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Abstract

Nine decades of rocket engine and gas turbine development have shown
that thermoacoustic oscillations are difficult to predict but can usually be
eliminated with relatively small ad hoc design changes. These changes can,
however, be ruinously expensive to devise. This review explains why linear
and nonlinear thermoacoustic behavior is so sensitive to parameters such as
operating point, fuel composition, and injector geometry. It shows how non-
periodic behavior arises in experiments and simulations and discusses how
fluctuations in thermoacoustic systems with turbulent reacting flow, which
are usually filtered or averaged out as noise, can reveal useful information.
Finally, it proposes tools to exploit this sensitivity in the future: adjoint-based
sensitivity analysis to optimize passive control designs and complex systems
theory to warn of impending thermoacoustic oscillations and to identify the
most sensitive elements of a thermoacoustic system.
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1. HISTORY AND MOTIVATION

The first scientific reports of thermoacoustic oscillations appeared over two centuries ago (Higgins
1802) and described a phenomenon that was already well known to glass blowers (Sondhauss
1850). The physical mechanism was deduced over one century ago (Rayleigh 1878) and has been
used in analysis since at least the 1940s (Crocco & Cheng 1956). The practical consequences
of thermoacoustic oscillations have been evident since liquid rocket engine development in the
1930s: They cause thrust oscillations, structural damage, increased heat transfer, and component
or payload failure. Despite decades of research by Germany from the 1930s on, by the United
States and the USSR during the Cold War (Oefelein & Yang 1993, Culick 2006, Dranovsky 2007),
and recently by the gas turbine industry (Lieuwen & Yang 2005), these oscillations remain a severe
problem today (Poinsot 2017).

The mechanism that drives thermoacoustic oscillation is similar to that which drives a piston
engine. In an idealized piston engine, work is first done on a gas as it is compressed isentropically.
The gas then combusts at fixed volume, releasing heat and raising its pressure further. Next, this gas
does work as it expands isentropically to its original volume. More work is done by the gas during
the expansion phase than is done on it during the compression phase, leading to a net conversion
of heat to work. In thermoacoustics, an acoustic wave replaces the piston and a continuous flame
replaces the periodically ignited gas. The acoustic wave independently (a) perturbs this flame and
(b) compresses and expands the gas around the flame. If the perturbed flame releases more heat
than average during instants of higher local pressure, then more work is done by the gas during the
acoustic expansion phase than is done on it during the acoustic compression phase. If this work is
not dissipated, then the oscillation amplitude grows and the system is thermoacoustically unstable.
Chu (1965) provided a detailed description and analysis of the thermoacoustic mechanism.

There is little alternative to the devices afflicted by thermoacoustic oscillations: Rockets and jet
engines have unrivaled power-to-weight ratios, and, in addition, ground-based gas turbines emit
less CO2 per unit of power than coal-fired power stations. In order to achieve high power-to-
weight ratios and high efficiencies, these engines all have low acoustic damping and high energy
densities: up to 50 GW/m3 for liquid rockets, 1 GW/m3 for solid rockets, and 0.1 GW/m3 for
jet engines and afterburners (Culick 2006). Consequently, large amplitude oscillations can be
sustained even if the thermoacoustic mechanism is only slightly (approximately 0.1%) efficient for
at least one acoustic mode (Huang & Yang 2009).

Development of these engines consists of component tests, sector tests, full combustor tests,
and full engine tests. Thermoacoustic instability tends to recur during the later stages and is
rarely predicted reliably by component tests and analysis (Lieuwen & McManus 2003, Mongia
et al. 2003, Huang & Yang 2009). There are three main reasons for this. First, the efficiency of the
thermoacoustic mechanism depends strongly on the time lag between heat release rate and pressure
oscillations (Sections 2.3 and 2.4). Second, this time lag depends on hydrodynamic, acoustic, and
combustion mechanisms, which scale differently with geometry and pressure and are sensitive to
parameters (Section 2.5). Third, this time lag can vary from cycle to cycle, leading to elaborate
nonlinear behavior (Section 3). On the positive side, this sensitivity presents opportunities for
passive control (Section 2.6) or diagnosis and avoidance of oscillations by analyzing acoustic
fluctuations either stochastically (Section 4.1) or with tools from dynamical systems and complex
systems theories (Section 4.2).

Important areas that are not covered in this review are (a) feedback control (Candel 1992, 2002;
McManus et al. 1993; Dowling & Morgans 2005), (b) the dynamics of swirling flames (Candel
et al. 2014), (c) the interaction between hydrodynamic and thermoacoustic instabilities (McManus
et al. 1993, Lieuwen 2012, Oberleithner et al. 2015), (d ) annular combustors and transverse modes
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(Worth & Dawson 2013, Bourgouin et al. 2015, O’Connor et al. 2015, Bauerheim et al. 2016),
and (e) computational fluid dynamics (CFD) (Poinsot 2017).

2. SENSITIVITY ARISING FROM LINEAR BEHAVIOR

Rocket and gas turbine combustion chambers are designed to operate in intense turbulent flow,
without unsteady acoustic oscillations. It is therefore appropriate to perform a linear analysis of
acoustic perturbations to the time-averaged turbulent flow. This is known as the triple decompo-
sition and is described by Reynolds & Hussain (1972) for hydrodynamics and by Huang & Yang
(2009, section 5.1) for thermoacoustics. Alternatively, a simpler analysis can be performed around
a uniform flow, neglecting turbulence (Rayleigh 1896, chapter XXI).

2.1. The n − τ Model for Heat Release

The n − τ model was first used by Summerfield (1951) after a 1941 discussion with von Kármán.
An acoustic perturbation at a fuel injector causes a downstream heat release rate perturbation some
time later (Harrje & Reardon 1972). To leading order (Lieuwen 2012, chapter 12), this can be
modeled with a compact flame n−τ model, in which the heat release rate fluctuation at position xf

and time t is q (xf , t) = nu(xm, t − τ ), where u(xm, t − τ ) is the acoustic velocity at position xm, time
τ before time t, and n is a constant known as the interaction index. Higher-order terms capture
spatial variations in phase, which can be modeled heuristically by setting n and τ to be functions
of space (Nicoud et al. 2007). Also, u can be replaced by the acoustic pressure or the equivalence
ratio perturbations, and τ can depend on the flow variables (Crocco & Cheng 1956). This model
encapsulates the physics required to explain thermoacoustic oscillations, although it misses some
details, such as flame cancellation in flames perturbed by the equivalence ratio (Lieuwen 2012).
Crocco viewed this model as a “heuristic attempt to analyse combustion instability until superior
knowledge of unsteady combustion processes was developed” (Sirignano 2016, p. 175). Although
these fundamental processes have since been discovered, usually through detailed experiments
(Poinsot et al. 1987), the n − τ model is still widely used and, in this review, demonstrates why
thermoacoustic oscillations are so sensitive to small changes in τ .

2.2. A Model Problem

For illustration, we consider oscillations in an open-ended tube from x = 0 to X , containing gas at
uniform density ρ, uniform pressure p , uniform ratio of specific heats γ , and zero mean velocity u.
We consider planar acoustic perturbations to the velocity, u, and pressure, p . These assumptions
prevent entropy and vorticity waves from propagating, allowing an acoustic wave equation to be
derived (Nicoud & Wieczorek 2009). A heat source is placed at x = xf , with heat release rate
q (t) = nu(xm, t − τ ) watts per squared meter, where n is a real constant with units of energy per
cubic meter, τ is a time delay, and xm is the position at which u is measured (Section 2.1). We
neglect viscous and thermal dissipation and the mean density drop across the heat source. The
dimensional acoustic momentum and energy equations are

ρ
∂u
∂t

+ ∂p
∂x

= 0,
∂p
∂t

+ γ p
∂u
∂x

= (γ − 1)qδD(x − xf ), 1.

where δD is the Dirac delta. These are nondimensionalized with length X , sound speed c ≡√
γ p/ρ, and pressure p (see Supplemental Tutorial 1, section 2). We define γ ′ ≡ (γ − 1)/γ .
Three methods are often used to solve Equation 1: the traveling wave framework (Rayleigh

1896, section 245), the Galerkin framework (Zinn & Lores 1971), and the Helmholtz framework
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(Nicoud et al. 2007). In all three methods (see Supplemental Tutorial 1, section 3), the dimen-
sionless governing equations are expressed as a nonlinear matrix eigenvalue problem,

L(s )q = 0, 2.

where q is a state vector that depends on the method, and the matrix L depends nonlinearly on
the Laplace variable, s ≡ s r + i s i, where s r is the growth rate and s i the frequency. Equivalently,
L in Equation 2 can be expressed as a function of the Fourier variable, ω ≡ i s .

