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Abstract

Understanding how turbulence leads to the enhanced irreversible transport
of heat and other scalars such as salt and pollutants in density-stratified fluids
is a fundamental and central problem in geophysical and environmental fluid
dynamics. This review discusses recent research activity directed at improv-
ing community understanding,modeling, and parameterization of the subtle
interplay between energy conversion pathways, instabilities, turbulence, ex-
ternal forcing, and irreversible mixing in density-stratified fluids. The con-
ceptual significance of various length scales is highlighted, and in particular,
the importance is stressed of overturning or scouring in the formation and
maintenance of layered stratifications, i.e., robust density distributions with
relatively deep and well-mixed regions separated by relatively thin interfaces
of substantially enhanced density gradient.
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1. INTRODUCTION

The atmosphere and the world’s oceans are typically statically stably stratified, and so fluid parcels
perturbed vertically feel a restoring (buoyancy) force.The fluid velocity also typically varies in time
and space, and the interplay between such velocity variations and the stratification leads to rich and
often counter-intuitive dynamical behavior. In particular, modeling the properties of turbulence
and the associated irreversible mixing where external large-scale forcing and stratification play
central, leading-order roles is a key challenge in geophysical fluid dynamics. Of course, there
has been a huge amount of research into various aspects of turbulence in stratified fluids, and a
sequence of influential reviews from a variety of viewpoints have shaped our understanding of
these flows (e.g., Linden 1979, Fernando 1991, Ivey & Imberger 1991, Riley & Lelong 2000,
Peltier & Caulfield 2003,Wunsch & Ferrari 2004, Ivey et al. 2008, Ferrari & Wunsch 2009).

Indeed, much of the recent focus in the fluid dynamical study of the properties of turbulence
in stratified fluids has been on improving understanding of heat and scalar transport in the world’s
oceans. A detailed and insightful review discussing many of the challenges facing this objective
has been presented by Gregg et al. (2018). As they note, major and indeed leading-order areas of
uncertainty and controversy still remain in both the fluid dynamical and oceanographic literatures.
There is not even consensus as to whether the term “stratified turbulence” should be reserved for
the description of a specific strongly stratified and anisotropic asymptotic flow regime. It is also
not settled whether idealized flows considered in the laboratory and in simulations are particularly
relevant to the description of geophysical flows.

Technical challenges abound. The presence of even a weak stratification in a gravitational field
inevitably introduces anisotropy to the flow. Furthermore, turbulence in stratified fluids is com-
monly observed to be spatially and temporally intermittent. Fortunately, due to relatively recent
major advances in theory, experimentation, and numerical simulation, there is growing evidence
that the relevance gap can be at least partially bridged. The focus of this review is principally on
fluid dynamical aspects of these recent advances, and on highlighting the importance of charac-
teristic length scales and velocity shear in the evolution of turbulent flows in stratified fluids.

In Section 2, some of the central mathematical and physical challenges in modeling stratified
turbulent flow are presented, various useful quantities are defined, and key simplifying assumptions
are spelled out. In Section 3, instability mechanisms by which (sheared) stratified flows undergo
the transition to turbulence are discussed, and then in Section 4, the ensuing mixing properties
of such inherently freely evolving and transient flows are considered. Section 5 discusses certain
aspects of turbulence and mixing in forced stratified flows, focusing in particular on identifying
circumstances under which stratified turbulence can or cannot be maintained for extended periods
by either wall or even (artificial) body forcing. In all cases, we highlight the emerging importance
of layering for the properties of mixing and turbulence, i.e., the development or maintenance
of relatively well-mixed deep layers separated by relatively thin interfaces of increasing density
gradient. Two qualitatively different kinds of mixing are also highlighted, which may be simplis-
tically classified as either overturning of weak interfaces or scouring of strong interfaces. Finally,
conclusions are drawn at the end of the review, posing some key questions for the future.

2. MATHEMATICAL AND PHYSICAL CHALLENGES

2.1. Assumptions and Equations

The geophysical coordinate system is used throughout this review, so that the gravitational accel-
eration g = −gẑ points downward in the z-direction. The velocity field, u(x, t ), is required to be
divergence-free, ∇ · u = 0, and the fluid density is required to satisfy a linear, single-component
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equation of state with respect to some stratifying agent such as heat or salt concentration with
molecular diffusivity κ , thus excluding any possibility of double-diffusive effects, which are nat-
urally very important in many circumstances in the ocean (Schmitt 1994) and in astrophysics
(Garaud 2018). Density variations are assumed to be sufficiently small [|ρ(x, t ) − ρr| � ρr, where
ρr is a reference density], and the Boussinesq approximation can be made, eliminating many sig-
nificant complicating effects of thermodynamics in admissible energy conversion pathways, as
highlighted by Tailleux (2009).

If the flow is turbulent, a classical Reynolds decomposition of the velocity, u = 〈u〉 + u′ ≡
U + u′, and the density, ρ = 〈ρ〉 + ρ ′ (where the angle brackets here denote formally an en-
semble average, which of course is often replaced by a temporal and/or spatial average), leads to
the (specific) turbulent kinetic energy equation for a Boussinesq stratified fluid:
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where s′i j = (1/2)(∂u′
i/∂x j + ∂u′

j/∂xi ) and Sij = (1/2)(�Ui/�xj + �Uj/�xi) are respectively the per-
turbation and ensemble-averaged deformation tensor, p′ is the perturbation pressure, g is the accel-
eration due to gravity, ν is the kinematic viscosity, and the Einstein summation convention is used
throughout.Here,B is the (vertical) turbulent density flux quantifying the generally reversible ex-
change between the potential energy and kinetic energy reservoirs, and E is the turbulent kinetic
energy dissipation rate of the turbulent kinetic energy (density),K′, which within the Boussinesq
approximation with a linear equation of state quantifies the rate of irreversible energy conversion
lost into the internal energy reservoir. In general,K′ may be forced by the turbulence production,
P , converting kinetic energy in the ensemble-averaged mean flow into the perturbation velocity
field, and transported by the divergence of the flux, J.

Through analogous consideration of the density advection–diffusion equation (with density
diffusivity κ), the evolution equation for the (specific) potential energy, relative to some reference
level (e.g., z = 0), is
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which shows the exchange between the potential energy and kinetic energy reservoirs via the
density flux term, B, using the implicit assumption that 〈w〉 = 〈w′〉 = 0.

A significant alternative formulation to consider arises from the equation for the turbulent
buoyancy variance, where the negative of the reduced gravity g′ is termed the “buoyancy” in this
context, i.e., b � −gρ ′/ρr. Multiplying the density advection–diffusion equation by g2ρ ′/ρ2

r and
averaging lead to an equation for the evolution of the scaled buoyancy variance:
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which defines an appropriately scaled destruction rate of buoyancy variance, χ ; transport flux,
Jρ ; and buoyancy frequency, N, which is associated with the ensemble-averaged density and is
implicitly assumed to be a function only of z and possibly t.

A key insight is thus that, if transport terms have no net effect (e.g., because the system is
closed or periodic boundary conditions are imposed), the appropriately scaled buoyancy variance
is increased (or decreased) through the action of B, and irreversibly decreased at rate χ . There
is thus a very close connection between the destruction of buoyancy variance and irreversible
changes in the potential energy of the flow.

2.2. Mixing Versus Stirring

These formulations highlight the inherent connection between energetic pathways and (irre-
versible) mixing of the density distribution. As discussed by Villermaux (2019), it is crucially im-
portant to distinguish between mixing and stirring. Here, mixing is the irreversible change of
the physical properties of fluid parcels, specifically the dynamic scalar density, while stirring is
the flow-induced rearrangement of the fluid’s density distribution, which is at least in principle
reversible.

As discussed in detail by Villermaux (2019), the ramifications of this distinction are profound.
Since it is irreversible, mixing must be associated with diffusive processes, and so it is required
that there be a nonzero scalar diffusivity, κ . The destruction rate of density variance χ is thus a
natural measure of the rate at which mixing is actually taking place, as it captures the inevitable
homogenization of the scalar field through mixing. From Equations 2 and 3, and with sweeping
assumptions concerning transport terms and averaging, it is then commonplace in geophysical
applications to equate mixing with potential energy increase.

However, it is still critical to distinguish between changes in potential energy that are associated
with stirring or with mixing, which can be done by use of the particular definition of the concept
of available potential energy, as first introduced by Lorenz (1955) and significantly generalized in
the influential papers of Winters et al. (1995) andWinters & D’Asaro (1996), who introduced the
key connection between mixing and changes in background potential energy,KPb. This is defined
as the minimum potential energy of the system, which can be accessed through adiabatic rear-
rangement of fluid elements, and can be calculated using sorting algorithms (for more discussion,
see also Caulfield & Peltier 2000, Peltier & Caulfield 2003) or, to a very good approximation,
through the construction of the probability density function (PDF) for the density field (Tseng
& Ferziger 2001). The key quantity to be determined is z�(x, t), i.e., the reference position in the
state of background potential energy of the fluid element at (x, t) with density ρ(x, t). A beautiful
insight of Winters et al. (1995) and Winters & D’Asaro (1996) was that, for the simplest case of a
closed system of volume V0, Eb increases monotonically at a rate �d:
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, 4.

where V0 is the domain volume and N� may thus be thought of as the (notional) buoyancy fre-
quency associated with the density field of the background potential energy distribution. Ex-
pressed in this way, there is a strong apparent connection to χ as defined in Equation 3, with
the crucial difference being that χ is normalized by the averaged buoyancy frequency, while �d is
normalized with the sorted buoyancy frequency, N�. Indeed, there is also a close connection be-
tween the scaled buoyancy variance and the available potential energy,KPa ≡ KP − KPb, especially
in flows with constant background buoyancy gradient.
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In an initially statically stable Boussinesq closed system, even in the absence of fluid motions,
KPb increases due to microscopic diffusive processes at rate �i (Winters et al. 1995). Since in
the absence of fluid motions, we have KP ≡ KPb, as argued by Caulfield & Peltier (2000), it is
perhaps more natural to consider irreversible conversion into potential energy inherently related
to macroscopic fluid motions. This conversion occurs at the strictly non-negative mixing rate,
M ≡ �d − �i. (This subtlety is expected to become less significant as the turbulence becomes
more vigorous.)

