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Abstract

Comprehensive annotations of genetic and noncoding regions and corre-
sponding accurate variant classification for Mendelian diseases are the next
big challenge in the new genomic era of personalized medicine. Progress
in the development of faster and more accurate pipelines for genome an-
notation and variant classification will lead to the discovery of more novel
disease associations and candidate therapeutic targets. This ultimately will
facilitate better patient recruitment in clinical trials. In this review, we de-
scribe the trends in research at the intersection of basic and clinical genomics
that aims to increase understanding of overall genomic complexity, complex
inheritance patterns of disease, and patient-phenotype-specific genomic as-
sociations. We describe the emerging field of translational functional ge-
nomics, which integrates other functional “-omics” approaches that support
next-generation sequencing genomic data in order to facilitate personalized
diagnostics, disease management, biomarker discovery, and medicine. We
also discuss the utility of this integrated approach for diagnostic clinics and
medical databases and its role in the future of personalized medicine.
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INTRODUCTION

The last decade has brought unprecedented technological advances in all areas of genomics. The
increased ability to understand DNA and its downstream products has opened up new areas of
investigation, especially in understanding the basic functional unit of DNA: the gene. Tradition-
ally, basic and clinical sciences have followed parallel paths, with the latter branching off from the
former once a discovery is made. Basic science is more free to delve into newer concepts that clin-
ical science typically approaches with extreme caution; however, new technologies are beginning
to blur the line between basic and clinical sciences. Moreover, fundamental knowledge of how a
single gene affects a single phenotype or disorder is no longer in its infancy. The understanding of
genotype-phenotype and gene-disease associations has evolved as research has uncovered evidence
of genetic pleiotropy and multigenic effects of disease (to name just a few examples). Knowledge
of the complexities of genomic association has vastly increased compared with what was known
only a decade ago (Figures 1 and 2).

Accurate annotation of genes is critical to understand the locations of the coding and noncoding
regions of the genes in the genome and their functional associations with pathways in normal and
disease states. Accurate annotation of variants in coding, noncoding, or intergenic regions is
important to understand their functional effects, whether disease-causing pathogenic or random
genetic drift. It is also important to understand the structural and functional effects of a variant
on genomic regions or downstream products of the gene or genes that it regulates. This review
attempts to explain gene and variant annotation, to define the categories of annotation, and to
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HBB         sickle-cell anemia
PAH         phenylketonuria
GLA         Fabry disease

1990s–2000s
RET         Hirschsprung disease and multiple endocrine neoplasia
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2000s–2010s
>300 genes         intellectual disability
>100 genes         epilepsy
>50 genes         neuromuscular disorders
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Figure 1
Increasing complexity in genomes: Knowledge of gene-phenotype associations has been increasing, leading
to a better understanding of genomic associations of diseases, genomic complexities, and genome
annotation. In the 1980s and 1990s, the basic understanding was limited to how a single gene affects a single
phenotype—for example, the HBB gene in sickle-cell anemia, the PAH gene in phenylketonuria, and the
GLA gene in Fabry disease. In the 1990s and 2000s, the concept of pleiotropy began to emerge, in which a
single gene can be associated with multiple disease phenotypes—for example, the RET gene can cause both
Hirschsprung disease and multiple endocrine neoplasia, and the RYR1 gene is associated with both
malignant hyperthermia and central core disease. This paradigm has shifted even further in the 2010s, and
we now know of sets of genes that are associated with various diseases that have heterogeneous phenotypic
representations—for example, more than 300 genes are associated with intellectual disability, more than
100 genes with epilepsy, and more than 50 genes with neuromuscular disorders.
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Figure 2
Growing genomic complexity changing the fundamentals: Fundamental genomic understanding is evolving
as knowledge of the complexities of the human genome increases. The initial concept that one gene causes
one disorder has given way to the idea that one gene can affect many disorders and that one disorder can
result from multigenic effects. We now know that gene-gene interactions in the same or different pathways
can cause a gene to be associated with an otherwise unrelated disease. Inheritance patterns are also much
more complex than originally thought. For example, one disorder can be inherited autosomal dominantly
(AD) or autosomal recessively (AR) or can be X linked (XL). Studies have uncovered digenic and multigenic
inheritance of various diseases, and new evidence is pointing toward synergistic effects of heterozygous
variants in different genes that may affect disease phenotypes. In addition, next-generation sequencing,
exome sequencing, and genome sequencing are revealing an increasing number of de novo mutations that
are associated with diseases such as cancer, broadening our understanding of genomic complexities and the
opportunities to discover biomarkers and therapeutic targets.

describe new concepts that have led to a merger of basic and clinical genomics, especially regarding
the new functional modalities of understanding genomic variants and their annotation. The specific
areas discussed in this review are the assembly of human reference genome sequences, the impacts
of research on gene structure and function since the completion of the human genome sequence,
next-generation sequencing (NGS), DNA sequence variation and annotation, Mendelian and
complex diseases (and those that fall between these categories), the expansion of knowledge of
the phenotypic spectrum of diseases caused by individual genes, the discovery of new disease
genes, gene-gene global networks, and the emerging area of integrated functional genomics for
diagnostics, biomarkers, and clinical trials.

HUMAN REFERENCE GENOME SEQUENCE ASSEMBLY

Accurately and efficiently comparing next-generation genomic and transcriptomic data from dif-
ferent consortiums, identifying truly functional variants, and interpreting the data require proper
reference material, which should encompass known variation in human genomic regions. For
this purpose, many efforts have been made to create comprehensive human reference genome
sequences.

The first sequencing of a human genome using NGS technology [known at the time as massively
parallel sequencing (MPS)] was performed in 2008 using James Watson’s DNA (196). This was
the first step toward the development of technologies that were faster, cheaper, and more efficient
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than shotgun sequencing methods. NGS avoided the loss of genomic regions that resulted from
shotgun sequencing and bacterial cloning, providing further insights into the single-nucleotide
polymorphisms (SNPs), insertions and deletions (indels), and copy number variants (CNVs) in
the human genome. This revolutionary work has also provided functional insights into human
genome variability among individuals, susceptibility to disease, and ultimately clinical molecular
diagnostics and therapy, leading to the emergence of personalized medicine.

In December 2013, the UCSC Genome Browser (http://genome.ucsc.edu) released its hg38
(or GRCh38) human genome reference assembly, which introduces significant changes compared
with the previous hg19 (or GRCh37) assembly. [UCSC Genome Browser assembly IDs were
previously numbered sequentially from hg1 to h19; this latest release is numbered hg38 in order
to match the IDs used by the Genome Reference Consortium (GRC).] These new features are as
follows:

� Most notably, because the significant variability of several human chromosomes prevents
accurate representation by a single reference sequence, the hg38 assembly provides alternate
sequences for variant regions by including alternate locus scaffolds at 261 loci. These loci
are concentrated in the leukocyte receptor complex/killer immunoglobulin-like receptor
region of chromosome 19 and the major histocompatibility locus region of chromosome 6.

� The gaps in the centromeric regions in the hg19 assembly have been filled using centromere
databases, which will be useful for read mapping and variation analyses.

� The hg38 assembly provides an updated mitochondrial reference sequence.
� Erroneous and misassembled regions of the hg19 assembly have been corrected, and gaps

have been filled using data from other genome sequencing (GS) projects, such as the 1000
Genomes Project (http://www.1000genomes.org).

� The hg38 assembly provides better analysis sets that meet the needs of NGS alignment
pipelines, with several regions removed to facilitate better alignment and mapping.