In the traveling wave method, downstream-traveling (F ) and upstream-traveling (G) waves
are considered upstream (Fu, Gu) and downstream (Fd, Gd) of xf , respectively. With reflection
coefficients R at each end and jump conditions for u and p at xf , these waves must satisfy

L(s )q ≡
[

(1 + Re−sτu ) −(1 + Re−s τd )
(1 − Re−sτu ) + (γ ′ne−s τ ) f (1 − Re−s τd )

][
Gu

Fd

]
= 0, 3.

where τu ≡ 2xf/c , τd ≡ 2(1 − xf )/c , f ≡ (e−s τmf − Re+s τmf e−s τu ), and τmf ≡ (xf − xm)/c .
In the Helmholtz method, q contains the values of p(xi ) at grid points x = xi . In the Galerkin

method, u and p are usually projected onto a basis set of N acoustic modes satisfying the boundary
conditions, and q then contains their amplitudes. Both become

L(s )q ≡
(

s 2I + (γ ′ne−s τ )F − D2
)
q = 0, 4.

where D2 performs d2
/dx2 and F contains information about the measurement point xm and flame

position xf . In the Galerkin framework, the matrix D2 is given by D2
j k ≡ −(kπ )2δ j k, and, if p = 0

at both ends, then Fjk ≡ 2kπ f jk, where f jk ≡ cos( jπxm) sin(kπxf ).

2.3. Sensitivity Due to Changes in the Relative Phases of q and p

One source of sensitivity in thermoacoustics is well known: If τ is not small relative to the oscillation
period T of a given acoustic mode, then relatively small changes in τ cause large changes in
the efficiency of the thermoacoustic mechanism. This was demonstrated theoretically by Crocco
& Cheng (1956, section 3.02), described by McManus et al. (1993, section 2.1.6), and shown
experimentally by, for example, Noiray et al. (2008).

To demonstrate, we consider an open-ended tube (R = −1) as n → 0. For the wave method,
det(L) = 0 in Equation 3 reduces to e−2s = 1, with solutions s = ±kπ i , where k is an integer from
0 to ∞. For the Galerkin method, Equation 4 reduces to N uncoupled equations s 2 = −(kπ )2,
with the same solutions, with k from 0 to N. These have period T = 2/k and are the natural
acoustic modes of the system. For the Helmholtz method, the solutions approach these as the
number of grid points increases. Using the Galerkin method, we consider how the heat release
rate perturbs these modes. When n is of order ε, each eigenvalue ±kπ i + O(ε) of Equation 4
has a corresponding eigenvector whose k-th element is O(1) and other elements are O(ε). The
coupling terms are therefore O(ε)2 and can be neglected when compared with the self-coupling
term, which is O(ε). We can therefore consider each mode in Equation 4 separately such that the
matrix-vector product L(s )q becomes a function L(s ) multiplied by the k-th element of q:

L(s )qk ≡
[
s 2 + ε(2kπβe−sτ ) + (kπ )2

]
qk = 0, 5.

where β ≡ γ ′n fkk and fkk ≡ cos(kπxm) sin(kπxf ). Substituting s = s0 + εs1 gives s0 = ±kπ i at
O(1) and s1 = iβe−s0τ at O(ε). The growth rate s r is therefore β sin(kπτ ), which reveals some
useful physical insights. First, for kτ � 1, the growth rate is proportional to τ , which, for cases
in which fkk > 0, is equivalent to the demonstrations by Candel (2002) and Ducruix et al. (2003)
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Figure 1
Rescaled growth rate s r (left) and frequency s i (right) as functions of time delay τ for the k-th modes of a Rijke tube with p = 0 at both
ends. The most unstable mode (thick yellow line) switches often as τ varies. The Laplace variable, s , is calculated with a 400-mode
Galerkin method with xm = 0.20, xf = 0.25, n = 1, and γ = 1.4. Identical results are obtained using the traveling wave and Helmholtz
methods.

that the time lag is destabilizing. Second, the growth rates of each mode oscillate as τ varies, and
the most unstable mode switches often (Figure 1). Third, through fkk, the growth rate is sensitive
to the measurement position xm and the flame position xf and becomes more so as k increases.

This model implies that mode switching with τ will become endemic for large k. This is mis-
leading, however, because the model contains no damping or acoustic radiation. In reality, higher-
frequency modes are damped by viscosity and geometry, as in a rocket engine’s convergent nozzle
(Crocco & Cheng 1956), and mode switching is not so severe. Nevertheless, this explains why ther-
moacoustic oscillation is so prevalent in combustors with high energy densities and many lightly
damped longitudinal modes, transverse modes, and combined longitudinal and transverse modes:
A geometry must be found at which every mode is thermoacoustically stable across the entire oper-
ating range. For the Apollo F1 engine, this required 2,000 full-scale tests (Oefelein & Yang 1993).

2.4. Sensitivity Due to Eigenvalue Degeneracy

Another source of sensitivity appears near operating points at which two or more modes have the
same frequency and growth rate, i.e., when eigenvalues are degenerate. It is obvious that annular
combustors support degenerate eigenvalues, corresponding to pairs of modes that are identical
apart from the rotation direction. It is less obvious that longitudinal modes can also be degenerate
(Crocco & Cheng 1956, figure 5). We consider the single-mode Galerkin method in Equation 5
with ε ∼ 1 to show that this occurs at realistic parameter values:

L(s ) ≡ s 2 + 2kπβe−sτ + (kπ )2 = 0. 6.

Figure 3 shows that the coupling with higher modes has no qualitative influence on this result.
Changes to L can be expressed as δL = ∂L/∂s |τ ,β δs + ∂L/∂β|s ,τ δβ + ∂L/∂τ |s ,β δτ (for full details
of this analysis, see Magri et al. 2016a). Because Equation 6 must remain satisfied as τ and β vary,
δL equals 0 and the sensitivities of s to β and τ can be written as

∂s
∂β

∣∣∣∣
L,τ

= − ∂L/∂β|s ,τ

∂L/∂s |τ ,β
,

∂s
∂τ

∣∣∣∣
L,β

= − ∂L/∂τ |s ,β

∂L/∂s |τ ,β
. 7.

This breaks down when the eigenvalues are exactly degenerate, which occurs when ∂L/∂s = 0.
Around these points, where |∂L/∂s | is small, each eigenvalue is extremely sensitive to β, τ , and,
indeed, every model parameter. The solutions to L = ∂L/∂s = 0 all lie on the line βτ = ±e−1

and satisfy s iτ = tan(s iτ ), where s iτ =
√

1 − (kπτ )2. These lines are shown in Figure 2a, next to
the sensitivities ∂s/∂τ and ∂s/∂β when k = 1. As k increases, points of extreme sensitivity cluster
ever more closely on the lines βτ = ±e−1. Table 1 shows that max(βτ ) exceeds e−1 = 0.3769 in
many practical systems.
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(a) Points of eigenvalue degeneracy ( purple circles) for the k = 1 mode of Equation 5. As k increases, these points cluster more closely on
the green lines βτ = ±e−1. The numbered blue lines show the ranges of (β, τ ) for the practical thermoacoustic systems in Table 1. (b,c)
Numerically calculated (b) |∂s/∂τ | and (c) |∂s/∂β|, showing that s is very sensitive to the parameters around the degenerate points.

2.5. Sensitivity Due to the Parameters

Sections 2.3 and 2.4 show why the thermoacoustic mechanism’s efficiency is so sensitive to n
and τ . In turn, these parameters are sensitive to factors such as the operating conditions, injector
geometry, and fuel composition. For example, Durox et al. (2009) found that τ changes by a factor
of 2.8 when, at one operating condition, a flame is anchored differently. Prieur et al. (2016) found
that a change to the cup angle of a swirl injector changes τ by a factor of 1.5. Ćosić et al. (2014)
found that a 3% change in the fuel flow rate of a partially premixed swirl-stabilized gaseous fuel
flame caused the gain to change by more than 30% and the phase by up to 20◦. Processes often
overlap, leading to more than one time delay (Candel 2002, figure 5; Komarek & Polifke 2010,
Sirignano 2016, section 4) or a distribution of time delays (Bade et al. 2013). The sensitivity of τ

is even more extreme in liquid fuel flames because the heat release rate is affected by jet breakup,

Table 1 Typical values of n and τ for different flames and thermoacoustic systems

Dimensional values Dimensionless values

q∗ A∗ u∗ p∗ τ∗ f ∗ max(β) max(βτ )
Device (kW) (cm2) (ms−1) (bar) (ms) (Hz) n τ ( = γ ′n) ( = γ ′nτ )

Hot wire Rijke tube 0.20 20.0 1.0 1.0 1.0 200 1.00 0.40 0.29 0.114
(Rigas et al. 2016)

Swirl flame 73.5 93.7 70 1.0 1.0 250 1.12 0.50 0.32 0.16
(Kim et al. 2010b)

Liquid fuel swirl flame 60 78.5 75 1.0 0.83 600 1.02 1.00 0.29 0.29
(Yi & Santavicca 2010)

Multicone flame 14 38.5 3.43 1.0 0.9 700 10.6 1.26 3.03 2.846
(Noiray et al. 2008)

Swirl flame 72.7 93.7 60 1.0 5.0 200 1.29 2.00 0.37 0.74
(Kim et al. 2010a)

Swirl flame 10 38.4 9.9 1.0 4.4 330 2.63 2.90 0.75 2.183
(Balachandran et al. 2005)
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atomization, vaporization, and combustion (Crocco 1951, Summerfield 1951, Zhu et al. 2002, Yi
& Santavicca 2010). This extreme sensitivity introduces considerable systematic uncertainty into
models (Section 2.7).

