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Abstract

Many important processes in the cell are mediated by stiff microtubule poly-
mers and the active motor proteins moving on them. This includes the trans-
port of subcellular structures (nuclei, chromosomes, organelles) and the self-
assembly and positioning of the mitotic spindle. Little is understood of these
processes, but they present fascinating problems in fluid-structure interac-
tions. Microtubules and motor proteins are also the building blocks of new
biosynthetic active suspensions driven by motor-protein activity. These re-
duced systems can be probed—and modeled—more easily than can the fully
biological ones and demonstrate their own aspects of self-assembly and com-
plex dynamics. I review recent work modeling such systems as fluid-structure
interaction problems and as multiscale complex fluids.
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1. BACKGROUND

Through long evolution, nature has engineered subcellular structures that are the scaffolds on
which much of the business of life is transacted. This obviously includes the DNA polymer and
the cell nucleus, but it also includes the cell and nuclear membranes; other biopolymers such
as actin microfilaments, microtubules (MTs), and intermediate filaments; the complex fluidic
cytoplasm that fills the cell; and molecular machines (motor proteins) that cross-link, move on,
and move subcellular structures.

Biology has long been the inspiration for studying how actively driven structures interact with
fluids, with the flight of birds and swimming of fish as classical examples. However, the micro-
cosm of the cell provides other, less easily observed, but equally fascinating instances. Figure 1
illustrates some of the events leading to the first cell division in a Caenorhabditis elegans embryo.
Figure 1a–c shows the migration and positioning of the pronuclear complex (PNC), which carries
the male and female genetic material to the center of the cell. However this process might be ef-
fectuated, the proper positioning and orientation of the complex, and thus that of the subsequent
mitotic spindle (Figure 1c–e), are crucial for asymmetric cell division and the generation of cell
diversity during development. Pronuclear positioning is a daunting problem in fluid-structure
interactions as the PNC is itself geometrically complex given its association with two dense arrays
of stiff biopolymers—MTs—which are themselves involved in driving the complex through the
cytoplasm. Figure 1d,e captures another fluid-structure interaction as chromosome copies are
divided and are then moved to opposite ends of a cell before cell division (Figure 1f ).

a b c

d e f

Figure 1
Snapshots of different stages of the first cell division in a single-cell Caenorhabditis elegans embryo: (a–c) pronuclear centering and
rotation, (c,d ) spindle formation, (e) asymmetric spindle elongation and chromosome segregation, and ( f ) cell division. Here tubulin is
labeled with a green fluorescing molecule, and the chromosomes are labeled with a red fluorescing molecule. Figure modified with the
permission of Asako Sugimoto.
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Centrally involved in all of these processes—pronuclear migration, mitotic spindle formation,
chromosome segregation—are MTs, which are the stiffest of the subcellular biopolymers. They
have a polar structure with plus ends and minus ends and are quite dynamic, substantially changing
their lengths through polymerization and depolymerization. MTs interact with each other, and
with immersed structures within the cell, through the mechanical coupling of motor proteins,
direct mechanical contact, and the flows that their motions create. MTs are an essential part of
the cell’s cytoskeleton.

Because of their biological importance, the interaction of MTs and motor proteins has been
studied in vitro. Experiments have shown the formation of a wide variety of steady-state structures,
including asters, which are reminiscent of the centrosomal array (Nédélec et al. 1997, Surrey et al.
2001, Schaller et al. 2010). Other recent experiments have combined stabilized MTs with synthetic
agents, such as depletants, to create biosynthetic suspensions. When driven by internal motor-
protein activity, these suspensions can demonstrate the self-assembly of dynamic structures, such
as MT assemblies that exhibit a ciliary-like beating and coordination (Sanchez et al. 2011), and
condensed active liquid-crystalline surface states (Sanchez et al. 2012), whose dynamics are similar
to those observed in dense suspensions of motile bacteria (Cisneros et al. 2011).

All of these MT-related phenomena, from pronuclear positioning to engineered active suspen-
sions, are examples of active matter in which the macroscopic dynamics are driven by a microstruc-
ture that converts a local source of energy, usually chemical, into a change in the microstructure
conformation. This review focuses on the hydrodynamics of assemblies of immersed MTs and
driving motor proteins, which fuel their motion through ATP hydrolysis. At the level of individual
MTs, we are essentially studying long and slender elastic rods, immersed within a fluid, on which
motor proteins move in preferential directions and couple them to other MTs or structures. At
the ensemble level, we are considering complex, ordered fluids whose dynamics are driven by
the internal stresses created by motor-protein activity and MT displacement. For reviews on the
related subject of active actin-myosin gels, readers are referred to Juelicher et al. (2007) and Prost
et al. (2015).

2. SOME BASIC INGREDIENTS

2.1. Microtubules and Their Dynamics

MTs are polymers composed of tubulin dimers, with each dimer comprising an α- and β-tubulin
protein molecule. These dimers polymerize into a cylindrical shell, with an outer diameter of
approximately 24 nm, that surrounds a hollow core. The dimer shell has a chirality that gives MTs
an intrinsic directionality, or polarity. Thus, one end of an MT can be labeled the plus end, and
the other the minus end. The flexural rigidity, BMT, of taxol-stabilized MTs has been measured in
vitro to be approximately 10−23 N m2 (Gittes et al. 1993)—that for unstabilized MTs is somewhat
less (Mickey & Howard 1995)—which is over two orders of magnitude larger than that measured
for actin filaments, and which corresponds to a persistence length of over 103 μm, well above
cellular dimensions.

