reproduction, and longevity vary with life stage (152), and adults are often more
vulnerable to EHTs. For example, EHTs reduced reproduction to a greater extent when they oc-
curred closer to adulthood (149, 151). The early and reproductive stages of Sitobion avenae (154)
and Plutella xylostella (151) are more sensitive to EHTs than themature larval stage.Thus, the stage
at which the insects are exposed to EHTs is an important component in determining the impact
of EHTs. Three hypothesized mechanisms may be involved in ontogenetic variations of thermal
tolerance. (a) First, the microclimate selection hypothesis states that different stages live in (and
thus adapt to) different thermal environments (76, 111, 146). (b) Second, the body size hypothesis
(77) explains why larger larvae are more heat tolerant than the smaller early life stages (88, 152,
154), which are subject to faster increases in body temperature (3) and water loss (46). However,
the body size hypothesis fails to explain the decreased tolerance at the adult stage. (c) The Bogert
effect hypothesis suggests that the immobile stages (egg and pupa) should be more heat tolerant
than mobile adult and larval stages due to their lower ability to behaviorally thermoregulate (59).
The Bogert effect hypothesis, however, has been frequently rejected (77).

3.2.2. Trait-dependent responses. Different life history traits differ in their thermal sensitivity
(69). Among the main life history traits, reproduction has the narrowest thermal range, followed
by development, while survival has the widest. Reproductive potential is expected to be the fitness-
related life history trait that is most vulnerable to EHTs (144, 151). For example, a single hot event
of a few hours does not affect survival but does decrease reproduction in themoths Plutella xylostella
(153) and Grapholita molesta (82). The optimal temperature for reproduction is lower than that
for development (91, 155), while the optimal temperatures for immature survival often compose
a relatively wide range. When temperature increases continuously and surpasses the optimum,
development is restricted, and mortality soon occurs (47, 64, 91), indicating that there are slightly
higher temperature thresholds for survival than for development. Thus, the critical upper thermal
limits for reproduction are lower than those for development, which are lower than those for
survival (91, 155).

3.2.3. Immediate, cross-stage, and transgenerational responses. The impacts of EHTs oc-
cur at various temporal scales across insect life cycles, leading to immediate impacts at the exposed
stage (24, 88, 120, 148), permanent damage at later stages through carry-over effects (24, 77, 149,
152, 154), and transgenerational responses via parental effects (153). The immediate impacts in-
volve all of the molecular, physiological, and morphological mechanisms developed above and are
reflected in heat death or delayed development during the events. EHTs in early life stages can
influence performance of later stages (151) or of the next generation (82, 153) depending on the
intensity of the EHTs, although this is still a matter of debate.The life cycle modularity hypothesis
and adaptive decoupling hypothesis (120) state that early life stress has no effects on adult per-
formance, probably because the stressful temperatures are not extreme enough. However, there
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is evidence that extreme temperatures occurring in egg, larval, or pupal stages can decrease sur-
vival (152) and fecundity (24, 77, 149, 154) of adults through carry-over effects or even result in
decreased offspring survival via transgenerational effects (153). Nevertheless, we still know little
about the mechanisms underlying carry-over and transgenerational effects of extremes.

3.3. Population Dynamics

Increased occurrence of EHTs is concomitant to increases in seasonal and annual average temper-
ature, as well as to longer growing seasons, for insect activity, thereby causing changes in insect
phenology and the temperature-dependent population dynamics.

3.3.1. Phenology and voltinism. Frequent EHTs increase overall mean temperature, advanc-
ing spring, postponing autumn, and causing shorter winters and longer growing seasons (102).
For nondiapausing insects, frequent EHTs may advance phenology in spring and postpone phe-
nology in autumn, thereby increasing the number of annual generations (2, 102). However, for
insects with obligate diapause, the combination of longer summers and shorter or warmer win-
ters delays adult emergence due to insufficient winter chilling for diapause termination and to the
reduced ability to regulate the onset and termination of diapause (20). For insects with facultative
diapause, winter warming leads to earlier diapause termination (135). Nevertheless, EHTs do not
always significantly increase overall mean temperature, and their effects on phenology and voltin-
ism remain largely unknown for most insects. A few consecutive hot days occurring in autumn or
spring would potentially disturb diapause induction or postdiapause development, thereby alter-
ing the phenology of insects.