2.6. Exploiting Extreme Sensitivity with Adjoint Methods

When safety and endurance are paramount, thermoacoustic oscillations must be suppressed pas-
sively (McManus et al. 1993, Richards et al. 2003, Lieuwen & Yang 2005) by, for example, mod-
ifying the time delay (Steele et al. 2000); shielding the fuel injectors with baffles (Oefelein &
Yang 1993); adding acoustic dampers (Eldredge & Dowling 2003); or adding quarter-wave tubes,
Helmholtz resonators (Zinn 1970, Gysling et al. 2000, Bellucci et al. 2004), or dynamic phase
converters (Noiray et al. 2009).

The extreme sensitivity described in Sections 2.3–2.5 explains why thermoacoustic oscillations
can be suppressed by relatively small design changes (Oefelein & Yang 1993, Mongia et al. 2003,
Dowling & Morgans 2005). These changes tend to be made ad hoc. A more systematic approach
is desirable but requires (a) a model that can reliably predict linear thermoacoustic behavior, (b) a
cheap way to obtain the sensitivity of the linear growth rate to all parameters of the model, and
(c) a combination of this sensitivity information with practical constraints to find the optimal
passive control mechanism.

For step b, adjoint methods (Luchini & Bottaro 2014) are ideal because only a handful
of thermoacoustic modes are unstable, but many parameters can be altered (see section 4 of
Supplemental Tutorial 1). Adjoint methods were introduced into linear stability analysis inde-
pendently by Hill (1992, 1995) and Chomaz (1993). They have since been extended to nonmodal
stability theory and nonlinear time-dependent flows (Schmid 2007). Using the nonlinear adjoint
method, Juniper (2011) found the smallest initial perturbation that causes triggering in a hot wire
Rijke tube (see the sidebar titled Bypass Transition to Turbulence and Triggering in Thermoa-
coustics). Using the linear adjoint method, Magri & Juniper (2013, 2014) devised optimal passive
control strategies for thermoacoustic instability in Rijke tubes, and Mensah & Moeck (2017)
devised optimal acoustic damper placement in an annular combustor.

The adjoint problem is constructed by premultiplying Equation 2 by another vector q†:

q†H L(s )q = 0, 8.

where H is the conjugate transpose. For a given eigenvalue, s, the right eigenvector q is defined
such that Equation 8 is satisfied for arbitrary q†. Similarly, the left eigenvector q† is defined such
that Equation 8 is satisfied for arbitrary q. Once an eigenmode (q†, s , q) has been found, the

BYPASS TRANSITION TO TURBULENCE AND TRIGGERING IN
THERMOACOUSTICS

Bypass transition to turbulence and triggering in thermoacoustics are manifestations of similar nonlinear behavior.
Both require a system to be bistable. In hydrodynamics, one stable state is the steady laminar solution and the other
is typically a chaotic attractor. In thermoacoustics, one stable state is the steady solution and the other is typically a
periodic solution. These chaotic or periodic solutions can be reached from many initial states. Of these states, the
one with the smallest initial energy is called the minimal seed. In thermoacoustics, growth from the minimal seed
exploits transient growth around the unstable periodic solution ( Juniper 2011). In hydrodynamics, the mechanism
seems to be similar, although with many more unstable periodic solutions (Kerswell 2018).
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Figure 3
The sensitivities |∂s/∂τ | (a–c) and |∂s/∂β| (d–f ) calculated with the adjoint method in Equation 9 for (a,d ) the 100-mode Galerkin
method, (b,e) the 400-mode finite element Helmholtz method, and (c,f ) the wave method. The results calculated with each method are
identical and are also close to those for the single-mode Galerkin model in Figure 2, which has the same parameter values: xm = 0.20,
xf = 0.25, and γ = 1.4.

sensitivity of s to every parameter [·] is found cheaply (Magri et al. 2016a) with

∂s
∂[·] = −q†H (∂L/∂[·])q

q†H (∂L/∂s )q
, which becomes

∂s
∂[·] = q†H (∂L/∂[·])q

q†H Bq
if L = A − Bs. 9.

Figure 3 shows the parameter sensitivities of Figure 2, recalculated using adjoint methods for
a 100-mode Galerkin method, a 400-element Helmholtz method, and the wave method. This
confirms that the points of extreme sensitivity, which were found analytically for the single-mode
Galerkin model, exist around the same parameter values for the more accurate models. We can
then multiply ∂s/∂n and ∂s/∂τ by the sensitivity of n and τ to the injection conditions, derived
from a separate adjoint calculation. An approach similar to that of Tammisola & Juniper (2016)
would give the influence of the injector geometry on the heat release rate, n(x), and time delay,
τ (x), fields and, thus, the eigenvalue.

Adjoint methods also provide base state sensitivities, which can be used for physical insight
or in gradient-based optimization algorithms. For example, Figure 4a,b shows the pressure and
velocity of the first eigenmode of Equation 1, calculated with a Helmholtz method in which
the measurement function, w, the interaction index, n, and the time delay, τ , are functions of
x. Figure 4e–g shows the sensitivity of s to local increases in w(x), n(x), and τ (x), respectively.
These show that ∂s/∂w(x) approximately follows u(x), which is because q ∝ ∫

wu dx; that ∂s/∂n(x)
approximately follows p(x), which is because the influence of q on the growth rate is proportional
to

∫
np dx; and that τ is only influential in the reaction zone.
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(a) Pressure p̂ and (b) velocity û eigenfunctions for the finite element Helmholtz method with xm = 0.20, xf = 0.25, n = 1, τ = 0.3416,
and γ = 1.4. (c,d ) Receptivities to external forcing of (c) the energy or mass equation q̂ † and (d ) the momentum equation f̂ †. (e–k) The
sensitivity of the growth rate s r ( green) and frequency s i (blue) to local changes in the (e) measurement function w(x); ( f ) interaction
index n(x); ( g) time delay τ (x); (h) feedback ∂s/∂ fu from velocity into the momentum equation; (i ) feedback ∂s/∂ f p from pressure into
the momentum equation; ( j) feedback ∂s/∂qu from velocity into the energy or mass equation; and (k) feedback ∂s/∂q p from pressure
into the energy or mass equation.

Adjoint methods also provide receptivity fields, which show where external forcing most in-
fluences the eigenvalue or oscillation amplitude (Chomaz 2005, equation 9). Figure 4c shows
the receptivity, q †, of the energy or mass equation to an oscillating heat or mass input, whereas
Figure 4d shows the receptivity, f †, of the momentum equation to an oscillating force.

Adjoint methods also provide feedback sensitivities. Any linear feedback mechanism can be
expressed as a sum of six basic feedback mechanisms: from each of the two direct variables (pres-
sure and velocity) into each of the three governing equations (mass, momentum, and energy). For
Equation 1, this reduces to four mechanisms because the mass and energy equations are equiv-
alent. Figure 4h–k shows how each basic feedback mechanism affects s. The influence of any
feedback device can be calculated from these. For example, a mesh with drag coefficient CD causes
a linearized local force f = −CDρU u ≡ fuu, where U is the mean velocity. The sensitivity
∂s/∂CD is (d fu/dCD)(∂s/∂ fu) = −ρU (∂s/∂ fu), the negative of the real growth rate in Figure 4h.
This shows that the mesh damps oscillations most effectively when placed at the ends of the tube,
which has been confirmed experimentally by Rigas et al. (2016). Another example is a Helmholtz
resonator, which is driven by the pressure field and forces the mass equation. Its influence on s is
proportional to ∂s/∂q p , which is proportional to p̂q †. If the system were self-adjoint, this would
equal p̂2, which is often used to guide the placement of Helmholtz resonators. All thermoacoustic
systems are non-self-adjoint (Balasubramanian & Sujith 2008), however, so p̂q † is a more accurate
guide than p̂2.

2.7. Uncertainty Due to Extreme Sensitivity

The systematic approach in Section 2.6 requires an accurate thermoacoustic model. The prevailing
approach is to deduce n and τ (or, equivalently, a flame transfer function; see the sidebar titled The
Flame Transfer Function) from experiments or CFD. This can be extended to a flame transfer ma-
trix (Paschereit et al. 2002), which is equivalent to an n − τ model that depends on pressure as well
as velocity (Truffin & Poinsot 2005). However, extreme sensitivity to parameters (Sections 2.3–
2.5) can introduce considerable systematic error. To reduce this error, experiments must be per-
formed on a faithful copy of the engine at realistic operating conditions, and CFD has to capture
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THE FLAME TRANSFER FUNCTION

The flame transfer function (FTF) is defined as F (ω) ≡ (q ′(ω)/q )/(u′(ω)/u), where q is the heat release rate, u is
the velocity at a measurement point, ω is the angular frequency, · denotes the mean, and ·′ denotes fluctuation (u
can be replaced by p if this is more appropriate). The FTF can be expressed in terms of the impulse response, g(t),
and, thus, as a sum of n − τ models via F (ω) = ∫ ∞

0 g(t) exp(−iωt)dt ≈ ∑M
m=1 nme−iωτm , where nm ≡ �τg(τm) and

τm ≡ m�τ (Macquisten et al. 2014).

all feedback mechanisms. This can work for gaseous flames (Bade et al. 2013) but is difficult to
generalize, particularly to liquid fuels. A possible solution is to combine adjoint sensitivity analysis
(Section 2.6) with uncertainty quantification (Magri et al. 2016b) and calibrate model parameters
using automated experiments (Rigas et al. 2016) and inverse uncertainty quantification. Parame-
ters learned on highly instrumented and automated laboratory rigs can then become priors for,
and be updated on, increasingly realistic rigs.

