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75205 Paris Cédex 13, France; email: sandra.lerouge@univ-paris-diderot.fr

Annu. Rev. Fluid Mech. 2016. 48:81–103

First published online as a Review in Advance on
July 22, 2015

The Annual Review of Fluid Mechanics is online at
fluid.annualreviews.org

This article’s doi:
10.1146/annurev-fluid-122414-034416

Copyright c© 2016 by Annual Reviews.
All rights reserved

Keywords

heterogeneous flows, flow instabilities, shear-induced transitions,
polymeric fluids, yield stress fluids, delayed yielding

Abstract

Even in simple geometries, many complex fluids display nontrivial flow fields,
with regions where shear is concentrated. The possibility for such shear
banding has been known for several decades, but in recent years, we have
seen an upsurge in studies offering an ever-more precise understanding of
the phenomenon. The development of new techniques to probe the flow on
multiple scales with increasing spatial and temporal resolution has opened
the possibility for a synthesis of the many phenomena that could only have
been thought of separately before. In this review, we bring together recent
research on shear banding in polymeric and soft glassy materials and high-
light their similarities and disparities.
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1. INTRODUCTION

Shear banding seems to have been first identified at the end of the nineteenth century by geologists
and engineers working on the deformation of solids (Wright 2002). In this context, shear bands are
zones in which the strain γ can take values much larger than in the rest of the sample. The present
review focuses on shear banding in complex fluids, which are part of what one may call soft matter
(de Gennes 1992): a somewhat overlapping collection of systems such as liquid crystals, colloidal
dispersions, polymer solutions, melts or gels, emulsions, pastes, and foams (Larson 1999). In all
these systems, the constituents are often said to be mesoscopic because the relevant length scale,
which in practice is not always clearly identified, ranges between the molecular scale and the flow
scale. Macroscopically, the mechanical properties of soft matter sit in between those of the ideal
Hookean elastic solid and those of the ideal Newtonian viscous fluid. In this context, the notion
of shear banding is associated with the localization of the shear (or strain) rate γ̇ .

Shear banding is ubiquitous in complex fluids and has been reported in systems such as wormlike
micellar surfactant solutions, lyotropic lamellar surfactant phases, polymer solutions and melts, star
polymers, emulsions, suspensions, microgels, biological gels, and foams. Several reviews have been
published in recent years concerning various theoretical and experimental aspects. For instance,
in the Annual Review of Fluid Mechanics, the topic was last approached by Goddard (2003), from
a mechanistic perspective grounded in the historical background on shear banding in solids, and
more recently by Schall & van Hecke (2010), who mainly focused on recent experiments on shear
banding in granular matter. Over the five years since the latter publication, more than 500 articles
mentioning the terms shear banding and complex fluids have been published. This profusion of
studies reflects the growing interest for this subject and justifies the need for a new review today.
This profusion is also a consequence of the very broad, but sometimes loose, use of the term
shear banding. The words chosen in particular research fields may be somewhat contextual, and
determining whether two words across fields are synonyms is not always easy. Some of what other
authors have called layers, stripes, fractures, or even kinks may be close to our use of the term
bands in this review, and vice versa. Our goal is not to authoritatively define what shear banding
is and is not, but to witness the evolution, and refinement over the use, of the term shear banding
in recent soft matter research.

In practice, we do not cover the 500 references of the past five years, but we focus on two classes
of materials: polymeric fluids (Section 2) and soft glassy materials (Section 3). The first class of
materials sits more on the side of fluids, whereas the second sits more on the side of solids. Our
examples are typically dominated by shear rather than elongation. Nonetheless, phenomena such
as extensional necking (Fielding 2011) are analogous to what could be called elongation banding,
and many of the phenomena mentioned in a review about shear-dominated flows could be carried
over to elongation-dominated flows.

2. SHEAR BANDING IN POLYMERIC FLUIDS

In this section, we discuss shear banding in polymeric fluids, chiefly polymer and surfactant worm-
like micellar solutions. We focus on the semidilute and concentrated regimes in which polymeric
chains form a viscoelastic entangled network. At or close to equilibrium, polymer and micellar
solutions present a formal analogy: They follow simple scaling laws as a function of concentra-
tion, and they exhibit similar phase behaviors. The main differences lie in the ability of wormlike
micelles to break and recombine, a quality that earned them the name of living polymers. The
analogy can be taken further when considering the rheology of these systems, especially because
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Figure 1
(a) Schematic flow curve of a complex fluid undergoing a shear-banding transition according to the material instability scenario. The
measured flow curve is made of two branches, a priori stable, separated by a stress plateau (σ = σp). The underlying constitutive curve
is nonmonotonic. (b) Typical set of experimental steady-state flow curves of wormlike micellar solutions obtained for various molar
surfactant concentrations by increasing the imposed shear rate. The shear stress σ is in units of the elastic modulus G0, and the
dimensionless shear rate is the Weissenberg number Wi ≡ γ̇ τe , where τe is the relaxation time of the fluid. Symbols and lines
correspond to flow curves obtained in a Taylor-Couette device and in cone-and-plate geometry, respectively. Panel b adapted with
permission from Fardin et al. (2012c), copyright by the Royal Society of Chemistry. (c) Typical time-averaged velocity profiles gathered
in Taylor-Couette flow using ultrasonic velocimetry for different applied shear rates along the stress plateau. (d ) Mean local shear rates
γ̇l and γ̇h estimated from a linear fit of the velocity profile v( y) in each band as a function of the applied shear rate. (e) Mean slip velocity
vs measured at the inner moving cylinder as a function of γ̇ . Panels c–e adapted with permission from Fardin & Lerouge (2012),
copyright by Springer-Verlag.

the original models that are able to capture much of their rheological features all originated from
the tube model (Doi & Edwards 1988).