3.3.2. Abundance. Repeated EHTs generally depress insect fecundity, survival and abundance
(20, 89, 91, 104, 127, 155). For example, an increase in daily maximum temperature dramatically
reduces arthropod biomass in a rainforest (84). However, the effects of EHTs on insect abundance
are complex due to variations in the characteristics of EHTs, local baseline climates and habitat
uses, species-specific thermal sensitivity of insects, and the biotic interactions with other species.
For instance, frequent EHTs depress abundance of the heat-sensitive species Sitobion avenae and
Schizaphis graminum, whereas they have null or even positive impacts on the heat-tolerant species
Rhopalosiphum padi (94). Frequent EHTs reduce the abundance of S. avenae at the southern margin
but not in the north (94). EHTs may also favor soil insects by enhancing their reproduction and
abundance (83).Extremely warmwinters occurring at high latitudes can increase insect abundance
(49). However, EHTs in the Arctic winter also accelerate snowmelt, indirectly decreasing insect
abundance (11).

3.4. Biotic Interactions and Community Structure

The species-specific responses of insects to EHTs may alter interspecific competition at the same
trophic level, as well as trophic cascades across multitrophic levels, leading to changes in commu-
nity composition, structure, and ecosystem functioning.

3.4.1. Changes in community composition and structure. Differences in the thermal
tolerance of insects at the same trophic level can alter the relative dominance and interspecific
competition among species (11, 21, 47, 94), leading to EHT-driven changes in the composition
of communities (138). For example, more frequent EHTs alter the structure of cereal aphid com-
munities across large temporal and geographical scales (94). In this case, EHTs alter the dominant
pest species in winter wheat crops (94). EHTs during summer affect interspecific competition in
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Mediterranean ant communities by changing the circadian rhythm of foraging in subdominant
ants but not that of dominant species (21). An aphid-borne plant virus increases the thermal
limit of a cereal aphid but not other aphids, facilitating coexistence by weakening competition
among these aphids during extreme heat (117). Insects are usually at the intermediate or lower
trophic levels in communities and ecosystems.The EHT-induced changes in the composition and
structure of insect communities could potentially influence top-down and bottom-up processes
in plant–insect herbivore–predator systems.

3.4.2. Cascading effects across multitrophic systems. Increasing the frequency and intensity
of EHTs enhances the vulnerability of species at higher trophic levels in simple trophic cascades
(23, 104).Thus,EHTs are likely to reduce predator diversity and disrupt ecosystem services such as
natural biological control (7).Nevertheless, biodiversemultitrophic assemblages aremore resilient
to EHTs (47, 62, 127). For simplified food chains including only two trophic levels, such as plant–
insect herbivore (47), prey–predator (104, 127), or parasitoid–hyperparasitoid systems (23), the
species at higher trophic levels aremore susceptible to EHTs.However, the overall effects of EHTs
on tritrophic systems such as plant–insect herbivore–predator/parasitoid are much less dramatic
and often similar to patterns under normal climates (47, 127). Studies on the relationships between
EHTs and the responses of each trophic level are helpful to clarify the resilience of ecological
communities to changes in climate extremes.

3.5. Geographical Distributions

Heat tolerance is weakly linked to latitude in insects, but tolerant species often live in warm mi-
crohabitats, while heat-vulnerable species remain mostly in cooler microhabitats (43, 113). The
thermal safety margin, defined as the difference between the CTmax of insects and the ambient
maximum temperature of the hottest month (67, 142), is frequently used to predict insect dis-
tribution following EHTs. Thermal extremes exceeding CTmax restrict the thermal performance
range and influence the distribution across latitudes and altitudes and in heterogeneous landscapes
(74, 107, 142), thereby shaping the distribution of insects worldwide (67, 96).EHTs can shift distri-
butions through local extinction induced by mass mortality due to fitness decline, to mismatch in
the phenology of insects and host plants (20, 100), or to interaction with landscape fragmentation
(109). However, EHTs in winter or at nighttime may release the constraint of low temperatures,
leading to positive effects such as increased winter survival and dispersal abilities in insects (9, 10),
resulting in range expansion. Prolonged heat waves lead to an increase in the number of nights
above the flight threshold temperature, promoting take-off behavior in Thaumetopoea pityocampa
and causing a rapid distribution shift to higher altitudes in the Alps (9). Some species with higher
adaptive potential for heat tolerance can expand their range to lower latitudes (57).

