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Abstract

Wood-boring pests (WBPs) pose an enormous threat to global forest ecosys-
tems because their early stage infestations show no visible symptoms and can
result in rapid and widespread infestations at later stages, leading to large-
scale tree death. Therefore, early-stageWBP detection is crucial for prompt
management response. Early detection of WBPs requires advanced and
effective methods like remote sensing. This review summarizes the appli-
cations of various remote sensing sensors, platforms, and detection methods
for monitoring WBP infestations. The current capabilities, gaps in capabil-
ities, and future potential for the accurate and rapid detection of WBPs are
highlighted.
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Remote sensing
(RS): techniques to
detect radiation and
reflection, emission, or
scattering
characteristics without
coming in contact with
the observed objects

UAV: unmanned aerial
vehicle

Hyperspectral:
imaging technology
that uses many narrow
wavebands (usually
<10 nm wide) to
analyze object
composition

Light detection and
ranging (LiDAR):
method using laser
beams to measure the
3D position, intensity,
and waveform of
objects

Radio detection and
ranging (radar):
system for
transmitting and
receiving radio waves
to detect the scattering
characteristics of
objects

1. INTRODUCTION

Pests and diseases cause considerable damage to forest ecosystems globally. Among them, insect
damage is predominant (26). According to 2009 Food and Agriculture Organization (FAO) statis-
tics, Coleopterans account for the vast majority of insect damage to forests (26). Coleopterans
include wood-boring pests (WBPs) such as Ips typographus, Dendroctonus ponderosae, Dendroctonus
rufipennis, Anoplophora glabripennis, Anoplophora chinensis, and Agrilus planipennis. Generally, WBP
larvae or adults burrow under the trunk xylem or phloem and bore dense tunnels, blocking the
transportation of plants’ nutrients and water, leading to the withering and death of the infested
trees (91). In contrast to the obvious symptoms noticed in the case of the defoliators, WBPs have
a hidden lifestyle, and their presence results in delayed symptoms. Infested trees show obvious
damage signs only in the middle and late stages of infestation, making the detection and control
of the pests challenging. In addition, the damage caused by WBPs to a tree’s transport tissue is ir-
reversible, unlike the damage caused by defoliators, which can be recovered by the growth of new
leaves during the next growing season. WBP damage spreads to large areas quickly. Therefore,
there is an urgent need for monitoring and warning tools for WBP damage early in the infes-
tation cycle. While traditional ground surveys can be used at small scales, remote sensing (RS)
technology can be a good choice for large-scale monitoring.

RS technology provides a powerful tool to monitor different stages of pest disturbance at large
scales, continuously, and in a timely manner. This technology, combined with expert diagnosis,
can help objectively assess infestation damage and accurately predict its occurrence, thereby pro-
viding a scientific basis for appropriate forest management. Related research can be traced back to
the 1930s, when aerial photography was used to observe deciduous forests damaged by Lambdina
fiscellaria (58). Since the 1980s, the number of RSmonitoring studies ofWBPs has been increasing
(6, 51, 100).

Monitoring WBPs in the early stages of infestation (i.e., identifying infested trees before they
show obvious symptoms) is challenging and has required RS technology advances. In recent
decades, remarkable progress in satellites’ temporal, spatial, and spectral resolutions has led to
increased availability of multiscale, multitemporal, and multisource RS data. Flexible unmanned
aerial vehicles (UAVs), combined with new lightweight sensors like hyperspectral imagers, light
detection and ranging (LiDAR), radio detection and ranging (radar), and thermal cameras, pro-
vide multidimensional, convenient, and high-quality data that can support the early monitoring
of WBPs.

The monitoring or assessment of forest health (including insect pests) using RS technology
has been reviewed previously (73, 106, 107, 114). However, there is no comprehensive review on
WBP early monitoring with RS. In this article,we review studies of state-of-the-art RS technology
applied to the early monitoring of WBPs at different scales, using various sensors and monitoring
models, and identify some problems and prospects. The present review focuses on several globally
important forest WBPs, including species endangering conifers, such asMonochamus spp. spread-
ing Bursaphelenchus xylophilus, I. typographus,D. ponderosae,D. rufipennis,D. valens,Tomicus spp., and
Sirex noctilio, and species damaging broad-leaved trees, including A. planipennis and A. glabripennis.

We first discuss what is known about the biology and ecology of coleopteran tree pests, then
discuss different RS technologies. We follow this discussion with a systematic review of how dif-
ferent RS technologies have been used to monitor insect pests and critically evaluate the different
approaches. Finally, key issues and technologies are proposed for future consideration.

2. BIOLOGY AND ECOLOGY

Following a WBP attack on a tree, water or nutrient transport may be blocked, impact-
ing the physiology of leaves (such as chlorophyll content, water content, photosynthesis, and
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Figure 1

Schematics of the remote sensing signal responses to the biological and morphological changes caused by wood-boring pests (WBPs)
(not limited to the species shown in panels a–c). (a) Tomicus spp. damage shoots and trunks. (b) The companyMonochamus spp.–
Bursaphelenchus xylophilus damage trunks and branches. (c) Ips typographus damage trunks. (d) Xylem or phloem damaged by WBPs,
disrupting water and nutrient transportation. (e) Three significant infestation stages on a tree crown. ( f ) Hyperspectral curves for the
various stages of infestation shown in panel e.

transpiration). This leads to progressive changes in the appearance of the tree (such as leaf dis-
coloration) and possibly indicates a typical infestation stage (2, 13, 72, 131) (Figure 1). There are
very few early monitoring studies of WBPs involving broad-leaved trees. Therefore, we take as
an example the well-studied infestation stage classification of WBPs damaging coniferous trees,
specifically I. typographus and D. ponderosae. The damage caused by WBPs can be classified into
three stages: green attack, red attack, and gray attack. In the green attack stage, needles and crowns
remain green even though their physiology starts to change. In the red attack stage, the trees
become dehydrated, the structure of leaf cells and tissues gets destroyed, chlorophyll gets decom-
posed, and the leaf color gradually changes from green to yellow and red. Finally, in the gray
attack stage, the trees lose water completely and wither, causing all the tree needles to fall off,
leaving a gray crown (2, 16, 27, 124). These symptoms of a WBP infestation can cause changes in
the spectral and structural information available about tree leaves and canopy, which provide the
basis for RS-based monitoring of WBPs at the early stage. For example, the red edge band (680–
760 nm) shifts to shorter wavelengths in stressed trees compared with healthy trees (27, 72, 131)
(Figure 1f ).