3. SENSITIVITY ARISING FROM NONLINEAR BEHAVIOR
IN THE ABSENCE OF NOISE

There are three main types of nonlinearity in thermoacoustics. The first is gas dynamic nonlinearity
(Rankine 1870), which is mainly relevant to rocket motors. The second is damping nonlinearity due
to acoustic radiation (Heckl 1990; Matveev 2003a,b), attenuation by suspended particles (Culick
1971), and baffles and orifices (Crocco 1969). The third, and most important, is flame nonlinearity,
which can be measured experimentally (Noiray et al. 2008), modeled (Dowling 1997), or simu-
lated with CFD (Poinsot 2017). We introduce a generic nonlinear saturation or driving term in
Section 3.1 and the flame describing function (FDF) in Section 3.2. In Section 3.3, we relax the
assumption that the acoustics are harmonic and show that the resultant periodic solutions can be
unstable to nonperiodic behavior. In Section 3.4, we relax the assumption that the solutions are
periodic, which reveals the prevalence of elaborate nonlinear behavior such as quasiperiodicity
and chaos, as seen in experiments.

3.1. Sensitivity Due to Subcritical Bifurcations and Bistability

After the Apollo program, Crocco (1969) wrote with misplaced optimism that “rockets can now
be made linearly stable without too much difficulty” and asked, “is it possible, in the case of
linear stability, that disturbances above a certain amplitude may become amplified?” (p. 86). He
called this “nonlinear or triggered instability” (p. 86). By 1969, there had been many experimen-
tal and theoretical studies into triggering (Culick 2006, section 7; Sirignano 2016, section 5),
and it has since been observed in gas turbines (Lieuwen 2002, Lieuwen & Banaszuk 2005).
The field of nonlinear dynamical systems (Strogatz 1994) provides a robust framework to ex-
plain triggering and the sensitivity that it causes. In this framework, stability is a purely linear
concept, referring to the behavior of infinitesimal perturbations to a solution of the governing
equations. This solution can be steady or periodic in time, and it is stable (unstable) if the per-
turbations decay (grow) in time. A nonlinear instability is therefore more rigorously described
as a stable periodic solution, and triggering is the transition from the basin of attraction of a
steady solution to the basin of attraction of a periodic solution (see Supplemental Tutorial 2,
section 2).
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To demonstrate, we add a small linear damping or driving term εζ u̇k and a small nonlinear
saturation or driving term εξu2

ku̇k to Equation 6 in the time domain:

ük + ε(ξu2
k − ζ )u̇k + (kπ )2uk = −2kπβuk(t − τ ). 10.

Regarding sensitivity, there are two important but unsurprising features (Suchorsky et al. 2010).
First, the point at which the steady solution becomes unstable to an oscillation (the Hopf bifurca-
tion) is particularly sensitive to τ , as expected from the linear analysis in Section 2. Second, around
this point, the saturated amplitude is highly sensitive to all parameters. Further, if ξ < 0, then
the Hopf bifurcation is subcritical and connects to an unstable periodic solution, which can be
observed experimentally ( Jegadeesan & Sujith 2013). This is usually followed by a fold bifurcation
to a stable periodic solution. Subcritical bifurcations are dangerous because systems can trigger
abruptly from the steady solution to the stable periodic solution and be unable to return until
parameters are reduced beyond those at the fold bifurcation. If the system is highly non-normal,
transient growth of background noise can cause triggering (see the sidebar titled Bypass Transition
to Turbulence and Triggering in Thermoacoustics).

From the point of view of sensitivity, it is useful to determine whether a Hopf bifurcation
is supercritical or subcritical. If the system cannot be reduced to a single equation, such as
Equation 10, a weakly nonlinear analysis can be used instead, based on an asymptotic expan-
sion of the governing equations near the Hopf bifurcation (Landau 1944). This has been used
widely in studies of hydrodynamic stability (Chomaz 2005), e.g., for vortex shedding behind a
cylinder (Sipp & Lebedev 2007), and compares well with experimental results (Provansal et al.
1987). This has also been used in studies of thermoacoustic stability ( Juniper 2012, Subramanian
et al. 2013, Orchini et al. 2016). Supercritical and subcritical Hopf bifurcation are observed both
in weakly nonlinear analysis and in experiments (Moeck et al. 2008, Kabiraj et al. 2012b).

3.2. Analysis with the Flame Describing Function

A weakly nonlinear analysis (Section 3.1) cannot describe the fully nonlinear behavior. One practi-
cal approach is the describing function (Gelb & Vander Velde 1968), in which the flame response
is measured as a function of the forcing frequency and amplitude. The acoustic equations are
solved in the frequency domain at different amplitudes (Dowling 1997). Limit cycles exist at com-
binations of amplitudes and frequencies at which the growth rate is zero, and their stability can be
assessed. Once a flame’s behavior has been measured, the behavior of any thermoacoustic network
containing that flame can be inferred provided that the flame is not changed significantly by the
new environment. This was exploited particularly thoroughly by Noiray et al. (2008), who com-
pared experimental results with theoretical predictions for a thermoacoustic system containing a
matrix of multiple conical premixed flames. The method has also been applied to a ducted flame
with a simple saturation model (Dowling 1997), a flame behind a flame holder (Dowling 1999), a
single conical premixed flame (Karimi et al. 2009, Hemchandra 2012), a round bluff-body stabi-
lized nonswirling turbulent flame (Balachandran et al. 2005, Armitage et al. 2006, Han et al. 2015),
and turbulent premixed or partially premixed swirling flames (Bellows et al. 2007, Shreekrishna
et al. 2010, Palies et al. 2011, Schimek et al. 2011, Krediet et al. 2012, Ćosić et al. 2014).

The FDF is obtained by forcing harmonically over a range of frequencies and amplitudes.
Because the acoustic field is harmonic, the work done by any heat release rate oscillations at
higher harmonics integrates to zero over a cycle. Therefore, the FDF needs to consider only the
heat release rate at the forcing frequency. This simplifies the analysis but embeds a questionable
assumption: that the acoustics are harmonic in time.
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3.3. Analysis with Continuation Methods

If the acoustics and heat source models are coupled into a nonlinear dynamical system, then
periodic solutions, harmonic or not, can be found with continuation methods. These methods
have been applied to thermoacoustics with nonlinear gas dynamics ( Jahnke & Culick 1994),
nonlinear heat release rate (Ananthakrishnan et al. 2005), and nonlinear time-delayed heat release
rate (Subramanian et al. 2010, Juniper 2011). The above models contain around 101 degrees of
freedom (DOF). Simulation of the flame requires at least 102 to 103 DOF, however, and matrix-
free continuation methods (Waugh et al. 2013, 2014) must be used.

Figure 5a shows periodic solutions for a ducted conical premixed flame as a function of the
flame aspect ratio and flame position. The stability of these solutions is determined by the Floquet
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Figure 5
(a) Maximum acoustic velocity at the flame, uf , for periodic thermoacoustic oscillations of a conical premixed
Bunsen flame in a duct. These oscillations are found with a continuation method as a function of the flame
aspect ratio and the flame position in the duct. The stability of these oscillations is determined by examining
the Floquet multipliers, α. The green dots indicate the marginally stable Floquet multiplier corresponding
to a perturbation in the direction of the limit cycle. (b) For a period doubling bifurcation, a Floquet
multiplier (red dot) crosses the unit circle at α = −1. (c) For a Neimark–Sacker bifurcation to quasiperiodic
behavior, a pair of Floquet multipliers (cyan dots) crosses the unit circle at Im(α) �= 0. This continuation
analysis reveals that periodic solutions are often unstable. Figure adapted with permission from Waugh et al.
(2014, figures 5b, 13, and 15).
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Figure 6
(a) The flame shape (dark blue lines) and streamlines of the acoustic velocity field (light blue lines) at one moment of the periodic solution
at the onset of the period doubling bifurcation in Figure 5. (b) The red lines indicate the flame shape and streamlines in panel a when
perturbed in the direction of the Floquet mode that causes the period doubling bifurcation. The blue lines indicate the unperturbed
lines from panel a. Figure adapted with permission from Waugh et al. (2014, figure 17).

multipliers, α, of small perturbations to the solutions (Figure 5b,c). If |α| > 1, then the periodic
solution is unstable (Schmid & Henningson 2001, section 6.4.1). Further, if α is a positive real
number greater than 1, then the growing perturbation has the same period as the original solution
(this is the only situation that can be analyzed with the FDF). If α is a negative real number less
than −1, then the corresponding perturbation swaps direction each cycle, thereby growing with
double the period of the original solution (Figure 5b). If the argument of α is π/k, where k is an
integer, then the perturbation grows with k times the period of the original periodic solution. If
the argument is π/k, where k is not an integer, then a quasiperiodic solution grows. This is known
as a Neimark–Sacker bifurcation (Figure 5c).