Correctly annotating variants from different sequencing data sets worldwide requires highly
accurate genotype sets across the human genome. To accomplish this goal, the National
Institute of Standards and Technology (NIST) Genome in a Bottle (GIAB) Consortium
(http://genomeinabottle.org) was established to develop the technology and reference stan-
dards, methods, and data to translate human GS into clinical practice by providing well-curated,
annotated reference genome sequences. The consortium’s main goals are to characterize the
human genome in order to validate genomic variants and to develop optimization technology in
order to create better reference genotypes.

The consortium used its pilot genome (NA12878) to validate methods to accurately call SNPs,
indels, and homozygous reference genotypes. Fourteen data sets across five sequencing technology
pipelines were used to validate the methods for reducing bias for variant calls and to estimate the
confidence of the reported characteristics (210). The consortium uses Genome Analysis Toolkit
methods to integrate multiple data sets from different technologies and platforms on the same
genome sequence and uses variant quality score recalibration to identify possible calling biases
and create a consensus among discordant data sets. Using multiple platforms not only assesses the
platforms’ efficiencies, but also will allow annotation of low-coverage areas and enable accurate
genotype calls that might be missed when using only one platform. All of the resulting methods,
reference materials, and genotype calls from the integrated approach are publicly available from the
GIAB website (http://genomeinabottle.org), allowing investigators to evaluate the performance
of specific sequencing platforms.

Even for data from platforms with high sensitivity and specificity, the GIAB Consortium cau-
tions that alignment around a subset of discordant genotype calls must be examined by using,
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for example, the new Genetic Testing Reference Materials Coordination Program (GeT-RM)
browser for the NA12878 genome (https://www.ncbi.nlm.nih.gov/variation/tools/get-rm),
and manual inspection of these regions is always recommended. Structural variants (SVs) are
large (generally >1 kb) inversions, translocations, and indels, together known as CNVs, which
enhance the complexity of the human genome. To characterize SVs and assess larger indels in or-
der to create SV benchmarks, Parikh et al. (141) developed an integrated approach that combines
multiple methods, which they called svclassify. They found that, in this integrated approach, SVs
with high scores from multiple technologies agreed well with polymerase chain reaction (PCR)
validation and an orthogonal consensus method (MetaSV) with 99.7% concordance, whereas
SVs with low scores did not, which gives confidence in the approach and the reference material.
More recently, using as many as 12 validated NGS, library preparation, and analysis pipelines,
Zook et al. (209) began developing well-annotated human reference genomes as benchmarks from
two family trios of different ancestries (Ashkenazi Jewish and Chinese) and a pilot genome of a
European ancestry individual. This work is part of the GIAB Consortium’s effort to validate and
create authentic benchmark reference materials; it is unique in that it includes genomes from
different populations and therefore is expected to improve not only sequencing technologies, but
also variant calling of SNPs, indels, and SVs as well as de novo assembly.

Using 769 individual genomes from 250 Dutch families, Hehir-Kwa et al. (69) recently created
a high-quality human reference genome panel that yielded novel, underreported, and complex
midsize SVs (between 21 and 100 base pairs)—in particular, complex indels and retrotransposition-
mediated insertions of mobile elements and processed RNAs—as well as their distribution across
the genome. The authors focused on comparing large family-based sequences with sequences from
substantially unrelated individuals and on having sufficient coverage (14.5× median base coverage
and 38.4× median physical coverage) for genotyping and phasing the full spectrum of SVs in
order to create a high-quality reference panel. Interestingly, in this study, downstream variant
analyses predicted that the distribution and functional impacts of rare and common variants are
significantly different, suggesting the importance of population frequency in understanding the
clinical significance of variants, at least as a first step in the annotation process. Global efforts are
ongoing to create benchmark reference materials for better unbiased calls of variants of any size,
not only by using a large number of individual genomes from different global populations and
ethnicities, but also by including more methods in an integrated approach to further reduce biases
and increase confidence in annotation.

The enormous amount of NGS data worldwide has made it imperative to bioinformatically
annotate genomic information into well-represented uniform tracks that will be flexible enough for
continuous genomic development and simplify data parsing (62, 164). Even with such annotation,
it is difficult to represent a reference genome using a single sequence because specific sequences
may contain an individual’s unique genomic regions that remain unmapped. As discussed above,
to overcome this problem, the hg38 assembly includes annotated alternate sequence loci in order
to represent regions that are too complex for a single sequence (see 56). The alignment software is
also being updated and new software created to tolerate the alternate loci and facilitate better, more
flexible, and more comprehensive mapping, especially in high-complexity genomic regions, such
as the immunoglobulin heavy-chain locus (105, 175, 195). But the real challenge of an unbiased
reference assembly approach will be the move toward a reference-free assembly. Such a move
may be feasible by using multitrack reference information, such as graph-based representations of
reference assemblies, string graphs, de Bruijn graphs, and information from the Global Alliance
for Genomics and Health (http://genomicsandhealth.org) (29, 34, 122).
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NEXT-GENERATION SEQUENCING AS A DISRUPTIVE
TECHNOLOGY FOR GENE ANNOTATION

Genomics has evolved rapidly since the publication of the first human genome sequence in 2001
(75, 96, 186). Modern scientific development (both research and clinical) is highly dependent on
technological advancement. Several new technologies have emerged since 2001; among these,
NGS has enabled human genomes, exomes, and gene panels to be sequenced much more quickly
and cost-effectively. To facilitate this, approaches to bioinformatic analysis have developed along
with NGS and are an integral part of the pipeline. These developments have revolutionized ge-
nomics as well as personalized diagnostics and medicine—so much so that Church et al. (30) have
proposed that DNA could be a highly efficient data storage medium in the future. Throughout
the last decade, the capacity of NGS technology has increased by a factor of 100–1,000 (91); at
the same time, its costs have come down considerably, to approximately US$1,000 per genome,
facilitating the translation of sequencing from a research technology to a clinical tool for diag-
nostics and therapeutic management (125, 187, 188). With the new NGS technologies emerging
and constantly evolving, the original term, MPS, is coming to the forefront and is often used
interchangeably with NGS.

Several comprehensive reviews have described technical advances in NGS (59, 104, 118, 121,
158). Sequencing technology platforms differ in their extent of coverage of the human genome and
are classified into three major types. The first type comprises the detection of clonally amplified
target DNA (used by Illumina and Ion Torrent platforms) and single-molecule detection per re-
action (used by Pacific Biosciences and Oxford Nanopore platforms). The second type comprises
sequencing by synthesis (used by the Applied Biosystems SOLiD platform for polymerase-based
synthesis and the Polonator platform for ligation-based synthesis) and direct measurement of DNA
(used by Illumina, Ion Torrent, and Pacific Biosciences platforms). The third type comprises base
read calls through either optical detection (used by Illumina and Pacific Biosciences platforms) or
nonoptical detection (used by Ion Torrent and Oxford Nanopore platforms). Recently, different
platforms have also been used in hybrid setups that can take advantage of the strengths of each
platform (93). However, along with these technological advancements and enormous data collec-
tion pipelines come the disadvantages of high error rates (0.1–15%) and shorter read lengths (35–
700 base pairs) (109). NGS technologies also compete with more targeted (but also potentially bi-
ased) and cost-effective but time-consuming technologies, such as DNA microarrays, NanoString
tools, quantitative PCR, optical mapping, and even Sanger sequencing.

