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Abstract

Infections caused by malaria parasites place an enormous burden on the
world’s poorest communities. Breakthrough drugs with novel mechanisms of
action are urgently needed. As an organism that undergoes rapid growth and
division, the malaria parasite Plasmodium falciparum is highly reliant on pro-
tein synthesis, which in turn requires aminoacyl-tRNA synthetases (aaRSs)
to charge tRNAs with their corresponding amino acid. Protein translation is
required at all stages of the parasite life cycle; thus, aaRS inhibitors have the
potential for whole-of-life-cycle antimalarial activity.This review focuses on
efforts to identify potent plasmodium-specific aaRS inhibitors using pheno-
typic screening, target validation, and structure-guided drug design. Recent
work reveals that aaRSs are susceptible targets for a class of AMP-mimicking
nucleoside sulfamates that target the enzymes via a novel reaction hijack-
ing mechanism. This finding opens up the possibility of generating bespoke
inhibitors of different aaRSs, providing new drug leads.
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1. INTRODUCTION

Malaria is a debilitating disease caused by protist parasites of the genus Plasmodium. Half the
world’s population lives in subtropical regions where malaria is endemic. Infection is initiated
when a female Anopheles mosquito bites a human, injecting infectious sporozoites into the blood-
stream. The parasites establish infections in liver cells, where they multiply and are released to
invade red blood cells. Some blood stage parasites differentiate into transmissible gametocytes
that can be taken up by mosquitoes to complete the life cycle.

The blood stage of the infection is associated with symptoms that range in severity from fever,
headache, and nausea to severe anemia, respiratory distress, acidosis, coma, and death (73, 82). In
2021, the most lethal malaria species,P. falciparum, infected more than 200 million people, causing
enormous illness and loss of productivity and leading to 619,000 deaths (102).

Recent gains in the fight against malaria have stalled or been reversed due to disruptions to ser-
vices during the COVID-19 pandemic,with 16millionmoremalaria cases and 51,000more deaths
in 2021 compared to 2019 (102). These problems are exacerbated by loss of efficacy of current
antimalarial treatments, with ∼50% treatment failure of current artemisinin-based combination
therapies in some regions in Southeast Asia (2, 52, 90, 97). Recently, resistance to artemisinins has
been clinically validated in Africa (7), where most malaria deaths occur.

The peak body for antimalarial drug development, Medicines for Malaria Venture (MMV),
has called for the development of new antimalarial compounds that meet their published target
product profiles (14).MMV recommends that new compounds have a novel mechanism of action,
be active against all currently known drug-resistant parasite strains, and have a low propensity
for resistance development. The drug candidates should reduce the blood stage parasite burden
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quickly, in order to save lives, but also remain in the circulation long enough to enable parasite
clearance.They should preferably have liver stage activity so that they can be used for prophylaxis,
and activity against sexual blood stages to prevent parasite transmission. The candidates should
preferably also kill Plasmodium vivax.They should have a low cost of goods and be orally bioavail-
able. Ideally, they would be effective in a single oral dose, providing single-exposure radical cure
and prophylaxis (SERCaP) for the treatment of uncomplicated malaria in adults and children. It
is recognized that these are daunting criteria (14, 74).

2. AMINOACYL tRNA SYNTHETASES—CRITICAL
HOUSEKEEPING ENZYMES

When a ribosome matches a particular mRNA codon with a tRNA anticodon, it relies on the
tRNA being loaded with the correct amino acid. The fidelity of protein synthesis is determined
upstream by a series of aminoacyl-tRNA synthetases (aaRSs).These enzymes catalyze the charging
of tRNAs with their cognate amino acid, in a two-step reaction (Figure 1a). In the first step,

ATP

aa-tRNA

AMP

Charged tRNA

EF-Tu

Ribosome

a b

Rossmann fold
(class I aaRSs)

Seven-stranded β sheet 
surrounded by α helices

(class II aaRSs)
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Amino acid–
adenylate