The eigenfunctions of the Floquet multipliers reveal the physical behavior at each bifurcation.
Figure 6a shows a snapshot of a finite amplitude periodic solution, in which the flame contains
two wrinkles, seen most clearly in the streamlines. At the period doubling bifurcation, this motion
becomes unstable to a perturbation containing a single wrinkle along the length of the flame
(Figure 6b). This grows toward a period 2 limit cycle (Section 3.4). (The motion is not equivalent
to the superposition of two infinitesimal primary instabilities of the corresponding steady flow.)
This connection between wrinkle propagation and dynamical states has been shown experimentally
by Vishnu et al. (2015).
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Figure 7
Numerical simulations showing instantaneous flame surfaces for different types of self-excited oscillations of a two-dimensional
slot-stabilized premixed flame in a duct. The images depict (a) period 1 oscillations, repeated every 5 frames; (b) period 2 oscillations,
repeated every 10 frames; (c) quasiperiodic oscillations; (d ) period k = 5 oscillations; and (e) chaotic oscillations. Adapted from
Kashinath et al. (2014, figure 7).

3.4. Sensitivity Due to Elaborate Nonlinear Flame Dynamics

The assumption of periodicity must be dropped for the instabilities in Section 3.3 to develop.
Although the thermoacoustic mechanism (Rayleigh 1878) does not require periodicity, most anal-
yses require oscillations to be periodic at zeroth order, with a slowly varying amplitude at first
order. Examples include energy analysis (Chu 1965), two-timing (Strogatz 1994), and the method
of averaging (Culick 2006). In reality, the phase difference between pressure and heat release can
vary rapidly, altering the net conversion from heat to work each period. This causes the oscillations
to be more elaborate than the periodic assumption allows.

For example, the period doubling bifurcation in Figure 6 leads to a period 2 limit cycle, shown
for a similar flame in Figure 7b (frames 1–15). Pinch off and burnout occur at different moments in
the first (frames 1–5) and second periods (frames 6–10). This alternating phase difference between
the heat release rate and pressure converts alternating amounts of heat into work each period,
causing the time series and twin loop phase portrait in Figures 8b and 9b.
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slot-stabilized premixed flame in a duct. The images depict (a) period 1 oscillations, (b) period 2 oscillations, (c) quasiperiodic
oscillations, (d ) period k = 5 oscillations, and (e) chaotic oscillations. Adapted from Kashinath et al. (2014, figure 8).

Similarly, the Neimark–Sacker bifurcation (Figure 5c) leads to quasiperiodicity, shown for a
similar flame in Figure 7c (frames 1–15). The phase difference between pressure and heat release
rate advances each period by a noninteger portion of the period, causing a toroidal phase portrait
(Figures 8c and 9c). If the phase difference advances instead by a fraction (1/k) of the period, then
period k oscillations occur (Figures 8d and 9d ). It can also advance chaotically (Figures 8e and
9e). This behavior is mapped as a function of the flame position, xf , in Figure 10a. It is rarely
periodic and switches abruptly with xf .

Periodic, quasiperiodic, frequency-locked, and chaotic behaviors have been observed in a gas
turbine (Gotoda et al. 2011), as well as in combustors containing a backward-facing step (Sterling
& Zukoski 1991), a ducted V-flame (Vishnu et al. 2015), premixed flames (Kabiraj et al. 2012b),
and multiple flames (Kabiraj & Sujith 2012, Kabiraj et al. 2012a). Figure 10b shows a bifurcation
diagram (Kabiraj et al. 2012a), and Figure 11 shows phase portraits of the experiments by (Kabiraj
et al. 2012b).

4. COMPLEX DYNAMICS OF THERMOACOUSTIC SYSTEMS
WITH TURBULENT FLOW

Traditionally, an experimental or CFD measurement is assumed to consist of a signal plus noise.
The signal is extracted and the noise discarded by, for example, ensemble averaging. This signal
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Figure 9
Numerical simulations showing phase portraits and Poincaré sections of the acoustic velocity at the flame, uf , for different types of
self-excited oscillations of a two-dimensional slot-stabilized premixed flame in a duct. The images depict (a) period 1 oscillations,
(b) period 2 oscillations, (c) quasiperiodic oscillations, (d ) period k = 5 oscillations, and (e) chaotic oscillations. Adapted from Kashinath
et al. (2014, figure 10).

plus noise paradigm is useful (Section 4.1), but tools from dynamical systems and complex sys-
tems theory (Section 4.2) provide further insight because the discarded fluctuations, which are
caused by the complex nonlinear interaction between the acoustic field and turbulent flow, contain
information with diagnostic and prognostic value.

4.1. Stochastic Approach

In turbulent combustors, the thermoacoustically stable state is characterized by combustion noise,
which is generated by turbulent reacting flow, has broadband characteristics, and is often assumed
to be stochastic (Clavin et al. 1994, Burnley & Culick 2000, Lieuwen 2002). Lieuwen & Banaszuk
(2005) considered noise to be forcing of the dynamical system (additive noise) or fluctuation
of the system’s parameters (parametric noise). Clavin et al. (1994) studied turbulence-induced
noise in high-frequency thermoacoustic oscillations with stochastic differential equations. They
modeled the influence of turbulence on the heat release rate as parametric noise by assuming
that the turbulent fluctuations are slower than the acoustic fluctuations. This noise appears as a
multiplicative noise term in their wave equation. Their Fokker-Planck equation for the evolution
of the transition probability density function for the amplitude of oscillations predicts erratic
bursts, as observed in experiments.

Noiray & Schuermans (2013a) and Noiray & Denisov (2017) modeled combustion noise as
additive white noise and analyzed supercritical bifurcations with stochastic differential equations.
They extracted linear quantities, such as the growth rate, using output-only model-based sys-
tem identification of noisy pressure measurements, validating their methodology with simulations
(Noiray 2017). By measuring chemiluminescence, they disentangled the growth rate due to ther-
moacoustics from the decay rate due to acoustic damping (Boujo et al. 2016). This stochastic
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(a) Peak values of the acoustic velocity, uf , as a function of flame position, xf , for numerical simulations of a
two-dimensional slot-stabilized premixed flame in a duct with two open ends. There are abrupt changes in
behavior at certain values of xf and multiple possible solutions at other values. Adapted from Kashinath et al.
(2014). (b) Peak values of the acoustic pressure as a function of flame position, xf , for experiments on an array
of seven premixed conical flames in a duct with one open end and one closed end. There are abrupt changes
in behavior at certain values of xf . Adapted from Kabiraj et al. (2012a). Abbreviations: CH, chaotic; FL,
frequency-locked; P1, period 1; P2, period 2; P4, period 4; QP, quasiperiodic.
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Figure 11
Experimentally determined phase portraits (top) and Poincaré sections (bottom) for self-excited oscillations of a hexagonal array of seven
premixed conical flames in a duct: (a) period 1, (b) period 2, (c) quasiperiodic, (d ) period k, and (e) chaotic. Figure reproduced from
Kabiraj et al. (2012b, figure 4).

approach explains the intermittent switching between spinning and standing modes in annular
combustion chambers (Noiray & Schuermans 2013b).

This analysis is also applicable to subcritical bifurcations, although the bistable region reduces
as the noise increases. This can be seen by averaging the results of many numerical simulations
(Waugh & Juniper 2011), by experimental observation (Gopalakrishnan & Sujith 2015), and by
integrating the stochastic governing equations (Tony et al. 2015). Tony et al. (2015) showed that
the bistable region is completely suppressed at high noise amplitudes.

4.2. Deterministic Approach

Combustion noise is not always stochastic. Gotoda et al. (2012), for example, experimentally
examined thermoacoustic behavior close to lean blowout, where the dynamics are dominated
by stochastic fluctuations. As the equivalence ratio increases, the behavior transitions to low-
dimensional chaotic oscillations, then to periodic oscillations, then to quasiperiodic oscillations
(Gotoda et al. 2015), and then back to chaotic oscillations. Kabiraj et al. (2015b) experimentally
investigated noise-induced dynamics just before the bistable region of a laminar flame thermoa-
coustic system with a subcritical Hopf bifurcation. They found noisy precursors as they approached
the bifurcation and attributed them to coherence resonance, which is noise-induced enhancement
of deterministic dynamics in a nonlinear system. These noise-excited oscillations are irregular for
low and high noise amplitudes but coherent for moderate amplitudes (Pikovsky & Kurths 1997).