Historically, shear banding was first predicted and observed in this class of complex fluids,
which still constitutes a strong guide for the emergence of this phenomenon in other types of
systems. In the context of solid mechanics, shear bands have been understood as a consequence of
a material instability (Goddard 2003), which results—at the macroscopic continuum scale—from
nonmonotonic constitutive relations. For fluids, constitutive laws are first and foremost probed by
measuring the flow curve (i.e., the relationship between shear stress and shear rate in viscometric
flows). If a fluid displays a nonmonotonic flow curve, such as the one sketched in Figure 1a, the
range of shear rate with decreasing shear stress is mechanically unstable (Yerushalmi et al. 1970).
Such a curve is evidently not found in experiments but is computed theoretically by enforcing the
homogeneity of the shear rate. In practice, the stress plateaus to a value σp above a critical shear
rate γ̇1, and the flow splits into domains bearing high (γ̇h) and low (γ̇l) shear rates, with the low and
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high local shear rates connected to the low (γ̇1) and high (γ̇2) bounds of the global stress plateau.
In simple shear flows, the viscosities in the high– and low–shear rate bands are ηh ∼ σp/γ̇h and
ηl ∼ σp/γ̇l. That the local viscosities are changing is a testimony to the fact that the structure
of the fluid is changing. In this context, the shear-banding instability is often associated with
shear-induced structuration of the fluid.

The possibility for such material instability in fluids first emerged in research by Vinogradov
(1973) on the spurt effect in polymer solutions and melts (i.e., the dramatic increase of the flow rate
above a critical pressure drop during extrusion out of a conduit). The idea that the spurt effect could
be a consequence of the existence of shear banding was later formalized, in particular, by McLeish
& Ball (1986), who highlighted that the then–recently developed Doi-Edwards (tube) theory of
polymer dynamics did predict a nonmonotonic flow curve (Doi & Edwards 1988). The problem
with this hypothesis was that the many experiments on polymers in viscometric conditions had not
reported any nonmonotonic or discontinuous flow curve, and a fortiori no shear banding (Bird
et al. 1987). From this discrepancy between theory and experiments, two routes were taken in
parallel. On the one side, additions were made to the tube theory to take into account the kinetics
of breaking/recombination in wormlike micelles (Cates 1990), in which broad stress plateaus
hinting at the presence of shear banding were beginning to be observed in experiments (Rehage
& Hoffmann 1991). This was the starting point of intensive experimental research sustained by
strong theoretical feedback. On the other side, the tube model was refined to better reflect the
dynamics of polymers and to cure the original model of its nonmonotonicity (Marrucci 1996). In
parallel, experiments were conducted to support (or not) the theoretical picture, which was also
updated regularly.

In what follows, we summarize the major advances in the field over the past 10 years. We
first discuss the successes and difficulties in correlating extensive sets of data for shear-banding
wormlike micelles, providing a road map for future investigations on other complex fluids. We then
turn to polymer solutions and melts, for which the existence of shear banding is still a controversial
subject. Finally, we give an overview on the theoretical modeling of shear banding in polymeric
fluids at large.

2.1. Correlating Data Sets of Increasing Subtlety in Wormlike Micelles:
A Road Map for Other Complex Fluids

The nonmonotonic flow curve sketched in Figure 1a is a powerful picture to understand shear
banding; it is quite general and applies to many types of flows and fluids. On this basis, purely
rheometric experiments showed that for a given solution of wormlike micelles at a given temper-
ature, the stress plateau was unique but could be influenced by the flow geometry. This became
an important theoretical problem, which we discuss further in Section 2.3. However, this sketch
is essentially zero dimensional (0D) in the sense that it is obtained by imposing the tensorial strain
rate field to be a pure shear rate field, constant and equal to the global shear rate signal γ̇ . Space
has disappeared from the picture, and because the flow curve is assumed to be steady, time is not
mentioned either.

It quickly became obvious that one had to go beyond this 0D picture, and a collective effort
was made to combine purely rheometric data with more mesoscopic, local, and nonmechani-
cal data (chiefly optical and structural data). Direct evidence for shear-banded flows associated
with the coexistence of differing microstructures was then supported by flow birefringence (FB),
small-angle neutron scattering (SANS), and nuclear magnetic resonance (NMR) velocimetry and
spectroscopy experiments. For exhaustive references about that part of the story, the reader can
refer to Berret (2006) and Lerouge & Berret (2010). Heterogeneous flows have been probed in

84 Divoux et al.



FL48CH04-Lerouge ARI 3 December 2015 9:4

Lever rule: in the
classical scenario,
written as
γ̇ = (1− αh) γ̇l+αhγ̇h,
with αh the proportion
of the high–shear rate
band, γ̇l = γ̇1 and
γ̇h = γ̇2

various flow geometries, such as pipe (Mair & Callaghan 1997), cone and plate (CP) (Britton &
Callaghan 1997), Taylor-Couette (TC) (Salmon et al. 2003a), and more recently microchannel
(Nghe et al. 2010, Ober et al. 2011).

Our understanding of shear-banded flows in wormlike micelles is particularly advanced in
TC flow, in the small-gap limit, because this canonical geometry turned out to be the most
suitable for the implementation of powerful space- and time-resolved techniques (Callaghan 2008,
Manneville 2008, Eberle & Porcar 2012). Moreover, it presents additional advantages: The slight
stress inhomogeneity due to curvature tends to produce a plateau with a slight positive incline
(Figure 1b), such that both the stress and shear rate can be used as control parameters. It also
pushes the shear-banding flow to comprise only two bands, with the high–shear rate band always
near the inner cylinder (radius R). In contrast, in a CP flow, there can be two, three, or even more
bands, and their location is more variable (Britton & Callaghan 1997, Boukany & Wang 2008,
Casanellas et al. 2015). TC flow is less prone to edge effects, which can strongly limit the accessible
range of flow strength in CP flow, for instance (Dimitriou et al. 2012). Figure 1c displays typical
time-averaged velocity profiles gathered in TC flow as a function of the radial distance y to the
inner cylinder normalized by the gap width d. Such velocity profiles now provide what we could
call a 1D picture.