MTs are highly dynamic and, unless stabilized, will successively polymerize and depolymerize
in a process termed dynamic instability (Mitchison & Kirschner 1984, Desai & Mitchison 1997),
with transitions between these states termed catastrophe (growing to shrinking) and recovery
(shrinking to growing). Polymerization (depolymerization) typically takes place at the plus end
through the addition (removal) of dimer subunits (Figure 2a, parts i and ii, respectively). Typical
polymerization and depolymerization speeds and catastrophe and recovery rates can be found in
Kimura & Onami (2005). Average MT lifetimes in vivo are less than 1 min, whereas processes
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Figure 2
Conceptual model of spindle organization. (a) Aligned microtubules (MTs) are both polymerizing (red ) and depolymerizing ( gray).
(i ) MTs depolymerize by losing dimer subunits from their plus ends and (ii ) polymerize by adding dimer subunits at their plus ends.
(b) Multiheaded kinesin complexes (aqua), which are plus-end directed, walk along MTs of opposing polarity (indicated by arrows).
These MTs slide past each other toward their minus ends. This process is called polarity sorting (Nakazawa & Sekimoto 1996). Panels
a and b reproduced with permission from Brugués et al. (2012). (c) Schematic illustration of the minus end of an MT being pulled down
toward the minus end of another MT by a minus-end-directed dynein motor protein ( purple).

such as pronuclear migration and spindle assembly and maintenance can take 10–30 min or
more.

2.2. Motor Proteins

Important to this review are motor proteins that walk along MTs, particularly kinesins and dyneins.
One important difference between dynein and kinesin is that although both are end directed, ki-
nesins walk toward the MT plus end, and dyneins walk toward its minus end. These directed
motions are often associated with the motion of objects in the cell. An example involves multi-
headed kinesin complexes thought to cross-link nearby MTs within the mitotic spindle (Saunders
& Hoyt 1992) (Figure 2a,b). Given that they are end directed, if two such cross-linked MTs are
anti-aligned (with plus ends pointing in opposite directions), the opposing motion of the motor
heads leads to MTs sliding past one another. This process is termed polarity sorting (Nakazawa
& Sekimoto 1996) and is associated with MT dynamics within the spindle (Brugués et al. 2012). A
related MT transport process is the conjectured clustering of MT minus ends by dynein walkers
(Verde et al. 1991) (Figure 2c).

Another important example involves the transport of cargo along the cytoskeleton; for example,
yolk granules suspended within the cytoplasm are transported along MTs by dyneins bound to
the surface of granules (as discussed in the next section) (Figure 3). The speed of motor-protein
walking is a function of the load, for example, that produced by hydrodynamic drag of their cargo,
and the relationship between speed and load has been much studied (Visscher et al. 1999). In short,
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Figure 3
Schematic illustration of the biophysical model of Shinar et al. (2011), inspired by Kimura & Onami (2005). (a) An ellipsoidal cell
boundary encapsulating the cytoplasm ( yellow), pronucleus (dark yellow), and associated microtubules (MTs) (red ). Asymmetric lengths
of MTs due to growth cessation at the cortex create a force imbalance FMT favoring centration. (Inset) Motor proteins ( purple)
embedded in the cytoplasm exert equal and opposite forces, ±Fmp, on the cytoplasm and MT, resulting in their relative motion. (b)
The relationship between load Fm and velocity �v for a single motor protein. Figure adapted with permission from Shinar et al. (2011).

retarding loads slow the motor protein, with the speed becoming zero at the stall force, Fs, which
is on the order of 1 pN. Expediting loads are typically resisted by the motor protein, leading to
little change in speed.

It is noteworthy that a 1-pN load is easily enough to significantly bend or buckle an MT. This
can be seen by considering R = Fs/(BMT/L2), the ratio of stall force to a characteristic MT elastic
force. For an MT of 8-μm length, this gives R ≈ 7.

2.3. The Cytoplasm

By definition, in vivo experiments take place within the cell, and the complex liquid that fills
it is termed the cytoplasm. The cytoplasm is approximately 80% water, with the remaining
20% including many types of soluble proteins and various small suspended structures, such as
membrane-bound organelles and yolk granules. Many in vitro experiments actually utilize ex-
tracted and purified cell cytoplasm as this preserves much of the molecular machinery needed for
the assembly of structures such as spindles.

The mechanical properties of the cytoplasm are complex. Recent modeling and measurements
of cytoplasmic response in living cells suggest that the cytoplasm is best conceived of as a poroelastic
material (Moeendarbary et al. 2013). Other studies suggest that this may depend on the cell type and
developmental stage. Using particle tracking microrheology, Daniels et al. (2006) found that the
cytoplasm of the much-studied single-cell C. elegans embryo responds as a very viscous Newtonian
liquid, with a viscosity approximately 1,000 times that of water. Of course, rheological responses
can be scale dependent, and given the complexity of the cytoplasm, many modeling studies have
simply assumed a Newtonian response (Kimura & Onami 2005, Niwayama et al. 2011, Shinar
et al. 2011).

3. NATURAL ASSEMBLIES OF MICROTUBULES
AND MOTOR PROTEINS

The most-studied natural assemblies of MTs and motor proteins are the centrosomal array and
the mitotic (and meiotic) spindle. The centrosomal array is a collection of MTs that are nucleated
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from so-called centrosomes, or MT organizing centers. The centrosome is a small organelle whose
composition remains an object of study (Mardin & Schiebel 2012). The minus ends of centrosomal
MTs are contained within the centrosome, whereas the plus ends grow into the cellular cytoplasm,
making contact with the cell cortex and chromosomes (Figure 1). The centrosomal array of MTs is
thought to be involved in both the positioning of the mitotic spindle and chromosome segregation
(McIntosh et al. 2012).