PPi
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Figure 1

Diagram of tRNA charging by aaRSs and core structures of aaRSs. (a) aaRSs recognize a specific amino acid and use the energy from
ATP to generate an activated adenylate intermediate. The cognate tRNA binds and is esterified to the amino acid, with the release of
AMP. The charged tRNA is complexed to an elongation factor (EF-Tu) and delivered to the ribosome. The tRNA anticodon pairs with
the cognate mRNA codon to ensure fidelity of protein synthesis. (b) The catalytic domain of class I aaRSs adopts a Rossmann fold
(adapted from PDB 7ROU). The catalytic domain of class II aaRSs is characterized by a seven-stranded β sheet surrounded by α helices
(adapted from PDB 5XIX). Abbreviations: aaRS, aminoacyl-tRNA synthetases; aa-tRNA, amino acid–tRNA; PDB, Protein Data Bank;
PPi, pyrophosphate.
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each aaRS binds its cognate amino acid and ATP and forms an activated amino acid–adenylate
with the release of pyrophosphate. In the second step the cognate tRNA binds, and the aaRS
and the tRNA undergo conformational changes that position the tRNA acceptor stem to mount
a nucleophilic attack on the amino acid–adenylate intermediate (29, 78). AMP is released and
the aminoacyl tRNA (aa-tRNA) is delivered to the ribosome in complex with elongation factors
(Figure 1a). Considered the most ancient of enzymes, aaRSs are found in the cytoplasm of all
bacteria, archaea, and eukaryotes, as well as in the mitochondria and plastids of eukaryotes. They
comprise two distinct, apparently unrelated, superfamilies of enzymes (classes I and II) (16, 79)
(Figure 1b; see the sidebar titled Some Features of Class I and II Cytoplasmic aaRSs). Further
classification into subclasses is based on sequence similarity and physicochemical properties of
their amino acid substrates, and possibly reflects the origins of the two aaRS classes in ancestral
protein-tRNA complexes (80).

SOME FEATURES OF CLASS I AND CLASS II CYTOPLASMIC aaRSs

Class I

Class I aaRSs are characterized by an N-terminal catalytic domain with a Rossmann fold structure linked to an
α-helical C-terminal anticodon-binding domain that is involved in recognition of the tRNA.

Class Ia aaRSs charge methionine, valine, leucine, isoleucine, cysteine, and arginine. Class Ib aaRSs charge glu-
tamic acid and glutamine (and lysine in archaea and a limited number of bacteria). Class Ic aaRSs charge tyrosine
and tryptophan.

MetRS, CysRS, ArgRS, GluRS, and GlnRS have an editing domain connective peptide I that is expanded in
ValRS, LeuRS, and IleRS and is repurposed as a dimerization domain in TyrRS and TrpRS. Class I aaRSs are
generally monomeric.

Class I catalytic domains contain characteristic HIGH and KMSKS motifs (71). Formation of the adenylate
intermediate is accompanied by a conformation change in the KMSKS loop (56).

TyrRS and TrpRS can have additional activities (e.g., signaling) that depend upon differential splicing events
and generation of protein fragments (12, 100, 101).

Class I aaRSs generally bind to the minor groove of the acceptor stem of the tRNA and distort the tRNA 3′

terminus into a hairpin, allowing acylation of the 2′ OH group (15).
There are exceptions to the general rules: TyrRS, MetRS, and TrpRS are dimeric. TyrRS (32) and TrpRS (87,

106) bind tRNA in the major groove and can acylate the 3′ OH group of tRNA.

Class II

Class II aaRSs have a catalytic domain comprising a six-stranded, antiparallel β sheet flanked by α helices, linked to
an anticodon or tRNA-binding domain. ProRS, ThrRS, and AlaRS contain editing domains.

Class IIa aaRSs charge serine, threonine, alanine, glycine, proline, and histidine. Class IIb aaRSs charge aspartic
acid, asparagine, and lysine. Class IIc aaRSs charge phenylalanine.

Class II aaRSs are characterized by three conserved motifs involved in ATP binding and dimerization (42). They
are generally dimeric or multimeric (48). Binding of substrates is associated with a conformational change.

In higher eukaryotes additional domains support noncanonical functions (e.g., signaling) (56). In general, class
II aaRSs bind to the major groove of the tRNA in a manner that presents the 3′ OH of adenosine-76 at the 3′ end
of the tRNA in position for attachment of the amino acid (25). As an exception, PheRS binds tRNA via the minor
groove and attaches phenylalanine to the 2′ OH (107).
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3. TARGETING PROTEIN TRANSLATION AS A PROMISING STRATEGY
FOR DEVELOPMENT OF NEW ANTIMALARIALS

Protein translation is an essential pathway that is required at all stages of the malaria parasite’s life
cycle, making it a good target for the development of compounds with multistage activity. Antibi-
otics that inhibit protein translation by targeting the ribosome, such as tetracyclines, macrolides,
and streptogramins, have been exploited successfully as antibacterial agents (31, 60, 98), and doxy-
cycline is widely used formalaria prophylaxis (30).As critical components of the protein translation
pathway, aaRSs are also promising targets for anti-infectives. Inhibition of an individual aaRS re-
sults in delivery of noncognate tRNAs, ribosome slipping, and synthesis of nonfunctional proteins,
eventually leading to cell death (84).

aaRS enzymes have been targeted successfully in other pathogens. For example, mupirocin,
an IleRS inhibitor, is a natural product that is widely used as a topical antibiotic (54). Agrocin
84 is a LeuRS inhibitor produced by a biocontrol agent, Agrobacterium radiobacter, that inhibits
other pathogenic strains of agrobacteria (20). Halofuginone is a ProRS inhibitor used to prevent
coccidiosis in poultry (76). Tavaborole is a LeuRS inhibitor used to treat fungal onychomycosis
(34, 81, 89). GSK3036656, another LeuRS inhibitor, is undergoing trials in humans for treatment
of tuberculosis (ClinicalTrials.gov NCT05382312) (94). These examples demonstrate proof-of-
principle for aaRSs as therapeutic targets.