The early 1D experiments (Salmon et al. 2003a) were mostly focused on the simple assumptions
made in theoretical modeling: no wall slip, an infinitely sharp interface, and the lever rule (Spenley
et al. 1996), which constitute the so-called classical scenario. With the refinement of spatial and
temporal accuracy, we now understand these assumptions to be simplistic. Wall slip on the high–
shear rate band seems quite deeply connected to shear banding and leads to deviations from the
original lever rule (Radulescu et al. 1999, Fardin et al. 2012b). In particular, the local high shear
rate is usually observed to be somewhat in competition with wall slip (Lettinga & Manneville
2009, Feindel & Callaghan 2010, Fardin et al. 2012a). It increases with the applied shear rate, as
the dimensionless wall slip is concomitantly reduced (Figure 1d,e). This feature emerges even
in the simplest theories of shear banding because of the coupling between the diffusive terms
and the boundary conditions (Cromer et al. 2011, Fardin et al. 2012b). As for the width of the
interface �, it is thin in comparison to the usual gap (d � 1 mm), but it is larger than what was once
thought (Radulescu et al. 2003) and is typically measured to be 1–10 µm (Ballesta et al. 2007).
In microfluidic devices, the existence of such a length scale leads to so-called nonlocal effects
(Masselon et al. 2010).

This 1D picture has also been developed on the structural side. Orientation profiles were
established using FB (Lerouge et al. 2004), NMR spectroscopy (López-González et al. 2006), and
more recently SANS (Helgeson et al. 2009, Gurnon et al. 2014). They all showed consistency, with
flow-aligned wormlike micelles in the high–shear rate band coexisting with entangled wormlike
micelles in the low–shear rate band for semidilute samples and with a shear-induced isotropic-
to-nematic transition for concentrated samples, with possibly concentration differences between
bands for the latter case.

With the improvement of time resolution, local velocity fluctuations and complex motions of
the bands have been reported in many different wormlike micellar systems, often coupled to non-
stationary responses of the global rheological signals (Lerouge et al. 2000, López-González et al.
2004, Hu & Lips 2005, Ganapathy & Sood 2006, Bécu et al. 2007, Fielding 2007). Understanding
of these complex fluctuating dynamics recently came from the extension of the experiments to
two dimensions, two dimensions plus time, and so on. Indeed, in the 1D picture, the velocity
component in the flow direction is obtained at one given height along the cylinders, whereas FB
and SANS data are gathered by averaging along the vorticity direction. These specifications are
now seen as quite limiting, and sometimes even misleading. The fluctuations in shear-banding
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wormlike micelles were shown to mainly result from the development, in the high–shear rate
band, of secondary flows that are either coherent and associated with interfacial undulations along
the vorticity direction (Lerouge et al. 2008) or turbulent (Fardin et al. 2009, 2012a; Perge et al.
2014) (Figure 2a). The impact of such 3D shear-banding flows on the 1D picture was fully char-
acterized (Figure 2b), demonstrating the ubiquity of this phenomenon (Fardin & Lerouge 2012),
which was shown to originate from viscoelastic instabilities driven by normal stresses akin to those
well known to develop in polymer solutions in flows with curved streamlines (Morozov & van
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Saarloos 2007, Muller 2008). The most recent experiments and simulations have suggested that
in curved shear-banded flows, bulk and interfacial viscoelastic instabilities can be at play, with the
bulk mechanism dominant except when the effective curvature of the high–shear rate band is van-
ishing (Decruppe et al. 2010, Fielding 2010, Fardin et al. 2011, Nicolas & Morozov 2012). These
recent advances may provide a strong guide for the understanding of complex shear banding in
other flow geometries.

2.2. Shear Banding in Polymer Solutions and Melts

As mentioned in Section 2, despite the success of the tube theory in capturing much of the rheology
of entangled polymer solutions and melts, for a long time shear banding was not reported in these
systems (Menezes & Graessley 1982, Bercea et al. 1993, Pattamaprom & Larson 2001). All the
early studies were purely rheometric, echoing the purely mechanical instability illustrated by the
0D picture. As shear banding was not observed, theoreticians worked on updating the original
tube model (see McLeish 2002 for a review). One of the additions that is particularly relevant to
shear banding is convective constraint release (CCR), which enables the relaxation of some stress
carried by the test chain due to the reconfiguration of the tube when an entanglement point is
lost as chains slide past each other. Such CCR becomes increasingly important with the shear rate
and was shown to be able to remove the nonmonotonicity of the original tube model. We note
that arguments were put forth to justify a lesser degree of CCR in wormlike micelles (owing to
breaking/recombination) and thus allow the existence of shear banding in micelles (Milner et al.
2001). These arguments were shown to be correct in very recent simulations (Zou & Larson 2014).

Since 2006, strong efforts have been made to provide a 1D picture using velocimetry techniques
in various flow geometries, mostly CP (Ravindranath et al. 2008, Li et al. 2013) and parallel plate
(Boukany & Wang 2007, Hayes et al. 2008) and marginally TC (Hu 2010) and pipe (Zhu et al.
2013). During the past decade, extensive sets of particle tracking velocimetry (PTV) experiments
combined with global rheology by Wang et al. (2011) showed that shear banding can emerge
in polymer solutions and melts (Figure 3a). Recently, shear banding in polymers has also been
evidenced by other groups using optical coherence tomography ( Jaradat et al. 2012) or PTV
(Noirez et al. 2009). As in wormlike micelles, shear banding was often found to compete with wall
slip (Boukany & Wang 2008, Jaradat et al. 2012), which seems ubiquitous in these systems and
can be limited by surface roughness or the treatment and use of entangled polymeric solvent. The

