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Abstract

Emerging and re-emerging respiratory viral infections pose a tremen-
dous threat to human society, as exemplified by the ongoing COVID-19
pandemic. Upon viral invasion of the respiratory tract, the host initiates co-
ordinated innate and adaptive immune responses to defend against the virus
and to promote repair of the damaged tissue. However, dysregulated host
immunity can also cause acute morbidity, hamper lung regeneration, and/or
lead to chronic tissue sequelae. Here, we review our current knowledge of
the immune mechanisms regulating antiviral protection, host pathogenesis,
inflammation resolution, and lung regeneration following respiratory viral
infections, mainly using influenza virus and SARS-CoV-2 infections as ex-
amples.We hope that this review sheds light on future research directions to
elucidate the cellular and molecular cross talk regulating host recovery and
to pave the way to the development of pro-repair therapeutics to augment
lung regeneration following viral injury.
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INTRODUCTION

Respiratory viral infections with epidemic and pandemic potential pose an omnipresent threat
to public health. Influenza virus is the causative agent of annual influenza epidemics and has
led to four pandemics since 1918. The ongoing COVID-19 pandemic caused by SARS-CoV-2
infection has resulted in catastrophic loss of human lives, with severe disruption of health-
care and socioeconomic systems worldwide. As SARS-CoV-2 and influenza viruses continue to
evolve, there is significant concern about new pathogenic variants capable of escaping vaccine- or
infection-induced preexisting immunity.

Clinical manifestations of respiratory viral infections range from asymptomatic to severe acute
illness and even death. The most common symptoms include fatigue, runny nose, fever, cough,
tracheobronchitis, and pharyngitis. In severe cases, patients may develop bronchiolitis, pneumo-
nia, and acute respiratory distress syndrome (ARDS). As highlighted by the COVID-19 pandemic,
respiratory viral infections may also result in extrapulmonary disease including cardiac complica-
tions (1, 2). Besides acute morbidity, there is growing evidence that a considerable proportion of
people who recover from respiratory viral infections, includingCOVID-19,may harbor long-term
symptoms and diseases (chronic sequelae) in the respiratory tract or systemically. Age, pregnancy,
and comorbidities including obesity and cardiopulmonary disorders are known risk factors for
adverse outcomes following respiratory viral infections (3).

Respiratory viruses mainly target and productively replicate in cells lining the airways and alve-
olar space to cause lung injury, while also triggering innate and adaptive antiviral host responses.
After viral clearance, various immune and nonimmune cells are actively involved in resolving
inflammation and repairing the damaged lung tissue. Dysregulated (delayed, exaggerated, or pro-
longed) host responses often contribute to, if not drive, severe acute host morbidity, and they
also lead to dysfunctional repair and subsequent chronic sequelae (Figure 1). In the following
sections, we discuss protective host antiviral responses, pathogenesis, inflammation resolution,
lung repair, and chronic sequelae after respiratory viral infection, mainly using influenza virus and
SARS-CoV-2 as models.

HOST ANTIVIRAL RESPONSES

Upon encountering a respiratory virus, the host initiates a cascade of events to defend itself and
clear the pathogen (4).Nearly all cell types within the lung, structural cells and immune cells, have
the ability to detect and respond to viral infections via the coordinated activity of cell-intrinsic,
innate, and adaptive immune responses (Figure 2).

Cell-Intrinsic Antiviral Responses by Nonimmune Cells

The various nonimmune structural cells of the lung, including epithelial, endothelial, and mes-
enchymal cells, support physiological pulmonary function, but they also are at the front line of
viral invasion. Influenza virus and SARS-CoV-2 primarily target airway and alveolar epithelial
cells upon successfully overcoming the mucous barriers and mucociliary clearance within the air-
ways. From there, the virus can spread to both immune and nonimmune cells (5, 6). During this
process, viruses are detected by ubiquitously expressed pattern recognition receptors, which rec-
ognize conserved viral pathogen-associated molecular patterns (7). Viral double-stranded RNA
intermediates are detected by cytoplasmic retinoic acid–inducible gene I (RIG-I)-like receptors
(RLRs), including RIG-I and MDA5, which interact with the adaptor protein MAVS, to induce
production of type I interferon (IFN-I), IFN-III, and proinflammatory cytokines to further ac-
tivate downstream pathways and establish an antiviral state (8). The cytoplasmic DNA sensor
cGAS was also reported to respond to RNA viruses and activate STING-dependent downstream
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An overview of the pulmonary milieu during an acute respiratory viral infection. Appropriate immune
processes (solid red curve) resulting in effective viral clearance (solid blue curve) due to coordinated innate and
adaptive responses. Resolution of inflammation facilitates regeneration of the damaged tissue, restoring
tissue architecture (solid green curve) of the lung and reestablishing physiological pulmonary function.
Dysregulation of this cross talk results in delayed and exuberant inflammatory responses (dashed red curve),
inducing collateral immunopathology while potentially failing to fully clear virus and resulting in persistent
viral reservoirs and/or remnants (dotted blue curve). Sustained inflammation also inhibits reparative processes
(dotted green curve), potentially leading to chronic pulmonary disease. Abbreviations: AM, alveolar
macrophage; DC, dendritic cell.

antiviral pathways for the production of interferons (9). Moreover, cytoplasmic sensors ZBP1 and
NLRP3 orchestrate virus-induced programmed cell death and inflammasome activation, limit-
ing viral infection (8). Toll-like receptors (TLRs) are transmembrane receptors located in the
plasma or endosomal membrane, among which TLR3, 7, and 8 recognize viral RNA and activate
antiviral signaling pathways (8). In addition to epithelial cells, endothelial cell activation alters
vascular permeability and contributes to the circulation of inflammatory factors, facilitating the
influx of immune cells to the site of infection. Airway mesenchymal cells, including fibroblasts,
smooth muscle cells, pericytes, and other stromal cells, further produce growth factors, cytokines,
and chemokines to regulate immune cell migration and function during viral infection (3). Thus
cell-intrinsic responses mediated by structural cells of the lung set up the cellular landscape for
subsequent antiviral activities by innate and adaptive immune cells.