The P. falciparum nuclear genome has 37 aaRS genes encoding 36 aaRS enzymes that function
in the cytoplasm and/or the apicoplast (11, 52). Charged tRNAs and one aaRS (PheRS) are also
transported to the mitochondrion to support protein translation in that compartment (45). Phy-
logenetic analysis reveals that the Plasmodium cytoplasmic aaRSs cluster with other eukaryotic
aaRSs and exhibit high-level conservation of active site residues, while apicoplast aaRSs cluster
with bacterial aaRSs (11, 70).

Targeting apicoplast-located aaRSs appears, at first, to be a good strategy. However, apicoplast
inhibitors result in a phenomenon known as delayed death (23), whereby parasite death occurs
only in the second asexual cycle after treatment, when apicoplast-generated isoprenoid precursor
metabolites become limiting (51). While apicoplast-targeting protein translation inhibitors, such
as doxycycline, are used clinically for prophylaxis (30), their slow onset of action limits their use-
fulness for treatment of acute infections (58). Thus, this review concentrates on the challenge
of identifying Plasmodium cytoplasmic aaRS inhibitors that achieve good potency while being
sufficiently selective for the pathogen’s enzyme over the equivalent host enzyme.

4. METHODS FOR IDENTIFYING AND CHARACTERIZING aaRS
TARGETS AND INHIBITORS

4.1. Phenotypic Screening with In Vitro Evolution of Resistance
and Genetic Validation

Based on their potent activity in other species, aaRSs have been proposed as antimalarial targets for
many years. Unbiased phenotypic screens against the parasite asexual blood stage have identified
several compounds that target P. falciparum aaRSs (3). These compounds were also shown to have
activity in parasite liver stages (3). Such compounds are particularly attractive from a development
point of view because they may also be used prophylactically.

In most cases, the association between a phenotypic screening hit and a particular aaRS is made
using in vitro evolution of resistance (21). Clonal lines of P. falciparum in blood stages culture
are incubated with the test compound for weeks to several months. Retrieved cultures that ex-
hibit decreased susceptibility to the test compound likely harbor resistance-conferring mutations.
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Whole-genome sequence analysis of multiple independently selected resistant clones reveals the
newly emerged mutations (22). Such analyses were initially accomplished using tiling microar-
rays (LysRS, IleRS) but are now performed using whole-genome sequencing (61). Genetic lesions
may include single-nucleotide polymorphisms (SNPs) or copy number variants. Independently
selected clones often bear mutations in the same gene but with different allelic changes.

Only a few genetic changes emerge during the selection, and given that there are ∼6,000 genes
in the P. falciparum genome, the likelihood of a particular gene enrichment occurring by chance
is small. For example, in clones derived from three separate selections with BRD1095, a bicyclic
azetidine identified in a phenotypic screen, four independent mutations in PheRS were observed
(49). The likelihood of these mutations arising by chance is less than 1 in 1050. Nevertheless,
further downstream validation is often needed and can help determine whether the gene of interest
is the actual target or encodes a protein involved in multidrug resistance, such as an efflux protein.
Studying the location of the mutation within the 3D structure of the enzyme reveals whether the
mutation is near a predicted small-molecule binding site. Model organisms may also be used for
evolution of resistance, often giving similar results. For example, evolution experiments with the
P. falciparum LysRS inhibitor, cladosporin, in yeast yielded mutations in Saccharomyces cerevisiae
LysRS (39).

To assess the contribution of a single allele to resistance, the mutations can be introduced into
a clean genetic background using CRISPR-Cas9 gene editing methods (21). Similarly, conditional
knockdown of the gene of interest is expected to enhance the potency of the inhibitor, whereas
overexpression of the gene may decrease sensitivity (67, 72, 103). Genetic manipulation studies
are also used to confirm that a particular Plasmodium aaRS is critical for survival of the parasite.
The application of these methods is greatly facilitated by the Malaria Drug Accelerator (MalDA),
a consortium of laboratories that was established to provide a target identification pipeline and to
share resources and expertise (27, 105).