WBPs generally spread from a single tree to a large area. Removing single infested trees at
the early stages can quickly restrain the spread. Previous studies mainly focused on monitoring
the red or gray attack stages (15, 20, 31, 38, 77, 78, 121). At these stages, WBPs have usually
already spread widely, and it is costly and ineffective to remove red or gray trees. Therefore, RS
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Visible:
electromagnetic
spectrum range from
400 nm to 700 nm

Thermal infrared
(TIR): RS that uses
TIR radiation
information to
determine the surface
temperature radiated
by objects in the
spectral range of
8–14 µm

Table 1 Remote sensors commonly used in WBP early detection

Sensors Advantages Shortcomings Feature parameters
Visible-light camera Low cost, high mobility, and high

spatial resolution
Three bands with limited

spectral information
RGB image, texture and spatial

information
Multispectral sensor Low cost, red edge or near

infrared bands included
Wide bands with low spectral

resolution, from 4 to
approximately 10 bands

Multispectral image,
multichannel reflectance

Hyperspectral sensor Rich spectral information,
hundreds of narrow-band
reflectances

High cost, huge data volume,
complex data processing

Hyperspectral data cube, texture
and spatial information

Thermal imager Acquisition of canopy temperature
and emissivity

Coarse resolution, rapid
temperature variation,
uncertainty of atmospheric
correction

Thermal infrared image,
temperature, and emissivity

LiDAR Direct 3D measurement of trees,
high canopy penetration

High cost, only one to two
wavelengths, limited and
discrete footprint

Point cloud, waveform, and
canopy height model

Radar All weather; certain canopy
penetration; sensitive to
biomass, water, and deformation

High speckle noise, complex
imaging geometry, limited
frequencies

Radar image, polarimetric
scattering, and interferometry

Abbreviations: LiDAR, light detection and ranging; radar, radio detection and ranging; RGB, red, green, and blue; WBP, wood-boring pest.

technology should aim for early monitoring of WBPs to reduce losses, which is the primary goal
of forest managers and a current important research topic (3, 8, 33, 47, 52, 57, 59, 126, 128–131).

3. MONITORING SCALES AND SENSORS

There are generally four kinds of RS platforms that can be used to monitor WBP damage, in-
cluding ground instruments to monitor needles, UAVs for stand evaluations, manned aircraft for
ecosystem-wide observations, and even satellites for landscape- or global-scale analysis. These
platforms can be used for different scales of monitoring generally considered in the literature.
Ground-scale studies reveal the relationship between the physiological and biochemical charac-
teristics of needles and RS information (such as spectral reflectance), providing a theoretical basis
for larger-scale monitoring. Airborne-scale studies (using UAVs or manned aircrafts) bridge the
ground and satellite scales. Satellites provide the only practical way to achieve regional-scale or
global monitoring of WBPs. Therefore, early monitoring of WBPs is scale dependent, and the
monitoring objectives, scope, and effects at different scales are complementary.

Advancements in sensors, such as visible-light cameras, multispectral or hyperspectral im-
agers (HI), thermal infrared (TIR) imagers, LiDAR, and radar equip RS technologies with many
tools for WBP early monitoring via collecting diverse information at different scales (Table 1).
Through data transmission, conversion, and processing, quantitative interpretations of tree health
status have been made (73). Multisensor data fusion, such as the LiDAR-HI fusion (70, 130) and
LiDAR-TIR-HI fusion (95), can combine observations from two or more sensors to provide more
robust or accurate WBP damage detection.

4. SYSTEMATIC REVIEW

We examined 1,736 research articles published between 2005 and 2021 on the Web of Science
using “insects/pests” and “remote sensing/remotely sensed” as keywords. Figure 2 shows the
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Figure 2

PRISMA flow diagram of study inclusion and exclusion. Abbreviations: PRISMA, Preferred Reporting Items
for Systematic Review and Network Meta-analysis; WBP, wood-boring pest.

search process and inclusion and exclusion criteria following the Preferred Reporting Items for
Systematic Review and Network Meta-analysis (PRISMA) standards for systematic reviews. Of
the articles examined, 63 covered the early monitoring of WBPs using RS technology, among
whichmore than half (n= 35) were published only recently (2017–2021), indicating that increased
attention is being paid to the early monitoring of WBPs.

Noticeably, the research onWBPs endangering conifers was more extensive and in-depth (ac-
counting for 90% of the studies) than the research on broad-leaved trees. The most-studiedWBP
species are I. typographus, D. ponderosae and the companyMonochamus spp.–B. xylophilus; however,
there are relatively few early monitoring studies on other WBPs, such as S. noctilio (Figure 3).
The studies are also unevenly distributed globally: More are located in North America (n = 23),
East Asia (n = 20), central and northern Europe (n = 18) and South Africa (n = 2) than in other
regions.This disparity may indicate less access to RS technologies or insufficient research budgets
in these other regions.

With respect to the scale of analysis, nearly two-thirds of the studies are based on airborne
data. In terms of sensors, hyperspectral data are the most widely used in WBP early monitoring,
followed by LiDAR (Figure 4). For WBP species, there is no clear rule for selecting an opti-
mal or specified sensor or platform. Additionally, RS signal responses to damage on coniferous or
broad-leaved trees is consistent for both native species and invaders. Therefore, we prefer to dis-
cuss the state-of-the-art research and applications in WBP early monitoring from the technology
viewpoint, rather than from the perspective of pests or host tree species.