Innate Immune Cells

Alveolar macrophages (AMs) patrol the alveolar space,maintaining close contact with the alveolar
epithelial layer, to phagocytose local cellular debris, invading particles, and pathogens. During
homeostasis, AMs are the primary immune population in both mouse and human lungs and typ-
ically mediate anti-inflammatory functions. However, upon infection of the alveolar epithelium,
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Host antiviral and pathological responses during respiratory viral infection. Respiratory viruses enter the host via the respiratory
epithelium. Epithelial cells play key roles in initiating host responses by detecting the virus via pattern recognition receptors, leading to
activation of antiviral interferon signaling and secretion of proinflammatory cytokines and chemokines. Alveolar macrophages
recognize and phagocytose viruses to further activate antiviral and inflammatory responses. The initial inflammation attracts and
activates monocytes, monocyte-derived macrophages, dendritic cells, NK cells, neutrophils, and innate lymphoid cells to the lungs,
where they contribute to the elimination of the infected cells. Dendritic cells recognize viral antigens and migrate to the draining
lymph nodes to activate T cells. Antiviral T cell responses are mediated by CD4+ T helper cells and CD8+ cytotoxic T cells. CD4+
T cells coordinate B cell responses to produce antibodies and neutralize the virus. Alternatively, excessive immune responses in the
lungs can result in accumulation of inflammatory immune cells, including HIF-1α-expressing alveolar macrophages, monocytes,
neutrophils, CD4+ T cells, and hyperactivated CD8+ T cells. These events trigger a dysregulated interferon response and
overproduction of proinflammatory cytokines, resulting in diffuse alveolar damage, a systemic inflammatory state, and thrombosis,
further contributing to tissue damage and host mortality. In addition, the afucosylated antibodies and autoantibodies are associated with
severe disease outcomes. Abbreviations: AM, alveolar macrophage; ATI, alveolar epithelial type I; IFN, interferon; ILC1, type 1 innate
lymphoid cell; MDM, monocyte-derived macrophage; NK, natural killer; RLR, RIG-I-like receptor; TLR, Toll-like receptor.

AMs are among the first immune cells to encounter virus and initiate a plethora of antiviral and
inflammatory responses (10, 11), as evidenced by the substantial production of interferons (12,
13). In addition to secreting potent antiviral molecules, AMs phagocytose antibody-opsonized
influenza virus particles via the Fc receptor, thereby preventing viral dissemination to neigh-
boring alveolar epithelial cells (14). Notably, AMs were found to harbor SARS-CoV-2 RNA
(15), potentially due to direct viral infection or phagocytosis of virus and/or infected cells.
However, for reasons still under investigation, SARS-CoV-2 infection of AMs triggers minimal
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IFN-I production compared to influenza virus infection, potentially contributing to the delayed
interferon production observed in COVID-19 (16, 17).

Interstitial macrophages are another lung-resident macrophage population that likely par-
ticipates in antiviral immunity following infection (18); however, their precise functions and
significance to host responses remain to be elucidated. Circulating monocytes respond to virus-
induced inflammatory signals and infiltrate infected tissues, contributing to antiviral immunity,
but they may also cause bystander inflammation, potentially damaging host tissue. Upon acti-
vation, monocytes produce IFN-I, which provides essential signals to further activate other cell
types, includingNK cells and CD8+ T cells (19).Consistent with this, impairedmonocyte recruit-
ment in CCR2-deficient mice resulted in diminished priming of influenza virus–specific CD8+

T cell responses and delayed viral clearance (20, 21). Notably, SARS-CoV-2 can nonproductively
infect human monocytes via antibody-mediated opsonization (22). Further mechanistic studies
are required to determine whether monocytes participate in protective antiviral immunity against
SARS-CoV-2 infection.

Dendritic cells (DCs) play a crucial role in antiviral immunity by forming a bridge between
the innate and the adaptive immune systems. This communication is mediated by three major
subsets of DCs: conventional type 1 DCs (cDC1s), cDC2s, and plasmacytoid DCs (pDCs).
cDC1s are present mainly in the mucosa and vessel walls in the lungs, whereas cDC2s reside in
the lamina propria of the lung (23). Upon viral invasion, both cDC1s and cDC2s can migrate to
the draining lymph nodes to activate T cells, but cDC1s preferentially prime CD8+ T cells while
cDC2s more efficiently activate CD4+ T cells following influenza infection (24). In people with
severe COVID-19, cDCs were drastically depleted from the blood, suggesting an impairment
or delay in the activation of virus-specific T cells (25). Older host age further diminishes DC
migration and T cell priming following both influenza virus and SARS-CoV-2 infection via
a mechanism dependent on prostaglandin D2 (26, 27). In contrast to cDCs, which exert their
functions primarily via T cells, pDCs directly produce enormous amounts of IFN-I to establish an
antiviral state; however, their importance during respiratory viral infections is context dependent.
While pDCs are the major source of IFN-I upon respiratory syncytial virus (RSV) infection, they
are dispensable for IFN-I production and antiviral immunity following influenza infection (28,
29). Notably, the frequency and function of pDCs in the blood of patients with severe COVID-19
are diminished (30), which potentially contributes to suboptimal IFN-I production during the
early phase of SARS-CoV-2 infection.

NK cells belong to the family of innate lymphoid cells (ILCs) and perform crucial roles during
early antiviral responses, including killing infected cells and producing effector cytokines. Both
receptors for innate cytokines that are generated after infection and receptors for ligands on tar-
get cells can induce NK cell cytotoxicity and cytokine production. Given their essential roles in
viral clearance, depletion and dysfunction of NKs are associated with increased susceptibility to
respiratory viral infections, including SARS-CoV-2 (31, 32). Type 1 ILCs (ILC1s) are the innate
counterparts of IFN-γ-producing T helper 1 (Th1) cells, which also contribute to limiting viral
infection and dissemination (33).