2.3. Eddy Diffusivities and Efficiencies

Although it is clearly too simplistic, the conventional approach for parameterization of stratified
mixing has been to develop a classic flux-gradient model for a (vertical) eddy diffusivity of density
κρ , parameterizing the mixing properties of small-scale motions in terms of some mean gradient
properties of the scalar field. Indeed, even to define this eddy diffusivity, one must make an ap-
propriate choice for the density gradient, and so with respect to stratified fluids, great care must
be taken in identifying N used in the expression

κρ

κ
≡ B

κN 2
= ν

κ

(B
E

) E
νN 2

= Pr	Reb. 5.

Here, Pr is the molecular Prandtl number, 	 ≡ B/E is the turbulent flux coefficient, and Reb is
one definition of the buoyancy Reynolds number (Gibson 1980, Gargett et al. 1984), sometimes
also called the activity parameter or Gn (Portwood et al. 2016).

With all of these caveats, the ultimate objective of modeling κρ may thus be reduced to the
modeling of the flux coefficient, 	. In an influential paper, Osborn (1980), relying on available
experimental data, postulated 	 ≤ 0.2 in a statistically steady state, although the inequality is
very commonly ignored when estimating mixing from observations of dissipation (Waterhouse
et al. 2014). This assumption is on its surface appealing, as it assumes a proportionality between
the terms on the right-hand side of Equation 1. However, conceptually, this approach can be
criticized, as it relies on a sequence of inferences about the relationship between properties of the
turbulent kinetic energy and the quantity of actual interest, namely, the (irreversible) mixing rates.
As discussed by Ivey et al. (2018), building on research by Osborn & Cox (1972), it is more natural
to focus directly on the buoyancy variance equation, where in steady state and in the absence of
transport terms of significance, the buoyancy flux is B 
 χ when scaled as in Equation 3, and so
we have 	 
 χ/E .

Another classical measure of mixing is the flux Richardson number, Rif, which is traditionally
defined (Turner 1973) as the ratio of the density flux to the turbulence production, Rif ≡ B/P .
This may be thought of as the taxation rate into the potential energy reservoir that the turbulence
production experiences, which in an unstratified flow would be paid in its entirety into the internal
energy reservoir through viscous dissipation. The flux Richardson number naturally arises when
considering the turbulent Prandtl number because the eddy diffusivity of momentum, κm, can be
defined in terms of a mean (vertical) shear, S = �〈u〉/�z (assuming that it exists):

κm = −〈u′w′〉
S

= P
S2

→ PrT ≡ κm

κρ

≡ 〈u′w′〉/S
B/N 2

= N 2

S2

P
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, 6.

assuming that the turbulent production is driven by (only) the vertical shear. Here Rig = N 2/S 2

is naturally an appropriate definition of a gradient Richardson number.
The implications of this deceptively simple expression are deeply significant, as discussed for

example by Venayagamoorthy & Stretch (2010). It is clear that Rif ≤ 1 by construction. There-
fore, sustained turbulence in a strongly stratified flow with associated appropriate large values of
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Rig inevitably requires PrT � 1. Whether it is actually possible to have shear-driven sustained
turbulence with truly large values of Rig is not a settled question. Conversely, if a flow is weakly
stratified, it seems reasonable to expect that mixing of the scalar would occur on similar scales to
the mixing of momentum, hence PrT ∼ 1, suggesting Rif 
 Rig.

The entire concept of PrT becomes exceptionally difficult to interpret if any spatiotemporal
variability occurs in either Rig or Rif, or indeed if Rif becomes negative, which in itself is not
excluded since the buoyancy flux B is not sign-definite. Also, it has the implicit assumption that
shear-driven turbulence production is the dominant driver formixing processes to occur.Caulfield
&Peltier (2000) and Peltier&Caulfield (2003) argued in favor of defining efficiencies,η, of mixing
(or, equivalently, turbulent flux coefficients, 	) in terms of the mixing rate,M, and the dissipation
rate, E , either instantaneously or cumulatively over the lifetime of a mixing event, assumed to start
at time t0:

η∗
i (t ) ≡ M

M + E , 	∗
i (t ) ≡ M

E = η∗
i

1 − η∗
i
,

η∗
c (t ) ≡

∫ t
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M dt∫ t

t0
M dt + ∫ t
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E dt

, 	∗
c (t ) ≡ η∗

c

1 − η∗
c
,

7.

where the asterisk (∗) denotes the association with the sorted variable z∗. Salehipour & Peltier
(2015) have demonstrated the preferability of using such definitions and of an analogous quantity,
Re∗b, which they defined using the sorted buoyancy frequency, N∗, to parameterize mixing in an
evolving shear-driven flow. Comparisons between different definitions for mixing, such as those
of Salehipour & Peltier (2015) and Venayagamoorthy & Koseff (2016), are valuable; Gregg et al.
(2018) has encouraged community consistency in definitions.

Even for these starred, irreversible quantities, there are three fundamental issues. First, the ex-
pressions are inherently nonlocal, as they rely on the determination of the background potential
energy field to determine M, and so access to the density distribution over the entire volume of
the flow domain is necessary to evaluateM. As discussed by Davies Wykes et al. (2015), quantita-
tive calculations of the various potential energy reservoirs can depend on the size of the domain
considered, thus introducing ambiguities in the evaluation of the efficiency of particular mixing
processes, especially when the flow has regions of static instability, leading to buoyancy-driven
or convective mixing. Building on the work of Andrews (1981) and Holliday & McIntyre (1981),
Scotti & White (2014) have formulated a local measure of available potential energy in an at-
tempt to quantify mixing locally, and this is a promising approach to understand better energetic
pathways associated with mixing.

Second, the averaging process underlying the calculation of the dissipation rate E must be
treated carefully. Particularly in a stratified fluid, mixing is highly spatially and temporally inter-
mittent. Although formally defined in terms of an ensemble average, practical calculations of E
inevitably rely on averaging over a particular volume and time interval. This inevitably introduces
ambiguity and uncertainty in the value of E to be identified with a given mixing event, if there is
any intermittency, as shown by Portwood et al. (2016).

Indeed, this observation points to the third fundamental issue for stratified mixing parameter-
izations. In the context of passive scalar mixing, as discussed for example by Sreenivasan (2019),
it is accepted that the scalar variance destruction rate most definitely is not in lockstep with the
turbulent kinetic energy dissipation rate, and anomalous dynamical behavior is generic. Indeed,
Villermaux (2019) demonstrates the important point that for mixing, history matters in the sense
that the prior evolution of the fluid flow leaves an imprint on the scalar field such that subsequent
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mixing can be strongly affected. That flow history matters should receive greater attention from
the stratified mixing community. There is accumulating evidence that such imprints of the previ-
ous flow evolution can play a central role in determining mixing properties, and may go some way
to resolving apparent disagreements among different models based around the clearly simplistic
eddy diffusivity paradigm.

2.4. Parameters and Flux Curves

With all of these caveats, the fundamental question for the parameterization ofmixing is:What are
the functional dependencies of an appropriately defined Rif,	, or η on the flow properties? These
may be classified into three groups: properties of the fluid (ν and κ), properties of a background
flow (N and S), and properties of the turbulence (K and E). Even if it is possible to characterize
the flows with unique values of E ,K, S, andN (all in general functions of space and time), the flow
must then be characterized by four nondimensional parameters, which can be chosen to be Pr,
Rig, Reb, and a horizontal or turbulent Froude number, Fh:

Fh ≡ E
KN = UT

LhN
, Lh ≡ K3/2

E , UT ≡ K1/2, 8.

which implicitly define a velocity scale, UT, and a horizontal length scale, Lh, of the turbulence.
Therefore, even accepting all the various sweeping underlying assumptions, the key problem ef-
fectively becomes determining, for example, 	(Reb, Rig, Fh, Pr). (Of course, it needs to be clear
precisely how 	 is defined—for example, whether B, χ , or M is in the numerator.)

It has been commonplace (see for example Linden 1979, Fernando 1991, Ivey et al. 2008,Wells
et al. 2010) to attempt to identify a parametric dependence of 	 on one of these nondimensional
parameters, and generic possible pictures are shown in Figure 1a. It seems reasonable that 	

must increase from zero as Rig increases on the left flank, as there is no scalar to mix precisely at

Left
flank

Right
flank

Rig

Rig

ba

Reb

ΓΓ

Figure 1

(a) Four possible flux curves relating the turbulent flux coefficient, 	 ≡ B/E , to the gradient Richardson number, Rig � N 2/S 2. The
flow is relatively weakly stratified on the left flank, where 	 is expected to increase monotonically with Rig. On the right flank, when the
flow is relatively strongly stratified, four possibilities are shown: monotonic saturation of 	 at a finite value (blue solid line), decrease of 	

to a finite positive value (red dash-dotted line), asymptotic decrease of 	 to zero in the limit Rig → ∞ (green dashed line), and complete
switch-off of mixing at a critical value of Rig (yellow dotted line). (b) Flux surface showing a plausible hidden correlation between Rig and
Reb ≡ E/(νN 2) leading to the projected nonmonotonic behavior (green dashed curve) when 	 is plotted as a function of Rig alone, as in
panel a.
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Rig = 0 and so we have 	 = 0. However, what actually happens at strong stratification is still an
open question of some controversy.

Four possibilities are shown. Perhaps the simplest is the (solid blue) curve monotonically in-
creasing toward an asymptotic maximum, assuming that 	 is bounded above by some finite quan-
tity, which pertains in the limit of strong stratification. However, as stratification becomes more
significant, for example through increased anisotropy in the turbulent flow with vertical veloci-
ties w � u, v, it is plausible that the mixing will become less efficient. Such an argument implies
both a global maximum in 	 for some optimal Rig and the existence of a right flank where the
flux coefficient decreases with increasing Rig. There are then generically three different possible
behaviors in addition to the asymptotic curve described above: 	 may decrease toward a finite
nonzero constant (red dash-dotted line) or may tend asymptotically to zero (green dashed line) in
the limit Rig → ∞. These cases assume implicitly that irreversible turbulent mixing can continue
to be maintained at very strong stratification. If that is not true, the mixing will completely switch
off at some critical value of Rig, as shown by the yellow dotted line in the figure.

