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Abstract

Protein is an essential macronutrient and a key structural component of
many foods. The nutritional and technological properties of food protein
ingredients depend on their source, extraction and purification,modification
during food manufacture, and interactions with other food components. In
addition to covering these elements, this review seeks to highlight under-
appreciated aspects of protein environmental sustainability and explores the
potential of cultured meat and insect-derived proteins.
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INTRODUCTION

Protein is a dietary macronutrient that plays numerous structural and functional roles in the body;
without protein intake, we would die. In addition, protein-based ingredients fulfill many different
technological roles in formulated foods and contribute to texture, color, flavor, and other prop-
erties. This review examines how protein-rich food ingredients are produced; how they are used
in creating formulated foods, i.e., foods that are assembled or created from a combination of par-
tially purified ingredients; and how the nutritional value of food proteins depends on source and
processing.

Proteins are heterogeneous in composition, structure, and functionality. A single protein
molecule may contain hydrophobic and hydrophilic regions, structured and unstructured regions,
and positive, negative, and uncharged regions. Amino acid side-chains differ in their size, charge,
and reactivity, and the biological importance of amino acids varies from essential or conditionally
essential to nonessential.

A similar level of complexity applies equally to carbohydrates and lipids, and it presents both
challenges and opportunities. Here, I describe how this complexity is manifested in the properties
of high-protein food ingredients, and how it can be understood and utilized to formulate safe and
delicious foods that also deliver high-quality protein nutrition.

A large research effort has gone into establishing how much protein we need to eat to remain
healthy, and these guidelines are summarized inTable 1. Estimated Average Requirements (EARs)
are the average daily intake level estimated to meet the requirements of half of the healthy indi-
viduals in a group, whereas Recommended Dietary Allowance (RDA) is the average daily dietary
intake sufficient to meet the nutrient requirements of nearly all (97–98%) healthy individuals in
a group (Inst. Med. 2005). There is some debate about RDAs for adults over the age of 65, and

Table 1 Protein intake data by life stage, compiled from the Institute of Medicine (2005)
except as indicated in footnotes

Life stage
Estimated average

requirement (g/kg/d)a
Recommended dietary

allowance (g/d)b
Reference weight

(kg)
Children
2–6 months 1.12c 9.1d 6
6–12 months 1.0 11.0 9
1–3 years 0.87 13 12
4–8 years 0.76 19 20
Men
9–13 years 0.76 34 36
14–18 years 0.73 52 61
>18 years 0.66 56 70
Women
9–13 years 0.76 34 37
14–18 years 0.71 46 54
>18 years 0.66 46 57
Pregnancy 0.88 71 57
Lactation 1.05 71 57

aGrams of protein per kilogram of body weight per day.
bGrams per day, based on reference body weights.
cFrom World Health Organization (2007).
dAdequate intake: mean intake for healthy breastfed infants.
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recent evidence suggests that for this group, an intake on the order of 50% higher than the aver-
age adult RDA [i.e., an increase from 0.8 g/(kg·d) to 1.2 g/(kg·d)] is needed to compensate for an
age-related decrease in physiological responsiveness to protein intake (Baum et al. 2016).

SOURCES OF FOOD PROTEIN

Food proteins come from a wide variety of sources (Figure 1). Animal proteins have been
consumed for many millennia; plant proteins became more prevalent in the human diet as a result
of advances in crop breeding and the Agricultural Revolution around 10,000 BCE.
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Figure 1

Major sources of food protein, classified according to origin.
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Table 2 Summary of protein content by class in various plant-derived foodsa

Plant source Albumins (%) Globulins (%) Prolamins (%) Glutelins (%)
Wheat 6–10 5–8 35–40 40
Rice 2–6 12 4 80
Barley 3–5 10–20 35–45 35–45
Maize 4 4 60 26
Sorghum 2–7 2–10 35–60 20–35
Soybean NA 90 NA NA
Pea 15–25 50–60 NA NA
Chickpea 8–12 53–60 3–7 19–25
Lupin 25 75 NA NA
Canola 20 60 2–5 15–20

aAdapted with permission from Day (2013).
Abbreviation: NA, not available.

The isolation of protein-rich fractions from foods is a relatively recent phenomenon, perhaps
originating from spontaneous coagulation of animal blood or rennet-induced coagulation of milk
in animal stomach pouches. By the end of the nineteenth century, there was a sophisticated under-
standing of protein fractionation, and this was expressed systematically in Thomas B. Osborne’s
system for classifying plant proteins (Osborne 1908):

� Albumins: soluble in water and susceptible to heat-coagulation
� Globulins: insoluble in water, soluble in dilute salt solution, e.g., 0.1 M NaCl
� Prolamins: insoluble in water, soluble in 70%–80% aqueous ethanol and heat-resistant
� Glutelins: insoluble in water, soluble in dilute alkali, e.g., 0.1 M NaOH solution

This empirical scheme is still in use today; each fraction contains a complex mixture of proteins
and there is some overlap between classes, but it is nevertheless a useful starting point. Table 2
summarizes the fractions in various plant proteins. It can be seen that legumes contain predomi-
nantly albumins and globulins, whereas cereal protein is dominated by poorly soluble prolamins
and glutelins, which explains why nondairy milk substitutes made from cereals (and nuts) are very
low in protein (Vanga & Raghavan 2018).

Albumins and globulins can be classified with ultracentrifugation-derived Svedberg sedimenta-
tion coefficients,which are ameasure of hydrodynamic size and are expressed in Svedberg units (S).
The albumins are predominantly 2S proteins, i.e., they have sedimentation coefficients distributed
around a mode of 2 Svedbergs, whereas globulins occur in 7–8S and 11–12S groups (Häkkinen
et al. 2018, Shewry & Casey 1999). Aggregated or insoluble proteins can be further chemically
fractionated on the basis of solubility with concentrated urea, reducing agents, and/or detergents
(Liu &Hsieh 2008). In biochemical disciplines plant proteins are sometimes classified on the basis
of function: storage proteins, structural and metabolic proteins, or protective proteins (Shewry &
Casey 1999).