Adaptive Immune Responses

Innate immune responses are the front line controlling viral replication and dissemination;
however, complete clearance of infectious virus typically requires the adaptive arm of the immune
system. Adaptive immunity encompasses the coordinated activity of CD4+ Th cells, CD8+

cytotoxic T lymphocytes (CTLs), and B cells (cellular immunity) as well as pathogen-specific
antibodies (humoral immunity) triggered during acute disease. Moreover, the adaptive system
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confers long-term immunity by maintaining long-lived plasma cells and memory lymphocytes,
which are poised for activation and expansion upon subsequent infection.

Cellular antiviral responses are initiated when naive virus-specific T cells are activated by
antigen-presenting cells (mainly cDCs) in the lung draining lymph nodes. Activated T cells un-
dergo expansion and eventually differentiate into effector T cells. Following influenza infection,
CD4+ T cells predominantly facilitate the activation and differentiation of antibody-producing
B cells and support CD8+ T cell responses (34), whereas some CD4+ T cell populations also
exhibit perforin-mediated cytolytic activity (35, 36). CD8+ T cells recognize and eliminate
virus-infected cells via perforin and granzyme-mediated cytolytic mechanisms or death receptor–
mediated apoptosis. Additionally, virus-specific CTLs are potent producers of proinflammatory
mediators such as IFN-γ and TNF (tumor necrosis factor), as well as anti-inflammatory IL-10,
thus maintaining the balance between efficient antiviral responses and immunopathology (37, 38).
Following viral clearance, most effector T cells undergo apoptosis during the contraction phase,
except for a group of antigen-specificT cells that eventually become circulating and tissue-resident
memory T (Trm) cells, providing long-term cellular immunity against reinfection (39).

Consistent with the protective role of T cells during viral infections, the magnitude of T cell
responses inversely correlated with host disease severity following SARS-CoV-2 infection (40,
41). However, virus-specific T cell immunity is compromised in COVID-19 patients more than
65 years old, potentially explaining the elevated risk of severe disease in the elderly (42, 43). Of
note, both SARS-CoV-2 infection and vaccination induce the formation of systemic antigen-
specific memory T cells, whereas only infection generates S-specific Trm cells in the respiratory
tract (44–46). Since it is well established that pulmonary Trm cells facilitate rapid responses in situ
and provide superior protection against respiratory viral infections (47), vaccination platforms in-
ducing strong local pulmonary Trm cell responses may be a useful strategy for effective protection
against influenza virus, SARS-CoV-2, and emerging variants of concern (46, 48).

The primary contribution of B cells to antiviral immunity is through the production of virus-
specific antibodies. A distinct subset of CD4+ T cells termed follicular helper T (Tfh) cells
are required for optimal activation and differentiation of B cells during infection to produce
neutralizing and non-neutralizing antibodies (49). Neutralizing antibodies bind to important
surface structures on free viral particles and prevent productive infection of susceptible cells,
thereby controlling viral dissemination. As observed during influenza virus infection, effective hu-
moral responses involve the induction of virus-specific neutralizing antibodies targeting surface
glycoproteins—hemagglutinin and neuraminidase—to block infection (50). Following SARS-
CoV-2 infection, neutralizing antibodies typically target the receptor-binding domain of the
S glycoprotein and block interactions with the ACE2 receptor (51). However, SARS-CoV-2
variants of concern, including omicron, harbor extensive mutations within the receptor-binding
domain and thus significantly evade humoral immunity generated following natural infection or
vaccination (52, 53). Antibody responses following influenza infection are also predominantly
strain specific (54). However, antibodies directed against the conserved stalk region of the in-
fluenza virus hemagglutinin protein provide broad protection against different influenza virus
strains, which is the goal of the universal influenza vaccine (55). In addition to neutralizing
antibodies, non-neutralizing, virus-specific antibodies bind to the virus without affecting its in-
fectivity, instead triggering antibody-dependent phagocytosis and cytotoxicity to clear virus or
virus-infected cells (50, 56).

Unconventional T cells are a family of cells endowed with both innate and adaptive immune
properties and are classified into three main classes: mucosal-associated invariant T (MAIT),
γδ T, and natural killer T (NKT) cells. Unlike traditional CD4+ and CD8+ T cell subsets, these
cells recognize nonpeptide antigens and have emerged as important players in mucosal immunity
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(57). Upon activation, unconventional T cells can rapidly respond to viral infection by produc-
ing diverse cytokines without the need for clonal expansion or differentiation (57). In addition
to promoting antiviral responses and viral clearance via cytokines, unconventional T cells also
exhibit cytolytic activities, killing virus-infected cells following influenza virus infection (58–60).
Interestingly, several studies consistently report a profound decline in circulating MAIT (61), γδ

T (62), and NKT cells (62, 63) during severe COVID-19, with a concomitant enrichment in the
airways.Moreover, these cells exhibit a strongly activated phenotype characterized by a functional
bias toward IL-17 production (61, 62). Since most reports investigating the role of unconventional
T cells in COVID-19 are based on peripheral blood samples, their precise contribution to local
antiviral immunity within the lung remains unknown.

PATHOLOGICAL HOST RESPONSES

Severe disease following respiratory viral infections is associated with destruction of the lung
architecture, due to a combination of virus-induced cytopathic effects and uncontrolled host
immune responses (Figure 2). The loss of structural cells of the lung, including epithelial, en-
dothelial, and mesenchymal cells, compromises gas exchange, resulting in impaired pulmonary
function as well as bronchiolitis, pneumonia, and ARDS. Severity and poor outcomes of influenza,
SARS,MERS (Middle East respiratory syndrome), and COVID-19 are typically attributed to ex-
uberant immune responses, rather than elevated viral loads (64–67). Thus, the crucial challenge
for the host during acute disease is to balance antiviral responses to efficiently clear virus without
significantly compromising tissue architecture and function. In this section, we summarize ma-
jor immune-mediated pathological mechanisms underlying adverse outcomes during respiratory
viral infections.