It is still an open question which (if any) of these flux curves are appropriate to underlie mixing
parameterizations. Furthermore, such flux curves are a projection of a presumably significantly
more complex flux hypersurface representing the full assumed dependence 	(Reb,Rig, Fh, Pr), and
the true objective should be to determine this hypersurface. That objective is further complicated
by the issue of whether it is actually possible to explore this parameter space fully. For example,
recall that Rig is defined as N 2/S 2, where S is some measure of background shear within a flow.
It is at least conceivable that in some turbulent flows the shear S is proportional to UT/Lh, and so
Rig is proportional to F−2

h . Such emergent correlations between assumed independent parameters
can make the interpretation of such flux curves, as shown schematically in Figure 1a, problematic.
A particular issue is whether strongly stratified flows, i.e., those with high values of Rig or small
values of Fh, can also maintain strong turbulence in the sense of high values of Reb, or equivalently,
whether high values of Reb inevitably imply weak stratification. Indeed, there is evidence (see
for example Lucas & Caulfield 2017) that certain flows traverse particular curves in parameter
space, with functional relationships (such as Rig ∝ Re−1

b ) between various parameters, as shown
schematically in Figure 1b.

2.5. Length Scales and Layering

Nondimensional parameters can be thought of as ratios of characteristic timescales or length
scales. In a pair of important papers, Mater & Venayagamoorthy (2014a,b) collated data from
a wide range of sources and demonstrated that flow dynamics could vary markedly across two-
dimensional (2D) projections of the full parameter space. This variation in behavior could be
interpreted in terms of the relative size of three timescales: the shear, Ts = 1/S; buoyancy,
Tb = 1/N; and turbulence, TT = E/K, timescales. [Note that we have Rig = (Ts/Tb)2,
Fh = Tb/TT, Reb = T 2

b /T 2
K , and Pr = (TK/TB)2, where TK = √

ν/E and TB = √
κ/E are

the Kolmogorov and Batchelor timescales, respectively.] Mater & Venayagamoorthy iden-
tified three qualitatively different regimes: an inertia-dominated regime with TT � Ts,
Tb, a shear-dominated regime with Ts � TT, Tb, and a buoyancy-dominated regime with
Tb � Ts, TT.

However, there are several physical reasons why it is arguably more natural to interpret the
various parameters as ratios of length scales. For example, as originally discussed by Phillips (1972)
(see also Park et al. 1994 for both a clear discussion and experimental observation), the existence
of a right flank with respect to somemeasure of stratification in a flux curve (as shown in Figure 1)
implies antidiffusive behavior in the sense that fluctuations in a uniform density gradient would
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be expected to be amplified. This behavior should lead inevitably to a layer-interface structure
with relatively well-mixed, relatively deep layers (with associated flux coefficient on the left flank)
separated by relatively thin interfaces of higher gradient (with matching flux coefficient on the
right flank). Although in this simple conceptual model, the flux coefficient should be thought of
as associated with a turbulent flux, as argued by Balmforth et al. (1998), if stratification suppresses
turbulent motions, eventually molecular diffusive fluxes must become significant, thus leading to
regularization of the interfaces at some maximum density gradient.

Indeed, there is an accumulating weight of observations that suggest that strongly stratified
flows have a tendency to form and maintain such a quasi-horizontal layer-interface structure. Par-
ticularly in sufficiently large flow domains, these layers take the form of pancakes in the sense that
they have a finite horizontal extent, which is still much larger than their vertical extent (Waite
& Bartello 2004, Praud et al. 2005, Basak & Sarkar 2006, Brethouwer et al. 2007, Almalkie &
de Bruyn Kops 2012, Kimura & Herring 2012, Bartello & Tobias 2013, de Bruyn Kops 2015).
Such spatial structure calls into question again how credible it is to use single values of the various
nondimensional parameters, and such inherently layered structures are another way in which the
history of a given flow’s evolution may play a critical role in the irreversible mixing that occurs.

Billant & Chomaz (2001) identified a particular regime with Fh � 1 and ReT � UTLh/ν � 1,
such that we have ReTF2

h � 1. (Where the inertial scaling E ∝U 3
T/Lh is assumed, this distin-

guished limit corresponds to Reb � 1.) With Pr � 1, typical of water and gases, the governing
equations become self-similar with respect to zN/UT. This self-similarity suggests a character-
istic vertical scale, Lv ≡ UT/N � Lh, for the pancakes such that the vertical Froude number
Fv ≡UT/(NLv ) remains O(1) even in this distinguished limit.

There is mounting evidence of such characteristic layer depths in a range of flows with a vari-
ety of forcing mechanisms, including the zigzag instability of vertical vortices in a stratified fluid
(Billant & Chomaz 2000a,b; Deloncle et al. 2008; Waite & Smolarkiewicz 2008; Augier & Billant
2011; Lucas et al. 2017), stirring by vertical grids or rods (Park et al. 1994,Holford&Linden 1999,
Praud et al. 2005,Thorpe 2016), stratified Taylor–Couette flow in the annular region between two
concentric cylinders (Oglethorpe et al. 2013), and numerical simulations with a variety of forc-
ing mechanisms and geometries (Riley & de Bruyn Kops 2003,Waite & Bartello 2004, Lindborg
2006, Brethouwer et al. 2007, Almalkie & de Bruyn Kops 2012, Kimura & Herring 2012, Bartello
& Tobias 2013, de Bruyn Kops 2015, Portwood et al. 2016, Lucas et al. 2019).

Lindborg (2006) considered the regime with the same distinguished limits as Billant &
Chomaz (2001) and demonstrated that it still allowed a (profoundly anisotropic) net-forward cas-
cade of energy in strongly stratified turbulence. In particular, the properties of the turbulencemust
be different above and below the Ozmidov length scale, LO, which may be defined consistently
with the above development as

LO ≡
( E
N 3

)1/2

→ Reb =
(
LO

LK

)3/4

, LK ≡
(

ν3

E
)1/4

, 9.

where LK is the Kolmogorov microscale. For vertical scales smaller than LO, the flow is at most
weakly affected by the density stratification. Interpretation of themeaning ofLO must be donewith
care, however, particularly because LO is a hybrid parameter comparing an intrinsic property of
the turbulence that quantifies locally the intensity of the eddying energy cascade to a background
property of the flow that quantifies the strength of the stratification. In particular, implicit in its
definition is the idea that the stratification extends over a vertical distance at least as large as the
region of strong turbulence.

Nevertheless, with this caveat, the buoyancy Reynolds number Reb can then be interpreted as
a ratio of length scales. Therefore, for there to be absolutely any possibility of a classical inertial
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range of isotropic turbulence at smaller scales, ReB must be sufficiently large. Furthermore, not
only can the horizontal Froude number Fh be interpreted as the ratio Fh = Lv/Lh but also,
using the definition of LO with the inertial (equality) scaling, E ≡U 3

T/Lh, one can define it as
Fh = (LO/Lv)2, and so to be in such a turbulent strongly stratified regime, it is required that the
length scales are in the aysmptotic ordering LK � LO � Lv � Lh.

As argued by Lindborg (2006) and established by further subsequent numerical simulations
(Brethouwer et al. 2007, Bartello & Tobias 2013) and reinterpretations of observations (Riley &
Lindborg 2008,Falder et al. 2016), in this regime a net-forward (to small scales) energy cascade can
be observed, with the horizontal spectra of kinetic and potential energy exhibiting a k−5/3

h power
law range, where kh is an appropriate horizontal wavenumber. This regime has been termed the
stratified turbulence regime or the strongly stratified turbulence regime (Zhou&Diamessis 2019).
However, in the geophysical literature, “stratified turbulence” is often used in a much broader
sense to describe any turbulent motions in a stratified fluid, and so following Falder et al. (2016),
this regime is referred to here as the layered anisotropic stratified turbulence (LAST) regime.

As discussed by Brethouwer et al. (2007), the oceans and the atmosphere are expected to be
in this regime, with very small values of Fh � 10−3 and very large values of ReT � 108, and so it
is of great interest to investigate the properties of mixing within this inherently layered regime.
Unfortunately, computing numerical simulations or indeed conducting laboratory simulations in
this regime is enormously challenging, as discussed by Bartello & Tobias (2013), due not least to
the wide range of (anisotropic) scales that need to be modeled, a challenge that is only exacerbated
by attempting to consider Pr ∼ O(10), characteristic of thermally stratified water. The existence
of a true inertial range requires a range of scales Li such that both Li � LO and LK � Li obtain
simultaneously. It is not clear how such a flow can be accessed, maintaining vigorous turbulence
in very strong local stratification.

As already noted above, there is a natural tendency, not least in the LAST regime, for strati-
fied fluids to layer and so exhibit substantial vertical variation. Building on the work of Kato &
Phillips (1969),Woods et al. (2010) argued that there is a qualitative difference between themixing
expected in relatively weak stratification and in relatively strong stratification. When the strati-
fication is weak, the turbulence is sufficiently strong to overturn density interfaces, as shown in
Figure 2a. Mixing will tend to smooth out strong gradients, and so it is plausible to describe such
mixing with eddy diffusivities. Conversely, as shown in Figure 2b, mixing in strong stratification
is characterized by turbulent motions that scour the density interfaces, leading to a qualitatively

ba

Figure 2

(a) Overturning mixing in weak stratification. (b) Scouring mixing in strong stratification. Figure adapted with permission from Woods
et al. (2010); copyright 2010 Cambridge University Press.
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different mixing process, which is in a real sense antidiffusive. As originally argued by Crapper &
Linden (1974), the properties of such sharp interfaces are affected by values of the Péclet number,
Pe=UcLc/κ , whereUc and Lc are characteristic velocity and length scales, respectively, and Taylor
& Zhou (2017) introduced a criterion for the development of such layering in terms of the spatial
distribution of an appropriate eddy diffusivity.

This distinction between overturning and scouring has points of similarity with the concepts
of internal as opposed to external mixing introduced by Turner (1973), although the equivalence
is not perfect, since scouring dynamics within a layered stratification can still occur even though
the dominant turbulence production process is inherently local to the flow dynamics. However, it
still needs to be established how often such scouring dynamics or indeed layer-interface structures
can actually be realized. Although in principle all the possible parameters are independent, it is not
clear whether the entire multidimensional parameter space is accessible by real flows. This issue is
deceptively complicated when there is both shear and turbulence within the flow, and indeed it is
very unclear whether a shear flow, prone to the onset of turbulence, can ever be strongly stratified
in the specific sense of having large values of minimum gradient Richardson number. Therefore, a
crucially important question to be understood is how stratified (shear) flows can actually become
turbulent.

3. TURBULENCE ONSET IN STRATIFIED SHEAR FLOWS

There are two natural classes of stratified shear flows: when the background velocity gradient
and density gradient are oriented in the same direction (vertical shear flow) and when they are
orthogonal (horizontal shear flow).

