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Abstract

After tentative efforts during the 1990s, the past two decades have seen a
rapid increase in the number of greenhouse gas (GHG) emissions miti-
gation policies, initially in a few frontrunner countries and more recently
spreading globally. Over the same period, GHG emissions have continued
to rise, but the rate of growth has recently slowed. Are mitigation poli-
cies having an effect? To explore this question, we review and synthesize
the empirical literature on the impact of mitigation policies on three key
outcomes: GHG emissions, proximate emission drivers like energy inten-
sity and land use, and low-carbon technologies. Our key contribution to
the available literature lies in establishing an empirically based track record
of climate action, focusing on methodologically sound ex post studies. We
find that mitigation policies have had a discernible impact on emissions
and multiple emission drivers. Most notably, they have led to reductions
in energy use, declines in deforestation rates, as well as cost reductions
and capacity expansions of low-carbon technologies in many instances. Fur-
thermore, implemented policies to date are likely to have reduced global
emissions by several billion tons of CO,eq per year compared to a world
without mitigation policies. In the light of current ambitions on climate
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Mitigation: efforts to
reduce the amount of
CO; entering the
atmosphere in order to
constrain the effects of
climate change

NDC:
nationally determined
contribution
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action falling short of what is required to limit global warming to the Paris temperature goals,
we conclude that there is ample evidence of policy instruments with demonstrable impacts, but
that efforts need to be hugely strengthened and expanded. Also, far more attention is required to
policy monitoring, evaluation, and learning so as to strengthen the basis for future policy and the
attribution of its impacts.
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1. INTRODUCTION

After the Intergovernmental Panel on Climate Change (IPCC) in 1990 confirmed the basic sci-
ence behind climate change, the Second Assessment in 1995 identified “discernible evidence”
of human impact—an attribution of cause and effect, which has grown with each assessment to
the most recent stating that the link is “unequivocal” (1, 2). In response, the number of interna-
tional climate frameworks and domestic mitigation measures has increased, first slowly, then more
rapidly since the mid-2000s, initially mainly in countries of the Global North and more recently
across the world (3-5).In 2017, climate policies covered approximately 70% of global greenhouse
gas (GHG) emissions, compared to less than 20% in 2005 (3). These developments have been
spurred by international climate treaties such as the Kyoto Protocol and the Paris Agreement (3,
4, 6) and more general global policy diffusion (7-9). Unlike climate change itself, there remains
skepticism about what—if anything—these mitigation policies have achieved.

Global GHG emissions continued to grow, at least to 2022, and it is widely acknowledged
that countries’ nationally determined contributions (NDCs), even if fully implemented, are not
sufficient to limit the increase in global average temperatures to 1.5° (6, 10-12). Economic activity
and population growth have been major drivers of the continuous increase in CO; emissions
(13-15), contributing to the all-time high of energy-related CO; emissions of 36.8 GtCO,
in 2022 (16). As Stoddard et al. (17) rightly pointed out, we have not “bent the global
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emissions curve”—despite three decades of climate mitigation. Although the underlying facts have
not changed, we offer a more bottom-up and fine-grained perspective on efforts undertaken to-
ward combatting climate change. This review takes a first step toward evaluating and quantifying,
ceteris paribus, the impacts of climate protection efforts to date.

Most world regions have experienced a sustained decline in energy intensity [energy per unit of
gross domestic product (GDP)] over the past two decades, and several regions have also reduced
carbon intensity (CO, per unit of energy) (14, 15, 18-26). At least 24 countries have reduced their
CO; and overall greenhouse gas emissions for more than a decade (27, 28), on the basis of con-
sumption as well as territorial boundaries. The rate of global annual emission growth has slowed;
compared to 2.3% between 2000 and 2010, the average over the subsequent decade was 1.3 %/year,
dropping to 0.8%/year since 2014 (29). New analyses based on revised land-use emissions sug-
gest that global CO, emissions were almost flat over the past decade (30). Collectively, these
developments suggest that the mitigation policies that have been implemented to date may have
had a demonstrable effect on global emission trends. Indeed, the slowdown in emission growth
has been associated with technological innovation, regulation, or climate policies more generally
(18,23,25,31, 32).

Studies have often projected the impact of policies ex ante using models. However, quantifying
the effects of mitigation policies and determining the extent to which observed changes in emis-
sion trends can be attributed to these policies remain a challenge. Numerous factors confound
the establishment of robust causal inference, such as the impact of fossil fuel prices, other noncli-
mate policies, spillovers from other sectors, or broader socioeconomic trends. As a result, many
studies only assess the impact of a particular policy instrument in a particular setting (33-37), and
even these sometimes provide contradictory results (38). Comparatively few studies examine im-
pacts that span multiple jurisdictions and sectors (39-42), and even fewer investigate the effect of
mitigation policies on global GHG emissions (43).

Several (systematic) reviews derive both case-specific and generalizable conclusions on the im-
pacts of particular policy instruments, such as carbon prices (44-47) and incentives for the uptake
of electric vehicles (EVs) (48, 49); renewable energy support policies (50, 51); and information
strategies (52, 53). To date, there has been no review of the literature to explore the extent to
which mitigation policies, in general, have (or have not) cut global emissions. Common sense and
a substantial number of scientific studies suggest that they do, but the evidence has not yet been
brought together in an instrument- and sector-spanning review. Our review works toward closing
this gap in the literature, focusing specifically on robust, ex post studies assessing mitigation policy
impacts on emissions and emission drivers.

We identified and grouped these studies according to three outcome areas:

m GHG emissions: impacts quantified directly in terms of emission abatement (absolute/
relative)

m Proximate emission drivers: trends in the component drivers of emissions, most notably
energy/GDP intensity and carbon/energy intensity (for energy-related emissions), and de-
forestation rates [for the agriculture, forestry, and other land-use (AFOLU) sectors], as well
as more sector-specific component drivers

m Technological change: developments in key low-carbon technologies, especially in terms of
investments, capacity expansions, and technology costs, that are projected to have a strong
influence on future emissions

Although presented separately in the results section, the three outcomes are inherently in-
terlinked (Figure 1). Emission reductions are the result of policies that directly aim to reduce
emissions, such as climate laws with emission reduction obligations. They also arise from policies
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Figure 1
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such as regulation or voluntary agreements, which impact proximate emission drivers. Finally,
changes in technologies, which may be brought about by research and development (R&D) sup-
port or monetary adoption incentives, affect GHG emissions both directly and indirectly through
inducing changes in proximate emission drivers. All of these factors exist within the context of the
broad social, economic, and infrastructural system, which contextualizes and influences both the
character of the factors and the flow of influence between them.

This review aims to examine the causal relationship between mitigation policies and each of
the above-mentioned outcomes by presenting empirical, ex post evidence on a range of mitigation
policies across sectors. Such a comprehensive, policy-, and sector-spanning effort as conducted in
this review has not been done before. Inevitably, this comes at the cost of limited in-depth insights
on specific policies and other issues noted below. Nonetheless, our comprehensive bibliography,
drawing from an extremely broad and robust evidence base, provides policymakers with a wide
range of insights needed to design and implement effective policies.