Dysregulation of Soluble Factors

Chemokine and cytokine responses are essential for orchestrating protective responses against vi-
ral infection. However, strict regulation of these highly potent molecules is required to prevent
morbidity and mortality. As discussed above, IFN-I and IFN-III are essential antiviral cytokines;
however, delayed and/or excessive induction of interferons triggers a cascade of events resulting
in uncontrolled inflammation and impaired lung recovery. Consistent with this notion, IFN-I
receptor deficiency in certain genetic backgrounds decreases morbidity and lung pathology fol-
lowing influenza virus and SARS-CoV-1 infections (68, 69). Interestingly, interferon responses
are context dependent in COVID-19, evidenced by their protective role in the upper respiratory
tract, whereas elevated levels of IFN-I and IFN-III in the lower respiratory tract are associated
with severe disease, characterized by a damaged epithelial barrier and potential susceptibility to
secondary bacterial superinfections (70, 71). Therefore, the location, magnitude, timing, and du-
ration are key determinants of the protective or pathological roles of interferons in respiratory
viral infections.

Besides interferons, elevated levels of a variety of proinflammatory factors such as IL-6, TNF,
and CCL2, often referred as cytokine storm, are a consistent observation during severe disease in
patients with different respiratory viral infections and often result in a systemic inflammatory state
and multi-organ dysfunction (72). Furthermore, cytokine-mediated endothelial activation, dys-
function, and cell death may contribute to systemic coagulation and thrombosis—a phenomenon
termed thromboinflammation (73)—a prominent feature of COVID-19. Therefore, blocking cy-
tokine release and/or downstream signalingmay hold great promise for treating severe respiratory
viral infections. Thus far, however, the therapeutic efficacy of inhibiting inflammatory cytokines
in this context remains limited in both animal models and clinical settings (74, 75). In addition to

www.annualreviews.org • Recovery After Lung Viral Infection 283



cytokines and chemokines, excessive and sustained complement activation has also been impli-
cated in the pathogenesis of respiratory viral infections. High circulating levels of C5a-C5aR1,
sC5b-9, and C4d were observed in patients with severe COVID-19 (76). Moreover, complement
activation is known to trigger the coagulation cascade and is considered a driver of COVID-
19-associated thromboinflammation (76). Therefore, interventions targeting the overactive
complement system may dampen severe disease during respiratory viral infection (77–79).

Innate Immune Cell–Mediated Pathogenesis

As previously mentioned, AMs are likely among the first immune cells to encounter respiratory
viruses. Upon viral recognition, AMs switch from an anti-inflammatory state to initiate antivi-
ral and inflammatory responses by producing numerous proinflammatory mediators (10, 11).
However, dysregulated AM responses also contribute to viral pathogenesis,with exaggeratedWnt-
β-catenin signaling known to promote severe pulmonary inflammation and pathology following
influenza virus and SARS-CoV-2 infection (80, 81).Moreover, the accumulation of other myeloid
cells, including CCR2+ inflammatory monocytes and monocyte-derived macrophages or DCs, in
the respiratory tract is a hallmark of severe respiratory viral infection (82). Monocytes activated
via detection of virus, direct viral infection, or cytokines secrete large amounts of inflammatory
cytokines and are known to drive excessive pulmonary inflammation following influenza virus and
SARS-CoV-1 infections (83). Aberrant circulating and pulmonary monocyte activity has also been
implicated in severe COVID-19, suggesting a conserved pathological role in respiratory viral in-
fections (25, 84). Notably, monocytes can be directly infected by SARS-CoV-2, at least in part via
antibody-dependent enhancement, triggering inflammasome activation, systemic inflammation,
and pathology (22, 85). In light of these findings, researchers are actively pursuing the strategy
of inhibiting monocyte infiltration and resultant inflammation as a therapy for severe COVID-19
and other respiratory viral infections.

As one of the first responders to migrate to the lung during infection, neutrophils may facili-
tate the clearance of virus and virus-infected cells. As observed with other innate cells described
above, clinical studies suggest a potential detrimental role for excessive neutrophilic inflammation
in severe respiratory viral infections (86). Adverse outcomes following influenza virus and SARS-
CoV-2 infections have been associated with increased neutrophil numbers, neutrophil extracellu-
lar trap (NET) formation, and neutrophil activation (87–89). Maladaptive neutrophil responses
and NET formation likely propagate pulmonary inflammation, resulting in damage of the airway
and alveolar epithelium, compromised lung function, andmicrovascular thrombosis (90, 91).Con-
sistent with clinical findings, partial depletion of neutrophils alleviates pulmonary inflammation
and host morbidity following influenza virus infection (92). Although the mechanisms underly-
ing the pathological activity of neutrophils following viral infections are still unclear, targeting
exuberant neutrophilic responses remains a viable therapeutic avenue to mitigate severe disease.

Recent studies have highlighted the dysregulation of additional innate immune cells in se-
vere disease following respiratory viral infections. CD1c+ cDCs are enriched within the lungs
of patients with severe COVID-19, where there is a concomitant loss of CD123high pDCs, a
phenomenon associated with development of ARDS (25). Mast cell degranulation enhanced in-
flammation within the alveolar epithelium, promoting lung injury following influenza virus and
SARS-CoV-2 infections (93, 94). Increased production of cytokines such as IFN-γ by ILC1s and
NK cells has also been associated with severe COVID-19 (88). As high-dimensional techniques
such as spectral flow cytometry, single-cell RNA sequencing, and multi-omics are adopted more
frequently to study patient samples, we will likely identify an even larger number of cell types and
potentially specific subsets implicated in the development of severe disease following respiratory
viral infections.
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Adaptive Immune System–Mediated Pathogenesis

Timely and robust induction of adaptive T and B cell responses is vital for antiviral responses and
development of long-term immunity to subsequent infections.However, dysregulation in the form
of aberrant, delayed, or excessive adaptive responses may induce widespread immunopathology,
resulting in increased morbidity and mortality. During acute infection, T cells secrete numerous
proinflammatory cytokines, including TNF-α and IFN-γ, contributing to pulmonary inflamma-
tion typically aimed at viral clearance (38, 95). However, several T cell subsets and associated
cytokines contribute to lung pathology and poor outcomes, evidenced by the enrichment of
CXCR3+CD8+ T cells during influenza infection (96) and virus-specific overactivated CD4+