3.1. Vertical Shear Kelvin–Helmholtz Instabilities

Finite-depth shear layers with an appropriate inflection point are prone to the so-called Kelvin–
Helmholtz instability (KHI). Perhaps the most canonical choice considered is the hyperbolic tan-
gent shear layer with background velocity ub and density ρb:

ub = U (z)x̂, U (z) = U0 tanh (z/d0) ,

ρb = ρr − ρ0 tanh (z/δ0) , Re0 = U0d0
ν

,
10.

where 2d0 is the initial total depth of the shear layer (an interface or strip of vorticity), with total
velocity jump 2U0; 2δ0 is the initial total depth of the density interface, across which there is a
total density jump of 2ρ0; and ρr is a reference density. This instability rolls up the initial strip
of vorticity into a periodic train of elliptical vortices called billows connected by braids, with a
characteristic wavelength on the order of∼15d0 and vertical extent of∼5d0. Such billow trains can
be observed experimentally in tilting tanks (e.g.,Thorpe 1973,Caulfield et al. 1996,Patterson et al.
2006).

Unsurprisingly, stratification has a (monotonically) stabilizing effect on the growth rate of the
KHI, and the key nondimensional quantity to understand the stability properties of such flows is
the gradient Richardson number,

Rig(z) ≡ N 2

S2
= gρod

ρrU 2
0

d
δ

sech2(z/δ)

sech4(z/d )
= Ri0R

sech2(z/δ)

sech4(z/d )
, 11.

which defines the length scale ratio R and the bulk Richardson number Ri0, which for the simplest
case of R = 1 corresponds also to the minimum gradient Richardson number, Rim � minz(Rig),
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at the midpoint of the shear layer. As observed by Smyth et al. (1988), this property of minimum
Richardson number is important for application of the classical result due to Miles (1961) and
Howard (1961). The Miles–Howard theorem, which is strictly applicable only to steady, inviscid
Boussinesq flows where the background velocity and density distributions depend only on the
vertical coordinate, states that Rim < 1/4 is a necessary condition for instability.

However, in the presence of unsteadiness, associated for example with ambient turbulence, the
criterion is not formally applicable. It is an open question whether the stability of a mean flow,
which typically does not apply for any substantial period of time, has any relevance to the subse-
quent evolution of a stratified turbulent flow.Observations in the equatorial undercurrent (Smyth
& Moum 2013) suggest that the PDF for measured values of Rig peaks around the critical value
predicted by linear theory. Thorpe & Liu (2009) postulated that real flows adjust toward a value
of marginal stability fundamentally by going through a cycle. Some external forcing mechanism
will tend to strengthen a shear until it is sufficiently strong and instabilities onset, triggering tur-
bulence, which then decelerates the shear until the flow is no longer unstable, until the external
forcing once again nudges the flow back into instability. Such a cycle is also strongly reminis-
cent of self-organized criticality, and there is indeed some numerical and observational evidence
that stratified shear flows can indeed exhibit such behavior (Salehipour et al. 2018, Smyth et al.
2019) in that stratified shear flows appear unable to access strong stratification, but rather have
mean profiles with typical values of Rig 
 0.25 over much of the shear layer. Indeed, certain as-
pects of such an adjustment toward criticality were foreshadowed byTurner (1973),who presented
physical arguments suggesting that flows adjust to a kind of equilibrium between inertia and buoy-
ancy. Although the effects of both ambient turbulence (Kaminski & Smyth 2019) and transient
growth (Kaminski et al. 2014, 2017) must be treated with care, and although there is some evidence
that (finite amplitude, yet still quite weak) billow states can exist for Rim > 1/4 (Howland et al.
2018, Parker et al. 2019), it does not seem that Rim can be significantly greater than 1/4 for
significant finite-amplitude billows, although it is conceivable that this observation may depend
on Pr.

The essentially inviscid and unstratified KHI is known to undergo a transition to turbulence
through an array of secondary instabilities, provided an appropriate flow Reynolds number is suf-
ficiently high,O(104), for the so-called mixing transition to occur (Dimotakis 2005), and there has
been a very wide range of numerical simulations of KHI. A first tranche of simulations, carried out
at sufficiently high resolution to satisfy the necessary condition that the primary instabilities can
be prone to (generically 3D) secondary instabilities, typically had periodic horizontal boundary
conditions, chosen to allow one or two billows, with Reynolds numbers Re0 ∼ 1,000–2,000, R ∼
1, and Pr ∼ 1 (Caulfield & Peltier 1994, 2000; Palmer et al. 1994, 1996; Smyth & Moum 2000;
Peltier & Caulfield 2003). Since the vertical extent of the billow is O(5d0), it can be argued that
an appropriate Reynolds number for this flow is about five times larger than Re0, (just) sufficiently
large for it to be plausible that the mixing transition can occur.

However, another mixing transition has been effectively identified by a second tranche of stud-
ies at yet larger Reynolds number. For Re0 � 4,000, a further zoo of secondary instabilities have
been identified by Mashayek & Peltier (2012a,b). Perhaps most significantly, these vigorous sec-
ondary instabilities suppress the onset of billow merging for flows with sufficiently high Reynolds
numbers and Richardson numbers (Mashayek & Peltier 2013), and the mixing properties (dis-
cussed below) of such high–Reynolds number flows susceptible to vigorous overturning primary
KHI also exhibit nontrivial differences with those at lower Re0. Due to this qualitative change
in behavior between the two tranches of simulations with different characteristic ranges of Re0,
a particular point of caution must be expressed regarding whether an ultimate regime of shear-
induced stratified mixing has been identified by such simulations. It is at least possible that, once
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Figure 3

Contours of the nondimensional spanwise vorticity (scaled with advective time units d0/U0) for simulations with Reynolds number
Re0 �U0d0/ν = 4,000, molecular Prandtl number Pr= ν/κ = 8, and bulk Richardson number Ri0 = gρ0d0/(ρrU 2

0 ) = 0.16 of (a–c) flows
with a length scale ratio of R = d0/δ0 = 1, which are prone to the primary Kelvin–Helmholtz instability (KHI), and (d–f ) flows with
R = √

8, which are prone to the primary Holmboe wave instability (HWI). Contours are shown at nondimensional times: at t = t2D,
when spanwise-averaged turbulent kinetic energy is maximum; at t = t3D, when three-dimensional perturbations are maximum; and at
t = t2D + 100. Note the overturning by the primary KHI and scouring by the HWI. Figure adapted with permission from
Salehipour et al. (2016a); copyright 2016 Cambridge University Press.

again, higher–Reynolds number simulations will reveal different, and inevitably richer, dynamics.
Three snapshots of the roll-up and turbulent breakdown of a KHI with Re0 = 4,000 are shown in
Figure 3a–c.

3.2. Vertical Shear Inherently Stratified Instabilities

Stratified shear flows are also prone to a range of other instabilities that owe their very existence
to the presence of a statically stable stratification. At finite amplitude, the appearance of trains of
elliptical vortices does not in itself imply that these vortices are associated with KHI, and may
well be associated with instabilities with quantitatively different mixing properties. As originally
appreciated by Taylor (1931), shear flow instability can often be interpreted in terms of wave
interactions (Carpenter et al. 2011, Guha & Lawrence 2014, Smyth & Carpenter 2019). KHI can
be interpreted as being due to a resonance between the vorticity or Rayleigh waves (not to be
confused with the Rayleigh waves of solid mechanics, and perhaps more appropriately considered
as a variant of the Rossby waves of geophysical fluid dynamics), which are localized at either edge
of the shear layer. These marginally stable waves propagate locally upstream, and so under certain
circumstances the waves localized at each edge of the shear layer can have the same wavenumber
and frequency, thus possibly leading to instability growth. Although this formalism is applicable
straightforwardly when the density and vorticity distributions are piecewise constant, it carries
over to smooth velocity and density distributions (Smyth et al. 1988, Alexakis 2005).
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For R� 1 when the density interface is much sharper than the shear layer, it is possible for the
density interface to support two effectively localized internal gravity waves. One of these waves
propagates upstream, while the other propagates downstream, relative to the local fluid. Further-
more, for sufficiently large R, the gradient Richardson number actually is maximum in the vicinity
of the density interface and drops to small values in the far field, irrespective of the value of the
bulk Richardson number, Ri0, and so the Miles–Howard criterion is irrelevant. Generically, if
the density distribution has a layer-interface structure, then strong stratification, in the sense of
high values of the bulk Richardson number, does not preclude flow instability since generically
there will be somewhere within the flow where the gradient Richardson number is small (see, e.g.,
Alexakis 2009).

The classic example demonstrating the propensity of layered stratified shear flows to be unsta-
ble to high values of Ri0 arises in the limits of inviscid flow and R → ∞, with a two-layer density
distribution having an infinitesimally thin density interface. For all values of Ri0 there are (gener-
ically) two bands of wavenumbers where the flow is unstable to the so-called Holmboe (wave) in-
stability (HWI) (Holmboe 1962, Browand & Winant 1973, Koop & Browand 1979, Smyth et al.
1988), although if the flow is symmetrical about the midpoint of the shear layer, these two bands
coincide (Lawrence et al. 1991). In terms of wave interactions, this instability can be interpreted
as being due to an interaction between a vorticity wave at the edge of the shear layer and one of
the internal waves localized at the density interface (Caulfield 1994, Baines & Mitsudera 1994)
propagating upstream or downstream relative to the local velocity at the density interface.

At finite amplitude, this instability has been observed both numerically (Smyth et al. 1988,
Smyth & Winters 2003, Carpenter et al. 2010) and experimentally (Browand & Winant 1973,
Caulfield et al. 1995, Zhu & Lawrence 1996,Hogg & Ivey 2003, Tedford et al. 2009, Lefauve et al.
2018). Classically, HWI at finite amplitude has been associated with cusped waves propagating
along the density interface, with occasional wisps of fluid being ejected from the top of the cusps.
These cusped waves can be identified with propagating vortices displaced above or below the
density interface; in particular, when the density interface is substantially displaced from the mid-
point of the shear layer, such a vortex can have significant qualitative similarity to a KHI bil-
low. Analogously to the KHI, the transition to turbulence is qualitatively different at Re � 4,000
(Salehipour et al. 2016a, 2018), as shown in Figure 3d–f. A further complication when considering
the dynamics of such instabilities is that, since the HWI relies, at least initially, on the existence of
sharp density interfaces, Pr typically needs to be substantially greater than one so that the back-
ground density distribution does not diffuse too rapidly.