4. HOW DO INSECTS BUFFER AGAINST THERMAL EXTREMES?

4.1. Microhabitats as Filters of Thermal Extremes

Insects can exploit the thermal diversity of their microhabitats as a buffering strategy to avoid
overheating when they encounter EHTs. However, the extent to which insects can buffer the
impacts of EHTs largely depends on the physical structure of their microhabitats, the severity of
heat stress, and their complex interactions.

4.1.1. Mosaic of microclimates. Forecasting the biological impacts of EHTs requires a
general understanding of how microhabitats filter environmental fluctuations and whether the
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heterogeneity will allow insects to escape heat extremes (66, 116, 137). Living and nonliving
objects in the environment produce a complex mosaic of microclimates that depends on the
nature of the objects and how the microhabitat transfers atmospheric variations (147). Little is
known, however, about the dynamics of these microclimatic mosaics during thermal extremes
(114). In the apple tentiform leaf miner, the location within the tree canopy mosaic of optimal,
suboptimal, and lethal microenvironments can be totally reversed during EHTs (115). The
temperature gradient at the microscale matters for arthropods’ escape of EHTs. For example, the
ground a few centimeters below hot rocks in the Australian desert can be up to 9°C lower in tem-
perature (110), and the temperature heterogeneity on the surface of apple leaves can be 6–12°C
(126). Spider mites can fully exploit this leaf surface heterogeneity by moving over a few centime-
ters, but this possibility is restricted during EHTs (19). Aphids need to remain near the main veins
to feed on phloem, and therefore they cannot really exploit this heterogeneity (18). EHTs are
expected to alter these fine-scale temperature gradients (19), depending on the baseline buffering
property of the microhabitat (147).

4.1.2. Buffering ability of microhabitats. EHTs are transmitted through the microhabitat
before they reach insects. Different microhabitats filter atmospheric conditions differently. For
example, differences of >5°C in the maximal microclimate temperature were observed when
comparing different habitats, e.g., grassland, heathland, and deciduous woodland (136). The un-
derstory of forests is probably the strongest buffer of EHTs (29), almost independently of the
dominant tree species and of latitude (30). Insects could benefit from moving to these micro-
habitats during EHTs, although a direct effect remains to be demonstrated. Nevertheless, some
insect species are specialized to microhabitats at the top canopy, and the potential for vertical
zonation of herbivore insects across forest canopies is important (80). The temperature of leaves
hit by solar radiation is higher than ambient air temperature for most species within a moderate
transpiration rate range in temperate and boreal latitudes (116); thus, the leaf surface magnifies
the amplitude of thermal extremes (147), but the stomatal behavior of the plant may ameliorate
the thermal conditions at the leaf surface by increasing evapotranspiration (113). The thermal
limit of small herbivore arthropods living at the leaf surface is related to leaf temperature during
EHTs, especially when the specific effect of the herbivore insect on the leaf transpiration rate
is included (113). Therefore, these herbivores are already vulnerable to contemporary thermal
extremes. Similarly, endophagous insects such as leaf miners and gall-inducing organisms live in
structures (mines, galls) where the temperature increases more than that of ambient air during
thermal extremes (111, 112). By contrast, aquatic systems buffer atmospheric temperature varia-
tions due to the thermal inertia of water bodies and geophysical processes (147). In general, we
lack enough data on the temperature of most microhabitats to provide an exhaustive ranking from
the best to the worst buffer of EHTs.