The Osborne fractionation scheme was developed in the context of plant protein research, but
similar principles are applied to the classification of meat proteins (Strasburg et al. 2007):

� Sarcoplasmic proteins: soluble in water at low ionic strength
� Myofibrillar proteins: soluble at high salt concentration, e.g., >0.3 M NaCl
� Stromal proteins: insoluble in water or salt solution
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A knowledge of these fractions is particularly important to the manufacture of surimi (Park
& Lin 2005). When fish meat is washed during the surimi process, the removal of sarcoplasmic
proteins and the retention of myofibrillar proteins give the highest quality and yield. An ionic
strength of 0.01–0.1 and pH 5.5 minimize the solubility of myofibrillar proteins and optimize
their separation from sarcoplasmic proteins (Stefansson & Hultin 1994). A similar phenomenon
occurs with meat proteins from land animals (Xiong 2014).

The functional properties of proteins can be modified by processing; for example, poorly solu-
ble protein can be solubilized by acid-, alkali-, and/or heat-induced denaturation and hydrolysis, as
in the conversion of insoluble collagen into soluble gelatin (Haug &Draget 2011). Heat-sensitive
proteins such as whey protein can be enzymatically hydrolyzed to improve heat stability and re-
duce allergenicity (Butré et al. 2012, Kankanamge et al. 2015). Some protein sources are partic-
ularly heterogeneous because the entire organism is processed, e.g., mycoprotein, algal proteins,
and insect-derived proteins. This heterogeneity is particularly evident in polyacrylamide gel elec-
trophoresis (Yi et al. 2013).

PROTEIN PURIFICATION

Mammalian milk proteins are readily fractionated with acid or rennet (Figure 2). Rennet is an
enzyme that hydrolyzes the κ-caseins that form a “hairy layer” on the surface of native casein
micelles and thereby removes steric stabilizing forces, leading to self-association and precipita-
tion of micelles. Acid destabilizes casein micelles by neutralizing the charges on surface κ-casein
molecules so that they collapse onto the surface of micelles, which are thus destabilized. These
phenomena are discussed by Dalgleish (2014).

Skim milk

Heat/acid

Whey Casein

Ultrafiltration

Ion
exchange

Sodium caseinateCalcium caseinate

Rennet casein Acid casein

UltrafiltrationSeparation by acid or rennet coagulation

Total milk protein Milk protein concentrates

Lactalbumin

Whey protein concentrateWhey protein isolate Whey powder

Heat

Figure 2

Industrial milk protein fractionation scheme. Adapted with permission from Singh (2011).
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Native whey proteins are resistant to the action of rennet; at high enough concentration they
precipitate close to their isoelectric point (pH 5.1), but they remain soluble under industrial acid-
ification protocols, allowing separation by screening from caseins, which precipitate at pH ∼4.6.
The whey fraction thus produced can be purified further by removing lactose and minerals with
ultrafiltration and/or ion exchange to produce whey protein concentrates (up to 80% w/w pro-
tein) or isolates (75–90% w/w protein). In Figure 2, “lactalbumin” refers to an insoluble powder
produced in New Zealand from the 1950s onward by heat-precipitating whey proteins (Matthews
2014); the protein α-lactalbumin is the second most abundant component of bovine whey protein
after β-lactoglobulin.

The extraction and purification of plant protein are more involved, which reflects the fact that
plant proteins are often sequestered as insoluble, inert bodies within seeds. Figure 3 depicts the
extraction and purification of soy proteins. Extraction of defatted soy flakes with alkaline or alco-
holic solutions produces soy protein concentrate,which has low solubility unless further processed
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Figure 3

Isolated soy protein extraction and purification processes. Adapted from Egbert (2004).
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by heating, homogenizing, and spray drying (Egbert 2004). The functional soy protein concen-
trates thus produced can gel, bind water, and emulsify fat (Nishinari et al. 2018). A subsequent acid
precipitation step removes soluble carbohydrate impurities to produce soy protein isolates with a
protein content of approximately 90% w/w (Egbert 2004).

Acid-precipitated soy protein isolate contains the major soybean storage proteins, but more
than half of the protein in soy flake may be lost during processing, including a substantial amount
in soy whey (Wu et al. 2014). Proteins can be recovered from soy whey by foam fractionation (Li
et al. 2014) or ultrafiltration (Lassissi et al. 2014), and once heat-treated to eliminate antinutritional
properties, soy whey proteins have good foaming and emulsifying activities (Feng et al. 2009, Ray
& Rousseau 2013, Sobral et al. 2018).

FORMULATION WITH FOOD PROTEINS

The native structure of proteins is tailored to their function in the organism, whether this is act-
ing as a nutrient reserve (seed storage proteins), delivering protein and minerals to the neonate
(caseins), implementing mechanical support and movement (muscle proteins), carrying oxygen or
vitamins (hemoglobin, lipocalins), or performing intracellular metabolic roles (enzymes, photo-
synthetic proteins) as well as other functions.

Protein extraction and food processing often involve denaturation of compact, structured pro-
teins to activate useful functionalities, e.g., denaturation of globular whey proteins or egg proteins
to improve gel-forming and emulsification. The caseins are unusual in being natively denatured,
i.e., they have very little secondary structure in the native state (Horne 2009). These proteins are
excellent emulsifiers and have high heat stability.

Extracting and purifying plant proteins often involve quite severe heat, shear, and/or solvent
extraction processes, which inevitably lead to some degree of denaturation, cross-linking, and even
hydrolysis. The kinetics of heat-induced protein denaturation depend on the heating temperature
and the ionic environment, particularly pH and ionic strength (Loveday 2016).

Besides their nutritional roles, proteins play a wide variety of technological roles in foods
(Table 3). Deliberate or incidental process-induced modifications to protein structure can have a
significant impact on protein functionality, as shown for pea protein isolates inTable 4. The same
is true of milk, meat, and egg protein ingredients, but to a lesser extent because of gentler pro-
cessing. Moure et al. (2006) reported the functional properties of a wide range of oilseed proteins
extracted under different conditions, and similar information for amaranth, quinoa, and chia was
compiled by López et al. (2018). Antinutritional compounds found in oilseeds were discussed by
Arntfield (2018).

At sufficiently high protein concentration, heat-denatured proteins can aggregate, particularly
via hydrophobic interactions, hydrogen bonds, and disulfide bonds. The pattern of aggregation
and subsequent gelation depends on solution conditions (Figure 4). Heating protein at low ionic
strength and/or pH far from the isoelectric point (pI) leads to filamentous or fine-stranded aggre-
gates with a string-of-beads morphology. Aggregation is more random at moderate or high ionic
strengths (≥50mMNaCl or≥10mMCaCl2) (Bryant &McClements 1998) or at pH approaching
the pI, leading to particulate aggregates (Ako et al. 2009, Doi 1993).