We comment separately on the key issues of satellite RSmonitoring because satellite platforms
used in this field have varying spatial scales, from submeter to 30 m; comprehensive space cover-
age; multiple spectral bands; and periodic revisit intervals, all of which are unique compared with
airborne-scale monitoring.
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Number of early monitoring studies on different wood-boring pest species.

4.1. Unmanned Aerial Vehicle Visible-Light and Multispectral Remote Sensing

Visible light refers to a small portion (400–780 nm) of the electromagnetic spectrum that can
be perceived by human eyes, remotely sensed mainly with red, green, and blue (RGB) bands.
With the recent development of ground-based RS and UAVs, visible light data have been used in
WBPmonitoring (61, 122, 125, 134).UAVsmounted with visible-light cameras can rapidly collect
high-resolution images of forest canopies with low cost, high flexibility, and low requirements for
clear sky conditions. Therefore, they are mainly used to detect damaged trees by applying deep
learning models (122, 125, 134). However, the detection accuracy is not satisfying if one is only
using visible-light data at the early stage of WBP infestation. Early detection of B. xylophilus using
visible-light data had an accuracy of only 0.465–0.508 (122). There are two reasons for this low
performance: (a) The spectral information is insufficient, and (b) most studies focus on identifying
trees with obvious discoloration (115, 125, 134) instead of early stage detection.
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Near-infrared (NIR):
electromagnetic
spectrum range from
700 nm to 1,000 nm

Shortwave infrared
region (SWIR):
electromagnetic
spectrum range from
1,000 nm to 2,500 nm

In addition to RGB, multispectral data used for WPB monitoring also include near-infrared
(NIR) bands and, more recently, red edge bands (56, 77, 98, 129). Among these studies, there
are few on early detection. To detect B. xylophilus, UAV-based multispectral data were used to
identify pine trees with early stage damage, but the results were not promising (56, 129). Despite
the usefulness of NIR or red edge bands, the bandwidth of multispectral bands is still too wide to
be successfully applied for early monitoring.

In general, visible-light and multispectral RS are limited by spectral resolution and thus are
only suitable for monitoring discolored trees in the middle or late stages.

4.2. Hyperspectral Remote Sensing from Different Platforms

Hyperspectral RS collects data from hundreds of bands and continuous wavelengths from vis-
ible light to NIR (400–1,000 nm) and shortwave infrared region (SWIR) (1,000–2,500 nm).
These bands can capture physiological changes in infested trees, which helps in detecting WPB
infestations at the early stages (2, 13, 72, 131).

Ground-based hyperspectral RS is routinely performed for WBP monitoring and is essential
for feature screening and model verification. It also provides a priori knowledge to build spectral
libraries or identify the most sensitive bands for larger-scale monitoring (2, 13, 24, 31, 33, 71, 72,
131). A study transferred the sensitive SWIR bands identified from ground-based hyperspectral
curves to satellite images and successfully detected the early stage of a bark beetle infestation (33).
Similarly, optimized indices such as red edge parameters from ground-based hyperspectral data
produced the highest accuracy in UAV-based hyperspectral data for B. xylophilus early monitoring
(131). However, ground-based hyperspectral data usually consist of a few spectral curves of
limited samples with no imaging capability; thus, their application to a large area or a large
number of data acquisitions is time consuming and laborious, making their use challenging (131,
140). To increase the observation area, a tower-based spectroradiometer was used to analyze the
interaction between pine canopy reflectance and bark beetle stress at different infestation stages
(45), but the scope was still limited.

As the primary technology used in WBP early monitoring (Figure 4), airborne (including
UAV-based) hyperspectral imagery can provide highly accurate detection with flexible and
efficient data acquisition (27, 56, 66, 67, 69, 70, 113, 137). Most studies used single-date airborne
hyperspectral data for early monitoring of WBPs (27, 66, 70, 95, 96, 128, 130, 131). The use of
time-series data is relatively rare (13, 24, 56, 72, 113), even though it could be used to capture
relatively complete infestation processes, thus leading to more reliable results than those based
on a single date, with the limitation that any changes observed in the color and texture of tree
crowns could also be due to phenology and other factors.

With the expansion of the study area, the number of bands and images to be scanned in
airborne hyperspectral data acquisition increases, raising the cost and complexity of image
processing and also requiring geographic registration and image stitching (e.g., combining over-
lapped images to create a panoramic image). Satellite sensors can be used to obtain images from
a large area and therefore can be applied to large-scale WBP early monitoring. However, suitable
spaceborne hyperspectral data are not yet operationally available. The Moderate-Resolution
Imaging Spectrometer (MODIS) has tens of spectral bands, but its spatial resolution is too low
(250–1,000 m). Hyperion and the Compact High Resolution Imaging Spectrometer (CHRIS)
have more bands and higher spatial resolution than MODIS, but they have been retired, and their
image widths are only 7.7 km and 14.0 km, respectively. Despite their great potential for WBP
early monitoring, China’s Orbita Hyperspectral (OHS) satellite, with a spatial resolution of 10 m,
a swath width of 150 km, and 256 bands (400–1,000 nm), and Gaofen-5, with a spatial resolution
of 30 m, a swath width of 60 km, and 330 bands (400–2,500 nm), are not yet operationally available
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green plants during
photosynthesis

and have not yet been applied to specific monitoring efforts, but they should be evaluated in future
research.

Furthermore, sun-induced chlorophyll fluorescence (SIF) (81, 82, 84) may also be applied to
WBP early monitoring. Compared with traditional monitoring methods based on greenness veg-
etation indices, chlorophyll fluorescence, which has been widely used in crop stress monitoring,
directly relates to leaf photosynthesis and responds quickly to stress (111, 132). However, there is
almost no research using SIF to detect WBPs.

