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Abstract

Genome-wide association studies (GWASs) have successfully identified
thousands of genetic variants that are reliably associated with human traits.
AlthoughGWASs are restricted to certain variant frequencies, they have im-
proved our understanding of the genetic architecture of complex traits and
diseases. The UK Biobank (UKBB) has brought substantial analytical op-
portunity and performance to association studies. The dramatic expansion
of many GWAS sample sizes afforded by the inclusion of UKBB data has
improved the power of estimation of effect sizes but, critically, has done so
in a context where phenotypic depth and precision enable outcome dissec-
tion and the application of epidemiological approaches. However, at the
same time, the availability of such a large, well-curated, and deeply measured
population-based collection has the capacity to increase our exposure to the
many complications and inferential complexities associated with GWASs
and other analyses. In this review, we discuss the impact that UKBB has had
in the GWAS era, some of the opportunities that it brings, and exemplar
challenges that illustrate the reality of using data from this world-leading
resource.
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INTRODUCTION

Genetic architecture is defined by the genetic variants that influence a trait or disease outcome
and is characterized by the number of genetic variants, their effect size, their allele frequency,
and their possible interactions with each other and environmental factors (114). Uncovering the
genetic architecture of a complex trait or disease is central to understanding what underpins ob-
served trait variation and potentially helps further work aimed at dissecting that variation. Various
techniques are useful in the task of assessing genetic architecture, and in the last decade, tech-
nological advances have enabled the measurement of genetic variation at hundreds of thousands
of markers across the human genome. Genome-wide association studies (GWASs) have exploited
these developments and successfully identified thousands of genetic variants reliably associated
with human traits. Although GWASs are restricted to certain variant frequencies, they have im-
proved our understanding of the genetic architecture of complex traits and diseases (118). Early
successful applications of the GWAS approach have primed the rapid growth and increasing avail-
ability of large genomic biobanks, such as the UK Biobank (UKBB) (15, 109), which have brought
substantial analytical power to association studies.

THE REVOLUTIONARY IMPACT OF THE UK BIOBANK
IN THE GWAS WORLD

UKBB (https://www.ukbiobank.ac.uk) is a prospective cohort study that recruited half a mil-
lion individuals (40–69 years of age) across the United Kingdom between 2006 and 2010 (109).
It represents a large-scale biomedical resource that integrates genome-wide genetic data with
deep phenotype data, including data from lifestyle questionnaires, physical measures, biomark-
ers in blood and urine, accelerometry, and multimodal imaging. The unprecedented size of the
UKBB cohort, together with the extensive phenotyping and genome-wide genotype data (sup-
plemented with high-density imputation), has enhanced power for genetic discovery and enabled
well-powered GWASs of hundreds of quantitative traits, including anthropometric traits (123),
blood traits (4), cognitive traits (42), and numerous blood and urine biomarkers (105). Further to
this enormous collection of data, the access infrastructure provided with the UKBB study has led
to UKBB being one of the most enabling human genetics bioresources ever generated. To date,
more than 500 peer-reviewedGWASs have been published based on this one resource, andUKBB
is often the primary data provider in other analyses.

In the context of the capacity and coverage of GWAS arrays (and imputation), sample size
is one of a series of key performance determinants when performing a GWAS to discover ge-
netic loci associated with complex traits (118). This has been evident since the first application
of hypothesis-free approaches to gene variant analysis (12, 77, 108), and (depending on the com-
position of heritable contributions) the discovery of new loci has increased in an almost linear
fashion with increasing sample size (83). The availability of genome-wide genotype data collected
from all UKBB participants, together with the biobank’s vast amount of phenotype data, has gen-
erated a singular resource of considerable size that provides opportunities for the discovery of
new genetic associations and the genetic basis of complex traits and diseases (15). The gain in
power in the UKBB data is exemplified by the most recent meta-analysis of GWASs of height and
body mass index (BMI) (123), which combined results from a single large GWAS conducted using
UKBB data with results from previously published GWASs of height and BMI conducted by the
Genetic Investigation of Anthropometric Traits (GIANT) study. With the increased sample size,
the number of genomic loci associated with height and BMI increased compared with the number
found in previously published height and BMI GWASs, with improved accuracy of genetic pre-
dictors from single-nucleotide polymorphisms (SNPs) at these loci (123). The near-independent
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SNPs explained approximately 24.6% and 6% of the variance in height and BMI, respectively,
representing approximately 1.9- and 3.2-fold improvements, respectively, in comparison with a
previous BMI GWAS meta-analysis that did not include UKBB data (123).