The mitotic spindle is a self-assembled structure within the cell composed of MTs, cross-
linking proteins, and motor proteins (McIntosh et al. 2012). In vivo, mitotic spindles are thought
to form through MT nucleation following the dissolution of the nuclear membrane (Brugués et al.
2012). Spindles can be highly ordered, with MTs in an aligned liquid-crystalline state (Brugués
& Needleman 2014). The MTs within the spindle are constantly overturning through dynamic
instability, having lifetimes on the order of 1 min, whereas the spindle is itself assembled and
maintained on the order of 1 h (Brugués & Needleman 2014). With the assembly of the mitotic
spindle, chromosomes in a condensed state are positioned in the midplane of the spindle, and
copies are divided and segregated to opposite ends of the cell. The precise mechanics by which
this takes place are yet to be determined. Spindles can be spontaneously formed in vitro by adding
genetic material to cell extracts (Heald et al. 1996). Such spindles can be stabilized for hours,
whereas again their MT constituents overturn in less than 1 min. They also show great robustness
under experimental perturbation. For example, spindle self-healing after laser ablation has been
used to deduce MT length distributions (Brugués et al. 2012).

3.1. Modeling and Simulations of Flow and Transport

There are several aspects to the modeling of MT/motor-protein assemblies. One is to describe
the basic mechanics of an MT under external loads. The simplest nontrivial approach is to simply
consider the MT as a rigid rod or as a simple Euler beam. The former is appropriate for short MTs,
such as those used in the experiments of Sanchez et al. (2012), whereas the latter is appropriate for
longer MTs, such as those that span the mitotic spindle or that compose the centrosomal array.
Another aspect is the way in which an MT interacts with the surrounding medium. Most if not
all studies to date have described that medium as being a very viscous Newtonian fluid.

Discrete structure models have been used to study many elements of MT/motor-protein inter-
actions. One popular and influential modeling tool is Cytosim (Nédélec & Foethke 2007), which
is a software package for evolving immersed mechanical structures such as flexible fibers, spheres,
and other objects. Inertia is considered as negligible, and although thermal fluctuations and local
drag forces are accounted for, long-ranged fluid flows are not. Cytosim has been used to simulate
the self-assembly of MT arrays in fission yeast (see Nédélec & Foethke 2007 for a review), to con-
struct a computational model of the Xenopus meiotic spindle (Loughlin et al. 2010), and recently
to investigate the ability of slender spindles to resist compressive loads (Ward et al. 2015).

The interaction of elastic fibers with fluid flows is a type of fluid-structure interaction for which
specialized mathematical descriptions and computational methods have been developed. The most
basic and easy to use of these is local slender-body theory, which gives a local anisotropic relation
between elastic and drag forces. Nonlocal hydrodynamic interactions can be captured through
the use of higher-order, more complex, slender-body formulations (Tornberg & Shelley 2004) or
through other approaches, such as immersed boundary methods (Peskin 2002, Nguyen & Fauci
2014), bead-rod models (Hämäläinen et al. 2011), or regularized Stokeslet methods (Olson et al.
2013). These methodologies and their applications to understanding fluid-structure interactions,
such as buckling instabilities at low Reynolds numbers, have recently been reviewed (Lindner &
Shelley 2015).
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The effect and nature of cytoplasmic flows have been studied for pronuclear positioning in
embryonic cells. As discussed in Section 1, Figure 1a shows, for the single-celled C. elegans
embryo, the cell’s PNC, which comprises the fused male (posterior, or right side) and female
(anterior, or left side) nuclei. Also shown in the figure are the two MT arrays that nucleate from
the two centrosomes. As seen in Figure 1a–c, the complex moves toward the center of the roughly
ellipsoidal cell while simultaneously rotating so that the centrosomes are aligned with the long
axis. This is sometimes referred to as proper positioning. This positioning precedes the formation
of the mitotic spindle (Figure 1d ), which is followed by chromosome segregation (Figure 1e)
and cell division (Figure 1f ).

The biophysics underlying nearly every step of this process are ill understood, including how
the PNC first moves into the proper position. Hypotheses on how the proper position is achieved
invoke MTs pushing against the cell periphery (Reinsch & Gonczy 1998) and the pulling action
of force generators—other motor proteins—at the cell periphery (Grill et al. 2001). Kimura &
Onami (2005) posited that motor proteins immersed in the cytoplasm, perhaps anchored to mobile
payloads, attach themselves to centrosomal MTs and pull or tow the complex to the cell center. In
this scenario, if the PNC is off-center, then MTs will on average grow longer toward the center. It
is known that minus-end-directed dyneins attach to MTs and tow payloads toward the associated
centrosome. This should generate a pulling force on the MT toward its free plus end. Longer
MTs can anchor more motor proteins and hence will generate a mean pulling force toward the
center.

Kimura & Onami (2005) computationally modeled the PNC as a sphere that experiences a
simple Stokes drag generated by length-dependent, plus-end-directed pulling forces on attached
centrosomal MT arrays. The model MTs themselves depolymerize on contact with an ellipsoidal
shell. Although this simple model ignores the fluid flows generated by MT motion, the motion
of the motor-protein payloads, and the confinement of cytoplasmic flow afforded by the cell
periphery, it does show how centering might be achieved by MT growth asymmetry.