T cells in COVID-19 (41, 97). Moreover, pathogenic Th1 and Th17 cells with high expression
of GM-CSF are associated with increased pulmonary inflammation (84, 98). Excessively acti-
vated CD8+ T cells, marked by high expression of activation markers, cytotoxic molecules, and/or
complement receptors, are also implicated in the development of severe COVID-19 (44, 84, 99).
Indeed, immune complex–mediated degranulation of CD16+CD8+ T cells induces endothelial
cell injury, likely contributing to endotheliitis within the lung and thromboinflammation (100).
As several reports have now confirmed a pathological role for dysregulated T cell responses, it
is crucial to dissect the molecular mechanisms dictating protective versus detrimental functions
following respiratory viral infections.

Aberrant B cell and antibody responses have also been reported in severe respiratory vi-
ral infections. IL-10-producing regulatory B lymphocytes that suppress Th1 cell responses are
biomarkers of lung disease severity in RSV-infected infants (101). Impaired germinal center for-
mation has been observed in COVID-19 patients, and this might skew humoral responses toward
an extrafollicular class-switched B cell response, potentially promoting proinflammatory responses
(102, 103). The induction of atypical afucosylated virus-specific IgGs during COVID-19 may also
contribute to excessive local and systemic inflammation (81, 104, 105). This effect is likely due
to the enhanced binding capacity of afucosylated antibodies to Fc receptors on monocytes and
macrophages, which promotes antibody-dependent viral entry to induce inflammatory cell death,
systemic inflammation, platelet activation, and thrombosis (81). Furthermore, autoantibodies have
now emerged as a consistent feature of severe COVID-19 outcomes, where a high proportion of
antibodies target IFN-I, contributing to delayed viral clearance, lymphopenia, and tissue damage
(6). Additional studies are required to elucidate the mechanisms responsible for the induction as
well as subsequent effects of pathological antibodies during SARS-CoV-2 infection.

RESOLUTION OF INFLAMMATION AND IMMUNE-MEDIATED REPAIR

Reestablishing physiological pulmonary function after viral infection requires not only rapid elim-
ination of the virus but also resolution of inflammation and restoration of the lung architecture
damaged during acute disease. This process of resolution and repair is facilitated by a complex
interplay of signaling pathways and mediators involving diverse immune and structural cells of
the lung.

Macrophages

Following viral clearance, AMs clear lung debris and apoptotic cells, which is essential to
eliminate inflammatory triggers and promote resolution of inflammation. In this phase, ep-
ithelial cells express CD200 and TGF-β that can bind to cognate receptors expressed on AMs,
inhibiting AM inflammation and instead activating their anti-inflammatory and repair programs
(106). Consistent with this, the expression of CD200R is diminished in patients with severe
COVID-19, further indicating a regulatory role for CD200-CD200R signaling in resolution
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of inflammation (107). The transcription factor PPAR-γ, known to regulate AM development
and maintenance, is required for the pro-repair activity of AMs (108). In concordance with this,
myeloid PPAR-γ deficiency leads to impaired tissue recovery and the development of chronic
fibrotic sequelae following influenza virus infection (20, 108, 109). Other transcription factors
such as β-catenin and HIF-1α also modulate the inflammatory and reparative roles of AMs
following infection, as evidenced by accelerated resolution of inflammation and lung repair upon
their deletion in AMs (80).

Viral infections typically result in a partial depletion of the resident AMs around the peak of
inflammation, requiring subsequent reconstitution of the AMpool via AMproliferation and/or re-
plenishment through monocyte differentiation (80, 110, 111). To this end, β-cateninlowHIF-1αlow

AMswith the capacity for self-renewal serve as progenitors for the wound-healing AMpopulation,
promoting tissue repair processes by secreting numerous epithelial and endothelial growth factors
(80). Adverse outcomes in patients with severe COVID-19 exhibiting a sustained loss in resident
AMs despite the accumulation of monocyte-derived macrophages further reiterate the essential
regulatory and pro-recovery roles of AMs (99, 112, 113). In addition to AMs, a recently identified
interstitial macrophage subset, nerve- and airway-associated macrophages, was found to exhibit
an alternative activation phenotype and exerted immunoregulatory roles to control excessive lung
inflammation following influenza infection (18).

ILCs

ILC2s are the most abundant ILC subset in the lung and facilitate the resolution of inflamma-
tion and tissue repair following virus-mediated damage (114). Following influenza virus clearance,
epithelial-derived IL-33 activates ILC2s to produce several anti-inflammatory factors and type 2
cytokines, inducing a wound-healing response to promote recovery after acute lung injury (114–
117). ILC2s exert pro-repair functions by restoring lung epithelial integrity and airway remodeling
through amechanism dependent on the epidermal growth factor amphiregulin (AREG) (114, 118,
119). Additionally, interferon deficiency led to host protection from lethal influenza virus infec-
tion dependent on IL-5- and AREG-producing ILC2s (118, 120). Consistent with a beneficial
role for ILC2s, patients with severe COVID-19 harbored reduced levels of circulating ILC2s, the
abundance of which negatively correlated with the duration of hospitalization and disease severity
(121, 122). Similar findings were reported for other cohorts where patients with elevated numbers
of NKG2D+ ILC2s in addition to increased serum IL-33, IL-5, and IL-13 levels exhibited im-
proved outcomes in terms of length of hospitalization and risk of requiring mechanical ventilation
(123). Surprisingly, however, the use of IL-13 receptor–blocking antibody diminished mortality
in COVID-19 patients, potentially indicating a nuanced role of ILC2s in recovery, independent
of IL-13 signaling (124). Further studies are required to elucidate the beneficial activities of pul-
monary lung ILC2s and associated cytokines in the resolution of disease following COVID-19
and other respiratory viral infections. ILCs and NK cells can also produce significant quantities
of IL-22, a tissue-protective cytokine that protects epithelial cells from apoptosis and triggers
proliferation of epithelial cells (125). Studies in mouse models identified a critical role for IL-22-
producing ILCs and/or NK cells in the promotion of inflammation resolution and expression of
tissue-repair genes in the context of influenza virus infection (125–127).