Short-read NGS generates clonal template DNA populations using bead-based, solid-state
(44, 90, 98, 169), and DNA nanoball generation methods (45). In this approach, after template
enrichment, parallel sequencing is performed using (a) sequencing by synthesis, either through
a Roche 454 or Ion Torrent single-nucleotide addition (SNA) platform or through an Illumina
or Qiagen cycle reversible termination (CRT) platform, or (b) sequencing by ligation, through
a SOLiD or Complete Genomics (a BGI subsidiary company) platform. SOLiD uses the detec-
tion of a dinucleotide utilizing cleavable two-base-encoded fluorescent probe signals to achieve
genome-wide mapping (184). By contrast, Ion Torrent SNA platforms represent the first NGS
technology to use non-optical sensing (163); this platform utilizes a massively parallel semicon-
ductor device to monitor H+ ion release during DNA synthesis for bacterial and human GS.
The Complete Genomics platform uses combinatorial probe-anchor ligation or combinatorial
probe-anchor synthesis for human GS (6, 19, 45). Similarly to Sanger sequencing, CRT uses
terminator molecules that block the ribose 3′-OH, thereby preventing elongation (64, 86). The
Illumina CRT system has the largest market share of all NGS commercial platforms to date,
in large part because of its versatility; it includes platforms ranging from low-throughput small
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benchtops to ultra-high-throughput units for population-wide GS (180). In 2015, Qiagen acquired
and launched its Intelligent Bio-Systems CRT platform under the name GeneReader; this is the
first all-in-one NGS platform that can perform all steps from sample preparation to analysis and
final data generation (88). Qiagen achieved this by combining the QIAcube sample preparation
system and the Qiagen Clinical Insight platform for variant calling and analyses.

All of these platforms vary in their error rates, costs, throughput, and read structure (for
detailed comparative reviews, see 59, 104). Overall, Illumina instruments are used more widely
than any other NGS technology (180), but such broad use of a single technology may introduce
systemic bias, especially in variant identification (131, 160, 210). Illumina platforms range from
the low-throughput MiniSeq (25 million reads per run with a maximum output of 7.5 Gb) to the
ultra-high-throughput HiSeq X (6 billion reads per run with a maximum output of 1,800 Gb),
which can sequence ∼18,000 human genomes with 30× coverage in a year. The HiSeq X is the
highest-throughput instrument currently available, but its use is restricted mainly to GS and
bisulfite mapping.

Different platforms have their own advantages and limitations. For example, the SOLiD and
Complete Genomics platforms are highly sensitive (∼99.99%) (45, 109) but are not as specific as
other platforms, which leads to false positive and false negative variant calls (26, 168, 191) and
underrepresented AT- or GC-rich genomic areas (65, 160). The most prominent disadvantage
of these two platforms is their very short read length—approximately 75 base pairs for SOLiD
and 28–100 base pairs for Complete Genomics (18)—which limits their use in calling SVs. Be-
cause the Illumina platform uses CRT, it is much less susceptible to homopolymer errors (99.5%
accuracy) (17), demonstrating that reversible dye-terminator chemistry can be used in human
GS. The Illumina platform is allowing a groundbreaking range of sequencing applications, in-
cluding GS and exome sequencing (ES), epigenomic sequencing by ChIP-seq (sequencing after
chromatin immunoprecipitation), ATAC-seq (assay for transposase-accessible chromatin using se-
quencing to identify enhancers), methyl-seq (DNA methylation sequencing), and transcriptomic
high-throughput sequencing by RNA-seq (RNA sequencing) (22, 23, 142, 193). Ion Torrent has
launched customized chips and instruments for researchers and clinicians that are faster than other
platforms and yield a throughput range from approximately 50 Mb to 50 Gb.

It is clear that these new technologies are blurring the lines between basic genomic research,
technological advancement, and clinical genomics. They are facilitating the use of targeted ap-
proaches for focused clinical and research applications, such as gene-panel sequencing, targeted
transcriptome profiling, and splice-site identification (106, 114). In fact, Ion Torrent is moving
forward in clinical sequencing with the launch of its Ion Personal Genome Machine (PGM) Dx
and Ion S5 series diagnostic instruments, which aim to provide simpler and more user-friendly
platforms. Interestingly, the Ion PGM Dx sequencer supports paired-end reads (76), but the high-
throughput S5 devices lack that feature, making it difficult to use them for long-range genomic
and transcriptomic structural analyses (25).

One of the ongoing challenges of NGS is to develop an efficient technology for long-read
sequencing that will be high throughput and sensitive enough to capture SNPs, indels, and SVs,
including disease-related repetitive sequences and CNVs, in order to more fully elucidate the
complexities of the human genome (116, 120, 174). This will also be most critical for under-
standing the transcriptome landscape at a functional level and providing a better picture of exon
usage or isoform patterns and gene expression. There are two major approaches to long-read
sequencing: single-molecule real-time sequencing and a synthetic approach that relies on short
reads and computationally constructs long reads. The single-molecule approach is currently of-
fered by Pacific Biosciences and Oxford Nanopore. Unlike other platforms, the MinION from
Oxford Nanopore, rather than relying on a secondary detection method, detects DNA sequences
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directly using single-molecule nanopore DNA sequencing in a high-throughput manner; it com-
prises 512 individual channels capable of sequencing approximately 70–500 base pairs per second
in an application-specific integrated circuit chip (32). Although it sequences longer reads, the
promising new PromethION platform from Oxford Nanopore may challenge the throughput of
the Illumina HiSeq X. Currently, however, the Pacific Biosciences RS II instrument is the most
efficient at sequencing long reads, generating single-polymerase reads of more than 50 kb with
average read lengths of 10–15 kb for long-insert libraries, which is ideal for use in clinical de
novo genome assembly applications, studies of long-range genomic structures, and full-length
transcriptome profiling (47, 166).

Ultimately, NGS platforms are being used more widely to sequence whole genomes in order
to discover variants, especially rare variants in human diseases and their associated biological
functions (31); one important example of this is the 1000 Genomes Project, but there are many
others (1, 2, 61, 154, 178, 182). In pediatric medicine, GS has a diagnostic yield that is four
times that of chromosomal microarrays and twice that of conventional targeted gene sequencing,
allowing the identification of multigenic variants and SVs and better clinical diagnostics. In terms of
the merging of NGS technology and clinical genomics, however, it is ES and targeted sequencing
that are increasing the number of samples being sequenced by looking at focused, disease-specific
genomic regions, which ultimately increases the spectrum of research and clinical genomic studies
(73).

NEXT-GENERATION SEQUENCING GUIDELINES: QUALITY
CONTROL, SEQUENCE ALIGMENT, REFERENCE SEQUENCES,
AND GENE AND VARIANT ANNOTATION

Quality Control

The American College of Medical Genetics and Genomics (ACMG) and the US Centers for
Disease Control and Prevention (CDC) have laid down guidelines for NGS technology and in-
formatics pipelines so that they can be used reliably and efficiently in clinical work. Here, we
discuss a few major recommendations made by the CDC-organized Next-Generation Sequenc-
ing: Standardization of Clinical Testing (Nex-StoCT) workgroup in 2012 (52) and the ACMG
in 2013 (155). These guidelines address test validation, quality control, proficiency testing, and
reference materials based on Clinical Laboratory Improvement Amendments (CLIA) require-
ments. Comprehensive guidelines have also been published for the use of NGS in clinical mi-
crobiology and public health laboratories (54), which are largely similar to the CDC and ACMG
guidelines for the use of NGS in clinical molecular genetic disease diagnostics. NGS has diverse
applications in clinical microbiology and public health, including GS, microbiome analysis and
metagenomics, transcriptome profiling, infectious disease diagnosis, pathogen discovery, and pub-
lic health surveillance. In this context, use of the appropriate reference material (for example, a
reference bacterial strain) is critical for test development, validation, quality control, and profi-
ciency testing and should resemble patient samples as closely as possible. In 2015, the Nex-StoCT
workgroup published additional recommendations for NGS informatics pipelines (53).