In summary, hyperspectral RS can capture even the slightest changes in physiological char-
acteristics of trees before the appearance of obvious symptoms, suggesting a potential role in
the early monitoring of WBPs. As for band selection, NIR is generally involved in most studies,
although the red edge and SWIR are the most sensitive for WBP early monitoring, as demon-
strated by the frequency with which they are used in the literature. However, the insufficient
satellite data sources, large amounts of data, complex data analysis, and high costs associated with
these bands are problems that still need to be addressed.

4.3. Thermal Remote Sensing from Different Platforms

TIR RS collects thermal emissions from the land surface and transforms them into digital tem-
perature images. Temperature, to some degree, is indicative of the canopy energy balance and
is sensitive to changes in water deficit, leaf transpiration intensity, and photosynthetic rate (10).
Thus,TIR technology has been widely used tomonitor vegetation water deficit and pest or disease
stress symptoms (103, 109).

However, few studies on WBP early monitoring make use of TIR technology (3, 75, 95, 108,
120). Ground-based thermal imaging has been used to identify trees damaged by bark beetles at
an early stage, confirming the significant correlation between temperature and damage degree of
trees (75, 120). An airborne TIR camera was combined with hyperspectral and LiDAR sensors to
successfully map the distribution of ash trees, providing a novel approach for early monitoring of
A. planipennis (95). The green attack stage of I. typographus has been detected using both the optical
and TIR data of Landsat 8. The inversed canopy surface temperature outperformed the spectral
vegetation indices in monitoring slight changes caused by insect damage (3).

In the early stage of a WBP infestation, trees still have a certain capacity to adjust their
physiological and biochemical parameters to survive. Consequently, negligible changes in canopy
structural and spectral information are too difficult to detect by optical sensors. Since TIR is sen-
sitive to water content variations, it may be better suited to detect damaged trees at an early stage
(108, 120). However, TIR data collection is limited to clear-sky conditions. In addition, the image
resolution of TIR is significantly coarser than that of optical images; thus, the mixed-pixel issues
need to be addressed before TIR can be more widely applied (142). Factors like drought also cause
abnormal changes in surface temperature, and TIR may not accurately distinguish different pests,
diseases, and abiotic stress-induced changes (120).

The temporal or spatial resolution of the TIR band of the most widely used satellites is insuf-
ficient to satisfy the requirements for early monitoring. Landsat 8 has a TIR band with a spatial
resolution of 100 m, but the temporal resolution is 16 days or even longer due to clouds and rain.
Few spaceborne TIR sensors have a high temporal and spatial resolution. China’s Gaofen-5 has
a spatial resolution of 40 m in the TIR band, suitable for monitoring temperature anomalies at a
plot scale. The NASA Ecosystem Spaceborne Thermal Radiometer Experiment on Space Station
(ECOSTRESS) is another potential tool and has a pixel size of approximately 38 m × 69 m and
a revisit period of 1–5 days (32).

Despite the above limitations, the potential of TIR technology for WBP early monitoring
needs to be further investigated.

284 Luo • Huang • Roques



Synthetic aperture
radar (SAR): an active
radar system providing
high-spatial-resolution
all-weather surface
penetration ability

4.4. Active Remote Sensing: LiDAR and Radar Sensors

Passive optical RS provides two-dimensional images under clear-sky conditions. By directly mea-
suring the 3D structure information of objects, LiDAR is sensitive to structural changes and has
been widely used in forest health assessments (62, 90, 135), including detection of defoliators (53,
54, 80, 110) and WBPs (16, 50, 59, 69, 70, 95, 112, 113, 130).

Microwave radar has a high penetration ability, which helps it obtain useful data on cloudy and
rainy days. Because radar backscattering or interference data contain information related to forest
pests and diseases, they have also been used in WBP monitoring in recent years (52, 93).

LiDAR and radar have been used at different scales. Two ground LiDAR systems with 905 nm
and 1,550 nm wavelengths, respectively, were used to detect the early stage of I. typographus with
an overall accuracy of 62–67% (59). By combining UAV-based LiDAR with hyperspectral data,
researchers have monitored Tomicus spp. and B. xylophilus with a higher accuracy than by using
hyperspectral sensing alone (70, 130). Airborne LiDAR also improved the classification accuracy
of host tree species damaged by A. planipennis (95). At the spaceborne scale, the L-band synthetic
aperture radar (SAR)was used to detect forests damaged by I. typographus, confirming the efficiency
of backscatter data for outbreak detection but with a low early monitoring accuracy (64–74%).
Combining TerraSAR-X radar and RapidEye multispectral data resulted in an early monitoring
accuracy of 74% for I. typographus infestation compared to 23% using radar data alone (93). Recent
monitoring of the early stage of I. typographus using time series backscatter data from Sentinel-1
was not convincing (52).

Unlike defoliators, which cause evident morphological changes in trees,WBPs generally cause
systematic damage, with almost no defoliation in the early stages. Therefore, LiDAR alone is not
expected to be an optimal choice for WBP early monitoring (130).

In future research, the following suggestions need to be carefully considered for the early de-
tection of WBPs. LiDAR systems should be upgraded to have a smaller sampling interval and
footprints comparable to single shoots or needles to obtain detailed structural information for
more accurate detection (50).Moreover, multiwavelength LiDAR systems are needed.Most stud-
ies used single-wavelength LiDAR sensors, at either 905 nm (50, 59, 69, 70, 130) or 1,550 nm (95,
112, 113), which did not fully exploit the intensity information. Multisource data fusion is highly
recommended. The use of LiDAR or radar data alone for WBP early monitoring resulted in low
accuracy (52, 93, 116, 130). In contrast, fusing LiDAR or radar data with optical RS or TIR data
produced a higher accuracy (70, 93, 95, 130).