4.2. Thermoregulation

Behavioral thermoregulation across the mosaic of microclimates plays an important role in avoid-
ing EHTs (97). Thermoregulatory behavior can directly increase survival during EHTs (12,
66, 147). Nevertheless, the availability of suitable microclimates affects thermoregulation (147),
determining the efficacy of insect buffering against climate warming (19, 66). However, it is pre-
dicted that warming will reduce seasonal and diurnal temperature ranges (61), causing decreases
in temperature heterogeneity across temporal and spatial scales (66), including in microhabitats
(19). Thus, behavioral thermoregulation alone may not be sufficient to buffer ongoing climate
warming (19). Physiological thermoregulation including evaporative cooling (during water loss
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by transpiration) can be significant in insects of relatively large body size (122). Nevertheless, the
amplitude of change in insect body temperature during evaporative cooling remains much lower
than during behavioral thermoregulation (133).

Behavioral thermoregulation can also bring costs and lead to ecological consequences. More
frequent EHTs increase the occurrence of thermoregulatory behaviors (92, 145) and maintenance
energy costs (66) and, in turn, decrease foraging activity, energy efficiency, and reproduction (66,
89). For example, aphids leave their host plants by dropping off or walking downward to seek
cooler microhabitats to escape EHTs (88, 92, 93, 105). Therefore, they may have to endure food
and water deprivation and spend time and energy to find another suitable feeding site, thereby
reducing reproduction opportunities (90). Moreover, behavioral thermoregulation may also alter
the microhabitat use of insects (7, 90). Differences in behavioral regulation and microhabitat use
between species can change the interspecific interaction and food web structure (7). Furthermore,
thermoregulatory behavior may limit evolutionary adaptation by reducing or even eliminating the
selection pressure of EHTs (59).

4.3. Ontogenetic Variations and Tradeoffs Among Different Traits

Insects have evolved complex life cycles with multiple developmental stages differing in ther-
mal sensitivity (14). However, the role of ontogenetic variation of thermal sensitivity in buffering
EHTs has received little attention.Different stages or age cohorts can overlap in field populations,
resulting in the coexistence of multiple life stages or age cohorts during a growth season. When
the mixed-stage population experiences EHTs, the most sensitive stages would be injured or die,
whereas the most tolerant may survive and develop to the adult stage for reproduction during the
following mild phases, thereby contributing to population recovery. Compared to the pupal and
adult stages, medium and late larval stages can better resist heat stress in both immediate survival
and subsequent reproduction (153). Larval stages may acquire sufficient nutrients and water to
both resist EHTs and recover from heat injury, thereby reducing the carry-over effects of EHTs
on adult reproduction.

The intrinsic rate of increase, a metric for fitness, integrates survival, development time, and
reproduction (89, 91).Different responses to EHTs and even tradeoffs among these traits may also
help buffer impacts of EHTs.Temperatures above the optimum for reproduction reduce fecundity
(e.g., number of offspring) but can also accelerate maturation and reproduction processes (151,
155). When temperature surpasses the optimum for development, insects tend to invest more
energy in heat tolerance to improve survival, generating costs that reduce reproduction output
(154) and delay development, at least temporally (120, 148). Thus, variations in thermal sensitivity
of different traits may contribute to buffering heat stress in insects.

4.4. Phenotypic Plasticity

Phenotypic plasticity is a nongenetic strategy to cope with environmental variation, including
thermal extremes (50, 58, 141). Most of the insect responses detailed above relate to phenotypic
plasticity. Four types of plasticity in heat tolerance were identified based on the timescale and
temperature intensity. Rapid hardening or heat shock corresponds to a short and harsh exposure
to high temperatures for a few minutes or hours (70, 141). The other types of thermal plasticity
are all generated by exposure to moderately high temperatures for several hours to days for accli-
mation (laboratory) or acclimatization (field) (63, 70), days to weeks for development acclimation
or plasticity (68, 70, 141), and weeks to months for transgenerational acclimation (63). In general,
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previous exposure to elevated temperatures increases heat tolerance both within and across
generations.

Nevertheless, the potential to buffer against EHTs through plasticity may be limited.Quantita-
tively, there is limited scope for plasticity to increase heat tolerance significantly in many arthro-
pod taxa (50, 58, 68, 141). For instance, the increases in CTmax of some Drosophila species and
the moth Manduca sexta are limited to only approximately 0.6–1.0°C (68, 141) and 1–2°C (75),
respectively, via hardening and developmental acclimation processes. In addition, increased heat
tolerance brings a series of concurrent costs in other plastic traits that are related to fitness (37,
85, 141). These costs can generate considerable transgenerational consequences such as declines
in offspring size and survival (95).