The CDC and ACMG guidelines recommend that the platform, the particular test, the infor-
matics pipelines, and (if required) alternative methods such as Sanger sequencing be validated by
laboratories. Combinations of quality control materials that explain genomic complexity should
be used. Quality metrics such as scores, depth, coverage uniformity, mapping quality, and GC
bias should be compared with those obtained during validation. Proficiency testing should be
performed using both disease-associated and naturally occurring genomic variations targeted by
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the test in order to measure sequencing reliability. The ACMG recommends additional merging
and collaboration between research and clinical genomics laboratories in order to facilitate the
discovery of novel disease-causing candidate genes (155), especially in the case of ES that is used to
investigate both known disease-causing and new genetic associations. Test limitations, including
low sequence coverage, absent data, and ambiguous variant calls, should be tracked and defined
in reports. Because targeted NGS panels analyze focused disease-related genomic regions and
therefore have a higher read depth, analytical sensitivity, and analytical specificity, testing should
be initiated with an NGS panel prior to ES or GS.

ES and GS can enable a broader, more discovery-driven approach to understanding patient
phenotypes that requires more collaboration between research and clinical laboratories and end-
point healthcare providers for variant interpretation and diagnosis. ES and GS provide a higher
definitive diagnostic yield when both a child and that child’s parents are sequenced (trio sequenc-
ing) than they do when only the child is sequenced (singleton sequencing) because of the ability to
identify segregating parental alleles and the higher accuracy in variant calling, including in low-
coverage genomic regions; this leads to more definitive results of molecular diagnoses, especially
for newborns and children. Moreover, incidental findings such as carrier status should be evaluated
carefully for potential relevance to the patient phenotype before such findings are reported to the
patient. Physicians should provide detailed clinical notes and phenotypes so that the laboratory can
perform context-dependent interpretations of the relevant variants. In a targeted NGS panel, only
genes for which there is sufficient scientific evidence of a particular disease association should be
interpreted, and the efficiency and limitations of the targeted capture method should be reported.
For diseases with high genetic heterogeneity, ES or GS may be more efficient than targeted gene-
panel testing, but the limitations of gene inclusions or coverage should be reported. The use of
confirmatory or supplementary technologies (such as Sanger sequencing) is often recommended,
especially for ES when causative variants are in noncoding regions or are SVs.

To ensure that a sequencing run is of sufficient quality, analysis at intermediate points dur-
ing and after the sequencing run can be performed to evaluate real-time errors, target capture
and aligned read percentage, and duplicated read percentage and to estimate the coverage depth.
The performance parameters of the analysis pipeline should include the analytical sensitivity of
false positive and false negative rates, predicted clinical sensitivity and assay robustness, and re-
producibility. Importantly, to evaluate the clinical sensitivity and diagnostic yield of the test, the
success rates of the test across different disease areas should be tracked and shared. Vendor-supplied
indexes should be used to index NGS samples, but for indexes that are prepared in-house, the
Nex-StoCT workgroup recommends using design parameters such as index length and composi-
tion in order to reduce read misassignments to incorrect samples. The size of the sequenced region,
required coverage depth, sample volume, turnaround time, and costs should be considered when
choosing a sequencer and corresponding platform.

Sequence Alignment

More than one read alignment tool should be used, depending on the type of variations expected
based on the patient disease phenotype, and the alignment should be to the whole reference
genome for all types of NGS in order to reduce mismapping of reads caused by off-target captures
in ES or gene-panel tests. To accurately identify indel variants, a local realignment should be
performed after a global alignment (40). In terms of reporting data, NGS data as sequence reads
and the read alignments should be in the .fastq and .bam formats, respectively, and variant calls
should be in the .vcf format, as was done by the 1000 Genomes Project. Similarly to the ACMG, the
CDC recommends including local realignments in the initial analysis to remove PCR duplicates
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in ES or GS and recalibrating base call quality scores to improve variant calling (53). For this
purpose, the CDC strongly recommends using multiple variant caller and/or parameter settings.
The reference values from the recent NIST-released reference material (RM 8398, obtainable
from http://www.nist.gov/srm) can be used to assess the performance of variant calling from
GS.

Reference Sequences

Suitable reference materials should be established and updated as technology develops and should
reflect annotated regions of high and low sequence reliability. Because reference materials are con-
stantly being updated, when aligning the reads to the reference genome assembly, the Nex-StoCT
workgroup recommends noting the accession date and data version of the reference material used
for each alignment so that variant positions can be tracked back in the reference (53). Analysis
tools and software in the pipeline should similarly be updated or new ones developed.

Sequencing is often used to identify the source of infections, since it is faster and more sen-
sitive than traditional culture methods. To address the need to develop reference materials for a
variety of pathogenic organisms relevant to public health and clinical laboratory settings, NIST
has chosen strains relevant to food safety and clinical microbiology NGS applications that rep-
resent diverse genome sizes and a range of plasmid and GC contents (136). Successful pathogen
identification and discovery of novel genes and variants require well-curated public databases that
contain accurately annotated reference materials from relevant organisms (bacteria, fungi, virus,
yeast, and parasites), providing a benchmark for true diversity of both new and old strains. Refer-
ence materials can still be biased because many organisms are rare, and some pathogens, such as
Ebola and Zika virus, could be a higher priority than others. To address this issue, the US National
Center for Biotechnology Information developed and maintains the Reference Sequence (RefSeq)
database (http://www.ncbi.nlm.nih.gov/refseq), a collection of well-annotated, taxonomically
diverse genetic and protein sequence records constructed from sequence data from the Interna-
tional Nucleotide Sequence Database Collaboration. For infectious diseases, the US Food and
Drug Administration’s Database for Regulatory Grade Microbial Sequences contains regulatory-
grade microbial genomic sequences that encompass the diversity of clinically and environmentally
relevant circulating microbe strains.

Gene and Variant Annotation

In targeted NGS panels, as new candidate genes are added, it is important to develop auto-
mated classification tools to differentiate common benign variants from rare deleterious vari-
ants, possibly by using databases of population frequencies such as dbSNP (https://www.
ncbi.nlm.nih.gov/projects/SNP); the US National Heart, Lung, and Blood Institute’s Exome
Sequencing Project (http://evs.gs.washington.edu/EVS); the Broad Institute’s Exome Aggrega-
tion Consortium (ExAC; http://exac.broadinstitute.org); and the 1000 Genomes Project. Lab-
oratories should employ a frequency cutoff that is higher than the theoretical maximum in order
to account for population-specific statistical variance of undocumented and reduced penetrance
and undiagnosed nonphenotyped patients in the populations. Investigators should be cautious
when carrying out this process because many databases include misclassified variants, particularly
benign variants classified as pathogenic (16, 43).