The influence of other policies or contextual factors lies beyond the scope of this review.
The evaluation of mitigation policies apart from their effectiveness in reducing emissions, such
as on the grounds of ethics, justice, and efficiency, is also beyond our scope. These matters are
paramount in the context of uncertain purposive transitions, and although these issues lie be-
yond the scope of our review, any application of this review’s findings will need to take account of
them.

Nevertheless, our results unambiguously demonstrate that mitigation policies have had a dis-
cernible impact on emissions and emission drivers. Most notably, they have led to reductions in
energy use, declines in deforestation rates, as well as cost reductions and capacity expansions of
low-carbon technologies. Overall, implemented policies are likely to have led to global avoided
emissions of several billion tons of CO, annually in recent years compared to a world without
mitigation policies, and have helped set the stage for a Paris-aligned <2°C world.

Hoppe et al.



2. METHODS
2.1. Literature Selection Criteria

The literature we assessed generally considers mitigation policies to be those adopted with either a
primary or a secondary objective to reduce GHG emissions or influence key drivers thereof. This
definition of mitigation policies spans higher-level goals such as GHG emission reduction tar-
gets or climate frameworks, as well as medium-term strategies and more sector-specific measures.
The latter include regulatory (e.g., energy efficiency standards, building codes, renewable port-
folio standards), economic (e.g., carbon taxes and trading schemes, renewable energy subsidies),
and other (e.g., informational and infrastructural measures, voluntary agreements or government
procurement) instruments. We sought to include studies from all jurisdictions, including at the
national, sub-, and supranational level, as well as studies that explored effects within and across
sectors.

We focus on papers that deployed robust, ex post methods. The majority of these deploy
statistical attribution methodologies, including experimental and quasi-experimental design, in-
strumental variable approaches, and simpler correlational methods. Those studies typically use
the relevant mitigation metric as the outcome variable, and policies and other potentially influen-
tial factors act as explanatory variables. Other types of studies base their analysis on aggregations
and extrapolations from microlevel data and on inference from combining multiple lines of anal-
ysis, including various calculations. Some studies deploy mixed methods that include qualitative
evidence that stems from public opinion surveys, expert interviews, document analysis, or other in-
depth case study methodologies. Finally, we also included several (systematic) reviews that assess
and aggregate the findings of numerous empirical studies on a particular topic, usually a specific
mitigation instrument.

Finally, we selected only papers that reported findings on at least one of our three key outcome
categories (emissions, proximate emission drivers, and technologies). As many studies use an out-
come metric that is specific to the respective case (e.g., per capita energy use, percent increase in
patents), the grouping into one of the three outcome categories was done following insights from
decomposition analyses, which differentiate between the different drivers of emissions (13-15,
18-26, 31, 32, 54-57). We report outcomes in the units that were used in the original papers.

2.2. Process of Literature Collection and Analysis

We identified studies assessing the impact of mitigation policies for review using several steps.
First, our primary source of literature was the literature we reviewed as part of the IPCC’s lat-
est assessment, Climate Change 2022: Mitigation of Climate Change (29). The literature included
in IPCC reports is characterized by high methodological rigor and, to the extent possible, rep-
resentativeness in terms of geographical coverage, technologies, policies, and sectors. Literature
from all 17 chapters was considered, with a particular focus on Chapter 2 (“Emissions Trends and
Drivers”), Chapter 13 (“National and Sub-national Policies and Institutions”), and the sectoral
chapters (Chapters 6-7 and 9-11), with some additional papers recommended to us by chapter
authors.

In the case of policy impacts that were highlighted by the IPCC report but not substantiated
with ex post evidence, we conducted an additional literature search via the search engine Google
Scholar and the citation database Web of Science. We used various search strings, including per-
mutations of the following example: [outcome OR impact OR effect] AND [policy OR measure
OR instrument] AND [climate OR mitigation OR decarbonisation].

After this selection procedure, ~1,500 studies were screened on the basis of their abstracts,
leading to a selection of 500 studies that were subjected to more detailed review. These studies
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included a cross section of ex post analyses of policy impacts, contextual papers (e.g., papers on
mediators of policy impacts, such as carbon leakage), and a limited number of modeling and ex
ante studies in cases where no ex post evidence was available. After a final round of assessment, we
had collected more than 320 papers that met our standard with regard to methodological rigor,
scope, and relevance and, most importantly, addressed our key research question: Are mitigation
policies having an effect?

All papers were carefully read by at least two authors and categorized according to several
dimensions [e.g., type of policy instrument(s), outcome variable(s), geographical scope, sectoral
coverage]. Studies were then clustered, following the structure of our conceptual model (see
Figure 1) and summarized with regard to the research question before condensing the results
further for this article. In designing and conducting the review, we followed methodological
best-practice guidelines (58). The Supplemental Appendix provides further detail on selected
papers.

3. RESULTS
3.1. Overview of Literature

Categorizing papers according to their geographical and sectoral scope as well as types of in-
struments and outcome categories reveals that the literature is imbalanced. Many studies either
focus on European countries (30%) or are global in scope or compare cases from different regions
(26%); fewer studies focus on North America, other Organisation for Economic Co-operation and
Development (OECD) countries, and China; whilst all other countries account for less than 10%.
Many articles focus on particular sectors (transport, buildings, energy, industry, and the AFOLU
sector), whilst 28% either assess impacts across several sectors or do not address one specifically.
In terms of policy types, studies on economic and mixed instruments dominate, with fewer articles
investigating the impact of regulatory or other instruments. Interestingly, there appears to be a
relationship between the type of policy instrument and the outcome category, with the impacts
of regulatory policies most often reported in terms of emission drivers and those of economic in-
struments in terms of emission abatement. Similar relationships exist in the case of countries and
sectors.

3.2. International Treaties on Climate Change

The Kyoto Protocol, which was adopted in 1997 and entered into force in 2005, marks a key
milestone in climate policy. We are reviewing its effectiveness separately from the three outcome
metrics for two reasons: First, the Kyoto Protocol is a climate framework and thus follows a dif-
ferent logic than specific and targeted mitigation instruments. Second, the available literature is
significant and can be represented comprehensively.

The Kyoto Protocol set binding emission reduction targets for 37 industrialized countries and
economies in transition. On aggregate, these amounted to 5% emission reductions over the first
commitment period (2008-2012) compared to 1990. Despite early criticisms, most scholars con-
cluded that emission reduction obligations under the Kyoto Protocol had a positive, statistically
significant impact on CO,/GHG emission reductions in the Annex B countries that ratified with
targets under the treaty (i.e., industrialized countries, minus the United States and Canada), or
globally (59-69).

Maamoun (41), in a recent and particularly robust study that covers the entire commitment
period, found that the Kyoto Protocol reduced the GHG emissions of Annex B countries by 7%
on average compared to a no-Kyoto synthetic scenario over 2005 to 2012, resulting in abatement
of approximately 1 Gtin 2012. Kim et al. (42) estimated that CO; emissions of Annex I countries in
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2008 would have been 14% higher (per 2005 base year model) had these countries not committed
to reducing their emissions, which is equivalent to approximately 3,000 metric tons CO; per year.
Aichele & Felbermayr (70) concluded that Kyoto ratification reduced CO, and GHG emissions
by 10% (2002-2007) compared to the counterfactual no-Kyoto world. According to Kuriyama &
Abe (71), Kyoto led to 951 MtCO,eq of real emission reductions globally (2005-2012) compared
to a synthetic counterfactual constructed using US states as comparisons for Annex B countries,
the majority stemming from nonenergy GHG emissions in non-Annex B countries.