Filamentous aggregates form physical entanglement networks with the addition of salt, which
masks electrostatic repulsion. Hydrophobic interactions drive network formation in solutions
of filamentous aggregates, but once gelled, other forces act to consolidate the network and in-
crease gel strength (Bryant & McClements 1998). For that reason, gelling temperature strongly
influences gel properties (Bryant & McClements 1998). These fine-stranded or “homogeneous”
cold-set gels are typically transparent (Ako et al. 2009).
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Table 3 Typical functionalities of proteins in food

Functionality Example
Cross-linking Enzyme, e.g., transglutaminase

Heat-induced gelation
Acid gelation
Polyvalent ions
Cold-set gels

Solubility Heat stability in beverages
Emulsification Conventional emulsions

Pickering emulsions
Flavor/aroma Meaty/roasted notes (cysteine)
Color Maillard (nonenzymatic) browning
Antimicrobial Lysozyme, lactoferrin
Texturization Meat analogs
Foaming Foaming capacity

Foam stability

Water holding Yogurt, processed meat

Particulate, or “heterogeneous,” gels are more turbid and typically have a lower water-holding
capacity. The transition between fine-stranded and particulate aggregation is very sensitive
to pH, as shown in Figure 5 (Langton & Hermansson 1992), and this reflects microphase
separation phenomena (Ako et al. 2009). The rubberiness (fracture strain) of heat-set whey
protein gels depends on the degree of disulfide bonding, whereas stiffness (modulus) reflects
the degree of noncovalent associations within the gel (Havea et al. 2009). The physical chem-
istry of whey and other food protein gels was discussed at length by Ziegler & Foegeding
(1990).

In a few cases, the native structure of a protein needs to be maintained in the food in order to
deliver a biological functionality. The whey protein lactoferrin has heat-labile antimicrobial and
antioxidative activities that relate to its ability to sequester metal ions (Korhonen&Marnila 2011).
Hen egg white lysozyme also has antimicrobial activity (by a different mechanism) that relies on
retention of the intact native structure (Strixner & Kulozik 2011).

PROTEIN DIGESTION

Proteins in food undergo physical and chemical changes as they pass through the mouth to the
stomach, small intestine, and large intestine. Liquid beverages pass through the oral phase almost

Table 4 Functionalities of pea protein isolates produced from the CDC Striker cultivar by different extraction
methodsa

Extraction method
Water-holding
capacity (g/g)

Oil-holding
capacity (g/g) Solubility (%)

Foaming
capacity (%)

Foam stability
(%)

AE-IP 2.4 ± 0.1 3.5 ± 0.2 64.1 ± 1.2 183.3 ± 0.0 68.0 ± 1.0
MP 3.5 ± 0.1 3.6 ± 0.2 42.8 ± 0.1 133.3 ± 0.0 77.8 ± 3.2
SE 0.3 ± 0.0 5.4 ± 0.1 91.1 ± 2.2 258.3 ± 11.8 48.9 ± 2.0

aAdapted with permission from Stone et al. (2015).
Abbreviations: AE-IP, alkali extraction–isoelectric precipitation; MP, micellar precipitation; SE, salt extraction.
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Figure 4

Development of particulate and fine-stranded (filamentous) protein gel structures. Adapted with permission
from Bryant & McClements (1998).

unchanged, but solid or semisolid foods are crunched, chewed, sucked, or smooshed ( Jeltema et al.
2016) in the mouth and combined with saliva. Saliva is ∼99% water but also contains mucins,
proline-rich proteins, amylase enzymes, and electrolytes (Mosca & Chen 2017). Salivary mucins
can interact with protein-stabilized emulsions in the mouth to flocculate emulsion droplets, espe-
cially when their surface charge is positive at the pH of saliva, which is close to neutral (Mackie
& Macierzanka 2010, Sarkar et al. 2009).

The major chemical changes in the stomach and small intestine are indicated in Figure 6. In
the stomach, proteins are exposed to acid and the proteolytic enzyme pepsin, and the stomach
contents (chyme) are gently mixed by peristaltic waves caused by contraction of the stomach wall
muscles (Bornhorst 2017). The acidic pH denatures some proteins, which makes them susceptible
to proteolysis by pepsin. The bovine whey protein β-lactoglobulin is extremely acid- and pepsin-
resistant in its native form, but the heat-denatured form is rapidly hydrolyzed by pepsin (Peram
et al. 2013), and even the native form is rapidly hydrolyzed by intestinal proteases.
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Figure 5

Scanning electron micrographs of heat-set β-lactoglobulin gels formed at different pH. (a) pH 6. (b) pH 5.5.
(c) pH 4.5. (d) pH 4. Adapted with permission from Langton & Hermansson (1992).

The caseins appear to be unique in their ability to form a coagulum in the stomach when
consumed as the micellar form that prevails in milk. The pH of chyme in the proximal stomach
can remain above 6 for up to an hour after a meal due to the buffering effect of meal components
(Bornhorst et al. 2014). Under these conditions, casein coagulation is driven by the cleavage of
κ-caseins by pepsin (Ye et al. 2016), which removes steric stabilization. Once the pH of chyme
drops below 5, even partially micellar forms of casein will coagulate somewhat due to the loss of
electrostatic repulsion at acidic pH. This applies to sodium caseinate and casein complexes with
whey or fat globules in heated/homogenized milk (Ye et al. 2016, 2017).

Gastric coagulation inhibits pepsinolysis by slowing the diffusion of pepsin into coagula
(Thévenot et al. 2017), which slows the release of proteins/peptides into the small intestine and
ultimately slows amino acid absorption. This effect creates a prolonged feeling of fullness, which
contributes to appetite control, and a sustained supply of amino acids. Similar effects can be pro-
duced by structuring dairy products to either promote or delay pepsinolysis (Dupont et al. 2018).

As chyme exits the stomach into the duodenum, it encounters the hydrolytic enzymes trypsin
and chymotrypsin, as well as alkaline pancreatic secretions that largely neutralize the pH. In-
testinal proteolysis is remarkably effective, and most proteins are reduced to di- or tripeptides.
However, the appearance in the bloodstream of diet-derived allergenic peptides (Wickham et al.
2009) and bioactive peptides from food proteins and gastrointestinal secretions (Dave et al. 2016,
Moughan et al. 2014) shows that some peptides are partially digestion-resistant and can be
absorbed. Even bioactive peptides that are not absorbed can modulate gastrointestinal function
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Figure 6

Schematic illustration of protein digestion processes at various stages of the gastrointestinal (GI) tract.
Adapted with permission from Mackie & Macierzanka (2010).

and modify the digestion/absorption of macronutrients in metabolically significant ways (Shimizu
2004).