In variant interpretation of ES or GS, one can assume that variants of Mendelian diseases are
rare and highly penetrant (113), but further strategies for variant and gene filtering should be em-
ployed. A step-wise approach should be used, and the filtering criteria should be flexible enough
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to reduce variant filtering bias or errors so that causative variants are not missed. In fact, variant
calling performance should be evaluated by analyzing sequences with known variants of different
types and sequences from samples of different sources. Even with paired-end reads, problems in
sequencing homology and repetitive regions can be addressed by using local realignment after
global alignment in order to map the regions correctly. When identifying and interpreting clini-
cally relevant variants, variants in genes that are not relevant to the patient’s clinical phenotypes
should be filtered but not entirely removed from final reporting. The caveat to such variant filter-
ing is potential incidental findings, which should be reported based on ACMG and Association for
Molecular Pathology (AMP) guidelines (60, 68). In the filtering process, one can determine which
variants to remove by using population-wide minor allele frequency, predicted effect on protein
function or splicing, and disease-variant databases such as the Human Gene Mutation Database
(http://www.hgmd.cf.ac.uk), ClinVar (http://www.clinvar.com), and Online Mendelian Inher-
itance of Man (https://www.ncbi.nlm.nih.gov/omim). However, the Nex-StoCT workgroup
also recommends caution when using such databases and other tools because some variants called
can be false positives or false negatives for disease associations owing to insufficient curation. Dur-
ing this process, one must ask whether the variant disrupts gene function consistent with disease
mechanism, whether it leads to or predisposes the patient to any health issue, and whether this
health issue is relevant to the patient’s clinical phenotype and the NGS test result interpretations.

Clinical laboratories should share their NGS variant data sets to determine the consistency of
variant calls in order to integrate data into medical databases and ultimately into patient health
records. To make this sharing more effective and consistent, the Nex-StoCT workgroup recom-
mends the development of a new clinical-grade variant file format that will be compatible with the
changing health technology information framework. In clinical microbiology and public health,
variant calling methods are similar to human genetic testing, and best practice guidelines for both
microbial and human genomes variant calling are being documented (136).

Figure 3 shows our proposed structural framework for an integrated approach that uses not
only the relevant database information and proper curation but also a broad “-omics” approach
to decipher the functional effects and associations of genes in order to correctly annotate them
for disease. We predict that this framework will further facilitate the merging of basic and clinical
genomics and ultimately will be of high clinical utility in a diagnostic setting.

NEXT-GENERATION SEQUENCING: LOOKING AT THE FUTURE

NGS technology is not only providing researchers and clinicians with deep information about
the human genome, but also going beyond genomics. For example, using NGS technologies such
as ChIP-seq, ATAC-seq, and methyl-seq in epigenomic studies is enabling investigators to find
genomic regulatory mechanisms, snapshots of protein-DNA interactions, enhancer regulation
mechanisms, methyl modifications of the genome, and variants of all of these mechanisms in disease
states (23, 77, 117, 134, 142, 153). In transcriptomics, researchers continue to use the power of NGS
to deep sequence RNA down to the single-transcript level, which is relevant in clinical genomics—
e.g., in identifying variant cryptic splice sites, insertion of pseudoexon sequences, downstream
frameshifts, emergence of premature stop codons, allele-specific expression, nonsense-mediated
decay, differential exon usage, or transcript abundance. For this purpose, new approaches are being
developed for single-cell RNA sequencing in order to characterize different cellular populations,
with the functional goal of discovering specific biomarkers (181). One challenge is to understand
the specific transcript abundance using long-read sequencing technology, but this technology can
certainly provide a picture of the transcriptome structure and differential and/or novel isoform
patterns as well as a global picture of exon usage (167).
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Figure 3
Gene annotation in a structured framework: Dealing with increasing knowledge of genomic complexity
requires a structured framework of gene annotation. This representation shows a simplified structure by
which genes can be annotated using an integrated approach and their disease associations and functions
(outer gray box) can be searched by the medical community using patient phenotype, the disease diagnosed,
the gene itself, or the possible pathways that might be affected. Genetic and phenotypic relationships can be
inferred (blue dotted arrow) but are not confirmatory. Curated genomic information, functional “-omics”
studies (transcriptomics, proteomics, and metabolomics), and the Online Mendelian Inheritance in Man
database at the downstream functional levels should give specific and sensitive information about genetic
associations with diseases, from which predicted and observed phenotypes can be matched using the Human
Phenotype Ontology database (solid arrows). Moreover, pathway analyses using databases such as the Kyoto
Encyclopedia of Genes and Genomes (KEGG) and BioCyc should also be used for information on genes
that may be involved in a disease phenotype (solid arrow). All of this information should be compiled in the
Unified Medical Language System to generate consistent data and terminologies for gene annotations
(dashed arrows), which will lead to an integrated output for clinical diagnostics and genomic medicine.

NGS tools have led to groundbreaking results in translational human cancer genomics. Both
genome and targeted approaches have been used to detect molecular biomarkers, allowing a
merging of research and clinical cancer therapeutics (4, 5, 70; for reviews, see 135, 190, 197).
Combining the vast, robust NGS data on cancer from numerous publications and consortiums with
the numerous cancer research model tools, such as cancer cell lines, should help in categorizing
cancer patients for enrollment in clinical treatment and trials (55). NGS can be used to screen
large populations of children for cancer susceptibility by using data from GS and ES to catalog
germline mutations in genes that may be involved in cancer predisposition, allowing better disease
management and precision medicine for those individuals (206). In particular, targeted approaches
(such as NGS of disease gene panels) and ES are becoming highly efficient and informative for
precise molecular diagnosis of rare human diseases (11, 28, 127, 128, 198). The clinical diagnostic
yield of ES is only 25% of selected cases, but its exceptional rate of finding de novo mutations
by trio sequencing across both rare diseases and some more common diseases, such as autism,
is changing our understanding of these diseases and enabling discovery of new disease genes,
ultimately pushing toward functional studies to test multigenic effects on disease pathogenicity
and patient phenotype (95, 165, 200, 201).
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We are moving into a genomic era in which the type of NGS technology to be used—be it
GS, ES, or gene-panel sequencing—will depend on a clinician’s diagnosis of a patient’s possible
disease(s). Narrowing down the best option for molecular diagnosis and genomic medicine will
then require the combined efforts of researchers, medical geneticists, and clinicians. Several studies
have found that GS has a better diagnostic yield than ES based on overall variant calling sensitivity
and efficiency (lower coverage depth required for similar sensitivity), lack of bias, uniformity
of coverage, and reduced bias in detecting nonreference alleles (101, 119). However, one study
compared the performance of four commercially available exome capture tools with an augmented
exome strategy that provided enhanced coverage of a set of 56 medically relevant genes and found
that the latter has a higher variant calling sensitivity compared with traditional GS or ES, pointing
toward the utility of targeted approaches (144). Importantly, Dewey et al. (42) reported that GS
provided incomplete coverage of inherited disease genes, with low reproducibility in detecting
pathogenic variants with the largest clinical effects, as determined from the clinical literature.
This result further strongly suggests that researchers, medical geneticists, and clinicians should
collaborate more. At the same time, in order to reduce the burden of false positive and false
negatives, collaborators should be cautious about carefully evaluating the technical performance
of the technologies and capture tools and the analytical performance of the platforms before
deciding on a particular clinical diagnostic assay. More importantly, the use of NGS at a functional
level (RNA-seq) in conjunction with an integrated method that can detect epigenomic patterns
of disease and -omics technologies that use mass spectrometry should be critically considered to
ensure that the approach is appropriate for the genomic architecture of the patient (57). This
should also be done while keeping in mind the available treatment options and the potential for
novel therapeutic discoveries that may accelerate precision medicine screening and treatment.

More emphasis on using NGS at the functional and regulatory levels (transcriptomics and
epigenomics, respectively) will allow a better understanding of the complexity of the hu-
man genome, its modifications, and its downstream products (Figure 3), especially genotype-
phenotype associations at the single-cell level with high resolution. Angermueller et al. (8) recently
reported a new method called scM&T-seq (single-cell genome-wide methylome and transcrip-
tome sequencing) that can yield important insights into regulatory epigenomic mechanisms and
gene expression patterns at the same time in a single cell. Using mouse embryonic stem cells, the
authors discovered previously undetected associations between heterogeneously methylated regu-
latory elements and the gene expression of important pluripotency genes, enhancing the spectrum
of effects and our understanding of the epigenome.