The environmental efficacy of the Kyoto Protocol has been qualitatively questioned based on
its institutional design (71-73), as well as on shortfalls in the implementation of Clean Develop-
ment Mechanism (71, 74, 75) or Joint Implementation (76) projects, although the latter have also
been found to have yielded positive outcomes (69, 77-80). There are a few studies that failed to
detect a statistically significant effect of the Kyoto Protocol (76, 81). Others find a considerable
amount of Kyoto-induced carbon leakage (82-84), which have, however, been criticized for using
country-level data, not taking into account other macroeconomic trends, covering up to only 2007
or 2009, and failing to pinpoint the mechanisms through which any estimated leakage occurred
(85, 86). Overall, the complete range of abatement estimates starts from no statistically detectable
effect (81) to emission avoidance of up to 50% compared to a case in which countries had not
taken on emission reduction obligations (87, 88). For a full overview of abatement estimates, see
Supplemental Table 1.

Besides emission reductions, the Kyoto Protocol has been found to increase international
patent applications for renewable energy technologies, especially in countries with more strin-
gent emission reduction targets, but it has also led to an increase in patent applications in countries
without emission reduction obligations (89). Kyoto also had a positive and statistically significant
impact on the cost-effectiveness of renewable energy projects (90), as well as on renewable energy
capacity development, as it stimulated the introduction of domestic renewable energy policies (91).
Finally, it also had a positive impact on forest carbon sinks in the LULUCEF (land use, land-use
change and forestry) sector, especially after it entered into force in 2005 (92).

To date, little empirical evidence exists on the immediate emission reduction effect of the 2015
Paris Agreement. One paper, using panel data up to 2019, suggests that the Paris Agreement re-
duces emissions by approximately 0.01% in Germany, Spain, and France compared to the period
before ratification (93). Another paper found that comparatively stringent NDCs have a positive
impact on green bond finance for renewable energy projects (94). Importantly, the treaty stimu-
lated national policy development, both before and after the agreement (3, 4), and was followed
by a wave of net zero target announcements (95). As of July 2023, 150 countries, including ma-
jor emitters, have announced or are considering net zero targets, covering almost 90% of global
emissions (96). Most qualitative assessments conclude that despite several limitations, it is the best
agreement that reasonably could have been reached at the time (97-101). Its built-in ratcheting-up
mechanism is expected to contribute toward closing the prevailing ambition and implementation
gap (11,100-107),and more than 150 parties submitted new or updated mitigation targets for 2030
ahead of the Glasgow Climate Pact. These renewed pledges, if fully implemented (conditional and
unconditional pledges inclusive), could result in an average temperature increase of approximately
1.9°C, which was outside the realm of possibility for the previous pledges (108, 109).

3.3. Global Greenhouse Gas Emissions

Specific mitigation policies (i.e., beyond emission targets) have demonstrably led to emission re-
ductions in several jurisdictions and sectors, although their aggregate global impact has only been
assessed by one study to date. Eskander & Fankhauser (43), using panel data on climate mitigation
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legislation in 133 countries, found that each new climate law was on average associated with an
annual reduction of CO; emissions per unit of GDP by 0.78% in the short term (up to 3 years)
and by 1.79% in the long term (beyond 3 years). They estimated emissions reductions building up
to 5.9 GtCO; in 2016 (i.e., —15%), with cumulative emission savings amounting to 37.7 GtCO,
from 1999 to 2016, although some methodological challenges have been noted (110).

3.3.1. Carbon pricing. By 2022, 70 carbon pricing initiatives have been implemented world-
wide, covering 47 national jurisdictions and representing 23.17% of global GHG emissions (111).
This makes carbon prices (either in the form of carbon taxes or emissions trading schemes) one
of the most frequently implemented mitigation policies. Our review identified 43 papers that
have conducted formal empirical evaluations of emissions savings associated with different carbon
pricing systems (see Supplemental Table 2), which provide mixed but largely positive results. In-
deed, most studies conclude that carbon prices have had a discernible diminishing effect on CO,
emissions in the energy, industry, transport, and buildings sectors (33, 39, 40, 44-47, 112-151).

Among these, perhaps the most significant are Best et al. (117), who observed a 2% reduction
in the annual growth of emissions from fossil fuel combustion in countries with carbon pricing
compared to countries without carbon pricing. Similarly, Rafaty et al. (118) found that the in-
troduction of carbon prices in 39 countries reduced the growth in CO; emissions by 1-2.5% per
year, with marginal effects varying across sectors. These two studies find that global carbon pricing
schemes led to average annual avoided emissions of 130-200 MtCO,/year, which is in line with
the aggregate impact of all carbon pricing schemes as detailed in the Supplemental Appendix.

In the case of the European Union Emissions Trading System (EU ETS), the world’s oldest
GHG emission trading scheme, abatement estimates span a wide range of 1-50% of total emis-
sions or total emissions covered by the EU ET'S compared to a no-policy world over the different
trading periods. This is partly due to differences in model baselines, regions and time periods stud-
ied, and reporting units (annual versus cumulative effects, and relative versus absolute reductions).
Having taken this into account, we estimate the likely range of directly attributable avoided emis-
sions from the EU ETS to be 3-9% of the emissions governed by its rules over the historic periods
studied (typically up to 2012 or 2016) compared to a business-as-usual path (39, 40, 113-116), ac-
knowledging that the studies underpinning this estimated range covered the period before prices
rose substantially in 2021. The evidence on the EU ET'S also highlights that the overall effective-
ness of carbon pricing is ultimately a matter of design (46). Emission reductions varied between the
trading phases in response to instrument reconfigurations (114, 120) such as changes to the share
of emission certificates that were auctioned, or the implementation of scarcity-inducing mecha-
nisms like the market stability reserve. Essentially, the carbon price is determined by the demand
for and availability of (surplus) certificates on the market, which can be real or anticipated.

Most of the emissions reductions attributed to carbon pricing schemes appear to be the result of
low-cost operational measures that are relatively easy to implement and thus produce immediate
emission reductions. These include fuel switching (44, 47, 115, 119, 132, 152) or reductions in
fossil fuel consumption (122,127,153, 154), which may stem from energy efficiency improvements
(120) or industrial restructuring (133, 155). As a result, carbon prices also led to a notable decline in
the carbon intensity of many countries’ electricity mixes (116, 120, 155-158). Despite widespread
concerns, the estimated extent of carbon leakage, i.e., the relocation of utilities and businesses to
regions not subject to a carbon price and the resulting increase in emissions in these regions, is
rather small, or nonexistent in many (85, 86, 122, 159, 160) but not all (161) cases.

Finally, a few studies fail to detect a statistically significant effect of carbon pricing on emis-
sions, at least for some jurisdictions and sectors, particularly industry and in countries with tax
exemptions for energy intensive industries or low carbon prices (124, 138, 146, 153, 158). Above
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all, there is broad consensus that the impact of other (climate and nonclimate) policies as well as
broader socioeconomic trends on emissions (such as the 2008 recession or nuclear shut down in
Japan following the 2011 earthquake) in jurisdictions with carbon prices are substantial and tend
to account for a larger share of observed emission reductions, implying that carbon prices in some
cases remain at too low a level to drive mitigation, and in other cases fail to address other systemic
barriers to change (33, 46, 114, 121, 123).