Shinar et al. (2011) re-examined the conceptual model of Kimura & Onami (2005) within a
more realistic computational framework that incorporated the cytoplasmic flows generated by
(a) payloads carried along MTs by motor proteins obeying a velocity-load relation, (b) the motion
of the PNC, and (c) the presence of the egg shell on which a no-slip condition is imposed (Figure 3).
For simplicity, and in agreement with microrheological studies of C. elegans embryos (Daniels et al.
2006), it was assumed that the cytoplasm was a Newtonian fluid with a viscosity μ that is 103 times
that of water (1 cP). This model was instantiated in an immersed boundary framework in which
constraint forces on the fluid are determined on all boundaries (PNC, MTs, cell periphery) to
satisfy the appropriate boundary conditions. In particular, the cytoplasmic fluid obeys the forced
Stokes equation

∇ ·� = μ�u − ∇q = −gMT and ∇ · u = 0, (1)

where� = −qI+μ(∇u+∇uT ) is the Newtonian stress tensor, and gMT is the Eulerian MT-based
force density driving the flow. Let us consider a single MT with orientation vector p and centerline
coordinate XMT(s, t), with the arc length s measured from the centrosome-bound minus end. In
this model, as in that of Kimura & Onami (2005), motor proteins move along the MT, transporting
cargo while exerting a pulling force on the MT and its associated structures. The force density at
distance s along the MT is given by GMT(s ) = DFm(s )p, where D (taken as constant) is the density
per unit length of motor proteins, Fm is the force exerted on the MT by a single motor protein,
and p is the direction of that force (along the MT). Here Fm obeys a velocity load relation (see
Shinar et al. 2011) (Figure 3). The total MT-based force and torque on the attached PNC, with
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center X0(t), are then

FMT =
∫

MT
ds GMT(s ) and TMT =

∫
MT

ds (X(s ) − X0) × GMT(s ), (2)

and hence we must have

FMT +
∫
∂PNC

dS � · n = 0, (3)

TMT +
∫
∂PNC

dS (x − X0) × � · n = 0. (4)

where ∂PNC denotes the surface of the PNC, and n is its outward normal. The same motor-
protein motion also generates an equal and opposite force on the fluid along the MT, having the
Eulerian force density

gMT(x, t) = −
∫

MT
ds δ(x − X(s, t))G(s, t). (5)

In this fashion, motor-protein pulling forces are communicated to the fluid, generating streaming
flows along MTs toward the PNC, as indeed observed during centering (Shinar et al. 2011).
Within the immersed boundary framework, no-slip boundary conditions on the cell periphery
and the PNC are enforced by the determination of a constraint force in a fashion reminiscent of
the distributed Lagrange multiplier method of Glowinski et al. (1999).

The process of dynamic instability is also simulated within the model, in which MTs grow and
shrink stochastically. MTs are also assumed to be rigid and to depolymerize (undergo catastrophe)
on contact with the cell periphery.

Figure 4 shows a simulation of this model in which the PNC begins on the posterior of the
cell (Shinar et al. 2011). Given the PNC’s proximity to the periphery, MTs grow longer anterior-
wise, and cytoplasmic pulling forces tow the PNC leftward. This is unsurprising, but what is most
interesting is that the complex then begins a rotation that terminates in the proper position, that
is, with the alignment of the centrosomes along the anterior-posterior axis. This rotation arises
naturally in this model because of the ellipsoidal shape of the embryo, which allows a torque-
driven instability. If the centrosomes are lined up orthogonally to the anterior-posterior axis, then
slight rotational perturbations allow MTs that are nearly tangential to the PNC to grow longer
in the direction of rotation. This induces a torque that drives the rotation further. Figure 4d–f
also shows the streamlines of the flow, demonstrating that at early times, the PNC is essentially a
puller swimmer (Saintillan & Shelley 2013) moving in confined space. Confinement also increases
the active forces necessary to center the PNC on reasonable timescales, increasing the necessary
motor-protein forces by an order of magnitude relative to Kimura & Onami’s (2005) model. This
model has gained support from the knockdown experiments of Kimura & Kimura (2011), who
showed that centering was significantly impaired by inhibiting the attachment of dynein motor
proteins to mobile organelles.

Although the model is elaborate and physically realistic in many aspects, it suffers from some
shortcomings. First, the MTs are assumed to be rigid even though the forces associated with
motor proteins are sufficient in principle to bend them. Second, the number of MTs that can
be simulated is modest, O(50), because of the constraints of the numerical method. Relatedly,
although the MTs “exert” an active tangential force on the fluid (through our model of motor
protein forcing), they themselves experience no transverse drag as this would require substantially
more numerical resolution. This suggests that the model may substantially underestimate the
total system drag. The ratio rD of the Stokes drag on a sphere of radius a to that on a slender rod
of length 2a (Tornberg & Shelley 2004), with both moving at the same speed, is approximately
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Figure 4
The full simulation of Shinar et al.’s (2011) model. (a,d ) The pronuclear complex (PNC) starts at the posterior axis. (b,e) Asymmetric
microtubule (MT) lengths due to cessation of MT growth at the cortex lead to centration of the PNC. (c,f ) Fluctuations in the MT
lengths initiate a rotation of the PNC, which continues until it is aligned with the anterior-posterior end of the cell. Panels d–f
additionally show streamlines of the cytoplasmic flow. Figure adapted with permission from Shinar et al. (2011).

rD = (3/8)(− ln ε2e), where ε is the aspect ratio of the MT. With a = 2.5 μm (the scale of a C.
elegans pronucleus), a single MT already has a drag 25% that of the sphere. Of course, drag will
not scale linearly with the number of MTs as they may collectively carry the same volume of fluid
as would only a few.

This problem is currently being revisited within a much more flexible framework while staying
within (and exploiting) the constraints of a Newtonian cytoplasm. Figure 5 shows the results
of two simulations (E. Nazockdast, A. Rahimian, D.J. Needleman & M.J. Shelley, manuscript
in preparation) investigating different models of positioning in which, as in Figure 4, the PNC
begins near the posterior side of the cell. For the model in Figure 5a, there are no motor proteins;
instead, polymerizing MTs can exert pushing forces on the cell periphery, moving the PNC to the
center of the cell (Reinsch & Gonczy 1998). For the biophysical parameters used in this simulation,
rotation of the PNC into the proper orientation occurs but only very slowly (in this late-time snap-
shot, the PNC is not yet in the proper position). Because MTs are flexible, the pushing forces at the
periphery can also buckle the MTs, as is evident. The simulation in Figure 5b uses the cytoplasmic
pulling model of Shinar et al. (2011) but with the MTs now fully coupled to the flow, thus account-
ing for transverse drag forces and allowing for MT flexibility. This late-time snapshot shows that
the PNC has migrated to the center and has rotated into the proper position. MTs show very little
bending as the cytoplasmically bound force generators typically exert extensile stresses on them.