4.5. Resolution of Satellite Remote Sensing

Table 2 shows the nine main types of satellite sensors used for WBP early monitoring, with
different spatial, spectral, and temporal resolutions. Except for Sentinel-1 and TerraSAR-X, they
are optical satellites with multispectral sensors. Free public-domain satellite data can be a good
choice for countries with limited budgets for airborne platforms.This section focuses on analyzing
the impact of the three resolutions of satellite images on the accuracy of WBP early monitoring.

4.5.1. Spatial resolution. There are few studies comparingWBPmonitoring accuracies among
images with different spatial resolutions under the same conditions. At both the individual tree
and stand levels, higher-resolution satellite data increase the accuracy of early monitoring of
D. valens (133) and I. typographus (4, 5).

It is understandable that, at the early stages of a WBP infestation, only individual trees or
clusters of trees are damaged. In coarse pixels, they are easily mixed with the background, shadows,
understory, and overlapping tree canopies (14, 25, 99). Improving spatial resolution can reduce the
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Table 2 Commonly used satellites in WBP early detection studies

Satellite
Country or

region

Temporal
resolution

(day)
Optical spectral
resolution (nm) Bands

Spatial
resolution (m)

Is it
free?

Case
studies

Landsat 8 United States 16 20–60 (VNIR)
80–180 (SWIR)
600–1,000 (TIR)

Pan, MS (coastal, R, G,
B, NIR, 2 SWIR,
Cirrus), 2 TIR

Pan: 15; MS: 30;
TIR: 100

Yes 3, 4, 33, 46,
126

Worldview-2 United States 1.1 20–140 (VNIR)
40 (red edge)
80–180 (SWIR)

Pan, MS (coastal, B, G,
R, 2 NIR, Y, red
edge)

Pan: 0.5; MS: 2 No 55, 86–88,
143

Quickbird United States 1–6 70–140 (VNIR) Pan, MS (B, G, R, NIR) Pan: 0.61; MS:
2.44

No 124

Gaofen-2 China 5 70–120 (VNIR) Pan, MS (B, G, R, NIR) Pan: 0.8; MS: 3.2 No 133
Sentinel-2 Europe 5 27–145 (VNIR)

18–19 (red edge)
75–243 (SWIR)

MS (coastal, B, G, R, 3
red edge, NIR, water
vapor, SWIR-Cirrus,
2 SWIR)

B, G, R, NIR: 10;
red edge,
SWIR: 20;
other: 60

Yes 4, 8, 29, 52,
133

SPOT-5 France 26 90–100 (VNIR)
170 (SWIR)

Pan, MS (G, R, NIR,
SWIR)

Pan: 2.5; MS: 10;
SWIR: 20

No 5

RapidEye Germany 5.5 55–90 (VNIR)
40 (red edge)

MS (B, G, R, red edge,
NIR)

MS: 5 No 63, 93

TerraSAR-X Germany 11 NA Radar, X band
(wavelength: 3cm)

1–40 No 93

Sentinel-1 Europe 6 NA Radar, C band
(wavelength: 6cm)

≥5 Yes 52

Abbreviations: B, blue band; G, green band; MS, multispectral band; NIR, near-infrared band; Pan, panchromatic band; R, red band; SWIR, short-wave
infrared band; TIR, thermal infrared; VNIR, visible and NIR.

mixed-pixel effects. Better results were obtained using images with pixel sizes of no more than an
individual crown size (77, 121). Currently, many satellites used for WBP early monitoring, such
as Landsat 8 and Sentinel-2, have insufficient spatial resolution to detect a single tree accurately.

Thus, the choice of satellites should take into account both spatial resolution and application
purpose. To map the large-scale occurrence of WBPs, a spatial resolution of 15–100 m (such as
that of Landsat and Sentinel-2) should be sufficient. A spatial resolution of 1–15 m (such as that
of SPOT-5) is suitable for monitoring forest stands with few damaged trees. When analyzing
individual trees, submeter-spatial-resolution sensors (such as Worldview-2 and Quickbird) are
required to provide urgently needed calibration and validation data (123).

4.5.2. Spectral resolution. Spectral resolution refers to the number and bandwidth of spectral
bands of a satellite sensor. The multispectral sensors listed in Table 2 have relatively wide band-
widths. However, their number of spectral bands varies significantly, especially for the red edge
and SWIR bands, which affects the monitoring accuracy.

The visible-light, red edge, NIR, and SWIR regions of the electromagnetic spectrum are gen-
erally used to monitor the changes in canopy water content, pigment content, and cell structure
caused by WBPs (13, 27, 31, 33, 66). Blue to red edge bands play a very important role in WBP
early monitoring (5, 8, 20, 27, 52, 143). Higher visible-light reflectances from damaged trees than
from healthy ones have been found in infestation of I. typographus (5). Similar results have also
been found with the red edge band to monitor early stage bark beetle damage (55, 86). In the NIR
bands, healthy stands normally have higher reflectances than do damaged stands (33, 55, 87, 93).
The SWIR region of the spectrum is also key for distinguishing healthy trees from those damaged
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Spectral indices
(SIs): a variety of
indices obtained from
spectral reflectance
transformations

by I. typographus and D. rufipennis (5, 8, 33, 52). In addition, monitoring using SIF requires ultra-
high spectral resolution (approximately 0.5 nm), which current satellite sensors cannot provide.
Generally, the most-used bands from spaceborne sensors are, in order, NIR, red edge, and SWIR.

These bands have been used to generate a few stress-sensitive spectral indices (SIs) to assess the
WBP infestation status, such as the Normalized Difference Vegetation Index (NDVI), Normal-
ized Difference Red Edge Index (NDRE), Normalized Difference Moisture Index (NDMI), and
Modified Simple Ratio (MSI) (4, 5, 8, 38, 34, 35, 52, 93, 106, 124, 126, 127). The accuracy of early
monitoring using a vegetation index was found to be 71–86% for D. ponderosae (38) and 80–82%
for I. typographus (52). The wetness index was also found to be promising for early detection of
I. typographus (8, 40).