4.2.1. Intermittency. In turbulent combustors, the onset of thermoacoustic oscillation is pre-
ceded by intermittent bursts of high-amplitude periodic oscillations amidst a background of low-
amplitude aperiodic fluctuations (Nair et al. 2014) (Figure 12). These intermittent bursts last
longer as the point of onset is approached and are also reported in other studies (Clavin et al.
1994, Gotoda et al. 2014, Huang 2015, Kabiraj et al. 2015a, Pawar et al. 2016, Wilhite et al.
2016). Intermittency is often analyzed using recurrence plots (Figure 13; see also Supplemental
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Figure 12
Pressure signals during (a) combustion noise (equivalence ratio φ = 0.98), where the signal is low amplitude and aperiodic;
(b) intermittency (φ = 0.76), where oscillatory bursts appear randomly within an aperiodic signal; and (c) thermoacoustic oscillation
(φ = 0.69), where the signal is periodic.

Tutorial 2, section 5), which represent time-series data graphically. Recurrence quantification
analysis is used to obtain precursor measures, such as recurrence rate, trapping time, and Shannon
entropy, to provide early warning of thermoacoustic instability. As thermoacoustic instability is
approached, intermittent bursts arise when a hydrodynamic mode frequency is close to a duct
acoustic frequency (Nair & Sujith 2015, Sampath & Chakravarthy 2016). Unni & Sujith (2017)
showed that, during these intermittent bursts, the otherwise aperiodic flame rolls up periodically
due to vortex shedding at the dump plane. Nair & Sujith (2015) developed a phenomenological
model that qualitatively reproduces the intermittent bursts and transition to thermoacoustic oscil-
lation for turbulent bluff body combustors. Mondal et al. (2017) examined the phase between heat
release rate and acoustic pressure. They showed that, as expected, the acoustic pressure and heat
release rate fluctuations are asynchronous during combustion noise, whereas they are synchronous
during thermoacoustic instability. They also showed that, during intermittency, patches of syn-
chronous and asynchronous motion coexist in the reaction zone, which is known as a chimera
state (Abrams & Strogatz 2004).

4.2.2. High-dimensional chaos, Hurst exponents, and multifractality. Tony et al. (2015)
performed determinism tests on turbulent combustors and showed that combustion noise has the
features of high-dimensional chaos contaminated with white and colored noise. High-dimensional
chaos transitions to periodic motion during the onset of thermoacoustic instability (Nair et al.
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Figure 13
Time series (a–c) and recurrence plots (d–g) of pressure signals from a turbulent combustor. The state of a system can be represented as
a point in n-dimensional phase space. In the recurrence plots, a coordinate (t1, t2) is colored purple if the system’s state at time t2 is
within a distance ε of the system’s state at time t1. This shows (a,d ) equally spaced diagonal lines for periodic oscillations, (b,e) separated
diagonal lines for quasiperiodic oscillations, and (c,f,g) a checkered pattern for intermittent oscillations (see Supplemental Tutorial 2,
section 5). Adapted from Kabiraj & Sujith (2012, figures 6 and 7).

2013). The time series for combustion noise is self-similar and can be analyzed with fractals. For
a fractal series v(t) with fractal dimension D, the signal v(c t) = v(t)/c H has the same statistics,
where H = 2 − D is the Hurst exponent (West et al. 2003). Nair & Sujith (2014 ) showed that, as
a system approaches thermoacoustic instability, H drops toward zero long before the oscillation
amplitude rises (Figure 14a,b).

Fluctuations with different amplitudes can have different scaling behavior. Such time series are
called multifractal and cannot be described by a single H (Mandelbrot 1999). This requires gen-
eralized Hurst exponents, H q , which indicate the scaling behavior of the q-th central moments of
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Figure 14
(a) Root mean square (prms) and peak fast Fourier transform (pFFT) for pressure fluctuations in a turbulent combustor. (b) The Hurst
exponent, H , with error range corresponding to six standard deviations. The Hurst exponent tends towards zero, indicating order
arising from chaos, long before thermoacoustic oscillations reach appreciable amplitudes around Re = 2.4 × 104. The dashed line at
H = 0.1 is an arbitrary but useful transition threshold. (c) Spectrum of singularities, f (α), for multifractal combustion noise, which has
a wide spectrum, and combustion instability, which has a concentrated spectrum. Adapted from Nair & Sujith (2014, figure 7).
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REPRESENTING COMPLEX SYSTEMS USING COMPLEX NETWORKS

A complex system contains multiple interacting components, resulting in nontrivial and nonlinear collective behavior
that cannot be discerned by studying the behavior of its individual components. A complex system is often analyzed by
constructing a complex network that represents its connectivity patterns. The characteristics of the network topology
are studied using measures from graph theory. Scale-free networks have a heavy-tailed distribution of connectivity
with no characteristic scales (Barabási & Albert 1999). Many real-world networks, such as the Internet, scientific
collaboration networks, protein networks, and power grids, exhibit the characteristics of a scale-free network.

the time series. For a monofractal signal, H q is the same for different values of q . For a multifractal
signal, H q is different for different values of q . Through a Legendre transformation, this variation
of H q can be represented as a spectrum of singularities f (α), where α is the conjugate variable
corresponding to q (Kantelhardt 2012) (Figure 14c). The width of the singularity spectrum gives
the degree of multifractality in the signal. Unni & Sujith (2015) used the Hurst exponent and
Unni (2016) used recurrence quantification to detect the onset of thermoacoustic instability and
lean blowout in turbulent combustors, describing the two phenomena within the same framework
rather than separately as a dynamic instability (thermoacoustic) and a static instability (blowout).

4.2.3. Complex networks to study thermoacoustic instability. Combustion systems operate
over a wide range of scales, from molecular mixing, to turbulent transport, to large-scale acoustic
waves. This complex interaction leads to rich dynamics, with multifractal chaotic fluctuations
(combustion noise) on the one hand and periodic oscillations (thermoacoustic instability) on the
other. Complexity, which arises from the large number of interacting elements, is a characteristic
of many physical and biological systems (see Supplemental Tutorial 2, section 6).

Complex networks (see the sidebar titled Representing Complex Systems Using Complex Net-
works) have been used to understand the dynamics underlying time-series data (Lacasa et al. 2008,
Donner et al. 2010). In thermoacoustics, Murugesan & Sujith (2015) used complex networks to
investigate the scale invariance of combustion noise by applying a visibility algorithm (Lacasa
et al. 2008) to time-series data from turbulent combustors. They showed that the complex net-
works obtained from combustion noise can be represented as a scale-free network (Barabási &
Albert 1999). The power-law distributions of connections in the scale-free network are related
to the scale invariance of combustion noise. Furthermore, they showed that, during the transi-
tion to combustion instability, the scale-free feature of combustion noise disappears, and order
emerges in the complex network topology. Okuno et al. (2015) used complex networks to show
that pseudoperiodicity and high dimensionality exist in the dynamics of thermoacoustic instabil-
ity, including the possible presence of a clear power-law distribution and small-world-like nature.
Precursors for thermoacoustic instability (Murugesan & Sujith 2016) can be devised through the
statistical theory of complex networks (Lesne & Lagues 2011). Finally, the most sensitive points
in the network (Yu et al. 2009) might be identified, aiding effective passive control.

SUMMARY POINTS

1. Rocket and gas turbine combustion chambers have high volumetric heat release rates
and low acoustic damping. Thermoacoustic oscillations arise if the efficiency of the ther-
moacoustic mechanism is even slightly positive for one or more acoustic modes.
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2. The efficiency of the thermoacoustic mechanism is sensitive to many parameters, in
particular the time delay between an acoustic perturbation at the fuel injector and a sub-
sequent heat release rate perturbation at the flame. In turn, these parameters are sensitive
to changes in the engine’s design and operating point and to environmental conditions.

3. This extreme sensitivity allows thermoacoustic systems to be stabilized with small design
changes, usually at the full engine test stage. The challenge is to devise and implement
these design changes cheaply, quickly, and early in the design process.

4. Most nonlinear analyses assume that thermoacoustic oscillations are periodic, with har-
monic acoustics. Continuation methods show, however, that these oscillations are rarely
harmonic and, furthermore, are often unstable to period doubling or quasiperiodic mo-
tion. Numerical simulations and experiments confirm this and reveal period 2, period k,
quasiperiodic, and chaotic motion. This nonlinear behavior causes strong sensitivity to
parameters.

5. Quantities such as the linear growth rate can be extracted from a stochastic analysis
of experimental measurements of turbulent thermoacoustic systems. This analysis also
explains the observed bursts of erratic amplitude evolution.

6. If turbulent fluctuations are treated deterministically with dynamical systems theory,
then thermoacoustic oscillations can be considered as order emerging from chaos via
intermittent bursts of periodic oscillations.

7. A time series corresponding to combustion noise has multifractal characteristics and can
be represented by a scale-free complex network. At the onset of thermoacoustic insta-
bility, multifractality disappears, and the complex network becomes regular. Measures
based on multifractality, complex networks, and intermittency statistics provide useful
early warning signs for thermoacoustic instability.

FUTURE ISSUES

1. In most thermoacoustic systems, there are many design parameters but only a few unstable
modes. Adjoint methods are therefore ideal for identifying small design changes that
stabilize these modes. However, they require an accurate model of the system.