Proteins, peptides, and amino acids that have not been absorbed in the upper gastrointestinal
tract can act as substrates for gastrointestinal microbiota. Microbes are most numerous in the
colon and lower ileum, but they occur throughout the gastrointestinal tract. The metabolism of
dietary proteins by gut microbiota may produce metabolites that are harmful to the host, and this
is an area under active investigation (Lancha et al. 2017).

www.annualreviews.org • Food Protein Attributes 321



FO10CH14_Loveday ARjats.cls February 17, 2019 11:58

NUTRITIONAL QUALITY OF PROTEIN-RICH FOODS

Protein-rich foods vary in their nutritional quality, i.e., their ability to meet human requirements
for amino acids. The factors influencing nutritional quality include protein content, proportions
of different amino acids, and digestibility. Protein content can be measured with a variety of dif-
ferent assays (see Table 5 and sidebar titled Protein Quantification). Intriguingly, the nutritional
benefit of consuming protein exceeds that of consuming the constituent essential amino acids in
corresponding quantities (Katsanos et al. 2008).

Digestibility is a measure of how well a human or animal can digest and absorb amino acids
from dietary protein sources. Digestibility is specific to a given food material or ingredient rather
than protein source because of variation in the physical and chemical availability of protein to
digestive/absorptive processes and the co-occurrence of substances that may inhibit digestion
and/or absorption. For these reasons, processing can either increase or decrease digestibility
(Salazar-Villanea et al. 2016); e.g., autoclaving faba bean decreases protein digestibility in rats
by 30% (Carbonaro et al. 2000), whereas extruding soya bean flakes increases digestibility by 18%
(Aslaksen et al. 2006).

Lysine is particularly susceptible to process-induced chemical modification, which results in
loss of bioavailability (Salazar-Villanea et al. 2016). Acid hydrolysis is a common precursor of
amino acid quantification. The products of lysine modification are often acid-labile, which means

PROTEIN QUANTIFICATION

Protein content can be measured with a range of different assays (see Table 5). Assay selection considerations in-
clude a method’s suitability for use with a given food material, its linear concentration range, the time and cost of
running each assay, and the required level of accuracy (Moore et al. 2010). Certain solvents, detergents, chelators,
and reducing agents can interfere with dye-binding methods (Noble & Bailey 2009). Several assays are sensitive to
amino acid sequences, particularly those measuring aromatic amino acids (A280), and protein standards should be
selected with care (Moore et al. 2010, Noble & Bailey 2009). The Kjeldahl and Dumas methods require material-
specific nitrogen conversion factors, reflecting different amino acid makeup. The calculation of conversion factors
has substantial economic and environmental ramifications and is not without controversy (Int. Dairy Fed. 2016).
The protein measurement standard for foods (CXS 234-1999) is maintained by the Codex Alimentarius Commis-
sion Committee on Methods of Analysis and Sampling (Codex Aliment. Comm. 2018).

Table 5 Overview of assays used to quantify protein content in food samples

Principle Examples Reference
Spectroscopy Absorbance at 280 nm (tyrosine, tryptophan) Noble 2014

Absorbance at 205 nm (peptide bond)
Mid-infrared spectroscopy De Marchi et al. 2014
Raman spectroscopy McGoverin et al. 2010

Dye binding Bicinchoninic acid (BCA) Walker 2009
Biuret reaction with alkaline copper: Lowry and Folin-Ciocalteu assays Waterborg 2009
Coomassie blue: Bradford assay Kruger 2009, Noble 2014
Fluorescent free amine reagents: o-phthaldialdehyde, fluorescamine
Fluorescent interfacial probes: NanoOrangeTM, Quant-iTTM

Nitrogen content Digestion, distillation, and ammonia determination: Kjeldahl method Sáez-Plaza et al. 2013
Combustion and N2 determination: Dumas method
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that special analytical procedures are required to distinguish them from unmodified lysine;
otherwise, bioavailable lysine will be overestimated (Rutherfurd & Moughan 2007).

Despite a range of sophisticated systems for simulating digestion in vitro (Verhoeckx et al.
2015), digestibility coefficients measured in vitro are indicative at best; in vivo measurements with
animal models are more meaningful at present (FAO 2013). True ileal amino acid digestibility
(TIAAD) is measured via the disappearance of dietary amino acids from the digestive tract, as
measured at the terminal ileum (Wolfe et al. 2016) and corrected for endogenous ileal amino
acids (Moughan & Rutherfurd 2012). Protein digestibility ranges for various food materials are
summarized in Figure 7. Digestibility data for 10 food ingredients and 11 foods commonly con-
sumed in India can be found in Rutherfurd et al. (2012), and meat protein digestibilities were
reported by Cui et al. 2013.

Of the 20 amino acids utilized in humanmetabolism,9 are considered essential or indispensable
(which appear to mean the same thing) because they cannot be synthesized by the body: leucine,
isoleucine, valine, lysine, threonine, tryptophan, methionine, phenylalanine, and histidine. They
must be consumed as part of the diet, and the quantity of digestible indispensable amino acids
therefore limits the nutritional value of food protein. This is quantified as the Digestible Indis-
pensable Amino Acid Score (DIAAS) (Wolfe et al. 2016), which is calculated as follows:

DIAAS= 100 × mg of digestible IAA in 1g of the test food
mg of the same amino acid in 1g of the reference food

= 100 × TIAAD for test protein × amino acid content of test food
TIAAD for reference protein × amino acid content of reference food

.

Reference values in the denominator are calculated from age-specific amino acid requirement pat-
terns and EARs for protein intake (Wolfe et al. 2016). Consequently, DIAAS values are slightly
different for infants, children, adults, and seniors. The DIAAS of the first limiting indispens-
able amino acid (i.e., lowest DIAAS) can be considered the overall DIAAS for the test food.
Table 6 shows DIAAS values for a range of foodstuffs. Nutritional deficiencies of individual pro-
tein sources can be overcome by combining them with foods having complementary amino acid
digestibility.