SIs provide an efficient method to utilize these bands. However, there are still two major issues
to address in future WBP early monitoring using optical bands or spectral indices: (a) differen-
tiation of the confounding effects of phenological change, climate change, and other stressors
(e.g., diseases and other pests) (43, 79, 105, 106, 108) and (b) improvement of the portability or
universality of the applied bands or indices.

4.5.3. Temporal resolution. The temporal resolution of satellite images,mainly determined by
the revisit period, significantly impacts WBP early monitoring accuracy. The selection of suitable
satellites and monitoring periods should include the flight period of the WBP.

Generally, the flight period varies across differentWBP species. In China,D. valens begin to fly
in late April and ends in mid-June (138), whileMonochamus alternatus fly from late March to late
June. Moreover, differences in climatic conditions among regions cause differences in the flight
period of adult insects and different generations of insects.The flight period ofM. alternatus varies
between northern China (early May to late June) and southern China (late March to mid-June)
(141). In Europe, I. typographus generally fly from April to May (2); however, the flight activity has
extended from mid-April to mid-August in southern Sweden due to warming (92). Meanwhile,
high temperatures from June to August allow two generations of I. typographus in Central Europe
(89), increasing the flight time and frequency.

Time series of satellite data have not been fully utilized. In previous studies, a single-date image
was often used to classify or quantitatively inverse WBP damage according to the differences in
reflectance or SI (4, 15, 20, 71, 93, 121, 133, 143). Multitemporal images provide spatiotemporal
information for dynamic monitoring and achieve higher accuracy (39, 64, 68, 85, 102, 127). The
multidate method was more accurate in identifying D. ponderosae–damaged stands with light or
moderate mortality (78). Multidate images also allow one to find the optimal observation period
to identify the entire life cycle for better understanding ofWBP occurrence, spread, and outbreaks
(8, 52).

However, there are still issues to be addressed. First, some insects have several generations in
a year, and their survival will be affected by climate and region. Therefore, the optimal observa-
tion period may change accordingly and must be adjusted regularly. Second, temporal resolution
should not be determined alone because the spatial and spectral resolution, data quality, processing
cost, and coverage area of satellite images all affectWBP early monitoring accuracy.Thus, it is im-
portant to find an effective method to jointly construct time-series data to derive comprehensive
insights from multisource satellites.

4.6. Detection Models

Detection models transform RS data into WBP monitoring results. The quality of a detec-
tion model or classification algorithm directly determines the WBP monitoring accuracy. Most
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Random forest:
a machine learning
approach for image
classification and
regression analysis that
grows and combines
multiple decision trees
to create a forest

Support vector
machine: a machine
learning approach for
two-group
classification problems

Convolutional neural
network: a deep
learning approach for
image classification

Stochastic radiative
transfer: a radiative
transfer model
applicable to
simulating the
radiation regime in
forest canopies with
horizontally
distributed
heterogeneity

Table 3 Commonly used models or algorithms in WBP early detection studies

Algorithm

Input data
distribution
requirement

Training
sample size Universality

Algorithmic
complexity Case studies

Random forest No � ��� � 8, 33, 52, 57, 88, 131,
143

Support vector machine No � ��� �� 27, 129, 133, 143
Classification and regression tree No � ��� � 38, 66, 133
Discriminant analysis Yes �� �� � 31, 45, 59
Linear regression Yes �� �� � 40, 52, 96
Partial least squares regression Yes �� �� �� 2
Logistic regression Yes �� �� � 40
Maximum likelihood classifiers Yes �� ��� �� 43, 61
Convolutional neural network No ��� �� ��� 122, 128, 129

� indicates extent. Abbreviation: WBP, wood-boring pest.

studies adopted supervised classification algorithms (Table 3),while very few studies were found to
use unsupervised classification methods for WBP detection (121). Currently, two model types are
used in the early monitoring ofWBPs: parametric and nonparametric models. Parametric models
have solid mathematical and statistical foundations to fit practical data and are easy to use. Linear
regression, logistic regression, and partial least squares regression are widely used (2, 31, 40, 59,
71, 85, 96, 108, 109, 119). The linear regression model has been successfully used to evaluate the
ability of LiDAR parameters to distinguish different damage levels of I. typographus through cor-
relation with defoliation, discoloration, and resin flow (59). However, parametric models require
that the input data conform to certain preconditions, like the homogeneity of variance, which may
not always be feasible. As an alternative, nonparametric models such as random forest and support
vector machine have little dependence on data distribution and types. These machine learning
models are widely used in WBP monitoring research (8, 24, 52, 56, 60, 102, 105, 129–131, 143).
As an advancement of machine learning, deep learning can automatically learn and extract richer
and deeper features through deep networks than can traditional machine learning (7). Thus, the
number of studies using deep learning algorithms in WBP monitoring has been rapidly increas-
ing (60, 98, 125, 134). Most studies still focus on detecting WBP infestations in the late stage,
while studies on early monitoring are relatively few (122, 128, 129). A deep learning model (3D
convolutional neural network) was developed to simultaneously extract crown spectral and spatial
information to identify early damaged trees infested by B. xylophilus, with a promising accuracy of
72.86% (128).

In short, most detection models used in WBP early monitoring are machine learning algo-
rithms; parametric models are less used due to their prerequisites on data distribution and types;
and, despite their more frequent application to late infestation stage detection in current studies,
deep learning algorithms have great potential to detect the early stage of WBP infestation.

Furthermore, RS mechanism models can help machine learning algorithms to improve data
quality, model universality, and result accuracy. The PROSPECT (19) and LIBERTY (28) mod-
els have been used for simulating leaf spectra from physiological parameters. Canopy reflectance
simulation models such as stochastic radiative transfer (67), 4-Scale (18), and radiosity applicable
to porous individual objects (RAPID) (48, 49) scale reflectance from the leaf to the entire canopy.
Such scaling has improved detection accuracy of Tomicus spp. by providing prior knowledge and
training data for machine learning models (67, 69, 71).
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Radiosity applicable
to porous individual
objects (RAPID):
a 3D radiative transfer
model that simulates a
tree canopy as made
up of porous
individual objects

5. KEY ISSUES AND TECHNOLOGIES

Some challenging problems exist inWBP early monitoring. Some of the major issues and possible
solutions are discussed below.