4.2. Biochemical Assays

In the first step of the aaRS-catalyzed reaction, ATP is consumed and pyrophosphate is released
to generate the enzyme-bound aminoacyl-adenylate (Figure 1a). Inorganic pyrophosphatase is
added to prevent reversal of the reaction. The malachite green assay monitors the reaction of
phosphate with molybdenum to form a colored complex (28, 47, 86, 108). The consumption of
ATP can be monitored using assays such as the classical charcoal-absorption assay (10) or the
Kinase-Glo assay, which monitors luciferase-catalyzed production of light (8, 39, 103).

In the second step of the aaRS-catalyzed reaction, the amino acid is conjugated to its corre-
sponding tRNA, a reaction that can be monitored by trapping the charged radiolabeled amino
acid onto filter discs (28). The cognate tRNA is usually generated by enzymatic synthesis using
T7 RNA polymerase–mediated in vitro transcription (65), although commercially available prepa-
rations of mixed tRNAs can be used in some cases. Aminoacylation assays have been established
for different plasmodium aaRSs (12, 85, 103).

Biochemical assays that monitor the first step of the reaction are favored in many laboratories,
as they are simple to establish and can be adapted to higher-throughput formats; however, it should
be noted that these assays will fail to identify inhibitors that inhibit the second step of the reaction.
Moreover, some aaRSs require the presence of tRNA to catalyze the first reaction step (66).

4.3. Protein Translation Assays

Assays that measure protein translation in cells or in vitro are also valuable tools to assess the
functional effects of inhibitors. Conventional protein translation assays monitor the incorporation
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of radiolabeled amino acids into proteins in whole cells (5, 13, 88). More recently an assay that
monitors the incorporation of a fluorescent puromycin derivative,O-propargyl-puromycin (OPP)
(96), has been adapted to P. falciparum with a flow cytometric readout (24, 103).

In addition, different laboratories have developed methods for preparing translation-
competent lysates of P. falciparum and measuring translation in vitro with luciferase reporters (9,
88, 93). The quality of the lysate is a variable that can complicate these assays, but they have the
advantage of being suitable for adaption to higher-throughput formats; and the corresponding
human cell lysates can be assayed in parallel to identify selective inhibitors of plasmodium
translation (93).

4.4. Binding Assays

Thermal stabilization assays involve heat-mediated denaturation of the protein of interest using
a thermal cycler (41). Differential scanning fluorimetry (DSF) is used to measure the signal from
a dye, such as SYPRO Orange, that binds to hydrophobic regions that become exposed as the
protein denatures. Tight-binding ligands increase the apparent protein melting point, which can
provide an estimate of the inhibitor binding affinity (6). DSF has been used to measure binding
of inhibitors to aaRSs (8, 37, 53, 103, 109). An alternative time-resolved Förster resonance energy
transfer assay was recently developed that can be used to characterize binding of ligands to ProRS
(95).

4.5. Analysis of the Amino Acid Starvation Response

Accumulation of uncharged tRNAs triggers the amino acid starvation stress response (17). The
anticodon binding domain in the C-terminal region of the P. falciparumGCN2 homolog, Pf eIK1,
mediates binding to uncharged tRNA, which in turn leads to eIF2α phosphorylation (26) and
stalling of protein synthesis (5). Thus, eIF2α phosphorylation offers a useful diagnostic tool to
validate aaRS targets (35, 43, 103).

5. TARGETING PLASMODIUM aaRSs

Plasmodium aaRSs are suitable targets for the development of new antimalarials, and several pre-
vious reviews have covered different aspects of efforts to target these enzymes (19, 52, 63, 70, 75,
78). Here, we focus on inhibitors of four cytoplasmic aaRSs that have shown efficacy in a hu-
manized mouse model of P. falciparum malaria and where structural analysis has informed our
understanding of the mode of action. Compounds that target other Plasmodium aaRS have also
been investigated and we refer the reader to studies of cytoplasmic LeuRS (89), MetRS (40),
ThrRS (69, 91), IleRS (43, 44), and apicoplast IleRS (38).

5.1. Plasmodium falciparum LysRS

A screen of a natural product library identified a fungal secondary metabolite, the isocoumarin
analogue cladosporin (Figure 2), possessing activity against blood- and liver-stage P. falciparum in
cell culture assays (39).The activity against 3D7 cultures (IC50 = 45 nM)was 970-foldmore potent
than against the mammalian HepG2 cell line. A yeast haploinsufficiency study and in vitro evolu-
tion of resistance studies in P. falciparum and S. cerevisiae each pointed to cytoplasmic PfLysRS, a
Class II aaRS (Table 1), as the target.The target was confirmed by demonstrating that cladosporin
inhibits protein translation in P. falciparum and that overexpression of PfLysRS decreased sensitiv-
ity to the inhibitor (39). Biochemical assays using recombinant PfLysRS and human (Hs) LysRS
confirmed the selectivity; and provided evidence that cladosporin interacts with the ATP-binding
pocket of PfLysRS (39, 53).
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Structures of some aminoacyl-tRNA synthetase inhibitors: (a) cladosporin, (b) difluoro cyclohexyl chromone (compound 2),
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Table 1 Features of selected Plasmodium falciparum cytoplasmic aaRSs