Macaulay et al. (112) developed a method called G&T-seq (genome and transcriptome se-
quencing) that enables parallel sequencing of the genome and transcriptome in a single cell in
order to elucidate genotype-phenotype relationships. This is an important development because,
unlike other techniques for parallel DNA and RNA sequencing, G&T-seq obtains bead-based
physical separation of the cell’s DNA and RNA without using a bespoke microfluidics platform,
and the process can be automated for high throughput. The sequencing is done in the Illumina
HiSeq X platform. It is important to note that the coverage is not uniformly distributed across the
genome and shows GC bias, which indicates that the technologies for parallel high-throughput
single-cell genomics, although advancing quickly, are still in their infancy.

EVOLVING CONCEPTS IN GENE STRUCTURE AND FUNCTION

Because of its advantage in overall genomic coverage, as NGS moves from targeted approaches
such as ES and gene-panel tests to GS, it is important to understand the structures of genes and
the regulatory elements that can lie in both intra- or intergenic regions. Most nonmicrobial genes
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contain both exons and introns, but some exceptions, such as SOX3, have a single-exon structure
(15). In addition, 5′ untranslated regions (UTRs) can have open reading frames and are translated
to regulate coding sequence expression (9). Indeed, pathogenic variants that cause disease are
present in 5′ UTRs, such as FMR1 CCG expansions that cause fragile X syndrome and an HTR3A
upstream variant that causes bipolar affective disorder (130, 185). Similarly, pathogenic variants
can be present in regions of a gene other than the coding sequence. For example, an SCN1A 3′ UTR
variant leads to reduced mRNA stability, which in turn causes Dravet syndrome (204). Variants
at the microRNA sites in the PAX6 3′ UTR lead to rolandic epilepsy (139), and microRNAs
generally have an important role in regulating protein levels in epilepsy, which suggests potential
therapeutic targets (71, 157). Promoter region variants can disrupt normal gene expression and
are associated with autism spectrum disorder (27). Splicing variants in exonic or intronic region
can cause alternative transcripts in which either exons are skipped or longer or shorter exons
are formed that can misbalance the isoform pattern of genes, which in many instances leads to
pathogenicity, such as X-linked intellectual disability, epilepsy, primary microcephaly, breast and
ovarian cancer caused by the BRCA1 locus, cardiac abnormality, and variable myopathy caused by
the LMNA locus (33, 48, 49, 152, 162).

Variants in other structural aspects of genes can also be important for gene function and
have regulatory roles in expression. Examples include the poly(A) variant in ARSA that causes
metachromatic leukodystrophy (46) and the posttranslational modification variant in the SH2 do-
main of PTPN11 that inhibits SH2 phosphorylation, which disrupts the auto-inhibitory structural
loop and causes Noonan syndrome (156). Moreover, because of splice variations, downstream
frameshifts can also occur in the coding sequence of a gene that may introduce a premature stop
codon that is toxic for the system if translated. Importantly, these erroneous transcripts are often
degraded by the cellular surveillance mechanism known as nonsense-mediated decay (123), which
is also an active regulator of transcription (21). Variants in nonsense-mediated decay factors can
be pathogenic, causing loss of function or a poison exon effect (129).

Pseudogenes that have lost the ability to encode functional proteins are typically difficult to
identify from NGS data and can result in false positives if they are homologous to a disease-
associated gene, especially when identifying transcribed and single-exon pseudogenes (66). But
the finding that many pseudogenes are transcribed may indicate their functional potential and
needs to be studied further (146). In fact, there is evidence that pseudogenes can play a regulatory
role. Studies have found that transcripts derived from the pseudogene locus PTENP1 regulate the
expression of the parent gene PTEN, as indicated by PTEN downregulation by PTENP1 deletion
in breast and colon cancer (148, 149) and by methylation of the PTENP1 promoter sequence in
clear-cell renal cell carcinoma (202).

Another set of important genetic elements are the long (>200 base pairs) noncoding RNAs
(lncRNAs). lncRNAs are generally smaller than protein-coding genes and are hard to identify,
but they are important to consider in understanding gene-regulatory functions, especially because
RNA-seq assays predict that there are more lncRNAs than protein-coding genes (183). lncRNAs
are gaining interest because of their potential associations with disease (207). In fact, a few variants
of lncRNA loci have been shown to disrupt neighboring gene function, causing disorders such as
spinocerebellar ataxia type 8 (151).

Two studies, one using mini-gene-trapping insertional mutagenesis and one using CRISPR/
Cas9, recently screened and identified the most critical human genes needed for the viability of
different human cell lines (20, 192), which opens up opportunities to identify in further detail
the essential tissue- and disease-specific genes and new therapeutic targets (for a review, see
205). Detailed annotation of gene structure and function will help identify potential therapies
for diseases. NGS technologies greatly aid in annotating gene structure and function, especially
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with combinatorial use of short and long reads (189). Although current RNA-seq technology
is unable to sequence by long reads, which makes the assembly of full-length long transcripts
difficult, new technologies such as the Pacific Biosciences platforms and SLR-seq (synthetic long
read sequencing) could potentially sequence a complete transcript in a single read (13, 179).
GS is expected to be able to elucidate all genetic elements using longer reads, especially SVs.
Moreover, transcript data sets from technologies such as cap analysis gene expression (CAGE),
RNA annotation and mapping of promoters for analysis of gene expression (RAMPAGE), and
polyA-seq [poly(A) sequencing] greatly improve the accurate identification of the 5′ and 3′ ends of
transcripts (14, 41, 170), further helping in gene annotation. Considerable efforts are being made to
increase the catalog of new genes associated with diseases such as neurological and developmental
disorders (38). As described above, however, there could be many more unidentified pathogenic
variants in noncoding regulatory regions of the genome that affect or are associated with diseases,
which represents the next challenge for genetic annotation. New data sets from technologies such
as Hi-C and chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) are needed
to identify the physical interactions between the regulatory regions affected by variants in them
and the regulated genes (51, 107).

NEW CONCEPTS OF HUMAN DISEASE-ASSOCIATED
GENES AND VARIANTS

Functionally classifying genes and their downstream products is important in order to understand
gene-disease associations and the general modes of these associations. Efforts to catalog all human
disease-related genes are ongoing. A functional classification of 1,000 known disease-associated
genes found that features of the associated diseases such as age of onset and mode of inheritance
were well correlated with the causative gene product function (81). These results indicate that the
discovery of new disease-associated genes can help determine which diseases would benefit from
better functional genome annotation. We currently know of approximately 19,000 human protein-
coding genes; this number continues to change as genome annotations improve. A comprehensive
list of human genes will facilitate faster targeted NGS assays to help increase our understanding
of variants related to the disease context.

Gene deletion and duplication events, collectively known as CNVs, make major contributions
to genomic variations that can cause pathogenicity (137). A comprehensive CNV map of the
human genome has been created using high-quality genomic data from healthy individuals of
different ethnic populations; interestingly, it revealed that almost 100 genes can be completely
deleted without any predicted phenotypic effect (203). This finding not only suggests the genetic
redundancy in the human genome, but also indicates that a combination of subsets of genes controls
phenotypic effects in health and disease. It also may lead to more targeted genomic approaches to
elucidate genome-phenome relationships.