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 2
(a) 2D picture of shear-banding flow in semidilute wormlike micelles, illustrating evidence for elastic instability and turbulence in
Taylor-Couette flow. (i ) Steady-state velocity map vθ (r, z) deduced from ultrasonic imaging for a given shear rate. The maps on the
right are magnifications showing the radial vr (r, z) and azimuthal vθ (r, z) velocity components, respectively. (ii,iii ) Views of the gap in
the (r, z) plane illuminated with either white light or laser light, the former providing direct visualization of the vortex structure
responsible for the undulation of the interface. The gap size (1.13 mm) corresponds to the width of the picture, and the bar (1 mm)
gives the vertical scale. In parts i and ii, the system is made of cetyltrimethylammonium bromide and sodium nitrate, and part iii shows
a sample of cetylpyridinium chloride with sodium salicylate in brine for different applied shear rates. Panel a adapted with permission
from Fardin & Lerouge (2014), copyright by the Royal Society of Chemistry. (b) 1D picture of shear-banding flow in semidilute
wormlike micelles. (i ) Flow birefringence snapshot in the (r, θ ) plane. The annular gap is illuminated with white light and placed
between crossed polarizers. The evidence of three bands is purely artifactual. The intermediate band results from the interfacial
undulation and leads to smooth orientation profiles between bands. Part i of panel b adapted with permission from Lerouge et al. (2004),
copyright by the American Chemical Society. (ii ) Time-averaged velocity profiles for different applied shear rates associated with the
images in part iii of panel a. (iii ) Selection of several instantaneous velocity profiles, illustrating the impact of a turbulent burst on the
main flow. Parts ii and iii of panel b adapted with permission from Fardin et al. (2012c), copyright by the Royal Society of Chemistry.
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Velocity profiles at different times following the start-up of flow and gathered in rotating parallel plate geometry. d is the gap size, and
v0 is the velocity of the moving plate at the radius where local velocities are measured. (a) The sample is a polybutadiene solution
(1M10%-9K) with an entanglement density Z = 42. Panel a adapted with permission from Ravindranath et al. (2008), copyright by the
American Chemical Society. (b) The sample is a polybutadiene solution (1.4M10%-9K) with an entanglement density Z = 55. Panel b
adapted with permission from Li et al. (2013), copyright by the Society of Rheology.

emergence of shear banding in polymer solutions and melts seems to require sufficiently entangled
(Boukany & Wang 2009b) and monodisperse (Boukany & Wang 2007) samples. Furthermore,
the competition between shear banding and wall slip seems to depend on both the concentration
and molecular weight (Wang et al. 2011, Jaradat et al. 2012), and bulk banded flows are likely
to overcome slip effects for sufficiently high applied shear rates (Boukany & Wang 2008, 2009a).
Finally, the existence of steady shear banding seems to be connected to the flow history, at least
for solutions (Boukany & Wang 2010, Cheng & Wang 2012). Indeed, shear banding seems to be
observed at steady state following start-up shear protocols, and it seems to be a transient property
when using shear ramp protocols.

However, up to now, the 1D picture described above has not reached a consensus. PTV
experiments in TC flow showing the possible existence of both banded and nonbanded profiles
for a given sample in the supposed regime of shear banding suggested that shear banding may
be only a long-lived transient feature in polymer solutions (Hu 2010). In contrast, other groups
observed neither transient nor steady shear banding (Hayes et al. 2008, 2010; Li et al. 2013)
(Figure 3b). They concluded that wall slip and linear velocity profiles prevail in the response of
polymer solutions. In addition, it was suggested that edge effects or experimental artifacts may be
responsible for the observed shear banding in polymer solutions (Li et al. 2013, 2014).

This situation gave rise to impassioned debates (Adams & Olmsted 2009a,b; Wang 2009).
Wang’s interpretation of shear banding involves microscopic failure occurring within the bulk
under large step shear, thus challenging the tube picture, which cannot account for such elastic
yielding. Hence, rejecting almost the entire reptation picture on one side, and casting doubt on
the quality of experiments on the other, the controversy on shear banding in polymers is far from
being sorted out (Wang et al. 2014, Li et al. 2014). Nonetheless, it stimulated much theoretical
work trying to provide rationales for the various experimental observations, as illustrated in the
next section.
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2.3. Theoretical Frameworks for Shear Banding in Polymeric Fluids

As mentioned above, the tube-like models with all their modern additions can predict shear band-
ing in entangled polymeric fluids (Milner et al. 2001) and wormlike micelles (Cates & Fielding
2006). However, these microscopic models are not always easily tractable in the nonlinear flow
regime. In practice, more phenomenological models are used instead (Cates & Fielding 2006,
Olmsted 2008). These models do not usually contain all the information on the dynamics of the
microstructure and deal with coarse-grained quantities defined at the macroscopic scale. They usu-
ally at least include tensorial stress and velocity gradient fields. Simple phenomenological models
such as the diffuse Johnson-Segalman model and the diffusive Giesekus model can qualitatively
reproduce many of the macroscopic aspects of shear banding. Nonetheless, they are too coarse
grained to differentiate between micelles and polymers. A compromise between microscopic and
phenomenological models is the so-called Rolie-Poly model, which is a simplified differential
version of the tube model that incorporates CCR.

Phenomenological models of shear banding in polymeric fluids usually rely on a disjunction of
the stress into two parts: a solvent part (ηsolγ̇ ), and a polymer part (ηpolγ̇ ). The polymer part, like
in the tube models, increases only up to a critical shear rate, after which it continuously decreases.
Ultimately, the viscosity at an infinite shear rate is ηsol. Shear banding emerges if the so-called
viscosity ratio (η ≡ ηsol /ηpol) is small enough for the total flow curve to be nonmonotonic. This
behavior is also observed experimentally in wormlike micelles, by varying the concentration in
surfactant or the temperature (Figure 1b). Above a critical viscosity ratio, ηc, steady shear banding
disappears. Furthermore, nonlocal (diffusive) terms have been included in the equation governing
the polymeric stress to account for experimental observations in wormlike micelles of a unique
stress plateau at σp independent of the shear history and the initial conditions (see Olmsted 2008
for a review). Such diffusion terms are now widespread and allow one to define the typical width of
the interface between bands as a function of the stress diffusion coefficient, � ≡ √Dτe , where τe is
the relaxation time of the fluid. During the past decade, phenomenological models including diffu-
sive terms were used to test the impact of the flow geometry (Radulescu & Olmsted 1999) and the
boundary conditions (Adams et al. 2008) on the banding structure, the role of flow-concentration
coupling (Fielding & Olmsted 2003), the effect of the control parameter (Dhont 1999), and more
recently the stability of the shear-banding flow (Fielding 2010, Nicolas & Morozov 2012).