The combination of scale and extensive phenotypic and genotypic data from UKBB enables
the rigorous investigation of the genetic basis of diseases, not only through the increased sample
size but also through phenotypic precision (66). Although expanding collections of genotype and
phenotype data from non-UKBB studies have provided a boost in statistical power, research has
been hindered by measurement differences, inaccurate phenotypic measurements, and genuine
disease heterogeneity. One challenge in GWASs is the ability to combine genetic data with phe-
notypic precision and hence to both enhance analytical power technically and tighten the focus of
downstream interpretation of findings around pertinent association signals (106, 116). In UKBB,
the combination of deep phenotypic data collection and large-scale genetic data has generated bi-
ological insights and extensive records of novel genotype–phenotype associations. A good example
is the use of detailed brain imaging data to examine the genetic architecture of brain structure in a
GWAS ofmore than 3,000 functional and structural brain imaging phenotypes inmore than 8,000
UKBB participants (27); this work showed not only that many of these phenotypes are likely to
be heritable but also that they lie in phenotypic clusters showing reliable genetic associations. An-
other example is a study by Aragam et al. (3), who used UKBB data to perform a GWAS of heart
failure and found that phenotypic refinement of all-cause heart failure facilitates the discovery of
novel genetic signals that reflect distinct etiological heart failure subtypes.

OVERLAPPING PHENOTYPES AND HARNESSING THE PHENOME

Most GWASs analyze only a single trait and do not exploit information on summary statistics
from GWASs of other correlated traits. UKBB is clearly different in terms of the breadth of mea-
sures available across participants and the repeated assessments during the more than 10 years
the study has been running. Uniquely, this has led to a situation where previously and newly de-
veloped approaches exploiting the information in shared phenotypic measures can be deployed
and share the sample size advantages present in UKBB. Joint association analysis of multiple
traits in GWASs offers several advantages compared with single-trait analyses and has been a
well-used approach in the undertaking of GWASs in UKBB. Multivariate analysis can boost sta-
tistical power because it takes into account cross-trait covariance of genetically correlated traits,
which is often ignored in univariate analyses (1, 135). Multivariate methods can also assess as-
sociations with a set of traits using a single test. Consequently, the multiple-testing burden can
be reduced because of the effectively smaller number of analyses performed (55, 135). Lastly,
when a single genetic variant is highly pleiotropic and associated with multiple traits, multivariate
GWAS analysis can attempt to model a situation that is more consistent with the underlying bi-
ology (i.e., accounting for shared variance across multiple available measures with variable levels
of actual information content across key heritable contributions) when compared with univariate
analysis (18).

Several techniques have been developed that enable joint analysis of multiple traits (8, 34, 45,
76, 86, 115), and their application is one of the hallmarks of well-performedUKBB-based GWASs
that seek to maximize analytical performance. A good example is Multi-Trait Analysis of GWAS
(MTAG), which allows the joint analysis of multiple traits in population-based GWASs, thereby
increasing the statistical power to detect genetic associations for each analyzed trait.UsingMTAG,
a recent study conducted a joint GWAS analysis of four hearing-related traits using UKBB data
and identified 31 new risk loci for hearing difficulty (49).
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APPLIED ANALYSES ENABLED BY A GWAS BACKBONE

One of themost intuitive applied analyses built on the success of well-performed andwell-powered
GWASs is the examination of polygenic risk scores (PRSs) and the association of aggregate ge-
netic variant effects with intermediates or outcomes of interest. These composite summaries of
genetic association can vary in their form, ranging from the sum of association estimates across loci
believed to have attained specific thresholds of evidence to genome-wide predictors that look to
amass all information relevant to the prediction of specific health outcomes. Several studies have
had limited success in obtaining meaningful predictive power (72, 96) in undertaking this type of
exercise, particularly because of the difficulty of generating meaningful predictions of phenotypic
value through the amalgamation of GWAS signals. Previous efforts to create effective PRSs have
been limited by three challenges (53): (a) small GWAS sample sizes, which affect the precision of
estimated variant effects and the extent and availability of the useful variance explained; (b) limited
methods for creating the PRSs; and (c) a lack of large data sets to validate and test PRSs. In the
context of the increasing number of GWASs (much of it driven by UKBB), studies have started to
overcome some of these difficulties and to generate interesting and informative polygenic sum-
maries. A recent study by Khera et al. (54) used UKBB data as a validation data set to test the
ability of BMI PRSs to predict measured BMI. Using UKBB, this study demonstrated the ability
to use PRSs to identify individuals at greatest risk of obesity, with more than 40% of individuals
who had a PRS in the top decile found to be obese, compared with 10% of individuals in the
bottom decile.