T Cells

Foxp3+CD4+ regulatory T cells (Tregs) are present in various nonlymphoid tissues, includ-
ing lung tissue, poised to exert immunoregulatory functions and prevent immunopathology.
Upon influenza virus infection, Tregs accumulate in the lungs and attenuate neutrophilic and
monocyte-driven inflammation by secreting anti-inflammatory cytokines TGF-β and IL-10
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(128, 129). In addition to Foxp3, transcriptional factors such as T-bet, Blimp-1, and IRF4 further
define Treg functions in different inflammatory milieus (130, 131). The Th1-associated tran-
scription factor T-bet is elevated in pulmonary Tregs during influenza virus infection, which in
turn suppresses excessive Th1-mediated inflammation (38, 130). Similarly, Tregs produce IL-10
through IRF4-Blimp-1 signaling, thereby limiting influenza virus–induced immunopathology
(38, 129, 131). In support of a protective role of Tregs, severe COVID-19 was reported to
be associated with a significant decrease in circulating and airway Tregs (132, 133). However,
other studies indicate an increase in circulating Tregs in severe disease, with a concomitant
overexpression of suppressive molecules potentially diminishing antiviral responses (134, 135).
These contradictory observations may be a function of dysregulation vis-à-vis the timing of
Treg activity—compromising antiviral immunity during early stages of infection but limiting
immunopathology to promote recovery following viral clearance. However, further mechanistic
studies are required to uncouple these roles and identify nodes of regulation to enhance recovery
in the aftermath of respiratory viral infections. Aside from the suppression of inflammation,
Tregs can promote tissue repair (136). A subset of lung-infiltrating Tregs produce AREG and
enhance lung healing during influenza virus infection (137). Consistent with this notion, Treg-
specific AREG deficiency resulted in severe lung injury and disrupted epithelial integrity without
altering Treg suppressor functions and antiviral immunity following influenza virus infection
(137). Increased Notch4 expression on circulating Tregs has been associated with COVID-19
severity and predicted mortality. Mechanistically, Notch4 antagonizes IL-18 signaling, resulting
in dynamically restraining AREG-dependent tissue repair, which increases severe pulmonary
inflammation in respiratory viral infection (138). Notably, Tregs from aged mice demonstrated
a cell-autonomous impairment of reparative programs and gain of a proinflammatory phenotype
after influenza pneumonia, thus resulting in delayed resolution of inflammation (139).

In addition to Tregs, conventional effector T cells in the lung also mediate immunomodulatory
functions to promote the resolution of inflammation following respiratory viral infections. Effec-
tor CD4+ T cells and CD8+ T cells produce high levels of IL-10 during the onset of adaptive
responses following influenza virus and RSV infections, curbing excessive pulmonary inflamma-
tion, tissue damage, and mortality (38, 140, 141). Notably, IL-10 production by effector T cells
requires stimulation with IL-27 and IL-2, which are typically restricted to the site of infection,
suggesting that the local environment regulates effector T cell function (140, 142).

LUNG REGENERATION

A hallmark of severe respiratory viral infection is extensive destruction of the airway and alve-
olar epithelium due to either direct infection or collateral immunopathology. Moreover, the
endothelium and mesenchyme undergo substantial remodeling, resulting in loss of the delicate
microarchitecture of the alveolar epithelium.To restore homeostasis and physiological pulmonary
function, diverse progenitor cells within the airway and alveolar epithelium respond to damage-
associated cues such as hypoxia to regenerate cells lost during acute disease (Figure 3). A complex
set of cellular and molecular players participate in this repair process and require strict regulation
to ensure successful regeneration, as detailed below.

Airway Epithelium

The trachea and proximal airways are the interface between the external environment and the dis-
tal parenchyma, serving as a barrier to diverse insults including viruses. The production of mucus
by goblet and other secretory cells as well as the ciliary beat are essential for mucociliary clear-
ance of pathogens and debris (143). However, they are frequently infected and exhibit squamation
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Alveolar regeneration following virus-induced lung injury. Successful alveolar regeneration primarily relies on a subset of ATII cells,
known as alveolar epithelial progenitors. Various immune and structural cells provide essential signals, including Wnt proteins, FGF7,
FGF10, IL-22, AREG, KGF-1, etc., to facilitate this process and augment epithelial regeneration. Interstitial macrophage–derived
inflammatory cytokines like IL-1β and TNF-α induce ATII cells to adopt a Krt8+ transitional state to ultimately differentiate into
functional ATI cells. Moreover, endothelial cells further undergo self-renewal via a COUP-TF2-dependent mechanism. During severe
disease characterized by exuberant inflammation and extensive alveolar damage, Krt5+p63+ progenitors are recruited from the airways,
which are typically biased to adopt airway fates resulting in bronchiolization of the alveolar epithelium. Moreover, chronic
inflammation results in the accumulation of Krt8+ transitional cells, preventing their differentiation into ATI cells while also impeding
COUP-TF2-mediated endothelial regeneration. Elevated deposition of extracellular matrix proteins and activity of pathological
fibroblasts further hinder alveolar regeneration, potentially resulting in fibrosis and chronic sequelae. Abbreviations: AM, alveolar
macrophage; AEP, alveolar epithelial progenitor; AREG, amphiregulin; ATI, alveolar epithelial type I; ECM, extracellular matrix;
ILC2, type 2 innate lymphoid cell; Krt8, cytokeratin; NK, natural killer; Treg, regulatory T cell.

along with loss of the nascent pseudostratified epithelium during acute disease (144). In response
to injury, resident cytokeratin 5–positive (Krt5+) basal cells undergo self-renewal and migrate to
cover damaged areas, forming a transient stratified structure (145). Subsequent differentiation, a
process regulated by Notch and Myb signaling, repopulates lost secretory, goblet, and multicil-
iated cells and restores the pseudostratified architecture of the airway epithelium (145–148). In
distal murine airways (known to lack endogenous basal cells), uninjured Scgb1a1+ secretory cells
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maintain club cells and multiciliated cells (149). In contrast to human intrapulmonary airways,
among murine airways only the trachea and proximal bronchi harbor basal cells, an important
consideration during the study of airway regeneration using mouse models (150). Additional pro-
genitors in the distal airways have also been found to contribute to alveolar regeneration in certain
contexts, as described below.