The HWI still relies on the existence of at least one significant change in the velocity gradi-
ent (at which the constituent vorticity wave is localized) and, in a finite-depth shear layer, can be
thought of as arising as a bifurcation of the KHI (Hogg & Ivey 2003). Therefore, although it is an
inherently stratified instability, it still shares some characteristics with unstratified inflectional in-
stabilities like the KHI.However, as also first appreciated by Taylor (1931), layered stratified shear
flows can be unstable to instabilities that have no connection at all to inflectional shear layers.This
instability, further considered by Caulfield (1994) and experimentally reported by Caulfield et al.
(1995), arises in a sheared flow with at least two density interfaces, with at least one finite-depth
layer of intermediate density relative to outer layers. Each density interface supports two localized
internal waves propagating upstream and downstream relative to the local fluid velocity. If there
is a background shear (not necessarily inflectional), there is once again the possibility of the inter-
action of Doppler-shifted internal waves localized on each interface, provided they have the same
wavenumber and frequency. Such an interaction can lead to a qualitatively different instability.

This instability, which was termed the Taylor–Caulfield instability (TCI) by Carpenter et al.
(2010) (see also Churilov 2016), is also manifest at finite amplitude as an array of elliptical
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vortices (Caulfield et al. 1995, Lee & Caulfield 2001, Balmforth et al. 2012, Eaves & Caulfield
2017, Ponetti et al. 2018, Eaves & Balmforth 2019) trapped between the bounding density in-
terfaces. As demonstrated by Ponetti et al. (2018), the general concept of instability arising due
to interaction of Doppler-shifted interfacial waves within a layered stratified shear flow can be
generalized to an arbitrary number of interfaces. Due to the apparent necessity of very sharp den-
sity interfaces for the development of this instability, and hence very high values of the Péclet
number, Pe = RePr, most numerical studies of this instability have been restricted to two dimen-
sions. Nevertheless, the general picture seems to point toward the finite-amplitude saturated TCI
also triggering a wide range of secondary instabilities, specifically apparently leading to structures
highly reminiscent of HWI on the various (sheared) density interfaces. Significantly, the satu-
rated elliptical vortex associated with TCI is once again reminiscent of KHI, although the growth
mechanisms and flow signature of these three canonical instabilities (KHI, HWI, and TCI) are
qualitatively distinct (Eaves & Balmforth 2019).

3.3. Horizontal Shear Instabilities

The finite amplitude form of the canonical (vertical) shear instabilities generically takes the form
of (horizontally aligned) elliptical vortices, and it is natural to expect that the rolling up of such
vortices will have an energetic cost within a (vertically) stratified fluid. Such a cost clearly does
not apply if the fluid is sheared horizontally, and so such shear instabilities should be able to
grow straightforwardly and unconstrained by stratification. Basak & Sarkar (2006) demonstrated
that for a horizontal hyperbolic tangent shear layer with an initially constant vertical density
gradient N, the primary shear-driven instability still developed, creating an array of elliptical
vortices. Crucially, they demonstrated that these vortices were then prone to strong secondary
instabilities, which led to the spontaneous development of a layer-interface structure in the ver-
tical density distribution, with characteristic layer depth scaling as lv ∼ U/N, where U is a char-
acteristic velocity scale of the ambient shear, highly reminiscent of the LAST regime discussed
above.

At high Re,U/N is of course a natural inviscid vertical length scale. Billant &Chomaz (2000a,b)
demonstrated that vertically oriented vortices in a stratified fluid (as would be expected to form
from instability of a horizontally aligned shear layer) are prone to the zigzag instability, which
naturally leads to layering on the scale of U/N. Subsequent numerical simulations (see, e.g.,
Deloncle et al. 2008, Waite & Smolarkiewicz 2008) have demonstrated that, at sufficiently high
Reynolds number, subsequent turbulent breakdown does indeed lead to characteristic layering on
a scale ofU/N. [Although Billant & Chomaz initially considered the interaction of two oppositely
signed vertical vortices, subsequently Otheguy et al. (2006) demonstrated that like-signed vortices
were also prone to a zigzag instability.] Such a scaling does not appear to rely on a particular shear
layer structure, as Lucas et al. (2017) observed similar behavior in a stratified Kolmogorov flow
forced by sinusoidal horizontal shear.

This layer-interface structure arises in a variety of circumstances. Experimentally,
Oglethorpe et al. (2013) demonstrated that a layer-interface structure also spontaneously
appears in vertically stratified Taylor–Couette flow, i.e., the flow in the annular region between
two concentric cylinders.Oglethorpe et al. (2013) observed very long-lived and robust well-mixed
layers of characteristic depth that scaled with UH/N, where N is the buoyancy frequency of the
initial linear stratification and the horizontal velocity scale, UH, is given by �I

√
RI(RO − RI ),

where �I is the angular velocity of the inner cylinder of radius RI and RO is the radius of the
stationary outer cylinder. The initial depth of these layers may be imprinted by some variant
of the strato-rotational instability (Molemaker et al. 2001, Le Bars & Le Gal 2007), but the
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robustness of relatively sharp interfaces, even in the presence of significant turbulent motions
[as first observed by Guyez et al. (2007) in two-layer stratified Taylor–Couette flow], strongly
suggests that it is a generically accessible state within stratified turbulent flows. In real flows, such
layered states might be prone to the subsequent occurrence of vertical shear, thus motivating
further study of mixing due to inherently stratified instabilities that rely on the existence of sharp
interfaces, such as HWI and TCI.

Three key questions concerning these flows arise. First, is the layer-interface structure generic
in the sense can it arise in a wide range of situations? Second, what are the circumstances in
which the layer-interface density structure remains robust? Finally, what sets the vertical scale of
the interfaces? Attempts to answer these questions appear to be inherently linked to the mixing
properties of such flows and the distinction between relatively weakly stratified interfaces, which
are overturned for example through the breakdown of the KHI, and relatively strongly stratified
interfaces, which are scoured for example through the breakdown of the HWI.

4. TEMPORAL EVOLUTION OF TURBULENCE IN STRATIFIED FLOWS

Turbulent mixing triggered by shear instabilities in stratified flows, if the base flow is not forced,
is an inherently transient run-down problem. Conversely, it is possible both experimentally and
numerically to consider continually forced flows, where it is at least conceivable that the flow
approaches some kind of quasi-steady equilibrium. A natural question to ask is then whether the
mixing properties associated with these two situations are equivalent. That is, are the properties
of turbulence in a transient flow (with in general time-varying parameter values of Rig, Reb, etc.)
defined adequately by the instantaneous values of those parameters, and thus are they closely
related to a steady flow with at least approximately constant values of the relevant parameters? It
is fair to say that such equivalence relies on a pretty heroic set of assumptions, not least due to
the overwhelming evidence that history does indeed matter (crucially) to the irreversible mixing
induced by the turbulence.

4.1. Mixing Induced by Overturning Kelvin–Helmholtz Instability

Mixing induced by the development and ultimate breakdown of primary KHI at sufficiently high
Re and Ri is appropriately categorized as overturning, driven locally by a wide range of secondary
instabilities (Mashayek & Peltier 2012a,b, 2013). A quantitative measure to describe the extent of
overturning, which varies in a time-dependent fashion in such flows, is the so-called Thorpe scale
(Thorpe 1977, Smyth&Moum2000,Odier&Ecke 2017,Mashayek et al. 2017a). In a (1D) typical
density profile ρ(z, t), generically there may be regions of static instability with �ρ/�z > 0. Such
a profile can be sorted to be statically stable everywhere, analogously to the construction of the
background potential energy,KPb. Each individual fluid parcel, p(i), has to be displaced a distance
di vertically to form this statically stable profile. The Thorpe scale, LT, can then be defined as the
root mean square (RMS) of these displacement lengths, di.

In numerical simulations, an analogous 3D Thorpe scale, L3D
T , can be constructed as the

RMS value of all the displacements across an entire computational volume required to con-
struct the background density distribution, ρb(z), associated with KPb. As discussed in detail by
Mashayek et al. (2017a), following Smyth & Moum (2000) and Smyth et al. (2001), there can
be differences between these two length scales, and so the use of (either of ) these quantities in
parameterizations must be treated with caution. Indeed, there is a wide range of uncertainty in
using this purely geometrical construct to estimate mixing, which is associated with, for example,
inherent biases (see Mater et al. 2015, Scotti 2015) or sampling issues in inferring typical values
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from a relatively sparse set of vertical profiles (Itsweire et al. 1993, Taylor et al. 2019). As discussed
by Mater et al. (2013), under certain circumstances, however, LT can be related directly to the
so-called Ellison scale, LE = 〈(ρ ′)2〉1/2/|∂ρ/∂z|, where angle brackets denote ensemble averaging
and ρ ′ is the (turbulent) fluctuation away from the mean density profile, ρ.

With these caveats, there is still a real attraction to using estimates of the Thorpe scale to
quantify mixing, as estimations of LT can be done purely from knowledge of a profile of the density
field, as can be relatively straightforwardly measured by observational oceanographers, whereas
estimates of dissipation rates such as χ and E are extremely challenging to obtain, not least due
to the need to measure accurately spatial gradients of fluctuating quantities. [Even LE requires
accurate measurement of fluctuation quantities, as discussed for example by Ivey et al. (2018).]
Dillon (1982) hypothesized that a transient turbulent mixing event could be characterized by a
particular time evolution of the ratio ROT(t) = LO/LT, and he argued that the event’s age could be
inferred from the value of ROT. It seems reasonable that vigorous turbulence, and hence increasing
E , will tend to mix a stratified fluid, and hence to decrease LT while still having a large value of
LO. As a turbulent event ages, ROT should thus increase, allowing a particular value of ROT to be
identified with a particular stage of a particular mixing event.

Furthermore, if a typical value of ROT can be identified [Dillon (1982) suggested ROT ∼ 0.8]
then measurements of LT can be used to infer values of E and hence (assuming 	 is also known)
to estimate values of κρ , the quantity of interest. Though commonly used in observational prac-
tice by necessity (Waterhouse et al. 2014, Gregg et al. 2018), this approach has a large amount of
uncertainty, not least in the choice of the most appropriate estimates of the various background
quantities such as N (Arthur et al. 2017). Smyth & Moum (2000) and Smyth et al. (2001) consid-
ered the evolution of ROT for evolving KHI-dominated flows (with Re0 ∼ 500–1,250, as defined
in Equation 10) and indeed demonstrated that such flows exhibit ROT increasing with time. A
similar analysis for much more vigorously turbulent flows with Re0 � 4,000 by Mashayek et al.
(2017a) also observed ROT increasing with time and found no evidence of a specific typical value
of ROT.