In tube models and in the more phenomenological models such as the diffuse Johnson-Segalman
model, the shear-banding instability is seen from the mechanical perspective we mostly echo
above. Shear banding in wormlike micelles can also be approached from a more thermodynamic
perspective, noting the similarities between shear banding and first-order phase transitions. For
instance, the critical viscosity ratio ηc leads to a flow curve with an inflection point that shares much
similarity with a critical point. Unfortunately, this critical point has remained largely unexplored
experimentally. Generally, Figure 1b can be called a flow-phase diagram. If the thermodynamic
and mechanical perspectives were once competing, they are now understood as two sides of the
same coin. Even if the rationale for shear banding provided by the tube picture for polymeric
fluids seems to be the correct one, other possibilities are nonetheless investigated.

In particular, in wormlike micelles, the Vasquez-Cook-McKinley model has been shown to be
able to reproduce many of the properties of shear banding observed in experiments (Zhou et al.
2014). This model, devised at the intermediate level of kinetic theories, is built out of two species
of dumbbells, short and long, for which two short ones are allowed to combine into a long one,
and long ones increasingly break apart as the flow strength is increased. In effect, shear banding
in this model is a consequence of shear-induced demixing of long and short species, with long
ones eventually disappearing entirely. This explanation for shear banding differs from the one

www.annualreviews.org • Shear Banding of Complex Fluids 89



FL48CH04-Lerouge ARI 3 December 2015 9:4

provided by tube models, and whether it applies to shear banding in wormlike micelles should
be checked experimentally by investigating if the typical length of micelles at a high shear rate is
indeed shorter than that at a low shear rate.

Finally, we return to the controversial situation in polymer solutions and melts. Using the
diffusive Rolie-Poly model, Adams, Olmsted, and colleagues first highlighted that transient shear
banding could appear in polymeric flows for viscosity ratios η just above the critical value ηc

(i.e., for flow curves that are actually monotonic or equivalently for nonbanded steady states)
(Adams & Olmsted 2009a, Adams et al. 2011). Key ingredients for the emergence of transient
shear banding are thermal noise or high stress gradients inherent to the flow geometry. This
observation was subsequently extended by Moorcroft, Fielding, and colleagues, who derived a
very general mechanical criterion encompassing all complex fluids to predict the occurrence of
transient as well as steady shear banding (Moorcroft et al. 2011, Moorcroft & Fielding 2013).
Checking the validity of this criterion for wormlike micellar solutions with a viscosity ratio above
and below the limit ηc appears to be a logical next step for experiments. The diffusive Rolie-
Poly model was also recently used to offer further ways to interpret the data on shear banding
in polymers (Agimelen & Olmsted 2013). Recently, another alternative involving the Rolie-Poly
model was also shown to qualitatively reproduce almost all the phenomena observed by Wang’s
group for a model polymer solution with an underlying monotonic constitutive curve, with the
driving mechanism being the coupling of the polymer stress to an inhomogeneous concentration
profile (Cromer et al. 2014).

3. SHEAR BANDING IN SOFT GLASSY MATERIALS

Having reviewed the current state of knowledge on shear banding in polymeric solutions, we now
discuss shear banding in soft glassy materials (SGM). Here we use the term glassy in a broader
sense than generally assumed, by encompassing complex fluids that can be either liquid-like or
solid-like at rest but that are all characterized by a microstructure in which elementary bricks
strongly interact (e.g., through steric constraints, entanglements, attractive forces, or physical
bonds). On the one hand, liquid-like SGM correspond to solutions of surfactants or copolymers,
yet at higher concentrations than the wormlike systems discussed above. These solutions display
highly viscoelastic lyotropic mesophases, such as hexagonal, lamellar, cubic, and bicontinuous
sponge phases. On the other hand, solid-like SGM are systems in which microconstituents are
kinetically trapped into a disordered, metastable configuration and thermal energy alone is not
sufficient to significantly rearrange the microstructure and relax mechanical stresses. The glassy
behavior of such SGM originates from either geometric frustration or attractive interactions
between the constituents, and they typically exhibit a yield stress; that is, they can rearrange
and flow provided a stress larger than some critical value σc is applied. Examples of solid-like
SGM range from concentrated jammed systems of repulsive hard spheres, soft particles, or liquid
droplets to dispersions of attractive colloids that form space-spanning networks even at very low
volume fractions (i.e., colloidal gels).

There is currently no universal explanation for heterogeneous flows in SGM, and in compar-
ison to wormlike micellar fluids, the picture is at best fragmented, if not controversial. Clearly,
difficulties in characterizing and understanding shear banding in SGM arise from the fact that,
as the zero-shear viscosity increases and eventually goes to infinity upon jamming or gelation,
relaxation times considerably increase so that at least one of the characteristic shear rates γ̇1 and
γ̇2 apparently goes to zero, as sketched in Figure 4. In particular, to be conclusive, any study
involving low shear rates or focusing on solid–fluid coexistence must be performed over long-
enough timescales to ascertain that a steady state is reached. Over the years, it has progressively
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been recognized that, depending on the nature of the fluid microstructure and on the interactions
between its constituents, shear banding in SGM originates from one or a combination of the fol-
lowing causes: (a) an underlying shear-induced phase transition, (b) the competition between shear
and the attractive interactions between the constituents, or (c) flow–concentration coupling. For
instance, a dilute assembly of monodisperse colloidal hard spheres may develop a shear band ow-
ing to flow-induced crystallization (Shereda et al. 2010), whereas more concentrated and slightly
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polydisperse samples may experience the formation of a permanently arrested band because of
minute variations of the local packing fraction that trigger the jamming of a macroscopic region
of the flow (Besseling et al. 2010).