Mendelian randomization (MR) is an analytical technique that uses genetic variants as instru-
ments to estimate the causal effect of an exposure on an outcome of interest (24). By exploiting the
properties of genetic data,MR analyses provide an alternative source of evidence when estimating
causal effects and attempting to minimize limitations through confounding, bias, and reverse cau-
sation. MR analyses can be undertaken by using individual studies with exposures, outcomes, and
genetic data, but also by using the results from existing GWASs (58, 131). MR-Base (40)—an es-
tablished and freely accessible online platform that combines a database of GWAS results with an
interface for performing MR and sensitivity analyses—has simplified the implementation of MR
studies and enabled users to explore millions of potentially causal associations. The expansion of
large-scale GWASs using UKBB data has rapidly increased the number of genetic variants that
have been reliably associated with human characteristics and health conditions. For example, since
the release of the UKBB genome-wide association data, the Neale laboratory (79) has conducted
GWASs for thousands of phenotypes. UKBB data have also been incorporated into the Medi-
cal Research Council (MRC) Integrative Epidemiology Unit (IEU) OpenGWAS database (28),
an open source, open access, scalable, and high-performance cloud-based data infrastructure that
imports and publishes complete GWAS summary data sets and metadata for the scientific com-
munity. Taken together, this open GWAS data resource and the development of results-basedMR
applications and newly available analytical tools have enabled causal inference analysis (28). For
example, by using the IEU OpenGWAS database to obtain genetic instruments for body compo-
sition measures (including fat mass, fat-free mass, and fat percentage) fromUKBB-based GWASs,
a recent MR study found evidence that high fat mass and fat percentage causally increased risk of
most cardiometabolic diseases, while high fat-free mass had protective effects on cardiometabolic
diseases after accounting for fat mass (126).

A different but similarly applied approach that uses GWAS analysis and results is the exami-
nation of shared genetic architecture or genetic correlation. Genetic correlation is a quantitative
parameter that estimates the shared heritable contribution to two traits. Identifying genetic cor-
relations between complex traits and diseases can provide useful insights into disease etiology,
help identify potential causal relationships (11), and increase understanding of shared biological
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contributions to apparently independent traits. Methodological approaches that estimate SNP-
based heritability and genetic correlations from GWASs, such as linkage disequilibrium score
regression (LDSR) (11), have proven to be powerful tools that can provide robust estimates of the
genetic correlations between different traits and diseases and help to dissect the genetic architec-
ture of common traits and diseases. LDSR relies on GWAS summary statistics and is not biased
by sample overlap, and thus is invaluable in increasing our knowledge of the genetic contribu-
tion to complex traits. A major challenge preventing accurate estimation of genetic correlation
is that GWASs with small effective sample sizes have insufficient power to use LDSR to detect
polygenic effects, leading to near-zero estimates of heritability. Recently, UKBB data have been
used to accurately estimate the SNP heritability of 22 complex traits and disease traits (44) and
the genetic correlations between various traits and diseases (80). An LDSR analysis of more than
2,000 phenotypes in UKBB found that substantial variance was explained by common SNPs for
a broad range of human traits and diseases (78).

ENHANCING THE UK BIOBANK RESOURCE AND THE
DEMOCRATIZATION OF DATA

Given the prospective nature of the UKBB study, a key strength of the cohort is the collection of
data, biosamples, and exposures at baseline, which can be enhanced by other data sets that may be
available from external sources but are linked to the study. Electronic health records, which can be
a key source of data that are not affected by attrition, are a substantial research asset and further
illustrate the positive civic relationship between study and participants that lies at the heart of
UKBB. These linkable resources include death and cancer registries and primary and secondary
care records, and in the absence of attrition, there is potential to follow up on the health of all
participants over time. Connection to health outcome data provides opportunities to conduct
research on common diseases, such as ischemic heart disease and various cancers, and to further
expand the portfolio of GWASs embedded in the UKBB resource. This powerful design also
enables conditions that are difficult to study retrospectively, including dementia and rapidly fatal
conditions such as pancreatic or lung cancer. For example, a recent pan-cancer GWAS provided
insights into the complex genetic architecture of cross-cancer susceptibility by using linked cancer
registry data from UKBB and the Kaiser Permanente Genetic Epidemiology Research on Adult
Health and Aging cohort (92).

UKBB is an open access resource that encourages researchers from around the world—
including those from both academia and industry—to access the data and biological samples to
undertake health-related research that is in the public interest. The open access nature of the
UKBB study promotes innovative science by enabling international scientists to apply for the
data quickly and easily through an application process so that they can benefit from this vast
resource (19). Recently, to accommodate the vast scale of the data set, UKBB has launched the
unique and innovative Research Analysis Platform, a cloud-based system that allows streamlined
access for approved researchers from anywhere in the world and enables data to be analyzed easily
and cost-effectively as the resource grows in complexity and scale. The open access data have not
only enabled thousands of specific research projects but also encouraged collaborations with large
international consortia. In the field of human genetics, and GWASs in particular, this type of data
use and collaborative interchange is critical to building the sample sizes and measure/outcome
capture needed to uncover reliable association signals. Ultimately, this approach to open and col-
laborative science has resulted in rapid advances in the discovery of reliable relationships and the
beginnings of unrestricted researcher contributions to the task of dissecting the genetic architec-
ture of complex traits.
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THE REALITY OF GWASs: POWER, POLYGENICITY, SAMPLING
FRAME, AND INTERPRETATION