3.3.2. Other mitigation policies. Numerous additional mitigation policies have demonstrably
reduced GHG emissions. Although many of them are primarily directed at influencing emission
drivers (see Sections 3.4 and 3.5), several studies also report their immediate or lagged effects on
emissions. Considerable emission reductions in energy, for example, were realized through the
policy-driven expansion of renewable energy technologies that led to a displacement of fossil fuel
combustion (135). These policies most notably include (market-based) regulation and govern-
mental subsidies (162). When attributing 70% of global wind and solar deployment to date to
mitigation policies, policies led to emission avoidance of at least 1.3-2.5 GtCO,eq in 2021 (163).
According to the International Energy Agency (IEA), the expansion of renewables and EVs in
2022 alone led to avoidance of almost 1 GtCO,eq (164).

In the buildings sector, observed emission reductions are mainly attributed to building sector
regulation, especially building energy standards (38, 165-167). In India, energy efficiency policies,
including energy standards, labels, subsidies, and a trading scheme for energy savings, have led to
substantial emission reductions (~172 MtCO; in 2020) (168). In industry, loans and subsidies
incentivizing renewable energy adoption as well as legal requirements mandating energy audits
have been effective in lowering firms’ GHG emissions (169). Voluntary programs may also yield
firm-level emission reductions, but the literature suggests that regulation, or the threat thereof, is
likely more effective (170).

For land transport, regulatory instruments, such as vehicle fuel economy or emission stan-
dards, have been found to reduce fuel use and emissions (171-179). Both monetary disincentives
of car use (e.g., fuel taxes, road tolls, congestion pricing, parking fees, or the abolishment of car-
use-related benefits) (180-186) and nonmonetary disincentives (e.g., driving restrictions) (187,
188) have been shown to reduce overall car use and passenger transport-related GHG emissions.
An analysis of the EU road transport sector identified 10 effective policy interventions that
reduced emissions between 1995 and 2018 by between 8 and 26% per case and, taken together, by
35.9 MtCO; in total in the EU15 relative to the estimated counterfactual (147). The replacement
of internal combustion engine vehicles by EVs holds a substantial mitigation potential, although
empirical, ex post evidence is not yet substantive, given the early phase of the substitution process
(see Section 3.5) (49, 189-191). Empirical literature on the emission reduction effect of policies
that promote alternative modes of transport is scarce, but the available evidence suggests that
investments in or the provision of public transport and cycling infrastructure reduces air pollution
and congestion, and thereby GHG emissions (192-203). Measures that have been empirically
demonstrated to reduce demand and emissions from aviation include fuel and passenger taxes
(204-206) and the construction of high-speed rail (207-209). Aviation taxes have been shown
to lead to cross-border substitution (206), making the overall effectiveness of the instrument
contingent on geographical conditions. In China, the construction of high-speed rail is estimated
to have led to a cumulative net abatement of 1.76-2.76 MtCO, from 2012 to 2015, which is
equivalent to 3—5% of 2015’ domestic aviation emissions (207).

In the AFOLU sector, emissions have mainly been abated as a result of decreasing rates of
deforestation (see Section 3.4.2). In agriculture, certain management practices and technologies
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(e.g., improved grazing, fertilization management, legume sowing, or irrigation) can lead to sub-
stantial GHG emission reductions (210-213), the adoption of which has been facilitated by public
policy such as R&D funding (210). Educational measures and infrastructural support can also in-
centivize the adoption of mitigation measures in agriculture (214). Yet overall, the application of
mitigation policies in the agricultural sector has been limited. Additional and sector-spanning fac-
tors that were found to be correlated with emissions reductions include energy taxes, fuel prices,
and patenting activities surrounding environmentally friendly technologies, all of which may have
a strong steering effect on GHG emissions (13, 128,135, 153).

3.4. Proximate Emission Drivers

Mitigation policies have had a discernible effect on the proximate drivers of emissions. Although
most research on proximate emission drivers points to trends in energy intensity, carbon intensity,
and deforestation rates, results are commonly expressed by numerous outcome metrics, such as per
capita electricity consumption or the share of fossil fuels in the energy mix. The following two
sections present the results of our literature review separately for energy-related and AFOLU-
related drivers.

3.4.1. Energy-related drivers. Several studies demonstrate that mitigation policies have had a
significant impact on energy consumption in all energy end-use sectors. Bertoldi & Mosconi (215),
for example, estimated that the EU28’ final energy consumption in 2013 would have been 12%
(4.9 million Terajoules) higher in the absence of energy efficiency policies. The largest energy
savings were achieved in the industry sector (20% compared to a simulated counterfactual case),
followed by transport (12%), and households (9%), with no significant effect in the services sector.
Another study found that energy efficiency policies have led to electricity and natural gas savings
of 807 Petajoules in the EU’s household and manufacturing sector since 2006, which is equivalent
to 5.6% of the EU’s combined electricity and natural gas usage in 2011 (216). In India, three
energy efficiency programs resulted in energy savings of almost 27 Mtoe in 2020 (168), including
electricity savings of 8% of final electricity consumption. In a meta-regression of the impact of
energy efficiency policies, Labandeira et al. (217) found that they typically reduce energy demand
by 8-10% compared to a business-as-usual scenario.

Improvements in energy efficiency have been attributed to various instruments, including
R&D investments (31, 218), governmental subsidies (162), standards and regulation (162), and
market-based approaches (162). White certificate schemes, which require utilities to assist their
customers in implementing energy efficiency measures at homes for which the utilities receive
tradable certificates, have led to an increase in energy efficiency in several European economies
(38,219-221). Urban planning policies have a considerable impact on energy use in buildings and
transport (190, 222-225). McIntosh et al. (200), for example, demonstrated that each 1% increase
in investments in public transit is associated with a 0.16% reduction in private vehicle kilometers
traveled per capita on average across 26 cities in Europe, North America, and Australia.

In Europe, residential energy consumption per unit floor area declined by 52% between 1995
and 2017 when controlling for effects of climate, income, and population, implying a strong im-
pact of energy efficiency policies (167). Regulatory policies, most notably building energy codes
and standards, have enabled these substantial improvements in energy efficiency in both commer-
cial and residential buildings (165, 226-232). In recent years, the adoption of minimum energy
performance standards for the existing buildings stock has risen sharply, leading to an increase in
the rate and depth of renovations (233). Other impactful instruments include Top Runner Pro-
grams for energy-efficient appliances (234) (such as, famously, in Japan), city-level benchmarking
programs, and best-practice standards and labeling (228, 235-238).
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While regulatory policies in buildings are generally assessed to be more effective than carbon
prices or informational instruments, especially in the case of space heating, the latter have also
demonstrably reduced building sector energy use (61,231, 239). This includes feedbacks (52, 53,
6265, 235) and nudges (66, 67). In a meta-level review on informational policies, Delmas et al.
(52) found that in experiments individuals reduced their electricity consumption by approximately
7% on average across experiments. Similarly, Zangheri et al. (53) concluded that informational
feedbacks reduce household energy consumption by 5-10%. However, short study periods and
publication biases have raised concerns about the persistence of behavioral effects (52, 68) and
the generalizability of results (61, 239, 240).