Combining corn-based breakfast cereal with bovine milk overcomes low lysine digestibility
of corn protein (DIAAS of 0.012) to raise overall DIAAS to 1.07 (Rutherfurd et al. 2015). An
algorithm for matching plant-based foods on the basis of complementary amino acid content was
developed by Woolf et al. (2011) and made available on a website called vProtein (http://www.
vprotein.com). Although vProtein does not account for digestibility, it demonstrates the potential
to automate dietary selection algorithms.

DIAAS has been endorsed by the Food and Agriculture Organization of the United Nations
as the gold standard method for protein nutritional quality (FAO 2013, Moughan et al. 2012).
A current barrier to widespread use of DIAAS is the limited amount of data available; Massey
University in New Zealand and Wageningen University and Research in the Netherlands are
working to rectify this through the Proteos collaboration.

SUSTAINABILITY OF FOOD PROTEINS

The sustainability of foods is a technically complex and politically charged topic. Even defin-
ing the system boundaries within which sustainability is assessed is difficult to do objectively.
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Figure 7

Maximum true ileal amino acid digestibility (red squares), minimum true ileal amino acid digestibility (blue
diamonds), and true ileal nitrogen digestibility (gold tick marks) of amino acids in protein-rich foods and feeds.
Adapted with permission from Moughan et al. (2012). Abbreviation: GM, genetically modified.
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Table 6 Digestible indispensable amino acid scores (DIAAS) for 14 protein-rich foods as
measured in growing male ratsa

Food material DIAAS Limiting amino acid
Milk protein concentrate 1.18 Methionine + cysteine
Whey protein isolate 1.09 Histidine
Whey protein concentrate 0.973 Histidine
Soy protein isolate A 0.898 Methionine + cysteine
Soy protein isolate B 0.906 Methionine + cysteine
Pea protein concentrate 0.822 Methionine + cysteine
Cooked peas 0.579 Methionine + cysteine
Cooked kidney beans 0.588 Methionine + cysteine
Cooked rice 0.595 Lysine
Cooked rolled oats 0.542 Lysine
Wheat bran 0.411 Lysine
Roasted peanuts 0.434 Lysine
Rice protein concentrate 0.371 Lysine
Corn-based breakfast cereal without milk 0.012 Lysine
Corn-based breakfast cereal with milk 1.07 Lysine

aAdapted with permission from Rutherfurd et al. (2015).

Sustainability can be viewed in terms of footprinting for greenhouse gases, water, energy, social
impact, distance to market, or other variables; there is currently no consensus about what sus-
tainability is. The objective of this section is to raise a few often-overlooked factors contributing
to our understanding of the environmental impact of food protein production.

The nutritional context within which protein is placed influences sustainability calculations.
Protein can be metabolized for energy, which could otherwise come from carbohydrates or fats.
However, viewing protein as an energy source undervalues its role in supplying indispensable
amino acids, a role that cannot be performed by other nutrients. If dietary protein is viewed pri-
marily as a source of indispensable amino acids, then the quality of a given protein-rich food as a
source of digestible indispensable amino acids (the DIAAS) is important.

A recent high-profile study by Poore & Nemecek (2018) attempted a quantitative comparison
of environmental impacts among a range of different foodstuffs. The protein-rich foods were
compared on a “per 100 g protein” basis for solid foods or a “per L standardized at 3.3% protein”
basis for bovine and soy milk. This comparison failed to recognize the large difference in protein
quality (i.e., DIAAS) between different protein sources, which is known to significantly affect land
use comparisons (Ertl et al. 2016). The effect of this omission is illustrated in Table 7, in which
the “per 100 g protein” or “per L of soymilk/bovine milk” data of Poore & Nemecek (2018) are
adjusted for protein quality by dividing by published DIAAS values, where suitable DIAAS data
are available.

DIAAS values for the protein-rich foods in this study vary between 0.434 for roasted peanuts
(Rutherfurd et al. 2015) and 1.32 for bovine milk (Mathai et al. 2017), which means that the
correction for protein quality results in a 130% increase in the impact of peanuts and a 24%
decrease for milk; i.e., the footprint ratio of peanut to bovine milk changes by more than
200%! Other comparisons change less dramatically with an adjustment for protein quality,
e.g., a 30% relative change for the comparison between soy milk (DIAAS 1.015) and bovine
milk.
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Table 7 Estimated greenhouse gas emissions in kg CO2eq per liter (milk and soy milk) or per 100 g protein (all
others) for production of protein-rich foods (Poore & Nemecek 2018)a

Greenhouse gas emissions (kg CO2 equivalent/100 g protein)
Original DIAAS-adjusted

Product 10%b Median 90%c 10% Median 90% DIAAS
Adjustment
difference

Bovine meat (dairy herd) 9.09 17.29 25.79 8.14 15.50 23.11 1.116d −10%
Bovine meat (beef herd) 20.25 30.27 105.24 18.14 27.12 94.30 1.116d −10%
Cheese 4.95 8.44 17.81 3.51 5.99 12.63 1.41e −29%
Tofu 1.00 1.61 3.47 0.99 1.59 3.42 1.015f −1%
Nuts −2.24 −0.81 2.35 −5.15 −1.88 5.42 0.434g +130%
Peas 0.25 0.36 0.75 0.35 0.49 1.03 0.73h +37%
Groundnuts 0.62 1.26 2.22 1.43 2.90 5.11 0.434g +130%
Other pulses 0.46 0.65 1.75 0.78 1.10 2.98 0.588i +70%
Soymilkk 0.58 0.91 1.47 0.57 0.90 1.45 1.015f −1%
Milkk 1.70 2.65 4.83 1.29 2.01 3.66 1.32j −24%

aEmissions data are shown as originally reported and after adjustment for the nutritional quality of protein sources, as measured by published digestible
indispensable amino acid scores (DIAAS).
bTenth percentile.
cNinetieth percentile.
dValue for beef, as calculated using true ileal digestibility in pigs and reference requirements for six-month-old to three-year-old children (Ertl et al. 2016).
eDIAAS for milk protein concentrate using digestibility measured in pigs and reference requirements for children 3 years and above (Mathai et al. 2017).
fAverage between DIAAS values of soy protein isolate and soy flour (Mathai et al. 2017).
gDIAAS for roasted peanuts (Rutherfurd et al. 2015), as measured in growing male rates and calculated with reference to requirements for 6-month- to
3-year-old children.
hValue for cooked peas (Rutherfurd et al. 2015).
iValue for cooked kidney beans (Rutherfurd et al. 2015).
jAverage between DIAAS values for milk protein concentrate and skim milk powder (Mathai et al. 2017).
kUnits are kg CO2 equivalent/L, standardized at 3.3% protein.