Here the Stokes equations are solved within a boundary integral formulation in which all
of the discrete structures—the PNC, MTs, cell periphery—are represented explicitly. MTs are
modeled as elastic beams that can bend under applied loads and the drag from fluid flows, and
they themselves move fluid as they move. Within a boundary integral formulation of the Stokes
equations (Pozrikidis 1992), only the surfaces of immersed structures are resolved numerically, not
the fluid volume, and these surfaces communicate through convolution integrals whose kernels
are formed from fundamental solutions of the Stokes equations. This amounts to a reduction in

www.annualreviews.org • Microtubules and Motor Proteins 495



FL48CH18-Shelley ARI 20 November 2015 16:24
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Figure 5
Simulations of pronuclear migration with hydrodynamic interactions between microtubules (MTs), the pronuclear complex (PNC),
and cortex using nonlocal slender-body theory and a boundary integral formulation (E. Nazockdast, A. Rahimian, D.J. Needleman &
M.J. Shelley, manuscript in preparation). (a) Polymerization forces from the cell cortex center the PNC and induce strong MT
buckling near the cortex. PNC rotation is not achieved until 30 min after PNC formation, whereas the positioning occurs in roughly
10 min in wild-type embryos. (b) Cytoplasmic pulling forces from immersed dynein motors can properly position the PNC after 11 min
of PNC formation. The MTs are under extensile forces and thus are relatively straight. For both simulations, the number of fibers is
N MT = 576. The parameters given by Kimura & Onami (2005) are used. The MTs are color coded according to the local tension on
them; red, blue, and white correspond to compressive, extensive, and zero tension forces, respectively.

the computational dimensions from three to two and allows the use of fast-multipole methods
(Greengard & Rokhlin 1987) for the resulting many-body problem.

Briefly, the contribution of MTs to the boundary integral formulation is a nonlocal slender-
body expression that reduces a single-layer surface integral to a line integral along the MT cen-
terline (Keller & Rubinow 1976, Tornberg & Shelley 2004). The contributions from the cell
periphery and PNC surface are expressed through the double-layer formulation of Power &
Miranda (1987), which requires the solution to a second-kind integral equation for an unknown
double-layer surface density. The bending response of the MTs, described by the Euler-Bernoulli
elasticity, makes their evolution temporally stiff, and Nazockdast et al. used implicit time integra-
tion methods related to those developed by Tornberg & Shelley (2004) for evolving suspensions
of flexible fibers (E. Nazockdast, A. Rahimian, D.J. Needleman & M.J. Shelley, manuscript in
preparation). Each time step requires the solution of a large system of linear equations for up-
dated MT positions, MT axial tensions that enforce MT inextensibility, and double-layer surface
densities. This is done within a GMRES iteration (Saad & Schultz 1986) with specialized precon-
ditioners, with fast matrix-vector multiplications performed using a generalized kernel version of
the fast-multipole method for the Stokes equations (Ying et al. 2004). In short, this simulation
captures the full set of hydrodynamic interactions at a linear cost in the number of unknowns and
with no high-order time-step constraints.

Perhaps such fluid-structure simulations will help reveal the operative mechanisms in transport
processes such as PNC positioning. This may be possible given that different mechanisms have
different cytoplasmic flow signatures, which can be investigated numerically. This effort may be
complicated by the strong possibility that more than one mechanism is at play in positioning the
PNC (Kimura & Onami 2007, Kimura & Kimura 2011).
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3.2. Some Related Work

The cytoplasmic pulling model gives streaming flows along MTs toward the centrosomes (Shinar
et al. 2011). Cytoplasmic streaming is observed in many other contexts. For example, in the very
early stages of pronuclear migration in the C. elegans embryo, the female pronucleus moves from
the anterior side toward the male pronucleus, presumably because of streaming flows along the
cell periphery (Hird & White 1993) produced by motions of the actin-myosin cortex. This is an
excellent fluid-structure problem in its own right, and the nature of these streaming flows has been
investigated experimentally and theoretically (Niwayama et al. 2011). Goldstein and collaborators
(Verchot-Lubicz & Goldstein 2010, Ganguly et al. 2012, Woodhouse & Goldstein 2013) recently
investigated and modeled several aspects of cytoplasmic streaming induced by motor proteins
moving along cytoskeletal elements.

4. BIOSYNTHETIC ASSEMBLIES

Mixtures of MTs and motor proteins have been extensively studied outside of the cell, with
early experiments showing static self-organized structures, such as vortices (which refer to the
MT patterning and not necessarily to fluid flows) and asters, with the latter reminiscent of the
centrosomal array. Figure 6 shows experimental examples from seminal works of asters formed
from MTs and multiheaded kinesin complexes (Figure 6a; Nédélec et al. 1997) and vortices found
in gliding assays of MTs driven by surface-bound dyneins (Figure 6b; Sumino et al. 2012). This
pattern-forming system has been extensively reviewed by Vignaud et al. (2012).

Recently, the laboratory of Z. Dogic synthesized relatively simple mixtures of micrometer-
scale MTs (stabilized against dynamic instability) with synthetic multiheaded kinesin complexes
and an additional depletant agent (PEG) that promotes MT bundling. Relative to the more dis-
perse systems discussed above, in this system bundling greatly increases the probability of MT
interactions through motor-protein coupling. In the presence of ATP, walking motor proteins
can induce relative sliding between MTs of opposite polarity (i.e., polarity sorting).