Finally, carbon prices (131, 154, 231, 239) and energy prices (64, 131) have also been found
to reduce overall energy and fossil fuel use in buildings. Measures promoting sufficiency (i.e., the
deliberate reduction of energy, typically not measured per unit of output) may result in energy sav-
ings (241, 242), but there is little experience with sufficiency-oriented instruments. Importantly,
energy efficiency improvements in the buildings, transport, and industry sector are often at least
partly offset by two factors: a rebound effect as a direct response to (policy-induced) energy sav-
ings, as well as non-mitigation policies that increase the production and consumption of more
energy-intensive goods or services (234, 243-246).

To date, few mandatory mitigation policies have been implemented in the industry sector; si-
multaneously, few scientific studies on mitigation policy impacts on proximate emission drivers in
industry exist. Carbon prices have demonstrably led to energy efficiency improvements in firms
(247). Exempting industry from carbon prices or other climate-related levies on energy, on the
other hand, has led to a notable increase in electricity consumption among German firms (248).
Voluntary agreements (e.g., between industry and governments) have been successful in gener-
ating energy savings (249, 250) but are only rarely strictly voluntary, as they typically involve
penalties or threats of sanctions (250). Case studies from South Korea and China indicate that the
establishment of eco-industrial development zones (i.e., industrial symbiosis) has lowered energy
use and CO, emissions compared to the national industry average (251-254). Lastly, end-user
energy saving obligations may be effective in the industrial and commercial sector (255).

Mitigation policies have also had a discernible impact on carbon intensity (emissions per unit
of energy consumption). Since reductions in carbon intensity have been mainly brought about by
supply-side changes toward low-carbon technologies, such as the increased deployment of renew-
ables for electricity generation, results are mostly reported in Section 3.5. Likewise, Section 3.3.1
on carbon pricing highlights that carbon prices led to reductions in both energy and carbon in-
tensity, thereby ultimately reducing emissions. Using a decomposition analysis for 18 developed
economies, Le Quéré et al. (23) more generally found that the number of policies on renewables
and the share of fossil fuel-based energy are negatively correlated.

3.4.2. Agriculture, forestry, and other land use-related drivers. Mitigation policies have
had a discernible impact on rates of deforestation, the dominant source of AFOLU sector emis-
sions. Since policies targeting forest cover retention tend to be applied to confined, subnational
geographical areas, it is infeasible to derive conclusions about the impact of mitigation policies
on global land-use change. Additionally, there are multiple driving forces behind (avoided) de-
forestation (256), and the attribution of observed effects to policies remains challenging. Global
deforestation is estimated to have peaked in the 1980s with 151 million ha net loss that decade, and
has since slowed. Since 1990, many countries in temperate regions (e.g., the United States, several
European countries), but more recently also countries in tropical regions (e.g., Bhutan, Jamaica,
and Azerbaijan), have experienced a net gain in forests, although globally there was approximately
47 million ha net loss in the past decade (257). The following section surveys policies that have
helped drive this trend.
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Payments for ecosystem services (i.e., financial compensation for ecosystem protection such as
forest retention) have had a discernible though likely modest impact on forest conservation (258-
261). The Reducing Emissions from Deforestation and Forest Degradation (REDD+) program
specifically has led to reductions in deforestation rates and tree cover loss (36, 262), ultimately
leading to emission abatement (36). Land tenure regularization may incentivize participation in
REDD+, potentially boosting its overall effectiveness (263). The evidence on the impacts of
REDD+ is, however, mixed (263). Payments for forest protection such as REDD+ have been
criticized for leading to increased deforestation outside the project areas and for failing to sus-
tain effects once payments are discontinued (258, 259, 261, 264, 265). Furthermore, effects may
be overstated in the literature as a result of selection bias: Forest area with a low likelihood of
being deforested in the first place is more likely to participate in REDD+, leading to exaggerated
estimates of avoided deforestation.

Deforestation rates have demonstrably been reduced by supply chain initiatives and moratoria
that prohibit deforestation (266-269), the establishment of low-deforestation zones or mixed-
use protection (265, 270, 271), protected area designation (268, 272), environmental enforcement
action plans (273), and conservation initiatives that combine legal protection and financial in-
centives (267, 274, 275). Similar to ecosystem service payments, carbon leakage risks exist (266,
267). Emissions and deforestation rates can further be lowered by the adoption of certain manage-
ment practices, such as climate-smart forestry (276, 277), which includes, for example, active forest
management to sustainably increase productivity. The effectiveness of certification schemes, such
as the FSC label, has been questioned by several empirical studies (276, 278). Finally, the trans-
lation from forest cover/deforestation to net emissions implications is one of many additional
uncertainties in the AFOLU sector.

3.5. Low-Carbon Technologies

Mitigation policies have had a discernible effect on technological change, most importantly lead-
ing to investments, capacity expansions, and cost reductions of low-carbon technologies. These are
mutually enhancing, as cumulative investments and deployment lead to technology cost reductions
(279), which in turn spur further capacity expansion.

The most significant shift toward low-carbon technologies as a result of mitigation policies
has occurred in the energy sector. Technology support policies such as R&D funding or financial
deployment incentives have unambiguously led to the global diffusion of solar and wind technol-
ogy (91, 280-289), having been particularly impactful in the case of solar energy (281) and in the
earlier stages of the diffusion process (282). Overall, feed-in-tariffs were most effective in attract-
ing investments in, and increasing the share of, renewable electricity generation (283, 284, 286,
289-297), followed by tax incentives and other purchase subsidies (280, 285, 286, 296, 298).

Renewable energy obligations, such as renewable portfolio standards or clean energy stan-
dards (38, 290, 299, 300), as well as auctions and renewable energy tendering schemes (289, 301),
have all also supported investments So have market-based measures, such as green certificates
in conjunction with emission allowances (91, 302), although likely mainly in the long run (287).
Carbon prices not only incentivized the substitution of natural gas for coal (44, 115, 119, 152)
but also increased patenting activities (279). In an analysis of more than 100 countries, Best &
Burke (281) found that carbon prices are associated with higher rates of solar and wind adoption,
although overall, the evidence on impacts of carbon prices on low-carbon innovation is limited
(44,47,303).

Multiple studies note that renewable energy policy in general, or the Kyoto Protocol specifi-
cally, has had a significant influence on innovation activities and investments in renewable energy
in countries of the Global North and Global South (91, 295, 304). Several studies find that if the
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stringency of a policy instrument increases (e.g., R&D subsidies or tariffs are raised), renewable
energy capacity and generation also increases (91, 286).

In the buildings sector, consumer purchase intentions and behavior with regard to household
appliances were influenced by regulatory and informational measures [such as energy efficiency
labeling (236)], while the uptake of residential solar photovoltaics (PV) was facilitated by purchase
rebates and subsidies (280, 285) as well as municipal loan schemes (305). Energy efficiency poli-
cies, especially financial subsidies and energy labels, have also been shown to increase the number
of commercially relevant patents (306). Large-scale subsidy-based programs designed to incen-
tivize fuel switching [e.g., from wood or kerosene to liquefied petroleum gas (LPG)] in residential
cooking within countries of the Global South yielded mixed results: On the one hand, these pro-
grams led to the desired outcome, namely the purchase or use of new, more efficient boilers. On
the other hand, households often also continued to use their old cooking devices and fuels, so air
pollution and GHG emissions were not reduced as much as hoped (307-313).