aaRS Class Structural features
2′/3′ OH

amino-acylated
tRNA groove

bound Inhibitors
Binding pocket

occupied
LysRS IIb Dimer. ABD, α/β

catalytic domain,
motifs I–III

3′ Major Cladosporin/
chromene-2-
carboxamides

ATP

ProRS IIa Dimer. α/β catalytic
domain, motifs I–III,
ABD, Z-domain

3′ Major Febrifugine/
halofuginone/
1-(pyridin-4-yl)
pyrrolidin-2-ones

Proline/tRNAPro-
A76

PheRS IIc Tetramer. TBD, (α/β)2
(α-1 catalytic, β-3/4
editing), motifs I–III

3′ Major Bicyclic azetidines Phe + ATP

TyrRS Ic Dimer. Rossmann fold
catalytic domain,
dimerization domain,
ABD

2′ and 3′ Major ML901-Tyr/
AMS-Tyr (formed
in situ)

Tyr + ATP

Abbreviations: aaRS, aminoacyl-tRNA synthetase; ABD, anticodon-binding domain; AMS, adenosine 5′ sulfamate; TBD, tRNA-binding domain.

Structural studies showed that cladosporin adopts an AMP mimicking conformation, with the
isocoumarin moiety binding in the adenine pocket and the 2,6-disubstituted tetrahydropyran ac-
commodated in the ribose binding pocket of PfLysRS (53). Comparison of this structure with that
of HsLysRS in complex with Lys and ATP (33) showed that PfLysRS Ser344 adopts a rotamer
conformation that enhances cladosporin binding, while a steric clash with the equivalentHsLysRS
Thr337 is expected to prevent binding (53). Interestingly, ligand-induced fit of cladosporin into
PfLysRS but not HsLysRS also appears to contribute to the binding specificity (18), suggesting
that selectivity can involve dynamic effects as well as differences in the amino acids directly lining
the active sites.

The metabolic instability and poor oral bioavailability of cladosporin preclude further devel-
opment of this compound; and attempts have been made to generate cladosporin derivatives (83,
109), to move to different scaffolds (4), and to repurpose inhibitors from other indications (108).
Another approach has been to screen a library of small molecular weight molecules, using the
Kinase-Glo assay, with a counter-screen againstHsLysRS, leading to the discovery of compound 2
(Figure 2), a chromene-2-carboxamide with potent activity against PfLysRS but poor metabolic
stability (8). Addition of fluorine and hydroxyl substituents to the cyclohexyl ring structure to
generate compound 5 enhanced the metabolic stability and provided excellent oral bioavailability
(F = 100%) (8). Compound 5 is active against liver schizonts and shows a good in vitro selectivity
profile, although the half-life (in mice) remains moderate (T1/2 = 2.5 h); and the compound ex-
hibits a slow rate of killing. In a SCID mouse model of P. falciparummalaria, compound 5 reduced
parasitemia by 90% after four daily doses of 20 or 40 mg/ml. However, toxicity was observed in
mice at higher doses (50 mg/kg orally).

A crystal structure of compound 2 in complex with PfLysRS and Lys revealed that the
chromone core binds in the adenine binding site, while the cyclohexyl ring occupies the ribose
binding pocket (Figure 3a).Molecular dynamics simulations and thermal shift assays suggest that
ligand-induced stabilization of a loop and other residues near the PfLysRS active site could po-
tentially underlie the favorable binding of chromene-2-carboxamides to PfLysRS compared with
HsLysRS (Figure 3b).
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Figure 3