UKBB is an outstanding example of the value that can be achieved from large sample sizes com-
bined with genetics, extensive and deep phenotyping, and linkage to health records. The gain in
power in the UKBB cohort is clear and has led to an increase in locus discovery in GWASs, par-
ticularly for loci that are less common and/or have smaller effects (118). For example, the first
BMI GWAS (n∼ 5,000) identified only genetic variants in the FTO locus that had relatively large
effects on BMI (0.35 kg/m2 per allele) (31, 102). By contrast, the most recent BMI GWAS, which
used data from UKBB and the GIANT consortium (n ∼ 800,000), identified more than 750 loci
with much smaller effects on BMI (0.04 kg/m2 per allele) (123). Notably, UKBB data represented
64.3% of the overall sample size. In this type of work, it is clear that the unprecedented size of the
UKBB resource has provided immense opportunities; however, it can also generate challenges. To
focus on just two of these that are relevant to GWASs (particularly applied GWAS work), here
we examine the potential for population stratification/substructure to be important in the pres-
ence of specific GWASs undertaken at scale and the potential for detectable phenotypic overlap
to complicate downstream interpretation and analysis.

Along with the potential to underrepresent specific groups and reduce generalizability (52),
the self-selection of participants contributing to the UKBB cohort creates structure within the
genetic data that has the potential to bias associations and complicate their interpretation. Al-
though UKBB was designed to provide a large and useful sample of the general population of
the United Kingdom (which it does superbly), the sampling population is volunteer based and
not representative in terms of demographic characteristics (33). Ultimately, UKBB is a selected
sample of the UK population (response rate of 5.5%) (112). This has been illustrated in work
by Haworth et al. (39), who showed that single genetic variants and genetic scores composed of
multiple variants are associated with the birth locations of individuals included in the UKBB data
and that the geographic structure in genotype data cannot be accounted for by using routine ad-
justment for study center and genetic principal components. This study also demonstrated that
major health outcomes appear to be geographically structured and that the coincident structure
in health outcome and genotype data can yield biased associations.

As described above,MR is an analytic technique that has been used to estimate causal relation-
ships between risk factors and exposures and here serves as a good illustration of the possible com-
plications of analytical power and structure. Population stratification can essentially be thought of
as the reintroduction of confounding of the genetic instrument (used to proxy the exposure) and
disease outcome, thus violating the MR assumption that there is no confounding between the ge-
netic instrument and the outcome. Therefore, GWASs that do not fully account for any ancestral
population structure can lead to population stratification (59), and estimates from MR analyses
based on the results of that GWAS can potentially be biased by the coincidence of associations
among genotype, population structure, and health.

The key question, therefore, is how pervasive this type of structure is and whether it can be
demonstrated [as in the study by Haworth et al. (39)]. A recent GWAS of coronavirus disease 2019
(COVID-19) outcomes—substantively aided by UKBB data—is a real-time exemplar of just such
potential complications. COVID-19 is an infectious disease caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), which has had a profound impact on the health and lives
of people worldwide (103). UKBB has been uniquely positioned to contribute to research on the
COVID-19 pandemic.For example, the entireUKBB cohort (approximately 500,000 participants)
was invited to receive a self-test kit to determine whether they have SARS-CoV-2 antibodies due
to past infection (rather than vaccination). UKBB is also one of the largest contributors to the
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COVID-19 Host Genetics Initiative (21; http://www.covid19hg.org), an international consor-
tium that has brought together investigators from around the world to investigate the genetic
determinants of COVID-19 susceptibility, severity, and outcome. A GWAS conducted by the ini-
tiative identified at least 15 genome-wide significant loci associated with increased COVID-19
susceptibility and severity, including variants in or near several immune genes and the ABO locus,
which determines ABO blood groups. Many of these loci overlap with previously reported asso-
ciations with lung-related phenotypes or autoimmune/inflammatory diseases, although some loci
have no obvious candidate gene (22). Such discoveries not only contribute to global knowledge of
the biology of SARS-CoV-2 infection but also provide genetic evidence for drug targets and drug
repurposing and help in the development of genetically informed risk assessments of COVID-19
susceptibility.The publicly available GWAS results for COVID-19 susceptibility and severity have
also enabled MR studies to evaluate the causal effects of various exposures on COVID-19 out-
comes. Indeed, as of December 2021, 59 MR studies had been conducted (Table 1).

In an effort to shed light on potential complexities involved in the application of new GWAS
results in this way, we evaluated the implications of population structure for UKBB-based GWASs
of COVID-19 susceptibility and severity.We did this by considering the association between birth
location and PRSs for COVID-19 susceptibility and severity (see the Supplemental Methods).
First, a PRS representing the aggregate estimated common genetic contributions to COVID-19
susceptibility was associated with birth location in a model that was then adjusted for genotyping
array and study center (Figure 1). These associations were attenuated in models that incorporated
adjustment for 40 genetic principal components that were able to capture structure in the avail-
able genetic data; however, this was not always the case for all COVID-19 outcomes. By contrast,
for COVID-19 severity (case-only analysis), associations between PRS and location were actually
more pronounced in models incorporating adjustment for 40 genetic principal components, po-
tentially reflecting the potentially biasing effects of association analysis within stratified samples
(in this case, COVID-19-only participants).