Alveolar Epithelium

Alveolar damage during respiratory infections triggers diverse repair processes to repopulate the
denuded epithelium. Although quiescent during homeostasis, moderate lung injury triggers alve-
olar epithelial type II (ATII) cells to undergo self-renewal and transdifferentiate into ATI cells
(150, 151). A distinct subset of ATII cells, termed alveolar epithelial progenitors, were found to
account for themajority of ATII cell proliferation after viral injury (152, 153).The alveolar epithe-
lial progenitors preferentially reenter the cell cycle upon activation of Axin2, downstream of Wnt
signaling, to undergo self-renewal and differentiation to ATI cells. Alveolar macrophages secrete
essential Wnt proteins via a Trefoil factor 2–dependent mechanism to support ATII-mediated
repair (154). In addition, mesenchyme-derived FGF7 and FGF10 as well as numerous signal-
ing pathways including Notch, TGF-β, BMP, and Hippo facilitate successful ATII cell–mediated
repair (150, 152, 153).

Lineage-tracing studies have been instrumental in elucidating the crucial role of ATII cells
in repopulating the ATI niche via the Krt8+ ATII-ATI transitional state (155–157). Interstitial
macrophage–derived IL-1β in particular, along with TNF-α, has been identified to provide an
essential inflammatory niche, to promote differentiation of the transitional cells (155, 158). Given
the pleotropic functions and multifaceted responses induced by these molecules, strict regulation
is required,with chronic inflammation leading to accumulation of these transitional cells in patho-
logical contexts such as fibrosis (155, 157). Additional cues from the immune system, including
AREG, keratinocyte growth factor 1 (KGF-1), and IL-22 derived from ILCs, Tregs, γδ T cells
and/or NK cells, augment epithelial regeneration and help restore the structural integrity of the
lung following viral damage (114, 137).

In cases of diffuse alveolar damage following severe respiratory infections, the substantial loss
of ATI cells leads to impaired gas exchange and potentially respiratory distress (159). The resul-
tant hypoxia triggers activation and recruitment to the distal lung of rare Sox2+p63+ epithelial
progenitors, characterized by Krt5 expression (160). Colonization of the distal lung by these pro-
genitors is crucial for maintenance of pulmonary function during acute disease (161), likely due
to preservation of the structural integrity of the distal lung. However, these progenitor cells have
been found to persist in an undifferentiated state well past viral clearance, skewed toward airway
fates such as goblet and tuft cells upon eventual differentiation (162).This airway bronchiolization
of the distal lung is also observed in humans following severe damage and is typically associated
with suboptimal repair; however, the origin of these cells remains unknown (159). Sophisticated
lineage-tracing studies have revealed the ability of an additional bipotent progenitor subset termed
bronchioalveolar stem cells to contribute to regeneration of both distal airway and alveolar cells
(163–165). In contrast to mice, humans possess respiratory bronchioles where the distal airways
interact with the alveolar niche. Recently, a secretory cell population residing in the respiratory
bronchiole was identified as a source of ATII cell progenitors (166, 167). These cells, in addition
to several other progenitors, contribute to repair of the distal lung following injury; however, their
relevance in the context of viral injury is unclear (150). Some progenitors are also known to be
preferentially targeted for viral infection, further complicating the elucidation of their respective
contributions to repair (168).
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Mesenchyme Remodeling

Stromal cells residing within the alveolar compartment have been demonstrated to maintain
alveolar homeostasis and aid epithelial repair following injury (169). Alveolar fibroblasts secrete
and replenish ECM components to provide a scaffold for epithelial and endothelial regenera-
tion (170). Monocytes also contribute to this process by secreting several proangiogenic and
matrix-remodeling enzymes (171). Moreover, ILC2-derived IL-13 is known to induce M2-like
polarization of macrophages, promoting collagen synthesis and ECM remodeling (171).

Alveolar interstitial fibroblasts expressing Pdgfrα support ATII cell growth and differentiation
(172, 173). These cells provide FGF7 and FGF10, essential ligands for ATII cell–mediated repair
(152). A Wnt-responsive Axin2+Pdgfrα+ subset of fibroblasts, termed the mesenchymal alveolar
niche, initiate reciprocal paracrine signaling with ATII cells and alveolar epithelial progenitors
to facilitate self-renewal (172). In contrast, an Axin2+ myofibrogenic progenitor cell was found
to seed pathological myofibroblasts, associated with excessive production of ECM components,
resulting in dysplastic repair and fibrosis (172, 173). Moreover, uncontrolled activity of damage-
responsive fibroblasts via ECM proteases, ADAMTS4 in particular, promoted excessive immune
cell infiltration and lethal immunopathology following influenza virus infection (174).While these
studies provide insight into the role of the mesenchyme in regulating functional and dysplastic
epithelial repair, mechanisms governing the regeneration of mesenchymal cells lost during acute
infection remain unknown, an important gap in the field.

Endothelium Regeneration

To preserve optimal gas exchange following viral/immune-mediated injury of the distal lung,
regeneration of pulmonary endothelial cells in addition to the alveolar epithelium is crucial. En-
dothelial progenitor cells were first identified in the rat lung, where they repopulate and repair the
microvasculature following injury (175). In the context of influenza virus–mediated lung injury,
COUP-TF2 was identified to play a major role in regulating endothelial cell proliferation and
migration (176). Notably, activation of NF-κB in endothelial cells via proinflammatory cytokines
such as IL-1β and TNF-α was found to inhibit COUP-TF2 activity and subsequent repair (176).
The beneficial role of these cytokines in ATII cell–mediated repair described above further con-
firms the requirement for strict spatiotemporal regulation of these mediators for successful repair.
Recent studies using single-cell technologies have facilitated the identification of numerous pul-
monary endothelial cell subsets. A Car4high subset in particular was found to associate with areas of
alveolar damage and a transcriptional signature indicating receptiveness to cues from the alveolar
epithelium (177).