Mandelker et al. (115) recently created an exome-wide resource that catalogs highly homol-
ogous genomic regions in order to aid molecular diagnostic applications. This resource will be
helpful in genome annotation and the identification of pathogenic and benign variants from NGS
applications because it ranks homologous regions based on their degree of affectedness and medical
relevance and classifies them by the nature of their homology. It will also be helpful in NGS appli-
cations by reducing the false positive and false negative calls that can result from high homology
with pseudogenes.

Much attention is being given to noncoding regions and the corresponding variants, which
are mostly regulatory. For example, SVs that cause changes in the three-dimensional structure
of topologically associating domains or genomic neighbors or in the chromatin structure at
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specific locations may relocate enhancer or repressor elements that affect gene expression, which
is associated with developmental disorders and cancer (for a review, see 173). Genomic structural
mechanisms can also be intertwined with disease-associated variations. Using high-coverage GS
data from 1,400 individuals from the 1000 Genomes Project and CARTaGENE, Hussin et al.
(74) showed that the exons in genomic regions of low recombination belong to highly conserved
essential genes and are significantly enriched in putatively deleterious disease-causing variants.
Disease-related genome-scale models can be helpful in understanding these genomic complexities
and in identifying disease genes (132). Oberhardt et al. (133) created such a model for metabolic
disorders using genome-scale metabolic reconstructions, generating a predictive network model
of several thousand metabolic disorders and their associated genes and protein products.

THE EXPANDING PHENOTYPIC SPECTRUM OF GENES:
THE POWER OF EXOMES AND GENE PANELS

ES and targeted gene-panel sequencing provide increased flexibility and control by enabling
focused genomic analyses from the perspective of specific disease phenotypes. Ultimately, such
targeted analyses are expected to lead to the development of focused gene-gene networks for
different penetrances and expressivities of disease phenotypes, including multigenic heterogeneous
disorders, and to provide clearer molecular diagnostics for individual patients. This, in turn, will
also help in the discovery of new gene-disease associations and lead to further merging of genomic
research and the corresponding clinical work, particularly personalized medicine.

There are thousands of genetic disorders, and most of them are rare and clinically heteroge-
neous. The diagnostic yield for identifying balanced translocations by common genetic tests such
as karyotyping and array comparative genomic hybridization is low, ranging from 5% to 20% at
most. Specialized, focused testing is therefore needed to confirm a diagnosis. ES is now used as a
specialized diagnostic screen for candidate genes that may influence a patient’s disease phenotype
because each ES can provide roughly 30,000 variants in the coding regions that can then be filtered
to help identify the most relevant genetic etiology (58).

Several important guidelines have been put forward regarding the use of ES as a diagnostic
tool in clinical laboratories (97), some of which are reviewed below. ES can sometimes lead to
incidental findings of pathogenic variants that are not related to the initial patient diagnosis and
may cause late-onset treatable or untreatable disease or indicate a predisposition to cancer or other
diseases. The ACMG has suggested that a list of 59 actionable gene-disease pairs be evaluated
in genomic tests when patients consent (87). An estimated 2–3% of patients might have such
actionable incidental findings, although this varies by ancestry (7, 43, 82). ES can also detect
carrier status of recessive diseases and variants that may affect the patient’s response to various
pharmaceutical drugs (60, 68).

From the technological point of view, almost all CLIA-certified laboratories currently use
the Illumina platform for ES; the preferred choice for the target capture library is the Agilent
SureSelect Clinical Research Exome, which includes 80% of all exome targets with a minimum
20× coverage and an additional 10% coverage of disease-associated genes (143). As discussed
above, for ES in particular, laboratories should share the specific technologies they use, including
the library and bioinformatics pipeline, to help make NGS clinical procedures more consistent.
Interpretations of disease associations for rare and novel variants from ES data should include the
medical and family histories of the patients.

Because of the rapid decrease in NGS cost per base, ES has become a standardized platform
for both research and clinical diagnostics and is often used to bridge the gap between the two.
Because of its enhanced coverage and capacity, it is being used in many studies worldwide, leading
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to the creation of the ExAC data set, which comprises data from more than 60,000 individuals
and is expected to grow further (50, 110). As an example, Posey et al. (150) recently used ES
in conjunction with observed clinical phenotypes to understand the clinical utility of ES in the
molecular diagnosis of adult patients. The authors curated the phenotypic compositions of the
ES data using the Human Phenotype Ontology database. Interestingly, they found that de novo
mutations contributed to approximately 61% of autosomal dominant diagnoses and that, overall,
the diagnostic rate was higher (approximately 24%) for patients between 18 and 30 years of age
and lower for older patients. These results indicate that an individual’s age should be considered
by both physicians and clinics when deciding on the type of NGS test to perform. They also
suggest the power of ES in adult molecular diagnostics and, potentially, the importance of de
novo mutations in the Mendelian basis of genetic disease in the adult population. Moreover,
the molecular diagnoses revealed that 7% of cases were a combination of Mendelian disorders,
indicating blended phenotypes and a broader spectrum of associated genes.

ES has been able to reveal the expanding genetic and phenotypic spectra of various disease types,
leading to deeper molecular understanding, better diagnoses, and the discovery of biomarkers. For
example, ES revealed the broad genetic and corresponding phenotypic spectrum of kidney diseases:
COL4A3-5 genes that were classically associated with Alport syndrome were also found to affect
focal segmental glomerulosclerosis, and the DGKE gene, which is involved in nephrotic syndrome,
was found to harbor variants that are associated with atypical hemolytic uremic syndrome (for a
review of the utility of NGS platforms, particularly ES, in studies of kidney disease, see 177).
ES supplemented with split-read mapping was also used to discover pathogenic CNVs and the
wider spectrum of AHI1 and TMEM237 mutations that are involved Meckel-Gruber syndrome
and Joubert syndrome (194), demonstrating the enhanced diagnostic yield of ES, especially in
discovering new genes, multigenic associations, and variant pathogenicity.

Leslie et al. (103) used ES in combination with Sanger sequencing to elucidate the broader
genotypic and phenotypic spectra of popliteal pterygium disorders, which are highly heteroge-
neous in their phenotypic representations. They found that multiple genes contribute to the
different phenotypic gradations and showed that these genes are potentially linked in intercon-
nected pathways that are involved in epidermal and craniofacial development. These findings
clearly indicate the clinical relevance of using ES in helping clinicians not only in diagnostics, but
also in disease management and counseling for patient families.

A recent case study that used muscle biopsies to perform ES reported that two individuals from
the same family had a novel heterozygous mutation in exon 3 of the NKX2-1 transcription factor
gene that causes mitochondrial dysfunction (35). This study’s identification of a new pathogenic
effect arising from a previously unreported mutation shows the versatility of ES in finding broad
spectra of genes and disease—in this case, NKX2-1-related mitochondrial and immunological
dysfunction.

Many studies have shown that disease phenotypic spectra are broad and highly heterogeneous.
Examples include congenital disorders of glycosylation (78); X-linked SLC9A6 gene mutations,
which have a wide range of effects, including global developmental delay and intellectual disability
(172); mutations of the CHD7 gene, which lead to the broad phenotypic effects of CHARGE
syndrome (83); and glucose transporter 1 deficiency syndromes (100). Some of these studies were
carried out using automated Sanger sequencing. We predict that ES will enhance the coverage of
the coding genome in these heterogeneous, phenotypically diverse disorders and will be able to
precisely pinpoint de novo and inherited variations and their disease associations.