Adjusting footprint data for DIAAS does not change the overall conclusion that pro-
ducing beef has a higher environmental impact than for other protein-rich foods. However,
White & Hall (2017) pointed out certain resource efficiencies specific to animal agriculture; e.g.,
animals can process human-inedible agricultural by-products into edible materials, and their ma-
nure reduces the need for synthetic fertilizer. Animals can make use of pasture and grazing lands
that are untillable or “marginal” and therefore not suitable for crop production, and this lessens
the incentive to convert forest to farmland.The capability of marginal land to support edible crops
was quantitatively modeled by van Zanten et al. (2016), who proposed a soil-specific “land use ra-
tio” to express the efficiency of plant- versus animal-based cultivation. The higher micronutrient
content and bioavailability in animal-based foods (Ertl et al. 2016,White & Hall 2017) somewhat
counteract higher production inputs.

Poore & Nemecek (2018) noted that environmental impact data were often skewed by a mi-
nority of high-impact producers, which highlighted an opportunity for targeted mitigation of
impact by modifying farming practices. Reduction of environmental impact does not necessarily
compromise profitability; in fact, O’Brien et al. (2015) showed that the Irish dairy farms with the
lowest carbon footprint were those with the highest economic performance and lowest concen-
trate feeding. In Canadian dairy farming systems, on-farm emissions account for approximately
90% of total emissions, and the off-farm component varies substantially between dairy product
types (Vergé et al. 2013).
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EMERGING PROTEIN SOURCES

Many new food protein sources are discussed in the literature, but not all of them are commer-
cializable. Food ingredient wholesalers typically will not stock a new protein ingredient until it
fulfills certain conditions:

� Available in kiloton quantities at reasonable cost
� Minimal batch-to-batch or seasonal variation
� Chemically and microbially stable for at least 12 months at ambient temperature
� Permitted for food uses in major jurisdictions

Cultured meat, insect-derived proteins, and algal proteins are discussed below, and promising
new plant-derived proteins are highlighted in Table 8.

Cultured Meat

We could cut our beefsteak from a tissue culture of muscle with no nervous system to make it waste
food in doing work, and a supply of hormones to make it grow as fast as that of an embryo calf.

—J.B.S. Haldane (1927)

The prospect of producing meat products without animals was conceived more than 90 years ago
in an essay by J.B.S. Haldane (1927). Cultured meat was demonstrated in principle in 2013 when
a team from Maastricht University produced a burger patty comprising bovine cells grown in a
laboratory ( Jha 2013).

Producing cultured meat involves isolating skeletal muscle stem cells (myosatellite cells) from
an animal, inducing cells to proliferate and differentiate in culture medium, and engineering tissue
structures (Post 2012), as illustrated inFigure 8.Culturedmeat should be distinguished frommeat
analogs (also known as meat mimics, meat alternatives, imitation meat, or mock meat), which have
meat-like texture, color, and flavor but do not contain muscle tissue.

Tissue engineering is one of the greatest challenges of cultured meat production.This requires
three factors (Langelaan et al. 2010):

Table 8 Overview of emerging plant protein sources

Source Comments References
Pea Good emulsification and foaming, poor water binding Geerts et al. 2017

Lam et al. 2018
Peng et al. 2016
Stone et al. 2015

Beans Similar functionality to pea protein, functionality
depends on extraction, high-pressure homogenizing
improves functionality

Multari et al. 2015
Shevkani et al. 2015
Yang et al. 2018

Lupin High thermal stability, low viscosity Berghout et al. 2015
Coorey et al. 2011

Potato Good heat-gelation, emulsification Creusot et al. 2011
Delahaije et al. 2014

Green leaves Low solubility, major soluble protein (rubisco) has
good heat gelation and forms brittle gels

Martin et al. 2014
Tamayo Tenorio et al. 2016
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Recipe for in vitro meat using adult stem cells
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Figure 8

Schematic depiction of cultured meat production. Adapted with permission from Langelaan et al. (2010).
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� A cell source that can proliferate indefinitely.This is discussed further in Kadim et al. (2015)
� A supporting solid matrix or scaffold that allows for muscle growth while maintaining oxy-

gen and nutrient levels via passive diffusion in the absence of a vascular system
� Biophysical, biochemical, and electrical stimulation, without which muscle cells do not ma-

ture properly

Itmay be possible to overcome some of these challenges by coculturingmyoblasts (muscle cells)
with fibroblasts to produce an extracellular matrix (Brady et al. 2008) and vascular cells ( Jain et al.
2005) or bioprinted blood vessels (Skardal et al. 2010) to transport nutrients and wastemetabolites.
Fat is an important contributor to the flavor and juiciness of meat, and adding adipocytes to the
coculture (Hausman & Poulos 2005) or when forming finished products (Post 2018) may improve
the sensory properties of cultured meat.

The scale-up of muscle cell culture to large-scale production poses particular challenges in the
differentiation and maturation phases, where solid substrate materials must enable anchoring and
contraction of muscle cells while facilitating nutrient supply and waste metabolite removal. The
proof-of-principle cultured burger patty was created by growing a multitude of cell sheets only a
few hundred micrometers thick; the thickness of sheets is limited by poor nutrient diffusion into
and out of cells at greater thicknesses (Kadim et al. 2015).More efficient cell production configura-
tions include either growth onmicrocarrier beads, cultivation as cell aggregates, or immobilization
of cells in packed-bed reactors (Moritz et al. 2015). Other possibilities include electrospun fibers,
micropatterned surfaces, or 3D-printed scaffolds, potentially composed of edible materials (Datar
& Betti 2010).

The resource-intensity of cultured meat production is difficult to gauge because large-scale
production has not yet been realized at the time of writing. A life-cycle analysis of cultured meat
production was attempted in 2011 (Tuomisto & Teixeira De Mattos 2011), but it was by necessity
so speculative and simplified as to be of limited value. A more sophisticated and realistic analysis
was published four years later (Mattick et al. 2015), and this suggested that producing cultured
meat would require more energy than producing comparable quantities of conventional meat.
A sensitivity analysis indicated the potential for dramatically higher energy use in cultured meat
production than for the beef, pork, or poultry comparator studies (only one on each meat), and
indicated that land use would be dramatically lower for culturedmeat production.At present, there
is insufficient literature to draw robust conclusions about the resource intensity or environmental
impacts of industrial cultured meat production.