In transport, the uptake of EVs has been positively affected by purchase incentives [e.g., sub-
sidies or tax rebates (48, 314-318)], other financial incentives [e.g., free parking or charging (316,
319,320)], nonmonetary incentives [e.g., access to bus lanes (319, 321)], and the provision of public
and private charging infrastructure (314-316, 320-326). Public procurement (321), EV readiness
as a building requirement for new property developments (321), informational measures (314,
315, 322), and favorable gasoline-to-electricity price ratios (322) have also been associated with
EV adoption. Additionally, the cumulative number of EV-related policies positively affects EV
uptake (322).

Tax incentives for the purchase of more fuel-efficient or less carbon-intensive cars led to a
reduction of CO; intensities of new vehicles in Norway (327) and to an increase in the adoption of
low-emission vehicles in the United Kingdom (328). The effect of differentiated registration taxes
differs from country to country but appears to be positive overall (329, 330). Policies promoting
alternative modes of transport, such as public transport subsidies, have reduced the share of car
users (331) but are at risk of being offset by an increase in overall travel demand or reducing other
low-carbon modes of transport (331, 332).

In industry, carbon prices have led to investments in new equipment and production technolo-
gies that are less energy-intensive (114, 333). More generally, policies of all types, but subsidies
especially, have been shown to promote the adoption of green energy technologies among firms
(334). With regard to cross-sectoral findings, public procurement has increased uptake of environ-
mentally friendly technologies (38, 335). One can conclude that mitigation policies of various types
have positively affected environmental innovation and the diffusion of low-carbon technologies
across sectors (279, 336).

3.6. Cross-Cutting Findings

Policy mixes are, theoretically and empirically, superior to standalone policy instruments (47, 134,
190, 195,281, 287,302, 337-339). They demonstrate a higher effectiveness in reducing emissions
(195) and stimulating innovation (339). The literature offers several explanations as to why this is
the case: The superiority of policy ensembles over individual instruments may be due to the mutu-
ally reinforcing nature of policies (190, 340) and positive policy spillovers (279, 285, 339) as well as
temporally varying effects (287). The combination of different policy instruments may also enable
policymakers to address a multitude of adverse effects simultaneously (341, 342). Several scholars
highlight that policy mixes are most effective when well-balanced, i.e., entailing both push and
pull instruments (279, 339, 343, 344), for which there exists some empirical evidence (147, 344).
Evidently, the specific policy design or policy mix configuration greatly impacts overall ef-
fectiveness. Generic design features (e.g., type, stringency, duration, monitoring, reporting, and
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verification provisions) decisively influence policy outcomes (281, 292, 299, 345). In the case of
policy mixes, for example, perceived consistency and credibility were found to affect innovation
expenditures on renewable energy technologies (292, 346). Thorough implementation processes
(226), which are highly dependent on the institutional setting (334, 347), also play a key role in the
overall effectiveness of a policy. Importantly, policy experimentation and learning are of crucial
importance in ongoing mitigation efforts (279).

Finally, several nonclimate mitigation policies are having a considerable climate impact, leading
to both higher and lower GHG emissions. One prominent example includes the Montreal Pro-
tocol, which was designed to protect the stratospheric ozone layer, but also led to avoided GHG
emissions (348). Similarly, pollution abatement policies that regulate SO,, NOy, and PM emissions
have been found to simultaneously reduce CO; emissions (349, 350), although not qualifying as
impactful mitigation channels per se (351).

3.7. Quantifying Total Abatement

Substantiating the causal link between mitigation policies and emission reductions inevitably
raises a question about the magnitude of effects. We found only one top-down estimate, which
suggested that climate policies and laws were associated with 5.9 GtCO,/year global emission
savings in 2016 (43), translating to a 15% reduction compared to a world without mitigation
policy. If extrapolated to emissions in 2021 as a theoretical exercise, abatement would amount
to approximately 6.4 GtCO,/year. Despite inevitably having methodological limitations, it is a
useful starting point. In this section, we provide a first estimate of global impacts based on a wider
variety of component studies, metrics, and methodologies.

Several regional and large-N studies provide additional evidence of a sizable impact of climate
policies. According to the most robust estimates, the Kyoto Protocol reduced emissions in
Annex B countries by more than 10% below a no-policy counterfactual by 2012 (41), which was
equivalent to more than 1 GtCO,eq that year, and was complemented by additional abatement
stemming from non-Annex B countries (71). The EU ETS (39, 40, 113) and other carbon pricing
schemes (see Section 3.3.1) have led to annual abatement of approximately 200 MtCO,/year. The
abatement due to India’s energy efficiency program is of a comparable scale (172 MtCO; in 2020)
(168), and abatement due to energy efficiency policies in the EU was larger still (Section 3.4.1).

For relevant context, according to a 2020 publication by the United Nations Framework Con-
vention on Climate Change (UNFCCC) (352), Annex I countries reported 2,624 policies and
measures in their fourth biennial reports and quantified impacts for 38% of them, totaling emis-
sion abatement of 3.8 GtCO,eq for 2020. Overall, Annex I parties’ total emissions were 13%
lower than in 1990, which was attributed to two main causes: the economic restructuring of
economies in transition and the strengthening of mitigation actions. The 2022 UNFCCC syn-
thesis report, which aggregates information from countries’ latest available NDCs (353), shows
that the projected emission levels for 2025 are 1.8 (4.8 for 2030) GtCO,eq lower for those parties
that submitted updated NDCs than in the previous report.

The global diffusion of renewable energy technologies can also be translated into emission
impacts. When attributing 70% of the observed capacity expansion of wind and solar power
to mitigation policies—which is a justifiable assumption given ample evidence on policies’
substantial impact (91, 280-289)—renewable energy policy has likely abated emissions of 1.3 to
2.5 GtCO,eq/year in recent years (163), depending on assumptions on the electricity mix that is
being displaced. The IEA estimates that capacity additions of renewables and EVs in 2022 alone
led to the abatement of 1 GtCO, (164) (0.7 Gt when attributing 70% to policy).

As noted, annual growth in global emissions has slowed over the past decade and emissions
have declined in many countries (Figure 2). Given the persistence of effects and the cumulative
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(@) Annual global CO; emissions. (5) Absolute change in CO; emissions. The blue bar lines show the annual absolute change in fossil
fuel and industry CO; emissions by region. Data do not include emissions from LULUCF given the greater uncertainties in both

global and national LULUCEF accounting. The red lines show two sequential trend lines, one for 1990-2005 (so/id) and one for
2006-2021 (dashed). Abbreviations: LULUCE, land use, land-use change and forestry; OECD, Organisation for Economic
Co-operation and Development. Data from Friedlingstein et al. (371).
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nature of annual emission savings, a policy that cuts global emissions by 0.1 GtCO, per year
compared to the previous year will cause cumulative abatement of 1 GtCO; after 10 years. The
slowing global trend suggests reductions in emission growth that is in line with above-mentioned
abatement estimates, and the Annex I official reported estimates of policy impact are also broadly
consistent.