As technology continues to advance, the increasing use of ES will generate large amounts of data
from different cohorts, which creates new challenges in bioinformatics concerning how to store,
analyze, and interpret these data (176). Work in this area is ongoing, and new developments should
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help researchers and clinicians cope with this problem (102). With regard to variant identification
from ES data, current exome capture kits can capture 95% of the coding regions with a minimum
coverage of 20× and a median coverage of 100× (101). One drawback of ES is its low coverage
to identify CNVs, for which normalized read counts in a genomic region of an individual are
generally compared with those in other exomes; numerous algorithms have been developed for this
purpose, including CODEX (Copy Number Detection by Exome Sequencing), Convex, Conifer,
and XHMM (Exome Hidden Markov Model) (80, 94). The population frequencies of variants are
highly informative for variant interpretation, but there is a need for population-specific databases
of variants; however, interpretations should be done carefully to avoid false positives, missing
disease-associated founder mutations, and somatic or tissue-specific variants (3, 63, 111). The
CADD (Combined Annotation-Dependent Depletion) score is widely used to evaluate variant
pathogenicity by computing a functional meta-score that integrates a variety of genome-wide
annotations (92). This approach is more sensitive and specific than tools such as Polyphen2,
SIFT (Sorting Intolerant from Tolerant), and PhyloP, which depend heavily on the evolutionary
conservation of the protein-coding variant. For noncoding variants that are potentially regulatory,
DeepSEA (a deep-learning-based algorithm framework for predicting the chromatin effects of
sequence alterations with single-nucleotide sensitivity) and DeltaSVM (Delta Support Vector
Machine) are widely used tools that are also trained by a deep-learning algorithm on a variety of
noncoding annotations, primarily from the Encyclopedia of DNA Elements (ENCODE) Project
(99, 208). For splice variants, SPANR (Splicing-Based Analysis of Variants) predicts the effect
of a variant on mRNA splicing using a deep-learning computational model scoring and is quite
effective (199).

It is essential to understand how a gene that harbors a particular variant is relevant to a particular
disease. Algorithms such as PHIVE (Phenotypic Interpretation of Variants in Exomes) try to
compare cross-species phenotypic similarity in order to prioritize genes in the exome data for
a given disease (161). Human disease genes are much less tolerant to genetic variations than
other genes are (89, 147), which opens up a new approach to understanding the deleterious
nature of genetic variations based on the use of population variance and the tolerance level of
a given variation. Screening for recurrent mutations in heterogeneous disorders has relied on
ES in large cohorts of patients for different variants in the same candidate gene in order to
determine variant pathogenicity (36), which in turn has relied heavily on statistical approaches
such as the use of genome-wide mutation rates to identify genes enriched in de novo mutations
(126). It is important to note that various data-sharing platforms for rare diseases have facilitated
understanding of common phenotypes and genotypes and patterns across populations that help
enable variant classification.

Targeted NGS gene-panel tests have also been giving the field of genomics an edge in iden-
tifying causative genes and variants, providing a faster pipeline with a high diagnostic yield in
clinical settings. It can be more biased than ES or GS, but for heterogeneous disorders, it provides
higher coverage for known disease-associated genes and can be flexible in including suspected
genes in the targeted library based on patient phenotype. Au et al. (12) recently evaluated the
clinical utility of an NGS 54-gene-panel test for acute myeloid leukemia. They used the Illu-
mina MiSeq platform for 50 patient samples, and comparing the panel result with conventional
molecular testing revealed more than 95% similarity with sufficiently high coverage and diag-
nostic yield. Numerous deleterious variants were identified, especially in the TP53 gene, which
causes the disease, suggesting an overall high sensitivity and specific detections of mutations in
disease-relevant genes. Panel tests are already becoming standard for adult disorders and are likely
to have a large impact in future research and clinical genomics, especially as a first-stage diagnostic
test.
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THE BURDEN OF VARIANTS OF UNKNOWN SIGNIFICANCE

Clinical diagnostic laboratories follow ACMG guidelines (159) when interpreting and annotating
variants from NGS data in order to classify them as benign, likely benign, pathogenic, or likely
pathogenic or as a variant of unknown significance (VUS). As genome, exome, and targeted gene-
panel NGS continue to produce massive amounts of data, the number of VUS findings is also
increasing, especially in cases of heterogeneous disorders in which multigenic effects are predicted.
The increased number of VUSs creates a burden on variant classification, disease association, and
clinical reporting for follow-up diagnosis and therapy options.

To help address the burden of the rising number of VUSs, Narravula et al. (124) attempted
to reclassify the VUSs present in ClinVar (a database of all discovered variants in the human
genome, with classifications by laboratories across the world) NGS data from newborn screen-
ing, focusing on variants associated with three monogenic metabolic disorders (variants of the
ACADM, GALT, and PAH genes). To do so, they used the population variance of disease, ExAC
curation of population data, and published literature surveys, including functional data. By using
a reclassification strategy, they were able to reannotate multiple VUSs as benign (or likely benign)
or pathogenic (or likely pathogenic). The VUS burden is significant in clinical diagnostic settings,
and this work suggests the importance of standardized curation of all information on variants,
especially functional data, across all clinical laboratories. We predict that functional genomics, in-
cluding gene- or protein-domain-specific functional assays and the integration of genomics with
downstream functional -omics (proteomics, epigenomics, and metabolomics), will ultimately help
elucidate genotype-phenotype relationships for variant classification (similar to gene annotation;
see Figure 3).

CONCLUSION: MERGING BASIC AND CLINICAL GENOMICS

The genomics era is moving toward an understanding of the functionality of genomic complexities
by using an integrated -omics approach that is blurring the distinctions between basic and clinical
genomics, albeit with cautionary recommendations and guidelines. For example, because of the
increasing importance of epigenomics in neurological diseases that emerged from basic research,
such as epilepsy (72, 79), several medical industries are including analysis of epigenetic signatures,
such as detection of the DNA methylome, in their diagnostic pipeline priority in both discovery
and clinical settings (138). For this purpose, genome interpretation companies such as Congenica,
Sophia Genetics, and Omicia are providing rapid turnaround times. Yet the high failure rate of
drugs in clinical trials and subsequent financial losses (10, 145) suggest the need to delve more
deeply into identifying personalized and tissue-specific -omics data and merging basic and clinical
genomic research—for example, by identifying tissue-specific exons and transcripts through better
annotation. Simultaneously, improved methods for generating not only genomic data but also data
from other -omics approaches and their integrative methodologies should be developed in order
to facilitate the translation of -omics techniques into the clinic in the form of genomic medicine.

Emerging efforts to use companion diagnostics in personalized medicine are driving the in-
tegration of combinatorial -omics approaches while simultaneously developing personalized ge-
nomic and other -omic databases that will likely be used in clinical settings in the future. These
developments have resulted largely from the meteoric rise of NGS technologies, which have
facilitated the merging of genotypic assays such as genome, exome, and targeted gene-panel se-
quencing with phenotypic approaches such as epigenetic analyses, RNA-seq, and proteomic and
metabolomic profiling using mass spectrometry. This merging drives personalized biomarker
discovery and medicine and, in turn, facilitates recruitment in clinical trials, which have so far
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centered mainly on cancer diagnostics and therapy (for detailed reviews, including recommen-
dations and guidelines for clinical genomic medicine, see 24, 37, 39, 67, 84, 85, 108, 140, 171).
Practical, ethical, and regulatory aspects of personalized medicine should also be considered in
great detail, because this field will eventually help in building new technologies for merging ge-
nomic and phenomic data that will have a large impact both on basic research and in the clinic.
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