Views of the binding sites of cytoplasmic P. falciparum LysRS (PfLysRS), PfProRS, and PfPheRS illustrating inhibitor binding modes.
(a) Structure of PfLysRS in complex with compound 2 (green) and l-lysine (cyan) (PDB 6AGT). The compound 2 binding site is shown
in orange and the l-lysine binding site is shown in magenta. (b) Overlay of compound 5 (a compound 2 derivative) bound to PfLysRS
(magenta) (PDB 6HCU) and human LysRS (HsLysRS) (cyan) (PDB 4YCU). An active-site loop is highly stable in HsLysRS, while the
equivalent loop (dashed line) in PfLysRS is mobile but becomes partially stabilized upon ligand binding. (c) Structure of PfProRS in
complex with halofuginone (cyan) and AMP-PNP (green) (PDB 4YDQ). Halofuginone- and AMP-PNP-binding pockets are shown in
orange and magenta, respectively. (d) Structure of P. vivax PheRS (PvPheRS) with bound BRD1389 (PDB 7BY6). The l-phenylalanine-
binding pocket and ATP-binding site are indicated by arrows. (e) Overlay of BRD1389-bound PvPheRS (pink) and l-phenylalanine-
bound HsPheRS (blue) (PDB 3L4G). The open conformation of Arg-548 in PvPheRS allows the binding of BRD1389, while the
equivalent Arg-463 in HsPheRS adopts a closed conformation that causes a steric clash. Different conformations of two loops adjacent
to the active sites of PvPheRS and HsPheRS may also contribute to the selectivity for the Plasmodium enzyme. Abbreviations:
AMP-PNP, adenylyl-imidodiphosphate; PDB, Protein Data Bank.

5.2. Plasmodium falciparum ProRS

Extracts from the roots of the blue evergreen hydrangea, Dichroa febrifuga, were used in tradi-
tional Chinese medicine to treat malaria fevers (55, 59). The active ingredient, the quinazolinone
alkaloid febrifugine, is a potent inhibitor of the class II aaRS, ProRS (50) (Table 1). The synthetic
halogenated derivative, halofuginone (Figure 2), is used in veterinary medicine to treat coccidia
(68).

While febrifugine and halofuginone exhibit unwanted side effects and are not considered
suitable for development as antimalarials, derivatives have been identified that exhibit better speci-
ficity, while maintaining potency against Plasmodium (35, 46, 50, 92). Structural and biochemical
analyses revealed that halofuginone and derivatives exert their activity through competitive bind-
ing into the proline site of cytoplasmic PfProRS (Figure 3c) (35, 46, 50). The proline site is
highly conserved between the plasmodium and human enzymes; although there is a disordered
loop that folds over the binding site that may contribute to differential binding (46). The binding
mode leaves these inhibitors susceptible to resistance via upregulation of proline accumulation by
P. falciparum, as well as via amplification of the PfProRS locus and SNPs in the PfProRS gene
(35, 36).

To improve selectivity, 40,000 compounds were screened from five compound libraries
(SPECTRUM Microsource, GlaxoSmithKline Tres Cantos Antimalarial Set, the DDU small
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diversity set, Malaria Box and the St. Jude Library) to identify compounds that selectively inhibit
PfProRS enzyme activity with a counter screen againstHsProRS (37).Two compounds were iden-
tified, glyburide and TCMDC-124506, that exhibited good specificity, though lower activity than
halofuginone. Interestingly, these compounds bind in a pocket adjacent to the ATP binding site.

Takeda Pharmaceuticals screened 500,000 compounds in a biochemical assay and identified
novel pyrazinamides as HsProRS inhibitors that bind competitively in the ATP site (1). Phe-
notypic screening of about 200 of these inhibitors against P. falciparum cultures identified a
1-(pyridin-4-yl)pyrrolidin-2-one derivative (compound 1-S, Figure 2) that showed good potency
(IC50 ∼10 nM). Compound 1-S showed 36-fold selectivity in a biochemical assay compared with
HsProRS, and 77-fold selectivity compared with a mammalian cell line (72). Compound 1-S
demonstrated oral efficacy with 4 daily doses at 50 mg/kg in a SCID mouse model of P. falciparum
malaria. As an ATP-competitive inhibitor, off-target activity is a potential liability and activity
against adenosine A3 kinase was identified as a potential concern. The series has liabilities with
respect to a relatively slow killing profile and a propensity for development of resistance, due to
ready emergence of copy number variations in the PfProRS gene locus.

An interesting approach to increase the potency is to combine two inhibitors that bind at differ-
ent sites. A recent study targeted ProRS from Toxoplasma gondii, a related apicomplexan parasite,
with two inhibitors, halofuginone and a novel pyrrolidine-based ATPmimetic (L95). The authors
used X-ray crystallography to show that the inhibitors occupy all three of the enzyme subsites
(64). Similarly, a hybrid compound was generated comprising a piperidyl pyrazinamide, NCP26,
which binds in the adenylate site, coupled via an acylphosphate-mimicking sulfamoylcarbamate, to
halofuginone, which binds across the tRNAPro-A76 and proline pockets. The compound engages
all three substrate-binding pockets in PfProRS; and binds with high affinity (95).