CHRONIC SEQUELAE

A complex interplay of cellular and molecular mediators, including those originating from the
immune system, are crucial for functional repair of the lung following viral injury. However, a va-
riety of factors vis-à-vis the pathogen as well as the host may potentially result in dysregulation of
regenerative processes, leading to aberrant repair and chronic sequelae (178, 179) (Figure 3). The
COVID-19 pandemic in particular has highlighted this phenomenon, termed postacute sequelae
of COVID-19 (PASC),with numerous reports of symptoms persisting weeks to years after primary
infection (180). PASC patients exhibit a variety of symptoms, ranging from generic myalgia, dys-
pnea, and joint pain to specific pulmonary, neurological, and cardiovascular sequelae (180–182).
This phenomenon is not unique to SARS-CoV-2. Other common respiratory viruses as well as
pathogens are known to potentially result in the development of chronic pathology (179, 183).
The etiology of postviral disease remains unknown, and several hypotheses are currently under
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investigation (183). In particular, sustained dysregulation of the immune system has emerged as
a unifying feature in driving chronic disease following various respiratory viral infections (179).
The remainder of this section highlights major immune players implicated in the development of
fibrotic disease following acute SARS-CoV-2 and influenza virus infections. A recent review fur-
ther provides an extensive description of the immune determinants of chronic pulmonary sequelae
following various respiratory viral infections (179).

Clinical studies revealed an accumulation of monocytes, DCs, and pDCs within the airways
of PASC patients, which correlated with the incidence of radiological abnormalities and im-
paired lung function (44, 184). The accumulation of profibrotic CD163+ monocyte–derived
macrophages during COVID-19 ARDS further lends credence to this notion (185). Severe
COVID-19 is associated with highly elevated levels of monocyte/macrophage-derived IL-1β as
well as accumulation of Krt8+ transitional cells, indicating dysplastic repair that further con-
tributes to impaired pulmonary function (155, 186). Moreover, sustained upregulation of IFN-I
and IFN-III was observed in PASC patients, likely disrupting epithelial repair and differentiation
(70, 71, 187). Instead of resolution following acute disease, chemokines such as CXCL9,CXCL10,
and CXCL11 have been observed to remain elevated in the airways of PASC patients and lead to
maintenance of several adaptive cells (184, 187). The accumulation of CD8+ T cells and B cells
strongly correlated with impairment of pulmonary function, epithelial damage, and incidence of
radiological abnormalities in PASC patients (44, 184). Notably, B cell levels did not correlate with
SARS-CoV-2-specific antibody titers (184). Instead, several studies have reported autoantibod-
ies associated with increased disease severity and subsequent development of PASC, suggesting
a detrimental role of these B cells in the postacute phase of infection (188–192). Aging further
elevates the risk of postviral disease, at least in part due to nonresolving inflammation driven by
CD8+ Trm cells, which impaired lung function and induced fibrosis, with improved outcomes
upon their depletion (178, 193).

CONCLUDING REMARKS

The COVID-19 pandemic has spurred an unprecedented response in the scientific community,
with widespread collaborative and interdisciplinary efforts geared toward the characterization of
viral pathogenesis and immune responses and the development of therapeutics to mitigate se-
vere disease. A consistent feature observed during COVID-19, but also other viral pneumonias
including influenza, is the heterogeneity in severity of disease.While several factors underlie this,
host-related factors (age, comorbidities, pregnancy, etc.) in particular are known to greatly en-
hance morbidity (178, 194). Overt changes in the immune system resulting from these variables,
characterized in the absence of infection, are thought to contribute to this phenomenon (195).
However, detailed characterization of specific immunological mechanisms dysregulated in these
individuals during infection would likely yield more targeted approaches to mitigate disease.

Most investigations into the pathogenesis of respiratory viral infections have traditionally fo-
cused on the acute phase. For example, we now have a plethora of antiviral and anti-inflammatory
drugs that,when used in the appropriate therapeutic window during acute disease, greatly improve
prognosis and outcomes.The immense burden of chronic pulmonary sequelae, however, indicates
an urgent need for the development of pro-repair therapeutics aimed at augmenting lung regen-
eration following injury. Furthermore, in several cases the same cellular/molecular mediator(s)
elicits both protective and pathogenic effects depending on the stage and context of disease. We
must now design targeted studies to uncouple these activities and downstream signaling pathways,
potentially via more-detailed spatiotemporal characterization (196).

Our understanding of the communication between immune cells, epithelial cells, endothelial
cells, and stromal cells during and in the aftermath of respiratory viral infections, although
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improving, is relatively rudimentary. The majority of efforts by immunologists and virologists
have been directed toward elucidating viral pathogenesis and host responses relevant for viral
clearance. Independent studies from lung biologists have also described the process underlying
the regeneration of the alveolar epithelium, endothelium, and mesenchyme following viral injury.
However, the most prominent gap in our understanding relates to the communication between
immune cells and various nonimmune cells within the lung during viral infection and recovery.
Additionally, studies have typically relied on reductionist methodologies to identify relevant
players and validate their role in the context of viral diseases. As biologists, however, we can
appreciate the complex interplay of molecular and cellular mediators underlying physiological
processes. Thus, although there is immense value in reductionist studies, it is critical to eventually
integrate these findings and adopt holistic approaches to understand the nature of interactions
within the lung and their relevance in viral pathogenesis and tissue recovery. Insights into the
molecular and spatiotemporal nature of lung cellular cross talk would elucidate the determinants
of functional repair, revealing novel strategies to restore the pulmonary architecture, dampen
chronic sequelae, and promote host recovery.
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