Outside of the new challenge presented by SARS-CoV-2 and COVID-19, a second exemplar
lies in the notion that one cannot assume that the availability of big omics data and big GWAS
data brings an increased ability to deconstruct networks of complex biological association; indeed,
while there will be an ability to discover genetic association signals with good analytical power,
redundancy and complexity can impede direct interpretation. A good example comes from the
analysis of high-throughput metabolomic data.Metabolomic profiles are the result of genetic and
nongenetic factors, provide a readout of biological processes, and can functionally link genetic
loci to disease risk factors and disease outcomes (9, 61, 122). Metabolomics technologies based on
mass spectrometry and nuclear magnetic resonance (NMR) have enabled the systematic quantifi-
cation of hundreds of metabolites (the metabolome) from a single biological sample. The analysis
of metabolites has enabled more thorough exploration of an individual’s metabolic status, offering
new opportunities to improve our understanding of the molecular mechanisms underlying human
traits and diseases (50). Over the last decade, several metabolite GWASs have been performed (25,
35, 47, 51, 71, 74, 93, 94, 104, 110) to characterize the genetic architecture of blood metabolite
variation, and these studies have provided an estimate of the heritability of multiple metabolites
and insights into the biological and clinical relevance of these genetic associations (107, 110). Re-
cently, metabolic biomarker data quantified using NMR in approximately 121,000 participants
have been made available from UKBB (48, 97). The availability of this large-scale omics mea-
surement combined with genome-wide data has maximized the power to discover genetic loci
for a given metabolite and provided a better understanding of the genetic architecture of blood
metabolites.
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Table 1 COVID-19 Mendelian randomization studies

PubMed ID Reference Authors Year Exposure Conclusion
34402426 2 Anisul et al. 2021 Proteome ABO protein is associated with

several COVID-19 phenotypes.
33757497 5 Au Yeung et al. 2021 Cardiometabolic factors Type 2 diabetes and glycemic traits

are not associated with
COVID-19 outcomes.

33262790 6 Aung et al. 2020 Cardiometabolic factors Higher BMI and LDL cholesterol
are associated with susceptibility
to COVID-19.

34557504 7 Baranova et al. 2021 Expression and methylation
quantitative trait loci

Seven protein-coding genes (TYK2,
IFNAR2,OAS1,OAS3, XCR1,
CCR5, andMAPT) are associated
with COVID-19 outcomes, two
of which are novel risk genes
(CCR5 andMAPT, which
encodes the tau protein).

34061844 13 Butler-Laporte et al. 2021 Biochemical levels Higher vitamin D levels are not
associated with COVID-19
susceptibility, hospitalization, or
severity.

33349849 14 Butler-Laporte et al. 2021 Biochemical levels Lower serum ACE levels are not
associated with COVID-19
susceptibility.

34502134 16 Cai et al. 2021 Host receptors (ACE2,
DC-SIGN, and L-SIGN)

Higher expression of DC-SIGN
plasma protein is associated with
increased COVID-19 risk, but
higher expression of ACE2 or
L-SIGN is not.

34840730 17 Cecelja et al. 2021 Cardiometabolic factors There is little evidence for a causal
association of cardiovascular risk
factors or disease with severe
COVID-19.

34237774 22 COVID-19 Host
Genetics
Initiative

2021 Cardiometabolic factors,
cardiovascular factors,
respiratory factors,
biochemical levels, lifestyle
factors, psychiatric
disorders

Smoking and BMI are associated
with severe COVID-19, but
type 2 diabetes is not.

34246301 23 Cui & Tian 2021 Biochemical levels Serum vitamin D concentration is
not associated with COVID-19
susceptibility, severity, or
hospitalization.

34032881 26 Du et al. 2021 Cardiometabolic factors,
cardiovascular factors,
respiratory factors,
biochemical levels, lifestyle
factors

Comorbidity of inflammatory bowel
disease and elevated levels of
CRP and IL10 causally increase
risk of acute respiratory distress
syndrome, while vitamin D
supplementation and vasodilators
reduce risk.

33714028 29 Fadista et al. 2021 Respiratory factors Idiopathic pulmonary fibrosis is
associated with increased risk of
severe COVID-19.

34068824 30 Fan et al. 2021 Lifestyle factors There is little evidence that alcohol
consumption is associated with
risk of SARS-CoV-2 infection in
participants either with or
without obesity.

33631142 32 Freuer et al. 2021 Cardiometabolic factors BMI is associated with COVID-19
susceptibility and hospitalization.

(Continued)
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Table 1 (Continued)

PubMed ID Reference Authors Year Exposure Conclusion
33837377 36 Gaziano et al. 2021 Drugs ACE2, IFNAR2, and IL10RB are

associated with COVID-19
hospitalization.

33391794 37 Gill et al. 2020 Drugs, biochemical levels Genetically proxied serum ACE2
levels are not associated with
COVID-19 hospitalization.