Analysis of a wide range of oceanic observations by Ijichi & Hibiya (2018) demonstrated a
dependence of estimates of the flux coefficient on 	 ∝ R−4/3

OT . As they argued, this scaling arises
naturally from a set of length-scale-based assumptions. Effectively, these all rely on a central con-
cept that the observed turbulence itself is at most weakly affected by the stratification and does
not in itself require consideration of the age of a particular turbulent event. First, the classical
inertial scaling for the dissipation rate relies on the assumption that E can be expressed in terms
of the kinetic energy and some characteristic length scale, E ∼U 3/L ∼ K3/2/L. Second, it is as-
sumed that this length scale may be interpreted as a mixing length, connecting the eddy diffu-
sivity for momentum to the characteristic velocity scales and hence the turbulent kinetic energy,
κm ∼ LK1/2. Third, if the flow is relatively weakly stratified, it is reasonable to assume that mo-
mentum and the (density) scalar are mixed in qualitatively the same way, so that we have PrT ∼ 1
and κρ ∼ LK1/2 ∼ L4/3E1/3, using the classical inertial scaling. Finally, using the definitions for κρ

and LO in Equations 5 and 9, respectively, we can then write 	 as

	 ≡ κρN 2

E ∼ N 2L4/3

E2/3
=

(
LO

L

)−4/3

∼ R−4/3
OT , 12.

under the further (strong) assumption that LT ∼ L. The evidence that this scaling is applicable to a
wide range of oceanic observations is at least suggestive that the observed mixing events may be, at
least in some sense, characterized as weakly stratified. Unfortunately, of course, the observational
measurements cannot identify the specific character of the flow structures leading to this mixing
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in great detail. In particular, it cannot be assumed that the mixing is associated with classical shear
instabilities.

However, at least for KHI-dominated flows at sufficiently high Re0, there is clear temporal
evolution of ROT, which must be interpreted differently, as there is no justification to connect the
rapidly varying LT to any characteristic value of a mixing length. The primary billow roll-up does
lead to a rapid increase or flare in any reasonable estimate of LT. However, as the flow is not tur-
bulent at this stage of its evolution, E 
 0 and so LO remains small. Once the billow saturates, the
wide range of secondary instabilities occur and trigger identifiable turbulent motions. This has
three interconnected and not fully understood effects. First, LT relatively rapidly decays. Second,
turbulence onset rapidly increases LO. The turbulent mixing event is inherently transient, with an
inevitable eventual decay. Although LO does increase and then decrease as the turbulence decays,
the rate of decay ofLO ismuch slower than forLT:LO slowly burns down.The increase inROT with
time should thus be interpreted as being essentially due to the slower decay of its numerator com-
pared to its denominator during a KHI-induced mixing event. The third, purely empirically ob-
served effect is that LO reaches its maximum value almost precisely coincidentally with the instant
when LT 
 LO (Mashayek et al. 2017a). The dissipation rate and ReB are maximum then as well,
since in these flows appropriate estimates of the buoyancy frequency,N, remain close to constant.

4.1.1. Properties and parameterization of Kelvin–Helmholtz instability–induced mixing
events. Mashayek et al. (2017a) found that the instant when LT 
 LO also corresponds to the
time when the instantaneous mixing efficiency, η∗

i , reaches its maximum value, a mixing property
originally hypothesized by Ivey & Imberger (1991). Loosely, energy is being injected (at the over-
turning scale, LT) exactly at the largest possible scale, LO, of a potentially quasi-isotropic inertial
range. It is becoming increasingly accepted that the efficiency of such KHI-induced mixing is
relatively large (see also Mashayek & Peltier 2013, Mashayek et al. 2013, Salehipour et al. 2018,
Salehipour & Peltier 2015) in the sense that instantaneous values of η∗

i ∼ 0.4–0.5 (as defined in
Equation 7) are observed at the optimal instant when LO ∼ LT, as shown in Figure 4a, with cumu-
lative values of η∗

c ∼ 0.3–0.4. Generating such data from simulations is quite challenging, as each
individual simulation (with different initial values of Ri0, Re, and Pr, for example) requires both
significant spatial resolution and temporal evolution. Furthermore, such flows generally exhibit
nonmonotonic variability in their mixing properties with respect to external parameters. Just to
take one example, Mashayek et al. (2013) demonstrated that the mixing appeared to be most effi-
cient for a mixing layer with Ri0 = 0.16: Although the initial growth rate and saturated amplitude
of the primary billow decreases monotonically with minimum initial Richardson number, several
of the secondary instabilities grow more strongly as Ri0 increases. There are thus optimal (what
might be termed Goldilocks) conditions when the mixing is most efficient.

Time-evolving properties of the flow can be calculated, with associated values of Reb or the
minimum gradient Richardson number, Rim, determined from (close to instantaneous) spatially
averaged properties of the flow. These snapshots of both parameters and mixing properties can
then be used in an attempt to populate a parameterization ofmixing.Mashayek et al. (2013) showed
unsurprisingly that the underlying assumptions of steady-state energetically balancedmodels such
as those proposed by Osborn (1980) are not satisfied. In particular, the subsequent mixing always
retains an imprint of the primary overturning triggered by the primary billow, demonstrating
again that history does indeed matter.

Such data are definitely relevant to real flows, but they are associated with vigorous, shear-
driven, overturning-dominated mixing events.Mashayek et al. (2017b) demonstrated, consistently
with observational data, that KHI-induced mixing exhibits a nonmonotonic dependence on Reb
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(a) Variation of the irreversible mixing efficiency η∗
i ≡ M/(M + E ) with the buoyancy Reynolds number Re∗b = E/(νN2∗ ), defined using

the buoyancy frequency N∗ associated with the sorted density profile, for the simulation prone to Kelvin–Helmholtz instability (KHI)
in Figure 3a–c (gray circles) and the simulation prone to Holmboe wave instability (HWI) in Figure 3d–f (blue circles). The direction of
time evolution is indicated by arrows, and the flare of mixing efficiency to relatively large values for the KHI flow is apparent.
(b) Variation of the scaled irreversible diapycnal diffusivity κ∗

ρ/κ ≡ M/(κN2∗ ) with Re∗b for the same simulations for t ≥ t3D.
Figure adapted with permission from Salehipour et al. (2016a); copyright 2016 Cambridge University Press.

such that the (irreversible) flux coefficient is

	∗
c (Reb) =

2	m
(
Reb
Remb

)1/2

1 +
(
Reb
Remb

) , 13.

where Remb ∼ O(100) is the value of Reb at which 	∗
c (Reb) = 	m ∼ 0.5 is maximum.

This decrease at large Reb is consistent with observations (Monismith et al. 2018) and the
influential sheared and forced numerical simulations of Shih et al. (2005), as discussed in detail
by Ivey et al. (2008). However, caution must be shown in interpretation for at least two reasons.
First,Reb is a ratio, and so large values can be associated with large values of E or small values ofN,
however defined. Indeed, for KHI-induced mixing, it would never be appropriate to characterize
the flow as being strongly stratified. Therefore, the observed right flank of decreasing values of
	 ∼ Re−1/2

b with larger Reb is at best a signal that the efficiency of mixing apparently decreases for
sufficiently intense turbulence. (The eddy diffusivity, and so the actual amount of transport, still
increases with Reb since κρ is proportional to 	Reb.)

Second, it is quite difficult to disentangle the dependence on other variables. Salehipour et al.
(2016b) presented a mixing parameterization for the (irreversible) mixing efficiency in terms of
bothReb andRig, although it is difficult to avoid correlation between these two parameters in KHI-
induced turbulent flows, with smaller values of Rig typically being associated with larger values
of Reb. Therefore, in particular, a decrease in mixing efficiency with increasing Reb, consistent
with Shih et al. (2005), and hence an apparent right-flank behavior with respect to Reb, may be
principally due to left-flank behavior of increasing mixing efficiency with increasing Richardson
number.

In short, there are four fundamental criticisms of using a time-evolving flow prone to KHI as
a test bed for generating data for the construction of a generic mixing parameterization. First, the
flow is varying so rapidly that it is hard to argue that the mixing properties at any particular instant
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are not strongly influenced by the previous flow history. Second, the initial imprint of the large
overturning of the primary billow remains significant throughout the flow evolution. Third, the
flow is inherently shear driven, and it is naturally of interest to investigate whether flows forced by
an alternative mechanism have similar (or indeed completely different) mixing properties. Finally,
the flows are inevitably in a regime that should be characterized as weakly stratified, and so cannot
access flow regimes that could reasonably be characterized as strongly stratified.

4.2. Mixing Induced by Scouring Holmboe Wave Instability

A natural way to address at least some of these criticisms is to consider the mixing properties in-
duced by the breakdown of HWI.As demonstrated by Salehipour et al. (2016a), analogously to the
situationwithKHI, there is a qualitative change in themixing properties associated with the break-
down of HWI when the flow is at a high value of Re0 � 4,000 compared to previous, more moder-
ate values of Re0 ∼ O(500) (Smyth &Winters 2003), due principally to Reb transiently reaching a
sufficiently large value. However, there are certain qualitative differences in the properties of the
ensuing turbulence, as explored further by Salehipour et al. (2018). As shown in Figure 3d–f, the
initially sharp density interface embedded within the shear layer remains, and the ensuing mixing
following the breakdown of the primary HWI clearly scours rather than overturns the density
interface. Furthermore, as shown in Figure 4, the variation of an appropriate measure of the irre-
versible mixing efficiency with Reb is less than for a flow driven by a primary KHI, and in particular
there is no evidence of the flare of large optimal values of E associated with the KHI overturning.

Indeed, the HWI-induced turbulence appears to burn for longer than the KHI-induced tur-
bulence, generally approaching a quasi-equilibrium, which importantly is apparently largely inde-
pendent of the initial conditions in terms of the initial value of the ratio of shear layer and density
interface depth, R, or the bulk Richardson number. As shown by Salehipour et al. (2018), the cu-
mulative irreversible flux coefficient for a wide range of initial conditions tends very closely toward
	∗
c 
 0.2, just as hypothesized by Osborn (1980). By considering the horizontal averages of the

streamwise velocity and density distribution, and then considering (pointwise in space and time)
the implied values of the gradient Richardson number Rig in such a turbulent flow, Salehipour
et al. (2018) found that the PDF of Rig is strongly peaked around the Miles–Howard critical value
of 1/4. This apparent self-organized criticality is highly suggestive of the hypothesis that 	 

0.2 is indeed characteristic of scouring shear-driven mixing that is approximately in steady state
and is also not contaminated by the imprint of an initial vigorous overturning. Furthermore, such
mixing would appear not to be characteristic of right-flank behavior, as shown in Figure 1, as the
effective turbulent Prandtl number (as defined in Equation 6) is PrT ∼ O(1). Therefore, even for
such flows where the bulk Richardson number can have relatively large values, the flow adjusts so
that significant turbulent mixing occurs in regions where the stratification is sufficiently weak for
PrT ∼ 1 in a layered flow.