In what follows, we have chosen to deepen the phenomenology of shear banding in SGM
through a historical approach put into perspective by recent progress in modeling. We first discuss
the case of concentrated surfactants and block copolymers, for which shear banding mainly results
from shear-induced structuration, before turning to colloidal star polymers that display a delayed
scenario for shear band formation. SGM with a yield stress are the topic of the Sections 3.2 and
3.3, where we review steady-state shear banding, the most studied case so far, and transient shear
banding, an emerging area in SGM, respectively.

3.1. From Shear-Thinning Fluids to Glassy, Yet Not Jammed Materials

Concentrated surfactants and block copolymers exhibit lyotropic mesostructures whose properties
under shear have been the topic of numerous studies. Close to an equilibrium phase transition,
shear may indeed help the system cross the phase boundary. Sheared liquid crystalline phases may
also organize to form novel out-of-equilibrium shear-induced structures and are likely to involve
shear banding (Berni et al. 2002). Under moderate shear, some lamellar phases were shown to
organize into a novel structure of disordered close-compact multilamellar vesicles called onions
(Diat et al. 1993). This disordered onion assembly itself undergoes a shear-thinning transition at
larger shear at which the final state is characterized by hexagonally ordered onion layers sliding
on top of each other along the velocity direction (Roux et al. 1993). In the vicinity of this layering
transition, velocimetry revealed that the nucleation and growth of such shear-induced structures
are associated with the nucleation and growth of a shear band, and that the classical picture of shear
banding detailed in Section 2.1, including the lever rule, holds true (Salmon et al. 2003b). However,
numerical simulations of lamellar systems that reproduce shear banding show no evidence of a
stress plateau, which suggests that if the shear band is robust, the lever rule may not be universal
in these systems (Xu et al. 2006).

A quite similar situation has been reported in concentrated copolymer solutions forming
spherical micelles that arrange into cubic phases. Under shear, the initial disordered polycrys-
talline structure successively orients into different bcc crystals, each transition being signaled by a
stress plateau (Figure 4d ) at which two structures coexist, as evidenced by X-ray diffraction (Eiser
et al. 2000a; for a review of the shear-induced states in block copolymers, see Hamley 2001). We
also note that such orientation transitions are reminiscent of those observed in colloidal crystals
(Chen et al. 1994). Whereas block copolymers forming wormlike micellar structures have been
shown to display shear banding and elastic instabilities reminiscent of surfactant wormlike systems
(Manneville et al. 2007), the local flow properties of more concentrated copolymers remain largely
unexplored and deserve more attention in future studies to fully understand these shear-induced
transitions (Eiser et al. 2000b). Another line of research concerns so-called transient networks
comprising, for example, reversibly cross-linked telechelic copolymers or proteins (see Ligoure &
Mora 2013 for a review). Although these systems have long been known to fracture under shear,
a phenomenon associated with a decrease of the stress with strain (Skrzeszewska et al. 2010), the
shear banding recently reported in a numerical model of a transient network (Billen et al. 2015)
raises the fundamental question of whether fractures could be seen as an extreme case of shear
bands.

Finally, dense suspensions of hairy soft particles made of colloidal star polymers display
rheological properties that are intermediate between the above systems and the concentrated
colloids addressed in Section 3.2 (Christopoulou et al. 2009, Vlassopoulos & Fytas 2010). They
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are liquid-like and shear thinning at short times after the application of an oscillatory preshear
but strikingly develop shear-banded velocity profiles over thousands of seconds (Figure 5a)
(Rogers et al. 2008). Such delayed transients toward a heterogeneous steady state are observed
below a critical shear rate γ̇c that depends on the particle concentration (Holmes et al. 2004,
Rogers et al. 2010). The slow emergence of a yield stress and of a stress plateau spanning from 0
to γ̇c in the flow curve of colloidal star polymer suspensions has been attributed to the progressive
entanglement of percolating groups of particles (Rogers et al. 2010), and similar long-lived
transients have been reproduced in Brownian dynamics simulations (van der Noort & Briels
2008). Such time dependence, or aging, is also key to the formation of steady heterogeneous
flows, as we also see below for SGM comprising attractive colloidal particles.

3.2. Steady-State Shear Banding in Yield Stress Fluids

In the early 1990s, shear banding in yield stress fluids (YSF) was originally referred to as shear
localization and denoted the coexistence of two (or more) partially sheared bands, often sliding
along each other, during transient or steady-state flows. These heterogeneous flows had been
identified thanks to seminal experiments conducted on complex materials often inherited from
industry (e.g., ink, lubricating grease) in parallel plate and TC geometries. In pioneering work,
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Piau and coworkers unveiled a wide range of heterogeneous flows in clay suspensions and
Carbopol microgels, including fractures, wall slip, the coexistence of plug flow(s) or shear band(s),
and stick-slip dynamics, by simply following a line painted along the vorticity direction at the
sample periphery (Magnin & Piau 1990, Pignon et al. 1996). To rationalize such a wealth of flows,
experimentalists quickly focused on two other geometries that made flow visualization easier and
more quantitative, namely TC geometry and channel flow. Coupled to local techniques such
as light scattering, particle tracking, magnetic resonance, ultrasonic echography, and confocal
microscopy, rheological tests were much enriched by the simultaneous measurement of bulk
velocity fields (Callaghan 2008, Manneville 2008). Historically, experiments in wide-gap TC
cells have played a particular role in the understanding of shear banding. We recall that in TC
geometry the local shear stress decreases from the inner to the outer cylinder as 1/r2, where
r = R + y denotes the distance to the rotation axis. Therefore, shear banding is somewhat
trivially observed when the yield stress of the fluid under scrutiny lies between the maximum and
minimum local stresses. Of course, this situation also occurs in any channel flow as soon as the
wall shear stress exceeds the yield stress, as the local stress always vanishes at the center of the
channel. Such shear banding induced solely by the stress heterogeneity inherent to the geometry
is now referred to as shear localization to make a clear distinction with the intrinsic shear banding
related to the nonlinear rheology of the material (Ovarlez et al. 2009), toward which we now
turn.