33604698 41 Hernández Cordero
et al.

2021 Cardiovascular factors,
respiratory factors

Plasma ABO protein is associated
with increased risk of severe
COVID-19.

33667465 43 Hilser et al. 2021 Cardiometabolic factors Higher HDL cholesterol levels are
not associated with decreased risk
of COVID-19 susceptibility or
mortality.

34866576 46 Huang et al. 2021 Cardiometabolic factors,
drugs

Higher HMGCR expression is
associated with increased risk of
COVID-19 hospitalization.

33445938 56 Kopeček & Höschl 2020 Biochemical levels Genetically proxied serum
vitamin D levels are not
associated with COVID-19
infection.

33214204 57 Larsson et al. 2021 Immune system Genetically proxied IL6R inhibition
is associated with decreased risk
of COVID-19 susceptibility and
hospitalization.

33661905 60 Leong et al. 2021 Cardiometabolic factors BMI is associated with COVID-19
severity and hospitalization but
not with increased risk of testing
positive.

34768390 62 Li et al. 2021 Educational attainment Higher educational attainment is
associated with decreased risk of
severe COVID-19. It also
decreases the risk of COVID-19
hospitalization, but the
association is attenuated after
adjustment for beta estimates of
intelligence in multivariable
analysis. Higher intelligence is
associated with decreased risk of
COVID-19 hospitalization, but
the association is attenuated after
adjustment for educational
attainment.

34163532 63 Li et al. 2021 Immune system Higher CCL4 levels are associated
with decreased risk of COVID-19
hospitalization.

33536004 64 Li & Hua 2021 Cardiometabolic factors,
lifestyle factors

Smoking and higher BMI are
associated with increased risk of
severe COVID-19 and
hospitalization. Genetically
proxied physical activity is
associated with decreased risk of
severe COVID-19.

34521884 65 Li et al. 2021 Biomarkers Vitamin D levels are causally
associated with COVID-19 risk.

34530967 67 Liu et al. 2021 Biomarkers There is little evidence that
genetically predicted vitamin D
levels are associated with
COVID-19 risk.

(Continued)
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Table 1 (Continued)

PubMed ID Reference Authors Year Exposure Conclusion
33259846 68 Liu et al. 2021 Cardiovascular factors,

respiratory factors
ILMN_1765156 and

ILMN_1791057 probes for
IFNAR2 are associated with
COVID-19 hospitalization.

34227468 69 Liu et al. 2021 Lifestyle factors Smoking is associated with ACE2
expression, but genetically
proxied alcohol consumption is
not.

34744839 70 Liu et al. 2021 Psychiatric disorders ADHD is associated with increased
risk of COVID-19
hospitalization. Genetically
predicted COVID-19 severity is
significantly associated with
schizophrenia.

33846372 73 Lorincz-Comi &
Zhu

2021 Cardiometabolic factors Type 2 diabetes and genetically
proxied pulse pressure are not
associated with COVID-19
hospitalization.

33833219 75 Luykx & Lin 2021 Psychiatric disorders Schizophrenia and Alzheimer’s
disease are associated with
COVID-19 susceptibility.
Genetic liability to schizophrenia
and bipolar disorder are
associated with risk of severe
COVID-19.

34553760 81 Ong et al. 2022 Gastroesophageal reflux
disease

Susceptibility to gastroesophageal
reflux disease increases risk of
severe COVID-19, COVID-19
hospitalization, and overall risk of
COVID-19.

33307546 82 Pairo-Castineira
et al.

2021 Biochemical levels Low expression of IFNAR2 and
high expression of TYK2 are
associated with life-threatening
COVID-19 disease. High
expression of CCR2 is associated
with severe COVID-19.

34478452 84 Papadopoulou et al. 2021 COVID-19 susceptibility and
severity

COVID-19 risk is associated with
increased risk of phlebitis and
thrombophlebitis. COVID-19
susceptibility is associated with
blood clots in the leg and
increased risk of blood clots in
the lungs.

32966752 85 Ponsford et al. 2020 Cardiometabolic factors,
lifestyle factors

Lifetime smoking and higher BMI
are associated with increased risk
of severe COVID-19, COVID-19
hospitalization, and COVID-19
respiratory failure.

34530029 87 Qiu et al. 2022 Metabolite biomarkers Three blood metabolite
concentrations (citrate,
M.VLDL.C, and S.VLDL.P) are
associated with increased risk of
COVID-19 (increasing the
COVID-19 infection rate by
24%, 13%, and 10%,
respectively), but none of them
passed the adjusted significance
threshold.

(Continued)
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Table 1 (Continued)

PubMed ID Reference Authors Year Exposure Conclusion
34467987 88 Ran et al. 2021 COVID-19 susceptibility,

cardiometabolic factors,
immune system

Genetically proxied COVID-19 is
associated with decreased
eosinophil cell count, LDL
cholesterol, total cholesterol,
BCAP29, and KIR2DL5A.