5.3. Plasmodium falciparum PheRS

Phenotypic screening of a Broad Institute library of∼100,000 compounds generated via diversity-
oriented synthesis identified a series of novel antimalarial bicyclic azetidines (exemplar BRD3444,
Figure 2) with activity against asexual parasites and late stage gametocytes, as well as against liver
stage parasites (49). In vitro evolution of resistance yielded clones with SNPs close to the Phe
binding site in the α subunit of cytoplasmic PfPheRS. PheRS is a class II heterodimer, comprising
a catalytic α subunit and a tRNA anticodon-binding (β) subunit, that further dimerizes to form
an (αβ)2 tetramer (32) (Table 1). BRD3444 showed potent inhibition of aminoacylation of the
cognate Pf tRNAPhe by recombinant PfPheRS (IC50 = 46 nM). l-Phe decreased the potency of
BRD3444 indicating that it binds in the Phe-binding site.

BRD3444 exhibited poor solubility and suboptimal pharmacokinetic properties, including a
short half-life in vivo. Replacement of the hydroxymethyl group at position C2 on the azeti-
dine ring with an aminomethyl group yielded BRD7929, which exhibited improved potency in
vitro and a longer half-life in vivo (32 h). BRD7929 showed efficacy as a single oral dose (25
or 50 mg/kg) in a SCID mouse model of P. falciparum malaria (49). BRD7929 was also effective
at eliminating liver-stage parasites in two different models and in preventing parasite transmis-
sion to mosquitoes (49). No recrudescence was observed when cultures containing 109 parasites
were exposed to a constant pressure with BRD7929, indicating a very high Minimum Inoculum
for Resistance (MIR). A limitation with BRD7929 was moderate cytotoxicity against a human
cell line (HepG2 IC50 = 9 µM) and hERG inhibition. Moreover, the complex synthetic route to
the bicyclic azetidines makes it difficult to achieve a low cost of goods. An alternative synthetic
route yielded BRD3914, with improved potency and selectivity, but less favorable pharmacoki-
netic properties. Nonetheless, BRD3914 is effective in the SCID mouse model after four oral
doses (62).
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AnX-ray crystal structure ofP.vivaxPheRS (PvPheRS) in complex with a cyclopropoxy bicyclic
azetidine ligand (BRD1389) (Figure 2) revealed that the inhibitor occupies the Phe-binding site
but also extends into a cavity that lies adjacent to the ATP binding site (Figure 3d). A comparison
of the PvPheRS and HsPheRS-Phe complexes provides evidence that Arg548 flexes to permit in-
duced fit binding into PvPheRS (Figure 3d). Similarly, differential flexibility of two loops adjacent
to the active site may contribute to the selectivity for the Plasmodium enzyme (86) (Figure 3e).

It is worth noting that related bicyclic azetidines have shown in vivo efficacy against other pro-
tist pathogens, including against the diarrheal pathogen Cryptosporidium parvum (99) and against
both acute and chronic stages of T. gondii infection (77). This finding provides support for the
suggestion that aaRS inhibitors may exhibit efficacy across different protist pathogens.

5.4. Plasmodium falciparum TyrRS and Reaction Hijacking Pro-Inhibitors—
A New Avenue for Targeting aaRSs

A recent study identified an important new compound that specifically targets a P. falciparum aaRS
with a novel mechanism of action (103). A phenotypic screen of a Takeda Pharmaceutical library
of about 2,000 nucleoside sulfamates identified pyrazolopyrimidine sulfamates (exemplar ML901,
Figure 2) that exhibit good potency against P. falciparum cultures (3D7 IC50 < 10 nM) and over
1,000-fold selectivity compared with mammalian cell lines. ML901 exerts potent activity against
liver schizonts and male gametes, consistent with whole-of-life-cycle killing. It exhibits a long
terminal half-life in blood (41 h) following intravenous or oral dosing in rats. It exhibits single-
dose efficacy (50 mg/kg i.p.) in a mouse model of malaria. The pyrazolopyrimidine sulfamate
chemotype represents a starting point for the development of compounds that maintain potency
and favorable half-life while exhibiting even higher specificity for plasmodium and better oral
bioavailability (103).

The target of ML901 was identified using in vitro evolution of resistance, as cytoplasmic
P. falciparum TyrRS, a class I aaRS (103) (Table 1). Biochemical studies revealed that PfTyrRS is
susceptible to an unusual inhibition mechanism, referred to as reaction hijacking. The data sug-
gest that ML901 binds to the AMP-vacated site on the enzyme while the product, Tyr-tRNATyr,
remains bound and that it mounts a nucleophilic attack on the charged tRNA (Figure 4a),