Cultured meat product research is currently attracting vast amounts of public interest and
venture capital (Dance 2017) and producing very little scientific literature, probably because it
occurs mainly in a competitive industry context.The technology is advancing rapidly and costs are
coming down by orders of magnitude (Heffernan 2017). The proof-of-principle burger patty had
a texture and flavor similar to that of minced beef. However, tissue engineering challenges mean
that cultured meat products replicating the appearance, aroma, mouthfeel, and flavor of whole-
muscle meat cuts are still a long way from reality. The regulatory status and labeling requirements
for cultured meat are currently under debate (Servick 2018); the safety and nutritional qualities of
cultured meat properties have yet to be reported.

Insect Proteins

Insects have been eaten traditionally for thousands of years (Ramos-Elorduy 2009), but the in-
dustrialization of insect rearing and processing for food is relatively new. A wide variety of insects
can potentially be consumed for food, e.g., crickets, locusts, grasshoppers, caterpillars, beetles,
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Table 9 Protein, fat, and energy content of selected insects and comparator food materialsa

Insect or food material Protein (% dry matter) Fat (% dry matter) Energy (kcal/100 g)
Coleoptera (adult beetles, larvae) 40.69 33.4 490.3
Rhynchophorus phoenicis (palm weevil larvae) 32.86 36.86 478.87
Tenebrio molitor (mealworm larvae) 48.35 38.51 557.12
Diptera (flies) 49.48 22.75 409.78
Hemiptera (true bugs) 48.33 30.26 478.99
Hymenoptera (ants, bees) 46.47 25.09 484.45
Oecophylla smaragdina (weaver ant) 53.46 13.46 NA
Isoptera (termites) 35.34 32.74 NA
Lepidoptera (butterflies, moths) 45.38 27.66 508.89
Bombyx mori (silkworm larvae) 61.8 8.81 389.6
Cirina forda (shea caterpillar) 47.48 11.5 359
Galleria mellonella (waxworm larvae) 38.01 56.65 650.13
Samia cynthia ricini (ailanthus silkworm pupae) 54.7 25.6 463.63
Odonata (dragonflies, damselflies) 55.23 19.83 431.33
Orthoptera (crickets, grasshoppers, locusts) 61.23 13.41 426.25
Acheta domesticus (house cricket adult) 65.04 22.96 455.19
Schistocerca sp. 61.05 17 427
Sphenarium purpurascens (chapulin adult) 61.33 11.7 404.22
Ruspolia differens (brown longhorn grasshopper) 44.3 46.2 NA
Skim milk powderb 37.3 0.80 373.8
Whey protein isolatec 92.0–96.1 0.4–1.0 NA
Soy protein isolated 92.9 3.57 353
Raw beefe 81.2 14.1 454.9

aAdapted with permission from Dobermann et al. (2017), with additional data from sources indicated in footnotes below.
bUSDA Food Composition database entry 01091: milk, dry, nonfat, regular, without added vitamin A and vitamin D.
cFoegeding et al. (2002).
dUSDA Food Composition database entry 16122: soy protein isolate.
eUSDA Food Composition database entry 23427: New Zealand manufacturing beef, raw.
Abbreviation: NA, not available.

ants, and fly larvae (Schlüter et al. 2017). Each insect type, developmental stage, and cultivation/
processing scenario should be considered on a case-by-case basis because of wide variation in
chemical composition and case-specific hazards.

Insects are a potentially rich source of protein and lipids, as shown in Table 9, as well as mi-
cronutrients andminerals (EFSA 2015,Ramos-Elorduy et al. 1997, Schlüter et al. 2017).Theymay
also be a source of bioactive peptides, polyunsaturated lipids, sterols, and polysaccharides (Sun-
Waterhouse et al. 2016). Currently, there is little known about the bioavailability of insect-derived
nutrients for humans. In vitro protein digestibilities of insect proteins in the 77%–98% range have
been reported (Ramos-Elorduy et al. 1997), and rat fecal digestibility of honeybee proteins is rela-
tively high (Ozimek et al. 1985). Lysine and tryptophan are often the limiting indispensable amino
acids (EFSA 2015).

A number of insect-derived food powders are available, but for themost part they contain dried,
ground whole insect, and little is known about the extraction and purification of insect proteins for
food ingredients. Ndiritu et al. (2017) extracted cricket protein by hexane or aqueous extraction
and found that hexane extraction gave higher protein yield and a lighter-colored product, but
aqueous-extracted cricket protein had better emulsifying and foaming functionality.
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Aqueous extracts from freeze-dried powders of five insects were produced and characterized
by Yi et al. (2013). The protein profile and foaming and gelling functionality of extracted fractions
were tested. The water-soluble protein was 23% of total protein at best and foaming functionality
was poor, but the aqueous extract from the lesser mealworm (Alphitobius diaperinus) and Dubia
cockroach (Blaptica dubia) formed strong gels at 15% w/v.

In the work of Mariod & Fadul (2015), melon bug (Coridius viduatus) and sorghum bug
(Agonoscelis versicoloratus) were extracted with hot water, mild acid, or cold water, and extracts were
tested for their potential to replace gelatin in ice cream. In sensory testing, experimental insect ice
creams received significantly lower taste and texture preference scores than a commercial gelatin
ice cream (Mariod & Fadul 2015), but this is perhaps a reflection that commercial gelatin ingre-
dients are the result of hundreds of years of process refinement.

Insect exoskeletons comprise primarily chitin, a polymer of N-acetyl-d-glucosamine. In one
case, alkali extraction of honeybees removed chitin and improved the fecal digestibility of pro-
tein in rats (Ozimek et al. 1985), although causality was not proven. The corollary of this re-
sult is that chitin may inhibit protein digestion. However, chitinase activity has been reported
in human gastric juices (Muzzarelli et al. 2012) and gastrointestinal microbiota (Dobermann
et al. 2017), and chitin-based food ingredients have been approved for use in the EU (EFSA
2010).

A prerequisite for considering an insect species and its developmental stage as a human food
source is that it produces low levels of endogenous toxins or antinutrients, and this has been ver-
ified in several cases (Dobermann et al. 2017). The allergenic potential of insects is cause for
concern. Cross-reactive allergies to insects occur in people with allergies to crustaceans and dust
mites (Ribeiro et al. 2018).