For bundles attached to a surface, Sanchez et al. (2011) demonstrated that such bundles show
oscillatory, ciliary-like collective beating (Figure 6c) and that arrays of such bundles could pro-
duce metachronal wave patterns reminiscent of those seen in dense fields of cilia. The oscillatory
motion presumably follows from sliding of antipolar MTs within the bundles, induced by multi-
headed kinesin complexes. As yet, no quantitative model has been put forward that investigates
this possibility.

In the bulk, Sanchez et al. (2012) showed that such MT bundles stretched, fractured, and
merged with each other (Figure 6d ). Their stretching presumably again reflects tethered kinesin
complexes walking on anti-aligned MTs, inducing antiparallel sliding. Fracturing likely occurs at
points where polarity sliding has produced a domain boundary, devoid of MTs, between antipolar
regions. At high MT concentrations, these bundles form a dynamic network whose stretching
and fracturing create fluid flows, and as measured by particle tracking, these flows have veloc-
ity magnitudes that scale with the ATP concentration but whose spatial correlation lengths are
relatively independent. This seems consistent with the bundle network having reached the ana-
log of an overlap concentration in which the length is determined by the development of strong
interactions with neighboring bundles. There is not yet a theoretical model that predicts these
correlation lengths or the nature of the bulk flow fields.

The dynamics are quite different when MT bundles are adsorbed onto an oil-water interface
(Figure 6e). There they instead form a dense, nematically ordered surface state characterized by
complex and time-dependent surface flows, and the spontaneous and continual generation and
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In vitro assemblies of microtubules (MTs) and motor proteins. (a) Aster patterns formed from MTs and kinesin motor-protein
complexes. Panel a taken with permission from Nédélec et al. (1997). (b) MT vortices formed in gliding assays of MTs driven by
surface-bound dyneins. Panel b taken with permission from Sumino et al. (2012). (c) Ciliary-like beating of MT clusters bound to a
surface, driven by kinesin complexes. Panel c taken with permission from Sanchez et al. (2011). (d ) The formation of MT clusters in
bulk that stretch, merge, fracture, and produce complex fluid flows. Panel d taken with permission from Sanchez et al. (2012).
(e) Snapshots of an active liquid-crystalline state of dense MT bundles bound to an immersed surface, showing the birth and separation
of a disclination singularity pair of order ±1/2 (indicated by the upper and lower yellow arrows, respectively).

annihilation of disclination defect pairs, of ±1/2 order, in the MT orientation field (Sanchez
et al. 2012). The topological structure of the orientation field was recently investigated, both
experimentally and theoretically, for spherical droplets with active MT surfaces (Keber et al. 2014).

Inspired by the active surface experiments of Sanchez et al. (2012), both Giomi et al. (2013,
2014) and Thampi et al. (2013, 2014) studied liquid crystal hydrodynamic models with fluid flow
driven by an apolar active stress (Simha & Ramaswamy 2002). Although these rather general
models reproduce aspects of the experiments, the microscopic origins of the driving active stresses
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(a) Schematic illustration of a cluster of polar-aligned and anti-aligned microtubules (MTs), with plus ends marked by red rings. Motors
walk on neighboring MTs. (b) Spring-like forces exerted on neighboring MTs by motors. (c) An anti-aligned MT pair. (d ) A polar-
aligned MT pair. Gray arrows characterize the magnitude of the extensile stress. Figure adapted with permission from Gao et al. (2015).

are unexplained, as is the role, if any, played by MT polarity. Interactions between MTs and
motor proteins are inherently polar. Gao et al. (2015) constructed a multiscale model built on
the directional translocation of motors along MTs that captures polar-specific interactions and
identifies possible sources of destabilizing active stresses.

Figure 7 outlines the basic physical picture. Each polar MT has a plus-end-oriented director
p, a length l, and diameter b (Figure 7a). Nearby MTs are coupled by active plus-end-directed
cross-links consisting of two motors connected by a spring-like tether (Figure 7b). Motor velocities
along an MT are controlled by a piecewise linear force-velocity relation (Visscher et al. 1999).
For a nematically aligned suspension, there are two basic types of MT-MT interactions. For anti-
aligned MTs (Figure 7c), the two motors move in opposite directions, stretching the tether. This
creates pulling forces on each MT that, acting against fluid drag, slide the MT toward its minus
ends (i.e., polarity sorting). Conversely, for polar-aligned MTs, the two motors move in the same
direction, there is little or no net sliding, and the larger force on the leading motor causes stretched
tethers to relax (Figure 7d ).

The nature of the stresses caused by these differing MT-MT interactions has recently been
studied. Gao et al. (2015) simulated the Brownian dynamics (BD) of suspensions of rigid, mobile
rods connected by active plus-end-directed cross-links (i.e., multiheaded kinesin complexes)
(Figure 8a). Forces acting on the rods included steric repulsion, thermal fluctuations, (local)
anisotropic fluid drag, and cross-link forces. Long-ranged fluid coupling was not included, but
estimates of bulk stress can be recovered from the system’s virial tensor (Allen & Tildesley 1987)
and were found to be typically extensile. Extensile stresses give rise to flow instability if they drive
long-ranged hydrodynamics (Simha & Ramaswamy 2002). By decomposing the bulk stress into
contributions from MT-MT pair interactions, Gao et al. (2015) found that extensile stresses arise
when the MT pairs are both anti-aligned and polar aligned, although with differing magnitudes.

The appearance of extensile stresses is not a universal aspect of motor proteins acting on
cytoskeletal elements. Indeed, actin-myosin gels typically show contractility (Bendix et al. 2008,
Prost et al. 2015). It is not a priori clear that MT suspensions should show extensile stresses, and it
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(a) Snapshots of the Brownian dynamics particle simulations for an active system with motile cross-links. Rods are colored according to
their orientation. (b) Histogram of cross-link occupancy as a function of the particle pair longitudinal displacement. Note the
asymmetry of the anti-aligned case, indicating a bias toward extension. (c) Variation of the extensile pair stresslet with local polarity.
Figure adapted with permission from Gao et al. (2015).

may depend on the nature of the motor-protein coupling and the degree of order, or lack thereof,
in MT orientations.