4.5. Evolutionary Adaptation

Frequent EHTs could induce evolution of thermal tolerance to buffer against high temperature
impacts (16, 58). Thermal evolution occurs in small insects during artificial selection (41, 52).
Long-term thermal selection is commonly found in local adaption, e.g.,Drosophila and ants at dif-
ferent latitudes (33, 107) or beetles and butterflies at different altitudes (44, 56).Urban heat islands
also trigger thermal adaptation. Urban worker ants evolved a CTmax that is 1°C higher than that
of rural populations (33). Local adaptation often results from a subtle interaction among gener-
ation time, heritability, covariance between phenotypes, phylogenetic inertia, and the strength of
selection (67).

However, rapid evolution of thermal traits hardly ever occurs under natural selection in insects.
Higher feeding rates in nature evolved only after decades under more frequent EHTs in Colias
eurytheme (56). EHTs embedded in fluctuating patterns may constrain the evolution of thermal
traits due to lower heritability under ramping temperature than under artificial static tempera-
ture (101), slowing down the speed at which insects can track climate warming (52). Thermal
selection can also modify fitness-related life history traits (60, 73). Thermal tolerance often in-
curs fitness costs due to antagonistic genetic interactions between traits (86). Thermal tolerance
could also be shaped by phylogenetic inertia, rather than by thermal selection in nature (67). To
some extent, thermal evolution can be a way to buffer EHTs, but its mechanisms are still poorly
understood.

5. KNOWLEDGE GAPS AND FUTURE PERSPECTIVES

5.1. Ecological Relevance of Experimental Designs

The biological impacts of complex EHTs are difficult to investigate experimentally because of
their stochastic nature. Open-top chambers, infrared irradiation, and electronic heating systems
are widely used to simulate climate warming, including EHTs, in the field (51). However, results
from these studies are difficult to apply broadly because the mechanisms are not fully understood.
The different statistical moments of EHTs (intensity, duration, and frequency) may have biolog-
ical impacts that differ in their direction and amplitude, and their interactive effects could gen-
erate counterintuitive responses in insects. Simulated regimes of EHTs are highly diverse in the
literature, including constant temperature for given periods or fluctuations with fixed cycles. Cur-
rently, these regimes do not include alternative patterns of EHTs and mild periods, which allow
stress recovery (89, 155). In this section, we suggest that experimental designs be given enhanced
ecological relevance in future studies by incorporating the complete statistics of EHTs, despite
the inherent logistic complexity of factoring several variables. In addition, the simulated tempera-
ture regimes should be based on microclimatic rather than macroclimatic patterns to improve the
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ecological relevance. Such levels of complexity are mandatory to help us fully understand insect
performance under EHTs in natural thermal conditions.

5.2. Expanding Our Vision of Extremes

EHTs are, by climatological definition, relatively infrequent but intense (e.g., heat waves). The
biological perspective is the converse in the sense that the thermal events challenging the physi-
ology of insects are likely frequent. Environmental conditions may become suddenly challenging
for organisms when several normal events co-occur, leading to environmental extremes (32). This
shift in perspective has only rarely been applied to insects, but the methodology and the concepts
exist (34). Insects are constrained by several factors in their microhabitats. Dryness aggravates the
physiological stress during hot periods. Wind decreases body temperature in the short term, but
it incurs higher water loss. The same set of environmental conditions may be extreme for individ-
uals deprived of appropriate endosymbionts but near optimal for those that host these microor-
ganisms. Entomological sciences need to embrace more original and innovative characterizations
of extreme events, to be combined with the standard climatological view.