2. Devising accurate thermoacoustic models is challenging because extreme sensitivity to
parameters introduces considerable systematic error if parameters cannot be estimated
accurately. One solution is to calculate parameters from automated experimental mea-
surements and inverse uncertainty quantification. Parameters learned on laboratory-scale
rigs can then be updated as tests are performed on larger-scale rigs.

3. For nonlinear behavior, the FDF will remain a useful tool. An FDF, once measured, can
be combined with any acoustic network to predict stable or unstable limit cycles. The
next challenge is to apply this to industrial configurations, either with strong actuation
in experiments or by creating accurate FDFs with CFD.

4. Continuation methods are less restrictive than FDF methods and may eventually replace
them. They are more expensive than the FDF if a given flame is to be examined within
many different acoustic networks but are cheaper for a single acoustic network.
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5. The signal plus noise paradigm will remain useful, for example, to infer linear growth
rates from noisy data. It will be complemented by tools from dynamical systems theory
and complex systems theory.

6. The temporal and spatiotemporal dynamics of the onset of thermoacoustic instabil-
ity can be studied with complex systems theory. Temporal analysis of acoustic pressure
measurements can be performed in real time and provides early warning signs of impend-
ing thermoacoustic instability. Spatiotemporal analysis provides more detail but requires
quantitative diagnostic techniques such as high-speed chemiluminescence imaging of
methylidyne (CH) or hydroxyl (OH) radicals, in conjunction with simultaneous acoustic
pressure measurements.

7. Complex systems theory can also be applied to self-excited turbulent thermoacoustic
systems simulated with high-fidelity large-eddy simulations.

8. Concepts from nonlinear dynamics and complex systems theory could reveal the nature
of coupling among flow, combustion, and acoustic fields. Identifying and exploiting the
most sensitive points in this network will improve passive control methods.

DISCLOSURE STATEMENT

The authors are not aware of any biases that might be perceived as affecting the objectivity of this
review.

ACKNOWLEDGMENTS
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Ćosić B, Moeck JP, Paschereit CO. 2014. Nonlinear instability analysis for partially premixed swirl flames.

Combust. Sci. Technol. 186:713–36
Crocco L. 1951. Aspects of combustion stability in liquid propellant rocket motors, part I: fundamentals. Low

frequency instability with monopropellants. J. Am. Rocket Soc. 8:163–78
Crocco L. 1969. Research on combustion instability in liquid propellant rockets. Symp. Int. Combust. 12:85–99
Crocco L, Cheng SI. 1956. Theory of Combustion Instability in Liquid Propellant Rocket Motors. London:

Butterworths
Culick FEC. 1971. Non-linear growth and limiting amplitude of acoustic oscillations in combustion chambers.

Combust. Sci. Technol. 3:1–16
Culick FEC. 2006. Unsteady motions in combustion chambers for propulsion systems. RTO AGARDograph AG-

AVT-039, Res. Technol. Organ., North Atl. Treaty Organ., Washington, DC
Donner RV, Zou Y, Donges JF, Marwan N, Kurths J. 2010. Recurrence networks—a novel paradigm for

nonlinear time series analysis. New J. Phys. 12:033025
Dowling AP. 1997. Nonlinear self-excited oscillations of a ducted flame. J. Fluid Mech. 346:271–90
Dowling AP. 1999. A kinematic model of a ducted flame. J. Fluid Mech. 394:51–72
Dowling AP, Morgans AS. 2005. Feedback control of combustion oscillations. Annu. Rev. Fluid Mech. 37:151–

82
Dranovsky ML. 2007. Combustion Instabilities in Liquid Rocket Engines: Testing and Development Practices in

Russia. Reston, VA: AIAA
Ducruix S, Schuller T, Durox D, Candel S. 2003. Combustion dynamics and instabilities: elementary coupling

and driving mechanisms. J. Propuls. Power 19:722–34
Durox D, Schuller T, Noiray N, Candel S. 2009. Experimental analysis of nonlinear flame transfer functions

for different flame geometries. Proc. Combust. Inst. 32:1391–98
Eldredge JD, Dowling AP. 2003. The absorption of axial acoustic waves by a perforated liner with bias flow.

J. Fluid Mech. 485:307–35
Gelb A, Vander Velde WE. 1968. Multiple-Input Describing Functions and Nonlinear System Design. New York:

McGraw-Hill
Gopalakrishnan EA, Sujith RI. 2015. Effect of external noise on the hysteresis characteristics of a thermoa-

coustic system. J. Fluid Mech. 776:334–53

684 Juniper · Sujith



FL50CH25_Juniper ARI 3 November 2017 8:27

Gotoda H, Amano M, Miyano T, Ikawa T, Maki K, Tachibana S. 2012. Characterization of complexities in
combustion instability in a lean premixed gas-turbine model combustor. Chaos 22:043128

Gotoda H, Nikimoto H, Miyano T, Tachibana S. 2011. Dynamic properties of combustion instability in a
lean premixed gas-turbine combustor. Chaos 21:013124

Gotoda H, Okuno Y, Hayashi K, Tachibana S. 2015. Characterization of degeneration process in combustion
instability based on dynamical systems theory. Phys. Rev. E 92:052906

Gotoda H, Shinoda Y, Kobayashi M, Okuno Y, Tachibana S. 2014. Detection and control of combustion
instability based on the concept of dynamical system theory. Phys. Rev. E 89:022910

Gysling DL, Copeland GS, McCormick DC, Proscia WM. 2000. Combustion system damping augmentation
with Helmholtz resonators. J. Eng. Gas Turbines Power 122:269–74

Han X, Li J, Morgans AS. 2015. Prediction of combustion instability limit cycle oscillations by combining
flame describing function simulations with a thermoacoustic network model. Combust. Flame 162:3632–47

Harrje DT, Reardon FH. 1972. Liquid propellant rocket combustion instability. Tech. Rep. NASA-SP-194, Natl.
Aeronaut. Space Admin., Washington, DC

Heckl M. 1990. Non-linear acoustic effect in the Rijke tube. Acoustica 72:63–71
Hemchandra S. 2012. Premixed flame response to equivalence ratio fluctuations: comparison between reduced

order modeling and detailed computations. Combust. Flame 159:3530–43
Higgins B. 1802. On the sound produced by a current of hydrogen gas passing through a tube. J. Nat. Philos.

Chem. Arts 1:129–31
Hill DC. 1992. A theoretical approach for analyzing the restabilization of wakes. Tech. Rep. 103858, Natl. Aeronaut.

Space Admin., Washington, DC
Hill DC. 1995. Adjoint systems and their role in the receptivity problem for boundary layers. J. Fluid Mech.

292:183–204
Huang Y. 2015. Advanced methods for validating combustion instability predictions using pressure measurements. PhD

Thesis, Purdue Univ., West Lafayette, IN
Huang Y, Yang V. 2009. Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog. Energy

Combust. Sci. 35:293–364
Jahnke CC, Culick FEC. 1994. Application of dynamical systems theory to nonlinear combustion instabilities.

J. Propuls. Power 10:508–17
Jegadeesan V, Sujith RI. 2013. Experimental investigation of noise induced triggering in thermoacoustic

systems. Proc. Combust. Inst. 34:3175–83
Juniper MP. 2011. Triggering in the Rijke tube: non-normality, transient growth and bypass transition.

J. Fluid Mech. 667:272–308
Juniper MP. 2012. Triggering in thermoacoustics. Int. J. Spray Combust. Dyn. 4:217–38
Kabiraj L, Saurabh A, Karimi N, Sailor A, Mastorakos E, et al. 2015a. Chaos in an imperfectly premixed model

combustor. Chaos 25:023101
Kabiraj L, Saurabh A, Wahi P, Sujith RI. 2012a. Route to chaos for combustion instability in ducted laminar

premixed flames. Chaos 22:023129
Kabiraj L, Steinert R, Saurabh A, Paschereit CO. 2015b. Coherence resonance in a thermoacoustic system.