Naturally, reductions in growth rates give rise to the question of whether we have reached peak
emissions. Even though GHG emissions reached an all-time high in 2022, it remains difficult to
distinguish trends and establish a counterfactual that accounts for the economic rebound and
general uncertainties following the COVID-19-induced recession. In OECD countries, which
account for 40% of today’s emissions, CO, emissions peaked in 2007 and have declined since
(354). On a per capita level, CO; emissions peaked in 2012 with 4.91 tCO; and fell to 4.47 tCO,
in 2020. Had per capita emissions stayed at a high level of approximately 5 tCO,/year, total CO,
emissions would be higher by 3.6 GtCO, today.

Figure 3 summarizes the various estimated impact of mitigation policies and contextual ob-
servations relating to global emissions. Drawing together all lines of evidence as well as contextual

Global, all emissions

2021:6.4 Gt
e 2016:5.9Gt
Global RES support \\ .
4 (total capacity) in 2021 S, \ 2.5 Gt (upper estimate)
N 1.3 Gt (lower estimate)

Global RES + EV
support
(2022 capacity
additions): 0.7 Gt

Global carbon
pricing up to
2018:0.2 Gt

Annex | parties' 2016
estimates for 2020 Global effects from

effects: 3.8 Gt Kyoto, 2012: ~1.3 Gt

EU efficiency
standards, 2013:
0.44 Gt

Figure 3

Overview of annual abatement estimates due to mitigation policy stemming from ex post policy evaluations
(compared to a world without climate policies) and historic macro trends. The size of each circle is
equivalent to the size of effect. Also, the placement of the circles indicates the (in)dependence of abatement
effects and is an approximate function of the geographical and sectoral coverage as well as the type of policy
instruments. For example, the EU is part of Annex I; therefore, the circle for the EU efficiency standards
(orange circle) is situated within Annex I parties’ abatement effects (blue circle). Abbreviations: EU, European
Union; EV; electric vehicle; RES, renewable energy sources. Data from Bayer & Aklin (39), Anderson & Di
Maria (40), Maamoun (41), Eskander & Fankhauser (43), Kuriyama & Abe (71), Best et al. (117), Rafaty et al.
(118), IRENA (163), Malhotra et al. (168), Bertoldi & Mosconi (215), UNFCCC (352), and IEA (365). Note
that our own calculations were conducted, primarily on the basis of the cited and additional data sources.
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numbers, we deem the plausible range of emission abatement by 2020 to be 2-7 GtCO,eq/year
compared to a no-policy world, equivalent to 4-15% of total GHG emissions in 2020.

4. DISCUSSION
4.1. Limitations and Future Research

The field of mitigation attribution is still emerging and consequently there are several practical
limitations to our analysis. Our method built and expanded on the literature selection and evalua-
tion process in the preparation of the IPCC’s AR6 Working Group III report, which we take as the
best available representation of the research field at large, butitis impossible to review all of the ex-
isting relevant literature—much of which may be buried in reports and national evaluations rather
than academic papers. Moreover, the field itself is not representative. Further research should fo-
cus on gaps in the coverage of instruments (e.g., regulatory policies), sectors (e.g., the industry and
AFOLU sector), types of GHG emissions (non-CO, emissions), and regions (e.g., countries of the
Global South). Additionally, since we focused on the immediate impact of mitigation policies on
emissions, we only briefly note subsequent effects that may lessen their success (e.g., carbon leak-
age or rebound effects)—although these also need to set against the path-dependent, cumulative
nature of many developments, and the opposing forces of positive spillovers as progress in policies
and technologies lead over time to enhanced adoption globally.

There are some other problems that limit what can be firmly concluded. It remains method-
ologically challenging to construct realistic counterfactual or business-as-usual scenarios, and to
separate the influence of mitigation policies from the rest of the noise. Regular annual fluctuations
in emission levels are already substantive and get compounded by unexpected system shocks, such
as the financial crisis or the COVID-19 pandemic. Publication bias may favor publishing more
significant results (355, 356).

Although having noticed an increase in methodological rigor over time, as evidenced by the
growing application of quasi-experimental, econometric methods, we also note that the challenges
of self-selection bias, the influence of other socioeconomic trends, small sample sizes, short time
frames, incomplete data, and black-box calculations are a problem to a greater or lesser degree
across the literature. Future research should aim to maximize the utility of scientific research for
policymaking by improving scientific integrity and sophistication while simultaneously limiting
model complexity and deriving actionable policy recommendations.

This could include elaborations on the mechanisms through which policy effects occur, ulti-
mately reporting both abatement estimates and channels of abatement. For example, did a carbon
price lead to emission abatement because of a coal-to-gas switch, more efficient combustion equip-
ment, an increase in the deployment of low-carbon alternatives, or a reduction in total demand?
Opverall, we hope that our results motivate further research into the question of policy effective-
ness, so that future conversations on climate change mitigation are characterized by constructive
dialogue based on shared evidence.

4.2. Looking Back and Looking Ahead

That emissions today are 60% higher than they were in 1990 has led some people to conclude
that all efforts to combat climate change have been ineffective. Although it is true that we have
collectively failed to “bend the global emissions curve” to the extent necessary to make it point
unambiguously downward (17), and made insufficient progress to keep warming below 1.5°C, the
literature we surveyed allows us to reject the notion that all efforts to date have been in vain.
Efforts to mitigate climate change have reduced emissions compared to a world without climate
policy and, most importantly, have laid the groundwork for accelerating progress in the future.
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Changes in proximate emission drivers continue to create new sociotechnical and policy poten-
tials that will enable enhanced abatement in the future. Transitions research has demonstrated that
energy or sustainability transitions typically unfold in a nonlinear fashion—driven by the S-curve
shaped diffusion of new technologies, practices, or complex sociotechnical system configurations
(357, 358). While path dependencies and economic interests (359, 360) continue to act as signif-
icant transition barriers, there are numerous forces destabilizing the status quo and challenging
the long-held dominance of the fossil fuel industry, such as increasing regulation or the diffusion
of anti-fossil fuel norms (361), which unlock potential for further ambition.

The most prominent example of positive change is the expansion of renewables (see
Section 3.5), which has far exceeded expectations (362). Cumulative deployment led to learning
effects and economies of scale (363), which drove down prices (364) and thereby stimulated further
deployment. This positive feedback mechanism is best documented in the case of solar PV and
wind power and already contributes significantly toward total abatement (see Section 3.7). Mean-
while, other low-carbon technologies, such as heat pumps or EVs (365), are similarly starting to
enter a phase of exponential growth. The displacement of their carbon-intensive counterparts over
the next few years will materialize in additional sizable emission reductions. These reductions are
not only due to direct decarbonization, as the emission factors per unit of energy for electricity
decrease, but also due to efficiency gains from the electrification of end-use technologies leading
to less energy lost in conversion as direct electricity use is more thermodynamically efficient than
other fuels that produce heat as a by-product.

Importantly, positive feedbacks occur not only in the realms of new technologies but also in
policymaking. Mitigation policies lead to changes in the real world that render more ambitious
policies feasible. Such policy sequencing and ratcheting up has been observed in countries with
several decades worth of climate policy experience (366, 367). Drivers include political interest
feedbacks (368), such as changes in the composition and resource equipment of actor coalitions
(369). In addition, there are social conformity feedbacks resulting from network effects and social
norms (368, 370). These may lead to social tipping points that tip the scales in favor of less carbon-
intensive lifestyles.