5. MIXING IN FORCED FLOWS

There is an argument that a natural approach characterizing irreversible stratified mixing should
be based around consideration of continuously forced flows, in which the partitioning (termed the
taxation rate above) between turbulent dissipation and irreversible mixing can be determined.

5.1. Boundary Forcing: Stratified Plane Couette Flow

An attractive boundary-forced flow geometry is stratified planeCouette flow, i.e., the flow between
two plates a distance 2h apart, which are maintained at different velocities,±U0, with Re=Uoh/ν.
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Such flows (when unstratified) are linearly stable for allRe, and so the transition to turbulencemust
be inherently of finite amplitude and nonlinear. If the fluid beside the boundaries is maintained
at constant different densities, ρr ∓ ρ0 [modeling, for example, constant temperature boundaries
with a linear equation of state such that ρ = ρr[1 − αvθ ], where αv is the thermal coefficient
of expansion], and if gravity is chosen to point in the wall-normal direction, it is also possible
to define a natural bulk Richardson number, Ri0 ≡ gρ0h/ρrU 2

0 . A particular attraction of such a
flow (Deusebio et al. 2015, Scotti & White 2016, Zhou et al. 2017a) is that, by construction with
such boundary conditions, there is both a friction velocity, uτ , defined in terms of the wall shear
stress, τw, emergent from the structure of the horizontally averaged velocity field, and a constant
vertical heat flux, qw, through the system, emergent from the structure of the temperature/density
field induced by the flow. The constant vertical heat flux ensures that the density flux B > 0 is
sign-definite, thereby avoiding subtleties concerning the use of M or χ in the definition of 	.

These quantities then allow the definition of the Obukhov length scale, L, which in turn can
be scaled with the near-wall viscous length scale, δν = ν/uτ :

u2τ ≡ τw

ρr
= ν

∣∣∣∣ ∂

∂z
u
∣∣∣∣
z=±h

, qw ≡ κ

∣∣∣∣ ∂

∂z
θ

∣∣∣∣
z=±h

,

L ≡ u3τ
kmgαvqw

, L+ ≡ L
δν

,

14.

where an overline denotes a horizontal average and km is the von Karman constant for momen-
tum, km 
 0.41. Considering the flow energetics, the moving walls via the shear stress are forcing
the flow, generically leading to turbulence production. The length scale L quantifies the relative
strength of this turbulent production to the power required to maintain the (wall-normal) flux of
buoyancy. As observed by Flores & Riley (2010), for L+ � 200, stratified turbulence cannot be sus-
tained and the flow becomes spatiotemporally intermittent in a fundamentally different way from
unstratified intermittency at transitionary Re (Duguet et al. 2010), as it is the stabilizing effects of
buoyancy that suppress the wall-normal transfer of momentum, rather than viscous effects, that
lead to the turbulence being switched off.

A further attraction of this flow is that it is possible to construct a Monin–Obukhov (M-O)
similarity theory for various key properties of the flow in terms of L, which agrees very well with
the results of direct numerical simulations. In particular, when both L+ and ζ (the distance from
the wall scaled with L) are sufficiently large, the mean density profile, the mean velocity profile
across the interior of the flow, and the associatedmixing lengths lm and ls for momentum and scalar
mixing, respectively, relating perturbation quantities to mean gradients, should all be self-similar
functions of ζ alone.

The application of this similarity theory has several significant implications, as discussed in
more detail by Deusebio et al. (2015), Scotti & White (2016) and Zhou et al. (2017a). Crucially,
the spatial variation of gradient Richardson number can be expressed in terms of ζ :

Rig(ζ ) = km
ks

ζ−1 + βs

(ζ−1 + βm)2
,

Rig
∣∣
z=0 = km

ks
L/h+ βs

(L/h+ βm)2
→kmβs

ksβ2
m


 0.21 as h/L → ∞, 15.

where ks 
 0.48 is the von Karman constant for the scalar profiles and βm = 4.8 and βs = 5.6
are other empirical constants. The length scale Lmust be sufficiently large so that the turbulence
does not become intermittent. Increasing Re (i.e., increasing h) will still constrain the Richardson
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Verification of Monin–Obukhov (M-O) scalings for direct numerical simulations of stratified plane Couette flow. Different symbols
denote different combinations of molecular Prandtl number, Pr � ν/κ , and bulk Richardson number, Ri0 ≡ gρ0h/(ρrU 2

0 ). In panel a,
shading denotes various Reynolds numbers, Re � U0h/ν, for the simulations with Pr = 0.7 (open circles). All other simulations have Re =
4,250. Dashed lines denote the predicted M-O scalings: Equation 15 for panel a, and equality of x and y coordinates for panels b and c.
Shown is the variation of (a) the mid-channel gradient Richardson number, Rig|z = 0, with the channel half-depth scaled by the
Obukhov length scale, h/L; (b) buoyancy Reynolds number, Reb ≡ E/(νN 2) (using pointwise estimates in the interior of the channel),
with the product of the Obukhov length in wall units and von Karman’s constant, L+km; and (c) local flux Richardson number,
Rif ≡ B/P , with gradient Richardson number, Rig = N 2/S 2, both estimated pointwise in the interior of the channel. Figure adapted
with permission from Zhou et al. (2017a); copyright 2017 Cambridge University Press.

number at the midpoint of the channel within such a flow to remain small, ∼0.21, irrespective of
the value of the imposed Ri0, as shown in Figure 5a.

Furthermore, as argued by Scotti & White (2016), an explicit expression can be derived for
Reb = L+km, which also agrees very well with numerical simulations, as shown in Figure 5b.
They also called into question (at least for such flows) whether the buoyancy Reynolds number is
actually an appropriate parameter to use to describe the mixing efficiency. Indeed, for such flows,
both Fh and the flux Richardson number, Rif, prove to be closely related to characteristic values
of Rig (F−2

h ∼ Rig and Rif ∼ Rig), and so the turbulent Prandtl number is (close to) one. This is a
result that, as demonstrated by Zhou et al. (2017a), is largely independent of the molecular Prandtl
number, Pr, as shown in Figure 5c [the anomalous data are effectively at small Reb = O(10)].

Therefore, in such a steadily forced flow, there is an emergent mixing efficiency that is largely
consistent [though slightly larger given 	 = Rif/(1 − Rif)] with the hypothesized bounded flux
coefficient of Osborn (1980). [Scotti & White’s (2016) observations were in close agreement, but
they had not accessed the asymptotically possible midplane gradient Richardson number consid-
ered by Zhou et al. (2017a).] Additionally, as discussed in detail by Zhou et al. (2017a), there is
no evidence of strongly stratified right-flank behavior: Rif increases monotonically (linearly with
Rig), until the flow can no longer support turbulence, toward a value largely consistent with the
assumptions of Osborn (1980), and also largely irrespective of the particular imposed values of
Ri0, Re, or Pr. Equivalently, this particular wall-forced flow never enters a low–turbulent Froude
number regime (in fact, Fh � 2) and so 	 is proportional to F−2

h , consistent with Ivey & Imberger
(1991) and Wells et al. (2010), as well as the scaling analyses (discussed below) associated with
body-forced stratified turbulence.

The onset of intermittency in these flows does not appear to be directly related to the Miles–
Howard criterion for at least two reasons. First, as demonstrated by Zhou et al. (2017a), even if
stratified plane Couette flow is initialized with an initially two-layer density distribution such that
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scouring rather than overturning mixing occurs with a sharp and robust interface within the flow,
the ensuing mixing still appears to have the character of weak stratification in that the measures
of the mixing efficiency scale with F−2

h .
Second, it is possible to consider a flow where the mean density gradient and velocity gradi-

ent are orthogonal, and sufficiently strongly stratified flows still appear unable to sustain turbu-
lence. Such a flow (as discussed by Lucas et al. 2019) may be thought of as having two vertical
bounding plates moving relative to each other at velocities ±U0 with (vertically) stratified fluid
between the two plates, with initially constant buoyancy frequency N0. Analogously to stratified
Taylor–Couette flow, spontaneous layers form in this flow with a characteristic depth proportional
to U0/N0, provided these layers are sufficiently deep, which in some circumstances are, analo-
gously to stratified Taylor–Couette flow, imprinted by a linear instability mechanism identified
by Facchini et al. (2018). However, as the (initial) stratification is increased, ultimately the layers
become so thin that the stratification suppresses the near-wall generation and maintenance mech-
anisms for the turbulence, and the flow becomes intermittent, once again apparently precluding
sustained turbulence when the flow is (in any reasonable sense) strongly stratified.

5.2. Body-Forced Turbulent Flows

It is straightforward in a numerical simulation to add artificial body forces to inject energy into the
flow in an attempt to sustain turbulence, as it seems difficult to boundary-force a strongly stratified
turbulent flow. Although it is of course possible to consider a time-dependent body-forced flow
[see, for example, the turbulent wake simulations of Zhou & Diamessis (2019)], here our focus is
on quasi-steady forced flows.

5.2.1. Forced stratified shear flows. The influential simulations of Shih et al. (2005), which
exhibited an Re−1/2

b decrease in mixing efficiency for energetic values of Reb > 100, forced the
flow to have both a uniform mean shear and density gradient. Chung & Matheou (2012) took a
different approach, throttling the mean shear so that the turbulent production stayed constant.
They found that with such a control mechanism, the flow evolved into a state once again well
described by M-O similarity theory, with Ri ∼ 0.15 and (again) PrT 
 1.