5.1. Identification of Host Tree Species

WBP monitoring is relatively easy in plantation forests due to their single host tree species. In
mixed forests, the same WBP species often damages multiple hosts simultaneously. Therefore, a
forest type or tree species map is required as background information to accurately locate host
trees to help assess the damage situation, analyze occurrence dynamics, and predict WBP spread.
However, such information is often lacking or outdated. Recent advances in RS technology can
provide multisource data for tree species identification, such as visible light (12), NIR (117), TIR
(74), multispectral (118), hyperspectral (135), and LiDAR (11) or SAR data (22), as well as data
fusion (62).

While tree species classification based on RS data has become an important research topic,
there are still several challenges. Studies have achieved high accuracy, but most studies classify tree
species among different families and genera. However, for WBPs, most host tree species belong
to the same family or even the same genus with high similarity (e.g., Pinus massoniana and Pinus
thunbergii) and are very challenging to separate. Multisource RS data and multitemporal data can
be used to replace single-source or single-date RS data to achieve refined and precise tree species
maps.

The classification accuracy of tree species at the satellite scale needs to be improved.Dense time
series of Sentinel-2 images were used to classify several dominant tree species in central Europe
with an accuracy of 66.8–98.9%, but they showed lower accuracy for minor tree species (44).
Sentinel-1 and Sentinel-2 data were combined to classify three hosts of Choristoneura fumigerana,
resulting in an accuracy of approximately 72% (9). Worldview-3 and Pléiades were also explored
for classifying single-tree species, with an accuracy of less than 90% (30, 97).

In such a situation, adding texture features of tree crowns may improve the classification accu-
racy of tree species, as these features can reflect the local spatial information related to image tone
changes (11). However, texture features vary with seasons, climates, or soils. Therefore, if one is
including texture characteristics, phenology should also be considered.

5.2. Type of Forest Disturbance

Forest disturbance is one of the major drivers of forest ecosystem changes (23, 41, 65, 94, 116). A
forest may possibly be disturbed simultaneously or successively by multiple factors, such as various
pests, drought, wind-fall, and harvest. A clear distinction among these factors is crucial for better
understanding the occurrence area, damage process, and spread of pests.

Numerous studies have used RS technology to accurately distinguish pests from other abiotic
forest disturbances such as wind-fall, fire, harvest, and lightning strikes (1, 17, 21, 83, 104, 105). A
few studies have also distinguished forest pests and diseases of different damage types, like WBPs
and defoliators (42, 79, 106).However, research on differentiating variousWBPs that cause similar
damage is lacking.

In China, B. xylophilus and D. valens often endanger the same tree species, such as Pinus tabu-
liformis and Pinus sylvestris var. mongolica. Changes in the color and texture of tree crowns shown
in the RS images of trees damaged by these two pests are almost identical; thus, the effects of
these pests are challenging to discriminate. Additionally, the host tree species harmed by the two
pests have a high degree of overlap, mostly belonging to the genus Pinus. Thus, it is unrealistic to
identify the two pests based on their hosts. Moreover, the occurrence time of both pests is almost
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the same; thus, there is no solid basis to distinguish them based on time of occurrence. Reliable
prior knowledge and a large amount of ground survey data are necessary to accurately distinguish
them, but these are difficult to achieve on a large scale. Accordingly, we should establish a system
to record the distribution of WBPs and their host tree species in each region or worldwide, with
regular updates, and to provide a reliable reference for future research.The host tree species distri-
bution, landscape patterns, phenology, and climate features should also be considered in addition
to the color, shape, and texture characteristics of tree crowns (23, 105, 136).

5.3. Lack of Ground Truth

Ground truth data from independent site measurements are indispensable to build a WBP de-
tection model for training or validation. The quantity and quality of ground truth data directly
determine model generalization and accuracy. However, acquiring ground truth data is costly,
especially for large-scale monitoring, leading to a lack of high-quality data.

The following approaches can be considered to compensate for this deficiency.Data augmenta-
tion can be used on UAV images as a surrogate for ground truth. Geometric transformations such
as flipping, rotating, and deforming are generally performed on images to increase training sam-
ples and improve model generalization. Migration learning and generative adversarial networks
are also powerful for data augmentation (36, 37, 139).Unsupervised classification, totally based on
image feature space, is another choice that does not require training data. Simulating pest damage
and RS canopy images through mechanistic models (such as RAPID) has become a meaningful
way to provide sufficient training data. The representativeness of the training data also needs to
increase, and sample distribution should be well balanced among categories. Common approaches
for balancing samples include improvements to the sampling strategy, use of suitable weights, and
use of prior knowledge (76, 90, 101). New data collection technologies, such as close-range RS,
the internet of things, and big data technology, can also be introduced to obtain ground truth data
efficiently.

SUMMARY POINTS

1. Hyperspectral RS is themost suitable approach forWBP earlymonitoring, and red edge,
NIR, and SWIR are the most sensitive bands to monitor tree health status. However,
operational hyperspectral satellites are urgently required.

2. More studies have been conducted, and higher accuracies have been demonstrated, using
airborne sensors than using satellite sensors.However, satellite sensors allowmonitoring
at a variety of scales, from an individual tree (e.g., Worldview-2, QuickBird), to a stand
(e.g., RapidEye, SPOT-5), to global forests (e.g., Landsat 8, Sentinel-2). A satellite spatial
resolution comparable to an individual tree crown size is the best.