The extensile stress from anti-aligned pair interactions arises here from asymmetries during
polarity sorting. If an MT pair begins sliding when the two minus ends touch and slides with a
force proportional to pair overlap until the two plus ends meet, then the total extensile stresslet
would be zero. Two effects break this symmetry. First, MTs are unlikely to begin interacting
exactly when their minus ends meet, decreasing the MT overlap area over which active sliding
occurs. Second, more motors are bound on average during extensile motion (Figure 8b). Hence,
on average an extensile flow is created by the net elongation of the MT pair.

It is a surprising and counterintuitive result that the extra stress remains extensile for polar-
aligned interactions. Although no first-principles model yet describes this phenomenon, there is a
rough intuitive picture gained by considering cross-link relaxation on perfectly parallel filaments.
For immobile cross-links, attractive interactions due to cross-links are balanced by excluded vol-
ume interactions and thermal fluctuations, and the system is at mechanical equilibrium with no ex-
tensile stress. When cross-links are active, the motor force-velocity relation causes nonequilibrium
longitudinal cross-link relaxation. The force of a longitudinally stretched cross-link opposes the
leading motor, slowing it, and pulls forward on the trailing motor. This effect is observable in
BD simulations (Gao et al. 2015). In this case, the cross-link-induced contractile stress along the
MT alignment direction is decreased, while there is no change in the transverse stress induced by
cross-links. This leads to a net anisotropic extensile stress in the alignment direction.

Figure 8c shows how the strength of the extensile stress varies with the local polarity field
(with −1 being strongly anti-aligned and +1 strongly polar aligned). Moving from anti-aligned
to polar aligned, the stress amplitude decreases with approximate linearity, at least away from the
two isolated peaks that, upon close examination, originate from strong steric interactions of nearly
parallel MTs. In particular, the extensile stresslet of polar-aligned MT pairs is two to five times
smaller than that of anti-aligned pairs.

First-principles kinetic theories have been developed to describe the dynamics of suspensions
of microscopic rods (Doi & Edwards 1988), and recent kinetic theories for motile suspensions have
extended this work to include the contributions from self-locomotion, such as the active stresses
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that arise from swimming (Saintillan & Shelley 2008a,b; Subramanian & Koch 2009; Koch &
Subramanian 2011; Forest et al. 2013). Gao et al. (2015) developed a structurally similar theory
that models the fluxes that arise from polarity sorting and the polar-specific stresses that arise from
polarity sorting and cross-link relaxation. In this theory, a Smoluchowski equation evolves a dis-
tribution function�(x,p, t) of MT center-of-mass position x and orientation p (|p| = 1). That is,

∂�

∂t
+ ∇x · (ẋ�) + ∇p · (ṗ�) = 0, (6)

which reflects conservation of particle number. Here ẋ and ṗ are MT conformational fluxes.
Important orientationally averaged quantities include the local concentration � = ∫

p �, the
local polarity vector q = ∫

p �p/�, and the second-moment tensor D = ∫
p �pp, which arises

generically in capturing active stresses produced by active suspensions (Simha & Ramaswamy
2002, Saintillan & Shelley 2008a). Also useful is the (trace-free) tensor order parameter tensor
Q = D/�− I/d , with d = 2 or 3 as the spatial dimension.

Polarity sorting induces a flux of MTs that is relative to the local polarity distribution. Given
an MT of orientation p, if all neighboring MTs have the same orientation (i.e., q = p), then the
MT has negligible axial displacement. If all neighbors are oppositely aligned (i.e., q = −p), then
the MT has maximal displacement. By considering a cluster of aligned MTs with local polarity
q, Gao et al. (2015) showed, using local slender-body theory, that the MT velocity induced by
polarity sorting has the form c(p − q), where c is a typical motor-protein walking speed. More
generally, they model the fluxes for Equation 6, in dimensionless form, by

ẋ = (q − p) + u − Dt∇x ln�, (7)

ṗ = (I − pp) (∇xu + 2ζ0D) p − Dr∇p ln�. (8)

In Equation 7, u is the background fluid flow, and the last term models translational diffusion with
constant Dt. In Equation 8, the MTs are rotated by the background flow gradient ∇xu according to
Jeffery’s (1922) equation, whereas the second term with coefficient ζ0 arises from the Maier-Saupe
potential and captures aligning torques from steric interactions at high concentration (Maier &
Saupe 1958, Ezhilan et al. 2013, Forest et al. 2013). The last term yields rotational diffusion of the
rod with constant Dr . In two dimensions, the Maier-Saupe potential yields an isotropic to nematic
phase transition, with increasing ζ0, when ζ0 = 4Dr .

This system is closed by specifying how u and ∇xu are recovered from ψ , through the extra
stress in the fluid. Gao et al. (2015) assumed that the active stress arises separately from anti-
aligned and polar-aligned MT interactions and constructed it from D and �qq (i.e., the simplest
symmetric tensors quadratic in p). The active stress tensor takes the form

�a = αaa

2
(D −�qq) + αpa

2
(D +�qq). (9)

The first (second) term captures active stress production via polarity sorting (cross-link relaxation).
The total extra stress tensor is given by �e = �a + �′, where �′ models stresses arising from
flow-induced constraint forces on MTs and steric interactions (Ezhilan et al. 2013). Details of the
cluster calculation and its generalization can be found in Gao et al. (2015).