However, fixing the turbulence production to a particular value makes it somewhat difficult to
interpret the dependence of the various flow properties on, in particular, the buoyancy Reynolds
number, Reb. An alternative, though closely related, three-stage approach was implemented by
Portwood et al. (2019) (see also Taylor et al. 2016) for a flow with a fixed uniform (vertical) shear
and a fixed background density gradient. First, the viscosity within the simulation is set. Second,
a target turbulent kinetic energy K′

t is chosen. Third, the value of gravity (and hence the charac-
teristic value of the coupling gradient Richardson number, Rig) is adjusted using a second-order
mass-spring-damper control system to converge the turbulent kinetic energy toward the target
value. If K′ is increasing, Ri is increased, while if K′ is decreasing, Ri is decreased, until K′ → K′

t.
Crucially, several key quantities are emergent for a range of K′

t. The dissipation rates of both
kinetic energy, E , and buoyancy variance, χ , vary naturally with K′

t, but their relative size, and so
the mixing taxation rate, is not predetermined, and neither is the final value of Ri. As K′

t is varied,
it is reasonable to expect that Reb will vary, but the specific numerical value is also emergent. For
30 < Reb < 900, the emergent value of Ri 
 0.15–0.16 is close to constant. For this range of Reb,
Portwood et al. (2019) found (yet again) PrT 
 1 and the appropriate emergent flux coefficient,
	 = χ/E 
 0.2, as shown in Figure 6, which is close to the upper bound proposed by Osborn
(1980), perhaps unsurprisingly since this flow more closely satisfies the underlying assumptions.
There is no evidence of the Re−1/2

b scaling.The requirement that the turbulence remains sustained
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Figure adapted with permission from Portwood et al. (2019); copyright 2019 American Physical Society.

appears to force the flow evolution to be weakly stratified in that the mixing of the scalar is closely
coupled to the mixing of momentum. Furthermore, these calculations are consistent with the
argument of Scotti & White (2016) that the hybrid parameter, Reb, is not the most appropriate
parameter to describe turbulent mixing.The control algorithm leads to effectively constant values
of both Rig and (for this flow at least) the turbulent Froude number, Fh 
 5. For small Rig, there
is certainly evidence of Rif 
 Rig, although more strongly stratified sheared flows do not seem to
be able to support sustained turbulence.

5.2.2. Body-forced stratified turbulence: dependence on Fh. In an important paper,
Maffioli et al. (2016) presented convincing arguments that themost appropriatemeasure to param-
eterize mixing generically is the (turbulent) Froude number, and that it is plausible that there are
at least two regimes. They identified these regimes through numerical simulations with artificial
body forces designed to maintain (unsheared) stratified turbulence. In particular, for simulations
with low Froude numbers, Fh < 0.2, they found that it was necessary to force only (vertical) vorti-
cal modes with relatively small horizontal wavenumbers, as isotropic forcing of such flows leads to
nonstationary flows with substantial shear. This curious phenomenon is unexplained, and it would
be of interest to investigate further.

The high–Froude number regime once again exhibited a scaling 	 ∝ F−2
h , consistent

with the results for weak stratification in shear flows. Building upon this, Garanaik &
Venayagamoorthy (2019) presented scaling arguments leading to this behavior, arguing that at
high Fh the key timescale for χ (and hence the mixing) is the (unmodified) turbulence timescale,
K/E . Maffioli et al. (2016) also observed that, with this particular forcing, turbulence could in-
deed be maintained to relatively low values of Fh ∼ 0.02, although for these flows inevitably Reb
dropped to smaller values of O(10) in their simulations. They observed nonmonotonic variation
of 	, with a peak value 	 
 0.5 for Fh 
 0.3, before an apparent asymptotic value of 	 
 0.33,
suggestive of independence of 	 ∼ F0

h as Fh → 0.
Garanaik & Venayagamoorthy (2019) argued that such a constant asymptotic value is consis-

tent with the assumption that the dominant timescale for both χ and E is the buoyancy timescale,
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1/N, which thus cancels out in the ratio of 	. Indeed, they argued in favor of a hybrid intermediate
regime where the timescale for χ is the buoyancy timescale, while the timescale for E is the tur-
bulence timescale, thus leading to a prediction of 	 ∝ F−1

h for intermediate values of the Froude
number. Their collated, significantly scattered data are not inconsistent with this intermediate
scaling. [They also presented arguments to infer mixing properties from various powers of the
ratio LE/LO, where the Ellison scale, LE, is effectively being used as a proxy for the Thorpe scale,
LT, analogously to the arguments presented above from Ijichi & Hibiya (2018).]

It is fair to say that it is still an open question of great interest whether there is nonmonotonic-
ity in the dependence of mixing efficiency with Fh, and so the key, fundamental fluid dynamical
questions concerning the parameterization of mixing are still open. Indeed, it is not clear what
the specific numerical value of 	 might be expected to be as Fh → 0; for example Garanaik &
Venayagamoorthy (2019) argued that a broader data set suggests 	 → 0.5 in the limit Fh → 0.This
particular constant value is actually consistent with Khani’s (2018) large eddy simulations of forced
stratified turbulence, when PrT 
 1, remembering that 	/(1 + 	) corresponds to Khani’s defini-
tion of mixing efficiency. Indeed, even larger implied values of 	, although still asymptotically
independent of the strength of the stratification, occur when a sufficiently strong density interface
is scoured by impinging vortex rings, as considered by Olsthoorn & Dalziel (2018). It should cer-
tainly be investigated further what influence the particular form of forcing might have on the ob-
served mixing. In particular, it is of interest whether the mixing might best be categorized as shear
driven or convective in character, since convective overturning (for example, associated with the
breaking of an internal wave) generically leads to substantially more efficient irreversible mixing.

5.2.3. Layering and local dynamics. A final and very important point is a recurring theme:
Layering of strongly stratified turbulent flows appears to occur spontaneously, and so identifying
flows as strongly stratified must be treated with great caution. There is evidence that such body-
forced flows spontaneously organize into quiescent, locally more strongly stratified regions and
vigorously turbulent,moreweakly stratified regions, calling into question the classification of flows
in terms of single, volume-averaged quantities.

Howland et al. (2020) qualitatively demonstrated such a spontaneous layering by conducting
stratified turbulent simulations with a range of different forcings. Furthermore, Portwood et al.
(2016) developed a robust method to identify vigorous turbulent patches (associated with local
density overturnings), intermittent layers, and quiescent regions within a forced stratified flow
with imposed constantN. A typical example is shown in Figure 7. This automated method can be
applied to simulation data from flows with different overall Fh and different Reb.These parameters
are typically defined in terms of a volume-averaged dissipation rate: for the twomost extreme cases,
Fh = 0.0743 and Reb = 218 for a weakly stratified simulation (F1), while Fh = 0.0152 and Reb =
13.4 for a strongly stratified simulation (F3), possibly just satisfying the conditions for being in
the LAST regime. F1 is identified as being 96% patch. The absolute contributions from within
those patches to the dissipation rates across the whole volume are over 99% for both E and χ .
Unsurprisingly, the conditional value ofReb = 240within the patch is similar to the volume average
of 218.

The picture is markedly different for the strongly stratified simulation F3 (a slice of which is
shown in Figure 7). For this simulation, only 4% of the flow is vigorously turbulent. However
the conditional value of Reb = 177 within those patches (i.e., using the average value of the local
dissipation rate in parts of the flow identified as patches) is quite similar to the equivalent value
for the (virtually all-turbulent) simulation F1. Furthermore, these small patches contribute 56%
of the total dissipation rate and 66% of the total buoyancy variance destruction rate. Therefore,
the truly turbulent regions in the strongly stratified flow are very similar to those in the weakly
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automated flow classification method developed by Portwood et al. (2016). The coloring in panel b highlights the convectively unstable
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stratified flow, and the fundamental difference is that the strongly stratified flow is just substan-
tially more spatiotemporally intermittent and, once again, layered. This is yet more evidence that
it is actually extremely difficult for a (in some sense quasi-steady) flow to be both strongly strat-
ified and vigorously turbulent. It is clearly of great interest either to identify (and measure the
properties of ) such a flow or, on theoretical grounds, to establish the impossibility of sufficiently
vigorous turbulence of surviving for a long period in a strongly stratified environment without the
formation of a layer-interface structure. As discussed in this review, such layering does appear to
arise in a wide range of flows with a variety of forcing mechanisms, and the characteristics of such
flows are clearly deserving of greater consideration and study in the future.

SUMMARY POINTS

1. Although there has been a large range of deeply insightful research contributions to our
understanding of transition, turbulence, and irreversible mixing in stratified fluids, it still
remains extremely difficult to say anything generic about mixing.

2. History matters in describing stratified turbulent mixing, with marked differences be-
tween turbulence triggered by shear instabilities and turbulence forced either at a bound-
ary or by artificial body forces.

3. It is important to consider structures rather than statistics when analyzing the turbulence
and ensuing irreversible mixing in stratified fluids.

4. Mixing associated with overturning instabilities, such as the classic Kelvin–Helmholtz
instability (KHI), is qualitatively different from scouring instabilities, such as the
Holmboe wave instability (HWI).

5. Evidence is accumulating that a very wide range of instability and turbulence mecha-
nisms and mixing processes can lead generically to a layer-interface structure. Under
certain circumstances (Taylor & Zhou 2017), such a structure can be robust.

138 Caulfield



6. Weakly stratified sustained turbulent flows often have PrT 
 1, and thus Rif ∼ Rig � 0.2,
largely consistent with the classical model of Osborn (1980).

7. There is evidence suggesting that strongly stratified turbulence should be thought of as
patches of vigorous turbulence in local regions of relatively weak stratification embedded
in relatively quiescent regions of significantly stronger stratification.

FUTURE ISSUES

1. Is it even reasonable to attempt to develop parametric models for such important quan-
tities as mixing efficiency (howsoever defined) in terms of natural nondimensional pa-
rameters, such as Richardson numbers, buoyancy Reynolds numbers, turbulent Froude
numbers, and the Prandtl number?

2. Does nonmonotonicity of dependence on a parameter ever actually occur, and in partic-
ular, is right-flank behavior real, where the mixing efficiency decreases as (for example)
Rig increases, where all other parameters are properly controlled, without hidden corre-
lations between independent parameters?

3. When combined with other recent techniques from modern data science, what role can
automated structure identification (e.g., Portwood et al. 2016) play in improving models
for mixing? For example, Salehipour & Peltier (2019) used deep convolutional neural
networks to develop an alternative data-driven parameterization of shear-driven mixing
in flows susceptible to primary KHI- and HWI-induced mixing, which out-performed
previous physics-based parameterizations.

4. Is it worth investigating whether data-driven techniques such as machine learning and
artificial intelligence can be applied productively to model stratified mixing (Bolton &
Zanna 2019)? Through vastly enhanced computational, experimental, and observational
resources available to the research community, there is a proliferation of data available to
analyze and from which to extract insight. The challenge is to use the right combination
of data-driven and physical-process-based approaches such as those described here to
unravel the fascinating mystery of irreversible mixing in stratified fluids.
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