Phys. Rev. E 92:042909
Kabiraj L, Sujith RI. 2012. Nonlinear self-excited thermoacoustic oscillations: intermittency and flame

blowout. J. Fluid Mech. 713:376–97
Kabiraj L, Sujith RI, Wahi P. 2012b. Bifurcations of self-excited ducted laminar premixed flames. J. Eng. Gas

Turbines Power 134:31502
Kantelhardt JW. 2012. Fractal and multifractal time series. In Mathematics of Complexity and Dynamical Systems,

ed. RA Meyers, pp. 463–87. Berlin: Springer
Karimi N, Brear MJ, Jin SH, Monty JP. 2009. Linear and non-linear forced response of a conical, ducted,

laminar premixed flame. Combust. Flame 156:2201–12
Kashinath K, Waugh IC, Juniper MP. 2014. Nonlinear self-excited thermoacoustic oscillations of a ducted

premixed flame: bifurcations and routes to chaos. J. Fluid Mech. 761:399–430
Kerswell RR. 2018. Nonlinear nonmodal stability theory. Annu. Rev. Fluid Mech. 50:319–45
Kim KT, Lee JG, Quay BD, Santavicca DA. 2010a. Response of partially premixed flames to acoustic velocity

and equivalence ratio perturbations. Combust. Flame 157:1731–44

www.annualreviews.org • Thermoacoustic Oscillations 685



FL50CH25_Juniper ARI 3 November 2017 8:27

Kim KT, Lee JG, Quay BD, Santavicca DA. 2010b. Spatially distributed flame transfer functions for predicting
combustion dynamics in lean premixed gas turbine combustors. Combust. Flame 157:1718–30

Komarek T, Polifke W. 2010. Impact of swirl fluctuations on the flame response of a perfectly premixed swirl
burner. J. Eng. Gas Turbines Power 132:061503

Krediet HJ, Beck CH, Krebs W, Schimek S, Paschereit CO, Kok JBW. 2012. Identification of the flame
describing function of a premixed swirl flame from LES. Combust. Sci. Technol. 184:888–900

Lacasa L, Luque B, Ballesteros F, Luque J, Nun JC. 2008. From time series to complex networks: the visibility
graph. PNAS 105:4972–75

Landau LD. 1944. On the problem of turbulence. C. R. Acad. Sci. URSS 44:387–91
Lesne A, Lagues M. 2011. Scale Invariance: From Phase Transitions to Turbulence. Berlin: Springer
Lieuwen TC. 2002. Experimental investigation of limit-cycle oscillations in an unstable gas turbine combustor.

J. Propuls. Power 18:61–67
Lieuwen TC. 2012. Unsteady Combustor Physics. Cambridge, UK: Cambridge Univ. Press
Lieuwen TC, Banaszuk A. 2005. Background noise effects on combustor stability. J. Propuls. Power 21:25–31
Lieuwen TC, McManus KR. 2003. Introduction: combustion dynamics in lean-premixed prevaporized (LPP)

gas turbines. J. Propuls. Power 19:721
Lieuwen TC, Yang V. 2005. Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental

Mechanisms, and Modeling. Reston, VA: AIAA
Luchini P, Bottaro A. 2014. Adjoint equations in stability analysis. Annu. Rev. Fluid Mech. 46:493–517
Macquisten MA, Whiteman M, Stow SR, Moran AJ. 2014. Exploitation of measured flame transfer functions

for a two-phase lean fuel injector to predict thermoacoustic modes in full annular combustors. Proc. ASME
Turbo Expo, Düsseldorf, Ger., June 16–20, Pap. GT2014-25036. New York: Am. Soc. Mech. Eng.

Magri L, Bauerheim M, Juniper MP. 2016a. Stability analysis of thermo-acoustic nonlinear eigenproblems in
annular combustors. Part I. Sensitivity. J. Comput. Phys. 325:395–410

Magri L, Bauerheim M, Nicoud F, Juniper MP. 2016b. Stability analysis of thermo-acoustic nonlinear eigen-
problems in annular combustors. Part II. Uncertainty quantification. J. Comput. Phys. 325:411–21

Magri L, Juniper MP. 2013. Sensitivity analysis of a time-delayed thermo-acoustic system via an adjoint-based
approach. J. Fluid Mech. 719:183–202

Magri L, Juniper MP. 2014. Global modes, receptivity, and sensitivity analysis of diffusion flames coupled
with duct acoustics. J. Fluid Mech. 752:237–65

Mandelbrot BB. 1999. Multifractals and Noise: Wild Self-Affinity in Physics. Berlin: Springer
Matveev KI. 2003a. Energy consideration of the nonlinear effects in a Rijke tube. J. Fluids Struct. 18:783–94
Matveev KI. 2003b. Thermoacoustic instabilities in the Rijke tube: experiments and modeling. PhD Thesis, Calif.

Inst. Technol., Pasadena
McManus KR, Poinsot T, Candel SM. 1993. A review of active control of combustion instabilities. Prog.

Energy Combust. Sci. 19:1–29
Mensah GA, Moeck JP. 2017. Acoustic damper placement and tuning for annular combustors: an adjoint-based

optimization study. J. Eng. Gas Turbines Power 139:061501
Moeck JP, Bothein MR, Schimek S, Lacarelle A, Paschereit CO. 2008. Subcritical thermoacoustic instabilities in

a premixed combustor. Presented at 14th AIAA/CEAS Aeroacoust. Conf., May 5–7, Vancouver, AIAA Pap.
2008–2946

Mondal S, Unni VR, Sujith RI. 2017. Onset of thermoacoustic instability in turbulent combustors: an emer-
gence of synchronized periodicity through formation of chimera-like states. J. Fluid Mech. 811:659–81

Mongia HC, Held TJ, Hsiao GC, Pandalai RP. 2003. Challenges and progress in controlling dynamics in gas
turbine combustors. J. Propuls. Power 19:822–29

Murugesan M, Sujith RI. 2015. Combustion noise is scale-free: transition from scale-free to order at the onset
of thermoacoustic instability. J. Fluid Mech. 772:225–45

Murugesan M, Sujith RI. 2016. Detecting the onset of an impending thermoacoustic instability using complex
networks. J. Propuls. Power 32:707–12

Nair V, Sujith RI. 2014. Multifractality in combustion noise: predicting an impending combustion instability.
J. Fluid Mech. 747:635–55

Nair V, Sujith RI. 2015. A reduced-order model for the onset of combustion instability: physical mechanisms
for intermittency and precursors. Proc. Combust. Inst. 35:3193–200

686 Juniper · Sujith



FL50CH25_Juniper ARI 3 November 2017 8:27

Nair V, Thampi G, Karuppusamy S, Gopalan S, Sujith RI. 2013. Loss of chaos in combustion noise as a
precursor of impending combustion instability. Int. J. Spray Combust. Dyn. 5:273–90

Nair V, Thampi G, Sujith RI. 2014. Intermittency route to thermoacoustic instability in turbulent combustors.
J. Fluid Mech. 756:470–87

Nicoud F, Benoit L, Sensiau C, Poinsot T. 2007. Acoustic modes in combustors with complex impedances
and multidimensional active flames. AIAA J. 45:426–41

Nicoud F, Wieczorek K. 2009. About the zero Mach number assumption in the calculation of thermoacoustic
instabilities. Int. J. Spray Combust. Dyn. 1:67–111

Noiray N. 2017. Linear growth rate estimation from dynamics and statistics of acoustic signal envelope in
turbulent combustors. J. Eng. Gas Turbines Power 139:041503

Noiray N, Denisov A. 2017. A method to identify thermoacoustic growth rates in combustion chambers from
dynamic pressure time series. Proc. Combust. Inst. 36:3843–50

Noiray N, Durox D, Schuller T, Candel S. 2008. A unified framework for nonlinear combustion instability
analysis based on the flame describing function. J. Fluid Mech. 615:139–67

Noiray N, Durox D, Schuller T, Candel S. 2009. Dynamic phase converter for passive control of combustion
instabilities. Proc. Combust. Inst. 32:3163–70

Noiray N, Schuermans B. 2013a. Deterministic quantities characterizing noise driven Hopf bifurcations in
gas turbine combustors. Int. J. Non-Linear Mech. 50:152–63

Noiray N, Schuermans B. 2013b. On the dynamic nature of azimuthal thermoacoustic modes in annular gas
turbine combustion chambers. Proc. R. Soc. Lond. 469:20120535

Oberleithner K, Schimek S, Paschereit CO. 2015. Shear flow instabilities in swirl-stabilized combustors
and their impact on the amplitude dependent flame response: a linear stability analysis. Combust. Flame
162:86–99

O’Connor J, Acharya V, Lieuwen T. 2015. Transverse combustion instabilities: acoustic, fluid mechanic, and
flame processes. Prog. Energy Combust. Sci. 49:1–39

Oefelein JC, Yang V. 1993. Comprehensive review of liquid-propellant combustion instabilities in F-1 engines.
J. Propuls. Power 9:657–77

Okuno Y, Small M, Gotoda H. 2015. Dynamics of self-excited thermoacoustic instability in a combustion
system: pseudo-periodic and high-dimensional nature. Chaos 25:043107

Orchini A, Rigas G, Juniper MP. 2016. Weakly nonlinear analysis of thermoacoustic bifurcations in the Rijke
tube. J. Fluid Mech. 805:523–50

Palies P, Durox D, Schuller T, Candel S. 2011. Nonlinear combustion instability analysis based on the flame
describing function applied to turbulent premixed swirling flames. Combust. Flame 158:1980–91

Paschereit CO, Schuermans B, Polifke W, Mattson O. 2002. Measurement of transfer matrices and source
terms of premixed flames. J. Eng. Gas Turbines Power 124:239–47

Pawar SA, Vishnu R, Vadivukkarasan M, Panchagnula MV, Sujith RI. 2016. Intermittency route to combustion
instability in a laboratory spray combustor. J. Eng. Gas Turbines Power 138:041505

Pikovsky AS, Kurths J. 1997. Coherence resonance in a noise-driven excitable system. Phys. Rev. Lett. 78:775–
78

Poinsot T. 2017. Prediction and control of combustion instabilities in real engines. Proc. Combust. Inst. 36:1–28
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