34863930 89 Ran et al. 2021 Bone mineral density Total body bone mineral density is
associated with severe COVID-19
in individuals over 60 years old.

34308962 90 Rao et al. 2021 Lifestyle factors Increasing consumption of
cigarettes per day increases
susceptibility to severe
COVID-19 and COVID-19
hospitalization, but alcohol
consumption does not.

32430459 91 Rao et al. 2020 Cardiometabolic factors,
cardiovascular factors,
drugs

Type 2 diabetes is associated with
increased ACE2 expression.

33548839 95 Richardson et al. 2021 Cardiometabolic factors Glycoprotein 130 is associated with
severe COVID-19.

34127963 98 Roh et al. 2021 Cardiovascular factors ADAMTS13 is associated with
myocardial injury in COVID-19
patients.

34711921 99 Rosoff et al. 2021 Lifestyle factors There is strong evidence that
smoking increases the risk of
COVID-19 and other respiratory
infections even after accounting
for other substance use behaviors
and cardiometabolic diseases.

33809027 111 Sun et al. 2021 Immune system Higher basophil count, basophil
percentage of white blood cells,
and myeloid white blood cells are
associated with decreased risk of
severe COVID-19. Basophil
count, basophil percentage of
white blood cells, and myeloid
white blood cells are not
associated with COVID-19
susceptibility.

34428710 113 Tan et al. 2021 COVID-19 susceptibility Genetically predicted COVID-19 is
significantly positively associated
with hypertension disorders in
pregnancy.

34122505 119 Wang et al. 2021 Cardiovascular factors,
biochemical levels,
immune system

Higher neutrophil, monocyte, and
lymphocyte counts are associated
with decreased risk of
COVID-19.

34202464 120 Wang et al. 2021 Cardiovascular factors Blood pressure is associated with
severe COVID-19 with
respiratory failure.

34304048 121 Wang et al. 2021 Telomere length Shorter telomere length is
associated with increased risk of
adverse COVID-19 outcomes
independent of several major risk
factors for COVID-19, including
age.

34150709 124 Yoshikawa & Asaba 2021 Lifestyle factors Higher educational attainment is
associated with reduced risk of
severe COVID-19.

(Continued)
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Table 1 (Continued)

PubMed ID Reference Authors Year Exposure Conclusion
34774031 125 Yoshikawa et al. 2021 Cardiometabolic factors Serum ApoB and LDL cholesterol

levels are not significantly
associated with COVID-19 risk.
Higher serum triglyceride levels
are suggestively associated with
increased risk of COVID-19
susceptibility and hospitalization
and are significantly associated
with COVID-19 severity.

34496635 127 Zhang et al. 2021 Cardiometabolic factors Higher total cholesterol and ApoB
levels might increase the risk of
COVID-19 infection.

34189540 128 Zhang et al. 2021 Immune system Failure of NKG2D-mediated
activation is associated with
severe COVID-19.

33312507 129 Zhang et al. 2020 Lifestyle factors Moderate to vigorous physical
activity is not associated with
COVID-19 outcomes.

34774005 130 Zhao & Schooling 2021 Kidney disorders Higher estimated glomerular
filtration rate is associated with
reduced risk of severe COVID-19
but not with risk of COVID-19
hospitalization or infection.
Genetically instrumented urine
albumin-to-creatinine ratio is not
associated with COVID-19
susceptibility or outcomes.

33633408 132 Zhou et al. 2021 Biochemical levels Increased OAS1 levels are associated
with reduced risk of COVID-19
susceptibility, hospitalization,
ventilation, and death.

34099622 133 Zhou et al. 2021 Biochemical levels, immune
system

VWF, VWF activity, and
ADAMTS13 are associated with
COVID-19 severity.

34608450 134 Zhu et al. 2021 Hematopoietic traits White blood cell counts and
cholesterol levels are causally
associated with COVID-19
severity.

34755518 136 Zuber et al. 2021 COVID-19 susceptibility and
severity

Critical COVID-19 is associated
with an increased risk of ischemic
stroke.

Abbreviations: ACE, angiotensin-converting enzyme; ADHD, attention deficit hyperactivity disorder; ADAMTS13, a disintegrin and metalloproteinase
with a thrombospondin type 1 motif, member 13; ApoB, apolipoprotein B; BCAP29, B cell receptor–associated protein 29; BMI, body mass index; CCL4,
C-C motif chemokine ligand 4; COVID-19, coronavirus disease 2019; CRP, C-reactive protein; DC-SIGN, dendritic cell–specific intercellular adhesion
molecule 3–grabbing nonintegrin; HDL, high-density lipoprotein; IFNAR2, interferon alpha and beta receptor subunit 2; IL6R, interleukin 6 receptor;
IL10, interleukin 10; IL10RB, interleukin 10 receptor subunit beta; KIR2DL5A, killer cell immunoglobulin-like receptor 2DL5A; L-SIGN, liver/lymph
node–specific intercellular adhesion molecule 3–grabbing nonintegrin; LDL, low-density lipoprotein; M.VLDL.C, total cholesterol in medium very-low-
density lipoprotein; NKG2D, natural killer group 2D; OAS1, 2′-5′-oligoadenylate synthetase 1; SARS-CoV-2, severe acute respiratory syndrome
coronavirus 2; S.VLDL.P, concentration of small very-low-density lipoprotein particles; VWF, von Willebrand factor.