Despite these positive developments, we caution against unconditional optimism. Even though
we are witnessing new dynamics in global trends, not all technological, political, or social changes
ultimately enhance climate protection. Predictions about the future continue to be complicated
by unforeseeable developments. Most recently, Russia’s war against the Ukraine sent ripple effects
through Europe and beyond that will have long-lasting impacts on countries’ energy systems.
Additionally, the complex web of interconnected actors and institutions with their myriad of
(economic) interests heavily influences the speed and direction of change.

4.3. Policy Horizons

In terms of concrete policy recommendations, our review confirms that there exists no silver bullet
approach to climate mitigation. Policy mixes that include different types of instruments tend to
outperform single policy instruments, with impacts highly dependent on both policy design and
implementation. Moreover, a policy that has been effective in reducing emissions in one country
or sector may not necessarily have the same effect elsewhere. Nevertheless, there is now almost
30 years of mitigation policy to learn from.

Previously, reductions in energy intensity have been the key driver behind emissions abate-
ment. Going forward, however, reducing carbon intensity will be of paramount importance
given the need to reach climate neutrality. This highlights the central role of technology policy
which particularly targets the replacement of carbon-intensive technologies with climate-friendly
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alternatives. Since low-carbon technologies largely reduce emissions by displacing carbon-
intensive capital stock, their effects are largely persistent. They are less subject to rebound effects
and leakage and may be more likely to create positive spillovers than some other measures.
Nonetheless, policies targeting reductions in energy intensity (e.g., energy efficiency programs
or carbon pricing) will continue to be important as they facilitate the transition to a fully
decarbonized energy system and reduce overall costs.

Assuming that population growth is unlikely to be influenced by climate policy per se, one key
remaining emissions driver is GDP per capita, on the assumption that higher economic activity
as measured by GDP is associated with higher emissions—in which case, the traditional political
equating of GDP growth with welfare is problematic. Our review is unable to assess the effec-
tiveness of policies which might seek to curtail overall economic and resource consumption, in
pursuit of sufficiency, given their paucity. If this is a path that policymakers decide to take, then
our assessment is nonetheless helpful as we demonstrate which policies have successfully reduced
energy demand and increased energy efficiency, which could act synergistically with the applica-
tion of sufficiency-oriented policies, such as reducing working hours, to increase overall welfare
while mitigating the adverse side-effects of economic activity. These policies have not yet been
assessed ex post, however, and therefore could not be included in this review.

Of course, policy learnings from the past are not fully indicative of policy impacts in the fu-
ture, and it remains possible that societies find new and maybe radically different paths in the
coming years. Yet, experience serves as our best starting point when devising policies going for-
ward. We demonstrate that mitigation policies have largely led to the changes they were intended
to cause, which calls for a continuation and ratcheting up of existing efforts. At the same time,
policy has to recognize the inadequacy of progress to date: Mitigation policies must become com-
patible with climate neutrality goals, which warrants an elimination—not just reduction—of GHG
emissions.

5. CONCLUSIONS

Our review of the literature on the impact of mitigation policies culminated in three main
findings. First, mitigation policies have demonstrably led to avoided GHG emissions, with the
majority of studies reporting a statistically significant effect, either in terms of absolute, real-world
reductions in their study sector/boundary or through counterfactual estimations relative to a
world without these policies (Figure 2). Second, mitigation policies have had a discernible
impact on proximate emission drivers, most notably leading to reductions in energy demand,
energy intensity, carbon intensity, and rates of deforestation. Thirdly, mitigation policies have
had a notable and positive impact on investments, capacity expansions, and cost reductions of
low-carbon technologies, especially in the case of renewable energy technologies (e.g., wind and
solar), energy-efficient appliances, and EVs. Additionally, we find that policy mixes are superior
to standalone policy instruments and that the impact of policies heavily depends on policy design
and the institutional context.

It may appear rather straightforward that mitigation policies lead to changes in emission trends.
However, the causal link between climate action and real-world impacts remains insufficiently
explored. Although the science on the cause of the problem—anthropogenic climate change—has
reached consensus, the science on how to best tackle this problem has not. Our key contribution
to the available literature lies in establishing an empirically based track record of climate action,
focusing on methodologically sound ex post studies.

Policies appear to have delivered on their stated goals (at least to some extent) but do not
have the breadth and depth needed to avoid catastrophic climate change. The results presented
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in this study suggest that we not only need more ambitious and well-designed policies, but we
also need to overcome the barriers that prevent policies from realizing their full potential. These
barriers exist in politics, society, and the historical record of development trajectories at large and
are fundamentally uncertain and unpredictable. Achieving climate neutrality requires a transition
to a fundamentally different global system, one which will have to be built in the face of the
impossibility of certainty.

We can, however, estimate that mitigation policies to date have led to global GHG abatement
of 2-7 GtCO;eq/year in recent years, and changed the trajectory of both emissions and technolo-
gies. Although the existing set of policies is vastly insufficient for closing the remaining emissions
gap for 2030 of 13-20 GtCO, (353), realized abatement has put us in a much better position com-
pared to a world without three decades of mitigation policy. Additionally, changes in proximate
emission drivers have created new abatement and policy potentials. Although debates continue
about the scale and nature of future efforts implied by the 1.5-2°C range of the Paris temperature
goals—a topic beyond the scope of this article—we tentatively conclude that delivering the goals
would likely be inconceivable without the progress made to date.

1. A variety of emissions mitigation policies have accumulated and expanded over past
decades.

2. Climate policy has had a discernible impact on global emissions and its proximate drivers,
while still being far from sufficient to meet the Paris goals.

3. Different policies have contributed in different ways and sectors, though in general
multiple policies can be mutually reinforcing and build on previous progress.

4. A quarter of studies (26%) are international in scope, and econometric panel studies
indicate significant emissions reductions associated with meeting Kyoto Protocol tar-
gets by 2012 (probably exceeding 1 GtCO,/year). Another 30% of studies focus on
EU/European countries that accounted for most of the emissions capped under the
Protocol, but the scope of policies and of assessments has substantially broadened over
time.

5. The largest single contribution to emissions mitigation to date is assessed to arise from
the range of policies targeted to support renewable energy, but a wide variety of other
policies aimed at both supply and demand, including pricing policies that affect both,
have made important contributions as well.

6. Substantial methodological challenges and uncertainties remain particularly in quanti-
fied attribution of changes in overall emissions to specific policies.

7. By integrating various strands of empirical evidence, we estimate that mitigation policies
had cut global emissions by 2—7 GtCO,eq/year by 2020, relative to a world without those
policies, equivalent to 4-15% of total GHG emissions that year.

8. There is much to learn from the successes and failures of emission mitigation policies;
policy analysis can increasingly draw on not just what should be done, but what has been
done and an assessment of what it delivered, emphasizing a new and more real-world
focus for research on “what works?”
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. There remain poorly charted areas of policy, especially around the land-use and agricul-

ture sectors, and more widely around behavior and values that may affect consumption
choices.

. Research should explore and track more systematically a wider variety of proximate

emission drivers and key indicators.

. Forward-looking models should strive to include more social and empirical insights from

ex post policy analysis.

. Compared to the dominant focus of mitigation research on model-derived indications

of what should be done in abstract, we suggest a need for more focus on what has proven
effective and requires further acceleration and global implementation.
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