Insects can accumulate contaminants from their feed or housing materials, especially when
fed on organic waste materials. Given that evisceration and surface decontamination of farmed
insects are problematic, surface contaminants and the gut contents at the time of slaughter will
carry through to the processed product or ingredient. The digesta can contribute substantially
to the nutrient composition, toxic and allergenic potential, and microbial load of insect-derived
foods (Dobermann et al. 2017).

The regulatory status of insect-based foods is summarized by jurisdiction in Table 10. Be-
cause of a lack of knowledge about the safety of insect-derived foods (EFSA 2015), whole insects
and their parts are considered a “novel food” under EU Regulation 2015/2283 and carry similar
regulatory status in North America, but certain exceptions are permitted in the Netherlands and
Belgium (Dobermann et al. 2017).

Algal Proteins

Algae have been consumed as food for hundreds of years (Ścieszka & Klewicka 2018), but the
extraction and purification of algal protein are relatively new. Unicellular microalgae such as
Arthrospira platensis (spirulina in common parlance because of earlier classification in the genus
Spirulina) and Chlorella species have been given Generally Regarded as Safe (GRAS) status and
are produced commercially in bioreactors or open ponds. They contain 21–70% and 51–58%
protein, respectively, as a proportion of dry weight (dw) (Bleakley & Hayes 2017, Teuling et al.
2017).

The macroalgae are multicellular marine or freshwater plants (seaweeds), some of which are
farmed commercially and used as a source of polysaccharides and animal feed, or eaten as vegeta-
bles. The protein content can reach 25–45% dw for several of the red seaweeds, whereas brown
seaweeds typically have <15% dw protein (Chronakis & Madsen 2011).
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Table 10 Regulatory status of insects as food and feed in 2017 (Lähteenmäki-Uutela et al. 2017)

Countries
Insect as food market

situation Laws on insects as food Laws on insects as feed
European Union Some countries have some

insect foods on the market,
others none

Novel Food Regulation applies,
2018 rules acknowledge use in
third countries

Animal-based material banned as
feed, ban lifted on feed for
aquaculture

United States Some insect food products on
the market

No novel food regulation:
additive approval or GRAS
needed

Normal feed rules apply: additive
approval or GRAS needed for
insects

Canada Some insect food products on
the market

Insects used traditionally
anywhere in the world are not
novel

Feed raw material needs
authorization, one black soldier
fly product authorized for
poultry

Mexico Several insect food products on
the market, mainly gathered
insects

Organic insects are regulated,
GMO is regulated, no novel
food regulation

Feed materials generally do not
require registration

Australia Some insect food products on
the market

Traditional foods and non-novel
foods can be marketed

Feed materials generally do not
require registration

China Several insect food products on
the market

Insects can be used in health
foods, novel food regulation
applies to normal foods

New feed materials require
authorization

Abbreviations: GMO, genetically modified organism; GRAS, generally regarded as safe.

Algal protein isolates and concentrates have been produced from severalmicroalgae.Extraction
typically starts with bead milling or ultrasound processing to disrupt cell walls (Tamayo Tenorio
et al. 2018, Yucetepe et al. 2018), and protein may be extracted in alkali (Cavonius et al. 2015,
Pereira et al. 2018) or by centrifugation, dialysis, and anion exchange (Teuling et al. 2017). Fur-
ther purification can be achieved by acid precipitation (Cavonius et al. 2015, Pereira et al. 2018,
Teuling et al. 2017). The major protein classes in algae are rubisco (ribulose-1,5-bisophosphate
carboxylase/oxygenase) and chlorophyll-containing light-harvesting complexes, both of which are
multimeric (Teuling et al. 2017).

Algal proteins have poor solubility at pH 3–5, especially at high ionic strength, and this phe-
nomenon is common to protein extracts from unrelated species of microalgae (Cavonius et al.
2015, Pereira et al. 2018, Schwenzfeier et al. 2011, Teuling et al. 2017). However, at neutral pH,
algal proteins show promising functionality in foaming (Pereira et al. 2018, Schwenzfeier et al.
2013b) and emulsification (Schwenzfeier et al. 2013a).

Calculated nitrogen-to-protein conversion factors (see sidebar titled Protein Quantification)
for algal proteins range from 3.88 to 6.35 depending on the algal species and protein extraction
protocol (Teuling et al. 2017, Tibbetts et al. 2016, Wells et al. 2017). The major factors driving
this wide variation appear to be different amino acid profiles and the presence of varying amounts
of non-protein nitrogen (Teuling et al. 2017, Tibbetts et al. 2016).

True ileal digestibility data for algal proteins are not available at present.Methionine, cysteine,
lysine, and tryptophan have been reported as the limiting amino acids in algal protein (Bleakley &
Hayes 2017,Wong&Cheung 2001), and in vitro protein digestibilities of 78.4%–86.7% (Tibbetts
et al. 2016) and 85.7%–88.9% (Wong & Cheung 2001) have been measured for various seaweeds.
In vivo studies suggest that soluble polysaccharides and oxidized polyphenols present at high levels
in algae may inhibit protein digestion (Bleakley & Hayes 2017).
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CONCLUSIONS AND FUTURE PROSPECTS

Many new food proteins are becoming available, and they present unknown opportunities and
risks. Risks relating to allergens, contaminants, and toxins that may be associated with new pro-
tein sources deserve careful consideration. These new proteins may have the potential to alleviate
malnutrition, mitigate the environmental impact of producing food protein, reduce manufactur-
ing costs, or improve the quality of formulated foods. Blending proteins from different sources
may produce functional and/or nutritional synergies, and this potential is largely unexplored. In
the face of societal and technological change, the fundamentals of protein chemistry, biophysics,
and human nutrition remain the best platform for responsible food innovation.

SUMMARY POINTS

1. Food proteins supply essential amino acids and play technological roles in foods.

2. Nutritional and technological properties depend on protein source, extraction and
purification, modification during food manufacture, and interactions with other food
proteins.

3. Nutritional quality includes both the content of essential amino acids and their true ileal
digestibility.

4. Environmental sustainability comparisons should include protein quality measures.

5. Cultured meat products with mince-like texture can be produced from reactor-grown
animal cells, but tissue engineering challenges currently preclude convincing substitutes
for whole-muscle meat.

6. Many insects are rich in protein, and with sufficient attention to hygiene and toxicity
considerations, they could become a mainstream source of food protein.

7. Algae are easily cultivated and often rich in protein, but the heterogeneity of algal protein
and its low solubility at acidic pH pose challenges for food functionality.
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