5.3. Rise of Integrative Approaches

The ultimate goal of global change biologists is to anticipate the future trend of biodiversity. This
goal can only be achieved through comprehensive understanding of themechanisms for organism–
environment interactions and predictions of population dynamics and community structure across
time and generations. It seems crucial to link physiological mechanisms of thermal stress and de-
mographic variables. Physiological and genomic approaches have been successfully integrated in
studies to link physiological impacts of environmental changes and field patterns of thermal stress.
Intertidal ecologists led the investigation of this vision for decades (54), but entomologists have
now become more involved (48). The next challenge is to integrate the field ecophysiology of
thermal stress, especially during EHTs, with the population dynamics. Given the importance of
individual processes (e.g., carry-over effects; hardening of thermal tolerance; and, more generally,
phenotypic plasticity), approaches including individual-based models (28) are promising candi-
dates to interconnect these processes and link individual and population scales. In addition, mi-
croclimate models are needed (65, 114, 115) to simulate the heterogeneous environmental arena
within which individuals and species interact. All of these processes need to be fine-scaled to in-
corporate cross-seasonal impacts of EHTs at given moments in the life cycle of insects. Intense
collaborations between physiologists, ecologists, climatologists, and modelers are key for success-
ful developments.

6. CONCLUDING REMARKS

Thermal extremes are complex events that combine different statistical moments.This complexity
increases the difficulty of developing a comprehensive understanding of their impacts on biologi-
cal processes.While thermal extremes are defined as rare events by climatologists, ecologists have
realized that thermal extremes are much more frequent once they are defined relative to the ther-
mal biology of organisms. Nevertheless, the impacts of ongoing climate change on these biologi-
cally relevant thermal extremes remain to be identified. In this context, the most studied biological
models areDrosophila species (40, 52, 67) and other species with conservation importance (62, 84).
The thermal ecology of most species with economic importance for agriculture, horticulture, and
forestry remains largely unknown. Our lack of knowledge is an important frontier limiting our
ability to anticipate the ecological consequences of extreme heat events.
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SUMMARY POINTS

1. Thermal extremes are complex,multicomposite events.Despite the lack of a unified def-
inition of thermal extremes due to this complexity, we can describe natural temperature
extremes with several variables related to both the environment and the species ther-
mal biology, defining together the intensity, frequency, and temporal variance of EHT
events.

2. Classic TPCs derived from constant temperature experiments cannot be used to esti-
mate the biological impacts of thermal extremes. More sophisticated TPCs are needed
to include the influence of all statistical moments of thermal extremes.

3. EHTs often, but not always, affect insects at various levels, ranging from molecular and
physiological responses at individual to population scales to community structure and
functioning.

4. Thermal extremes can instantaneously affect survival. They can also produce long-
lasting impacts on life history traits and demographics of insects.Themagnitude of these
effects depends mainly on thermal history, traits, and life cycle stage. Collectively, all of
these effects translate into population dynamics.

5. Insects may partly or completely buffer thermal extremes via behavioral thermoreg-
ulation, phenotypic plasticity, ontogenetic variations, tradeoffs among different traits,
and evolutionary adaptation. However, most of these buffering strategies probably
have limited quantitative potential, and they may incur costs for other fitness-related
traits.

FUTURE ISSUES

1. Innovative, ecologically relevant experimental designs are crucially needed to better un-
derstand the effects of realistic natural thermal extremes on insect populations, commu-
nities, and ecosystems.

2. Beyond the instantaneous impacts of thermal extremes, the carry-over effects of heat
stress and the stage-specific responses of insects deserve more comprehensive studies to
better detail the consequences of thermal extremes.

3. We lack studies on the relative effects of the various strategies to buffer against thermal
extremes, including physiological and behavioral thermoregulation, ontogenetic varia-
tion, phenotypic plasticity, and adaptive evolution in insects. These buffering strategies
may incur tradeoffs with fitness-related traits, generating complex interactive effects that
need to be identified to contribute to prediction models.

4. The mechanisms underlying heat injury and thermal recovery of insects at the molecu-
lar, physiological, and ecological levels should be investigated to better comprehend the
combined effects of alternating thermal extremes and mild periods.

5. The impacts of EHTs occurring in fall, winter, and spring, as well as at night, on in-
sect diapause, phenology, interspecific interactions, and communities remain relatively
understudied.
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6. Microclimate models should be used more extensively to generate realistic thermal en-
vironments within which insects experience thermal extremes under field conditions in
their microhabitats.

7. The thermal biology in the context of thermal extremes of insect species of economic
importance, such as agricultural, horticultural, and forestry pests and their potential bi-
ological control agents, should be given priority to improve pest management and ben-
eficial conservation worldwide.
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