However, the genetic architecture of blood metabolites is complicated by the high correla-
tion structure and shared biology of the metabolites, which cause complexities when analyzing
the causal associations between individual metabolites and disease outcomes using MR analyses.
This was exemplified in a recent study that demonstrated that genetic instruments associated with
metabolites are likely to be highly pleiotropic, with few SNPs found to be associated with specific
metabolites (38). Furthermore, there was a high degree of pleiotropy for metabolite-associated
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Figure 1

Fitted spline regression plots showing the nonlinear distribution of weighted PRSs for COVID-19 susceptibility and severity in a model
after adjustment for genotyping array (left), adjustment for genotyping array and study center (middle), and adjustment for genotyping
array, study center, and 40 principal components (right). The centers of major cities are marked for reference; shaded areas represent
95% confidence intervals. Abbreviations: COVID-19, coronavirus disease 2019; PRS, polygenic risk score; SD, standard deviation.

SNPs with modifiable risk factors and other disease endpoints. As most metabolites have only a
small number of instruments, the use of statistical methods aiming to correct for these biases [e.g.,
MR-Egger (10) and MR-PRESSO (Mendelian randomization pleiotropy residual sum and out-
lier) (117)] is not possible, nor is the use of techniques designed to evaluate the effect of multiple
correlated exposures [e.g., multivariable MR (100, 101)].

To explore this type of complexity further, we undertook a simple analysis that sought to
demonstrate the number of metabolomic features associated with genetic variants in UKBB at
a predefined and stringent threshold (see the Supplemental Methods). By using recently avail-
able NMR data within UKBB to perform a basic GWAS for circulating metabolites, we found that
only a few of the plentiful collection of potential genetic associations that would satisfy the condi-
tions to be used as instruments within MR analyses [i.e., (a) the genetic variant is associated with
the exposure, (b) there is no association between the genetic variant and the outcome, and (c) the
genetic variant is independent of any measured or unmeasured confounding factors] were associ-
ated with a specific metabolite. By contrast, numerous loci showed high levels of multimetabolite
association, with a median of 34 metabolites associated with each locus (Figure 2). The profound
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Figure 2

Distribution of associations for NMR metabolite instruments (defined as p < 5 × 10−8 and clumped using
R2 < 0.001) from GWASs using UKBB data Abbreviations: GWAS, genome-wide association study; NMR,
nuclear magnetic resonance; SNP, single-nucleotide polymorphism; UKBB, UK Biobank.

overlap of association signals acrossmetabolites is clearly a complicating factor, and one that would
potentially violate assumptions made in analyses such as MR. That is not to say that these associ-
ations are uninformative or that these issues are insurmountable; rather, the associations are clear
markers of the potential issues that need to be considered when power and precision are able to
generate strong association profiles. For studies investigating whether metabolites could be bi-
ological pathways relevant to disease onset, a potential way to solve this problem is to conduct
profile comparison analysis to examine the overlap between the metabolomic profile of prospec-
tive disease risk and that of the risk factor of the disease (e.g., BMI) to identify biological pathways
relevant to disease onset (38).

DISCUSSION

UKBB is a shining example of the impact of large, open access population biobanks in increas-
ing the power to understand the genetic architecture of common traits and diseases. Among a
wider set of potential benefits (not all of which have been considered here), the dramatic expan-
sion of GWAS sample sizes improves the power to estimate effect sizes, genomic prediction, and
the potential for applied analyses, such as those relating to causal inference. At the same time,
however, the availability of substantial analytical power and enabling analytical capacity can in-
crease the complications and inferential complexity associated with any one specific analysis. For
example, as described here and in previous studies (20, 39), population structure within the UKBB
data could potentially bias association results or their interpretation. The presence of population
structure is challenging, requiring methods that are specific to the analytical context and trait. If
not properly corrected for, the sampling structure can generate properties in data that can lead to
biased inference. Caution is therefore needed in the interpretation of GWAS results using data
fromUKBB, particularly for loci that demonstrate strong residual associations with birth location
even after adjustment for population stratification (20).

Despite this and other limitations mentioned here and elsewhere, UKBB remains an extraor-
dinary resource. In its large data collection, research output, enabling capacity, and likely future
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contributions, it has undeniably shaped the modern GWAS era. Most of the problems noted in
the analysis of results from UKBB are, and likely will continue to be, a consequence of the misin-
terpretation of results generated from the UKBB sampling frame, not the sampling frame itself.
Used for appropriate analyses, and with the results interpreted in the context of the specific na-
ture of the UKBB data set, UKBB will undoubtedly continue to be a light in the field of human
GWASs.
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