Interestingly, numerous YSF with strong attractive interactions display steady-state hetero-
geneous velocity profiles that cannot be attributed to the shearing geometry. The coexistence
between a flowing band and a solid-like region rather results from the existence of a critical shear
rate γ̇c below which no steady homogeneous flow is possible (Coussot et al. 2002a,b). In terms of
the flow curve, this corresponds to the case of wormlike micelles explored in Section 2, but the
lower characteristic shear rate γ̇1 would be set to zero, and the upper limit of the stress plateau
γ̇2 would correspond to γ̇c. This analogy (Figure 4b,e) has been quantitatively pushed forward
thanks to experiments performed on attractive colloids in CP geometry (Coussot et al. 2002b,
Møller et al. 2008, Ovarlez et al. 2009). For a homogeneous shear rate 0 ≤ γ̇ ≤ γ̇c, steady-state
shear banding was observed with a flowing band sheared at γ̇c over a width roughly following the
lever rule, with γ̇1 = 0 and γ̇2 = γ̇c (Figure 5b,c). However, the situation is far less clear than that
for wormlike micelles as there is a lack of measurements on other systems, and the chemical and
physical nature of the boundary conditions as well as the preshear protocol prior to the experi-
ment may strongly influence the results (Gibaud et al. 2008, Cheddadi et al. 2012). Last but not
least, despite the formal analogy with wormlike micelles, the physical origin of the characteristic
timescale γ̇ −1

c remains an open issue.
From a theoretical perspective, the very existence of γ̇c is still highly debated, even though it

quickly emerged naturally from toy models based on the competition between shear and spon-
taneous physical aging (Møller et al. 2006, Coussot & Ovarlez 2010). The prevailing picture
somewhat differs from the interpretation of nonmonotonic flow curves in terms of a mechanical
instability. It rather builds on the generic observation that the static yield stress σ st above which the
system starts flowing from the solid state is larger than the dynamic yield stress (i.e., the minimal
stress at which the material is observed to flow when the shear rate is decreased from large values)
(Picard et al. 2002). The flow curve can thus be seen as the superposition of a monotonic flow
curve pointing toward the dynamic yield stress for vanishing shear rates, and of a static branch
at γ̇ = 0, for stresses below the static yield stress (Figure 4c). This scenario, which does not
necessarily imply the presence of an underlying decreasing flow curve below some critical γ̇c, is
supported by simulations of Lennard-Jones glasses (Varnik et al. 2003, Tsamados 2010) and by
numerical work on concentrated soft particles (Chaudhuri et al. 2012).
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In this framework, the key role of attractive interactions has been mainly illustrated using
emulsions made adhesive either by depletion forces (Bécu et al. 2006) or by the minute addition of
clay particles bridging the droplets (Ragouilliaux et al. 2007, Paredes et al. 2011). Recent numerical
simulations of athermal assemblies of soft particles show that adding attraction to a system slightly
below jamming leads to a nonmonotonic flow curve and to steady-state shear banding (Irani et al.
2014). However, experimentally, the question of whether there is a minimal amount of attraction
required to generate steady-state shear banding remains open. Similarly, quantitative details on
the potential link between the interaction potential and the critical shear rate γ̇c are still lacking.

3.3. From Steady-State to Transient Heterogeneous Flows

Not all solid-like SGM display steady-state heterogeneous flows. Shear banding may be only
transient and give way to a homogeneously sheared flow after long-lived induction periods. Such
delayed, heterogeneous fluidization, now referred to as transient shear banding, has been reported
for a large range of shear stresses above the yield stress on Carbopol microgels (Divoux et al. 2010,
2011) (see Supplemental Video 1; follow the Supplemental Material link from the Annual
Reviews home page at http://www.annualreviews.org), carbon black gels (Gibaud et al. 2010,
2014), and Laponite clay suspensions (Gibaud et al. 2008, Martin & Hu 2012). The corresponding
time-resolved scenario broadly involves several successive steps: homogeneous elastic deformation,
strong (if not complete) slippage at the walls, and nucleation and growth of a shear band that
eventually spans the whole sample at a well-defined full fluidization time τf that dramatically
increases in the vicinity of the yield stress (Gibaud et al. 2009, Divoux et al. 2012) (Figure 6a,b).
In particular, it has been established that τf diverges as power laws τf (σ ) ∝ 1/(σ − σc)β and
τf (γ̇ ) ∝ 1/γ̇ α in Carbopol microgels (Divoux et al. 2010, 2011) (Figure 6c). Remarkably, in this
system, in which steady-state rheology follows the mostly phenomenological Herschel-Bulkley
scaling σ = σc + Aγ̇ n (Figure 4f ), it could be shown that the exponent n is linked to those of
transient shear banding through n = α/β. Such results strongly support interpretations in terms
of critical phenomena and dynamical phase transitions (Bocquet et al. 2009, Divoux et al. 2012,
Chikkadi et al. 2014).

However, a general picture on transient shear banding is still out of reach and certainly
depends on the microscopic details of the system. For instance, in spite of similar dynamics,
τf in weakly attractive colloidal gels does not follow critical-like power laws but rather obeys
exponential Arrhenius-like scalings (Figure 6d ), hinting at a central role played by thermally
activated processes (Gopalakrishnan & Zukoski 2007, Gibaud et al. 2010, Sprakel et al. 2011,
Grenard et al. 2014). Still, the microscopic ingredients at the origin of exponential versus
power-law scalings involved in such delayed yielding remain to be uncovered, and predicting
transient flow dynamics from microstructural information is an important open research topic
(Chaudhuri & Horbach 2013).