3. Early detection of WBP damage is scale dependent. Field sensors can detect a few red
shoots or crowns, while airborne or spaceborne sensors can detect clusters of red crowns
or possibly green crowns under stress using UAV hyperspectral signals. Thus, to our
knowledge, the current early stage detection mostly occurs at the discoloring stage, but
several studies show exciting results at the green stage.

4. There is an increasing interest in deep learning, andmachine learning algorithms are the
first choice forWBP early monitoring. Additionally, detection models fusing all kinds of
RS data have also been proposed.
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5. In addition to the color, shape, and texture characteristics of tree crowns, prior knowl-
edge of host tree species distribution, characteristics of landscape patterns, phenology,
and climate should also be considered.

FUTURE ISSUES

1. Existing RS technology can monitor tree symptoms but cannot precisely identify WBP
species. Thus, identifying a clear link between tree symptoms andWBP species requires
further exploration, possibly by developing databases based on high-resolution mapping
of tree species, the historical occurrence of WBP damage, and on-site continuous UAV
observations.

2. More sensitive sensors are still required to detect tiny changes in tree morphological,
physiological, and ecological characteristics in the early monitoring of WBPs. Chloro-
phyll fluorescence, which shows an excellent potential for use to monitor crop diseases
and pests, needs to be tested.

3. There is a need for practical artificial intelligence detection models; such models should
be simple, fast, stable, and accurate. Accordingly, sufficient training samples need to be
generated when the ground truth data are insufficient.

4. To improve detection efficiency, countries should establish national early warning sys-
tems that integrate field, airborne, and spaceborne data and provide rapid estimates of
forest disturbances, including WBP infestations.
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92. Öhrn P, Långström B, Lindelöw Å, Björklund N. 2014. Seasonal flight patterns of Ips typographus in
southern Sweden and thermal sums required for emergence. Agric. For. Entomol. 16:147–57

93. Ortiz SM,Breidenbach J,KändlerG.2013.Early detection of bark beetle green attack usingTerraSAR-X
and RapidEye data. Remote Sens. 5(4):1912–31

94. PflugmacheraD,CohenbW,Kennedy R. 2012.Using Landsat-derived disturbance history (1972–2010)
to predict current forest structure. Remote Sens. Environ. 122:146–65

95. Pontius J,Hanavan RP,Hallett RA,Cook BD,Corp LA. 2017.High spatial resolution spectral unmixing
for mapping ash species across a complex urban environment. Remote Sens. Environ. 199:360–69

96. Pontius J, Martin M, Plourde L, Hallett R. 2008. Ash decline assessment in emerald ash borer-infested
regions: a test of tree-level, hyperspectral technologies. Remote Sens. Environ. 112(5):2665–76

97. Pu R,Landry S. 2020.Mapping urban tree species by integratingmulti-seasonal high resolution Pléiades
satellite imagery with airborne LiDAR data.Urban For.Urban Green. 53:126675

98. Qin J, Wang B, Wu YL, Lu Q, Zhu HC. 2021. Identifying pine wood nematode disease using UAV
images and deep learning algorithms. Remote Sens. 13(2):162

99. Rautiainen M, Lukeš P. 2015. Spectral contribution of understory to forest reflectance in a boreal site:
an analysis of EO-1 Hyperion data. Remote Sens. Environ. 171:98–104

100. Rencz AN, Nemeth J. 1985. Detection of mountain pine beetle infestation using Landsat MSS and
simulated thematic mapper data. Can. J. Remote Sens. 11(1):50–58

101. Roberge C, Wulff S, Reese H, Stähl G. 2016. Improving the precision of sample-based forest dam-
age inventories through two-phase sampling and post-stratification using remotely sensed auxiliary
information. Environ. Monit. Assess. 188:213

102. Rodman KC, Andrus RA, Butkiewicz CL, Chapman TB, Gill NS, et al. 2021. Effects of bark beetle
outbreaks on forest landscape pattern in the southern Rocky Mountains, U.S.A. Remote Sens. 13(6):1089

103. Scherrer D, Bader KF, Körnera C. 2011. Drought-sensitivity ranking of deciduous tree species based
on thermal imaging of forest canopies. Agric. For. Meteorol. 151(12):1632–40

104. Schroeder T, Wulder M, Healey S, Moisen GG. 2011. Mapping wildfire and clearcut harvest
disturbances in boreal forests with Landsat time series data. Remote Sens. Environ. 115(6):1421–33

105. Sebald J, Senf C, Seidl R. 2021.Human or natural? Landscape context improves the attribution of forest
disturbances mapped from Landsat in Central Europe. Remote Sens. Environ. 262(2):112502

106. Senf C, Pflugmacher D, Wulder MA, Hostert P. 2015. Characterizing spectral–temporal patterns of
defoliator and bark beetle disturbances using Landsat time series. Remote Sens. Environ. 170:166–77

107. Senf C, Seidl R, Hostert P. 2017. Remote sensing of forest insect disturbances: current state and future
directions. Int. J. Appl. Earth Obs. Geoinform. 60:49–60

108. Shen Q, Deng J, Liu XS, Huang HG. 2018. Prediction of bark beetles pests based on temperature
vegetation dryness index. Trans. Chin. Soc. Agric. Eng. 34(9):167–74

109. SmigajM,Gaulton R, Suárez JC,Barr SL. 2019.Canopy temperature from anUnmanned Aerial Vehicle
as an indicator of tree stress associated with red band needle blight severity.For.Ecol.Manag.433:699–708

110. Solberg S, Næsset E, Hanssen KH, Christiansen E. 2006. Mapping defoliation during a severe insect
attack on Scots pine using airborne laser scanning. Remote Sens. Environ. 102:364–76

111. Song L, Guanter L, Guan KY, You LZ, Huete A, et al. 2018. Satellite sun-induced chlorophyll fluo-
rescence detects early response of winter wheat to heat stress in the Indian Indo-Gangetic Plains.Glob.
Change Biol. 24(9): 4023–37
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