Gao et al. (2015) used this theory to model the experiments of Sanchez et al. (2012) on immersed
surfaces. First, the BD-MC simulations provide estimates for the two dimensionless stresslet
coefficients, αaa and αps . Second, rather than simulating the two-dimensional (2D) bulk equations,
they modeled the experiments by considering a thin layer of active material immersed between
two Newtonian fluids. The activity generates a stress jump across the layer, inducing fluid flows
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above and below. The velocity found by solving the Stokes equations above and below is easily
calculated using 2D Fourier transforms and yields the in-layer velocity and gradients needed to
evolve the MT suspension therein.

For the immersed layer system, a linear stability analysis around homogeneous, nematically
ordered states revealed a critical length scale λcr of fastest plane-wave growth. That length scale
grew with approximate linearity with α = αaa + αpa , and its finiteness depended on the cutoff
provided by the active layer being immersed in a Stokesian fluid.

Using a Fourier pseudo-spectral method (Saintillan & Shelley 2008a), Gao et al. (2015) simu-
lated this model over long times. In parameter regions of linear instability, the nonlinear system
developed persistently unsteady turbulent-like flows (Figure 9a). As in Sanchez et al. (2012), these
flows were correlated with the continual genesis, propagation, and annihilation of ±1/2-order
defect pairs. Figure 9b shows that these defects exist in regions of low nematic order and are born
as opposing pairs in elongated incipient crack regions, qualitatively similar to the structures found
in both experiments and apolar models (Giomi et al. 2013, 2014; Thampi et al. 2013, 2014). The
length scale between cracks is well described by λcr. Figure 9c marks a +1/2-order defect, showing
that these defects and cracks are regions of high active force. As shown in Figure 9d, the polarity
field develops considerable spatial variation with regions of high and low polar order |q|. The two
active stresses vary in strength depending on the local polarity—the polar-aligned (anti-aligned)
stress is large in regions of high (low) polar order (Figure 9e,f )—and hence are largest in their
complementary regions.

The fluid flows and defect dynamics found by Gao et al. (2015) are qualitatively similar to
those found through apolar theories, suggesting that the qualitative nature of the flow does not
itself isolate the origins of the destabilizing stresses. However, this multiscale theory can be used
to make predictions for changes in the dynamics with changes in system parameters, such as MT
length, motor-protein density, and ATP concentration and may serve as the basis for modeling
polar objects such as mitotic spindles.

Hohenegger et al. (2014) recently used a similar kinetic theory approach to model pattern
formation in MT gliding assays. Their work is elaborate in that densities of bound and unbound
motors are also evolved, and the coupling of MT motion to fluid flow in a narrow gap is accounted
for. As a nice simplification, the gap flow is asymptotically reduced to a forced version of Darcy’s
law. Simulations of their system show, for example, the emergence of migrating cohesive regions of
high MT density, as has been observed by Sumino et al. (2012). This study demonstrates the crucial
effect that confinement can play. Woodhouse & Goldstein (2012) recently used a simplified 2D
version of the active suspension model of Saintillan & Shelley (2008a) to study the motion of a field
of mobile, but nonmotile, force dipoles in a circular domain. This system is a model for a suspension
of cytoskeletal filaments—perhaps MTs—along which motor proteins are attaching, walking with
a load, and detaching. Among other things, they showed that above a critical level of activity, such
a suspension could spontaneously autocirculate through a symmetry-breaking instability.

5. OUTLOOK

Cellular biomechanics, in general, and MT/motor-protein assemblies, in particular, are rich
sources of problems in fluid-structure interactions. They also present complicated phenomena,
which require complicated theories and simulations to model and comprehend. Some other
open areas include the self-assembly and maintenance of the spindle, mechanics of chromosome
separation, and maintenance of the metaphase plate. The spindle is a fascinating self-assembled
and self-healing structure—in which MT growth and dynamic instability seem to be important
players—although recent theory and data analysis suggest that fluid flow may not be a central
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Snapshots of streaming microtubule nematics on an immersed interface. (a) The background fluid velocity vector field superimposed on
a vorticity color map. (b) The nematic director field n, constructed from the tensor order parameter Q, superimposed on the color map
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Here λcr is a calculated characteristic length between the cracks. (c) The vector field of the active force f a = ∇ · �a , superimposed on its
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polarity vector field q superimposed on its magnitude |q| (the polar order). Labeled circles mark regions of high and low polarity. (e,f )
Polarity-dependent active stress magnitudes, showing principal eigenvalues of the active stresses due to
(e) polarity sorting and ( f ) cross-link relaxation. Figure adapted with permission from Gao et al. (2015).

player, at least in determining its steady-state morphology (Brugués et al. 2012, Brugués &
Needleman 2014). Still, the precise mechanisms underlying the positioning of both the PNC
and spindle remain shrouded.

MT/motor-protein assemblies are being used in new active complex fluids, and models and
simulations, which may have to be fully multiscale, will have an important role in understanding
and predicting how these systems will behave. An important aspect of these new materials will
be the internal active stresses that generate large-scale dynamics. For nematically ordered MT
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systems undergoing polarity sorting, extensile stresses arise naturally. However, the nature of
stresses likely depends very much on the nature of the underlying motor-protein activity. Nature
has endowed us with many different kinds of motor proteins and cross-linkers, and these may
serve as important design ingredients in the behaviors of new materials.

Finally, the theoretical tools discussed above sit at two extremes: (a) those based on modeling
and evolving discrete structures (MTs) and (b) continuum descriptions whose microscopic un-
derpinnings rely on the separation of length-scale assumptions of the microstructure from the
large-scale flows. Other kinds of mathematical descriptions that straddle these two extremes may
be useful as bases for modeling these geometrically anisotropic systems. One example might be
Brinkman-type models (Moeendarbary et al. 2013, Strychalski et al. 2015), elaborated to cap-
ture both the anisotropic drag from elongated MT structures and the forcing provided by motor
proteins. My group is currently investigating these possibilities.
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