Despite these difficulties, a general criterion for transient banding has been recently formulated
by Fielding (2014) in the framework of trap and fluidity models. Both approaches rely on the strong
viscoelastic responses of YSF and predict the formation of transient heterogeneous flows during
the stress relaxation that follows the stress overshoot observed after shear start-up (Moorcroft &
Fielding 2013). This approach is further supported by recent experiments on Laponite suspensions
(Martin & Hu 2012).

4. CONCLUSION

In fluid dynamics and in continuum approaches in general, the formalism is set up in such a way as
to start from states that are usually assumed to be homogeneous and laminar, steady, and stable.
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(a) Stress response σ (t) of a Carbopol microgel to a shear start-up experiment at γ̇ = 0.7 s−1 in a small-gap Taylor-Couette (TC)
geometry with R = 23.9 mm and d = 1.1 mm (see Supplemental Video 1). (Insets) Normalized velocity profiles v/v0 at different
times. The corresponding times are indicated in the main panel using the same symbols. (b) Fluidization time τf versus the applied shear
rate γ̇ for various gap widths and boundary conditions. The gray line is the best power-law fit with an exponent α = 2.3± 0.1. Panels a
and b adapted with permission from Divoux et al. (2010), copyright by the American Physical Society. (c) Shear rate response γ̇ (t)
during a creep experiment in a 10 wt% carbon black gel at σ = 55 Pa in a sand-blasted small-gap TC cell of inner radius R = 24 mm
and d = 1 mm. (Insets) Normalized velocity profiles v/v0 at different times. The corresponding times are indicated in the main panel
using the same symbols. Panel c adapted with permission from Grenard et al. (2014), copyright by the Royal Society of Chemistry.
(d ) Fluidization time τ f versus the applied stress σ for a thermoreversible gel of stearylated silica particles. The different curves
correspond to gels that have been prepared by applying different levels of strain γ0 prior to each creep experiment. The lines
correspond to exponential fits. Panel d adapted with permission from Sprakel et al. (2011), copyright by the American Physical Society.

Nevertheless, time and time again, experiments have shown that as soon as sufficient power is
delivered into the material (e.g., by applying shear), inhomogeneity, instabilities, and transient
or intermittent effects creep into the flow fields (e.g., velocity field, deformation rate field, stress
field, concentration field). For example, viscoelasticity, yielding, flow instabilities, turbulence,
flow-induced structures, shear banding, and other types of shear localization all show us various
aspects of a common fate. In this review, we have tried to isolate shear banding by laying out some
of its salient properties across complex fluids. One such property is that it can be understood to
a good extent by referring only to the mechanical fields of stress versus the shear rate: It can be
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understood as a material instability. But as in any nonlinear context, identifying the cause from
the effect is not always trivial. Nonmonotonic flow curves and shear banding seem quite tightly
connected, but they are not equivalent. Is shear banding causing the nonmonotonic flow curve,
or is the nonmonotonic flow curve causing shear banding? In some cases, the answer is not so
clear-cut, as wall slip, structural changes, concentration differences, or flow instabilities can also
be at play.

In the case of polymeric fluids, research on solutions of wormlike micelles provides a road map
on how to disentangle some of the nonlinear effects from each other. Nevertheless, much research
remains ahead, and the controversial status of shear banding in polymers is a testimony to this
state of affairs. Even the spurt effect that motivated the use of the term shear banding in fluids
remains an open issue. Shear banding, wall slip, and flow instabilities may all have some effects on
this phenomenon.

As for SGM, the presence of attractive interactions between the constituents, either controlled
by van der Waals forces or produced by long-lived sticky contacts between the particles, leads to
a rich and complex phenomenology in which aging and time dependence play a major role. Shear
banding in attractive SGM intrinsically depends on the initial state and on the shear history, as
well as on the nature of the boundary conditions.

In both polymeric materials and SGM, wall slip can no longer be described as a mere rheological
artifact decoupled from bulk rheology (Barnes 1995, Buscall 2010). For instance, space- and time-
resolved studies have indeed shown that slippery walls foster fluidization against steady-state shear
banding (Gibaud et al. 2009). The chemical nature of the walls also modifies the flow profiles far
away from the boundaries (Seth et al. 2012). Such a strong influence of boundary conditions
on both transient and steady-state flows is not yet captured by models, and we believe that a
major theoretical challenge for future years is to include the effects of boundaries at least through
coarse-grained approaches, if not at the microscopic level.

More generally, the question of whether shear banding in polymeric systems and that in SGM
are of similar fundamental nature remains open. Strikingly, various models, such as fluidity models,
seem to apply equally well to both kinds of systems and, up to minor adaptations, have been able
to reproduce subtle effects of confinement on shear banding (Goyon et al. 2008, Masselon et al.
2008), as well as transient regimes in polymeric and glassy systems (Fielding 2014). Although
devising a general theory from a first-principles approach independently of the system details is
probably not a realistic challenge, the solid-fluid coexistence in SGM may be fundamentally not
so far from the coexistence of flowing bands in polymeric fluids.

FUTURE ISSUES

1. Can shear banding in polymeric materials and SGM be understood within the same
framework? The mechanical criterion proposed by Moorcroft and Fielding provides a
promising approach, which remains to be fully tested in experiments.

2. More microscopically, what are the relevant parameters (e.g., interaction potential, re-
laxation mechanisms) that generate the critical shear rates for shear banding (γ̇1, γ̇2, or
γ̇c) and the value of the stress plateau?

3. In both polymeric materials and SGM, wall slip seems quite tightly connected to shear
banding. How could this be incorporated systematically into theoretical models? More
generally, how do the chemistry and the deformability of the boundary conditions impact
the fluid dynamics, especially during transient flows?
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4. What is the extent of the interplay between shear banding and elastic instabilities and/or
concentration fluctuations?
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