ba
AMP

ML901 ML901-Tyr

Tyr-tRNATyr

tRNATyr

ML901-Tyr

Pf TyrRS

HsTyrRS

AMP-Tyr

PfTyrRS

Figure 4

Model and structural analysis of TyrRSs revealing the molecular basis for susceptibility to reaction hijacking. (a) Schematic of the
reaction hijacking mechanism. ML901 mounts a nucleophilic attack on the enzyme-bound charged tRNA to generate the ML901-Tyr
inhibitor. (b) Overlay of P. falciparum TyrRS (PfTyrRS) (cyan) (PDB 7ROS) and human TyrRS (HsTyrRS) (orange) (PDB 7ROU) in
complex with ML901-Tyr. The KMSKS loop motif of PfTyrRS forms a flap over the active site, while the equivalent loop in HsTyrRS
(dashed line) is mobile. This difference appears to underpin the differential susceptibility to reaction hijacking by ML901. Abbreviations:
PDB, Protein Data Bank; TyrRS, tyrosine tRNA synthetase.
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generating a Tyr-ML901 adduct (Figure 2). Targeted mass spectrometry was used to detect the
signature Tyr-ML901 covalent adduct in parasites treated with ML901 (103). The mechanism
is both surprising and exciting. ML901 is a small-molecular-weight, membrane-permeable com-
pound that acts as a proinhibitor. That is, it is converted within the active site to a tight-binding
inhibitor that occupies both the adenosine-binding pockets and the amino acid–binding pocket
(103).

Xie et al. (103) confirmed that ML901 inhibits protein translation in an in-cell assay. ML901
exposure leads to inhibition of ATP consumption by recombinant PfTyrRS—but only in the
presence of all substrates, i.e., tyrosine, ATP, and tRNATyr, consistent with a reaction hijacking
mechanism. X-ray crystallographic studies of plasmodium and human TyrRSs reveal differential
mobility of the KMSKS loop over the catalytic site (Figure 4b). This difference appears to under-
pin the differential susceptibility to reaction hijacking byML901.The KMSKSmotif is conserved
across apicomplexan and kinetoplastid parasites, suggesting potential for cross pathogen activity.

Adenosine 5′ sulfamate (AMS) was also identified as a broad-specificity proinhibitor of
P. falciparum cultures (IC50 = 2 nM). Mass spectrometry of AMS-treated parasites revealed that
it induces formation of a range of amino acid–AMS adducts, consistent with reaction hijacking of
the class I aaRS TyrRS and several class II aaRSs: AsnRS, AspRS, SerRS, ThrRS, GlyRS, AlaRS,
LysRS, and ProRS (103). The cross class activity of AMS is intriguing, and in this context, it is
interesting to note that TyrRS is an atypical class I aaRS. It resembles class II aaRSs in that it is
dimeric, it binds tRNA in the major groove, and it can catalyze aminoacylation of the 3′ OH of
the 3′ adenosine-76 (Table 1).

The potency of AMS as a proinhibitor is consistent with previous studies showing that
synthetic amino acid–AMS conjugates exhibit potent activity against P. falciparum (69). AMS
is not suitable for further development as an antimalarial due to its broad reactivity, including
reaction hijacking of human aaRSs (103). Nonetheless, the data indicate that nucleoside sulfamate
libraries could prove a very exciting source of bespoke compounds that target Plasmodium but not
human aaRSs, leading to new antimalarial candidates. Indeed, given the importance of aaRSs in
all organisms, bespoke nucleoside sulfamates may find applications in a broad range of infectious
and metabolic diseases.

6. CONCLUSION

The P. falciparum aaRSs are essential for malaria parasites at all stages of growth; and accordingly,
aaRS inhibitors exhibit potent whole-of-life-cycle activity against P. falciparum, making aaRSs de-
sirable targets. The cytoplasmic aaRSs are preferred targets compared with apicoplast-located
aaRSs due to the delayed death phenotype associated with the latter targets. P. falciparum requires
20 cytoplasmic aaRSs, each with at least three potentially targetable substrate-binding sites. All
aaRSs catalyze the same general two-step reaction: adenylating an amino acid and then conju-
gating it to its cognate tRNA. Nonetheless, structural divergence of Pf aaRSs from their human
homologs offers many possible sites for inhibition. By contrast, individual aaRSs are very well-
conserved across different plasmodium species and other protist parasites, offering the possibility
of developing cross pathogen inhibitors. Human cells may also be less sensitive to partial inhibi-
tion of aaRSs under physiological conditions because the normal levels of aaRS activity are well
above what is needed to sustain translation (57, 104).

Recent years have seen the development of efficient tools for identifying different Pf aaRS tar-
gets. Phenotypic screens of inhibitor libraries against parasite cultures have providedmultiple hits,
while counter-screens against mammalian cell lines and streamlined biochemical and biophysical
assays are available to validate the target, assess selectivity, and determine whether the inhibitors
have drug-like properties.
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Structural studies have been invaluable for understanding themolecular basis for the specificity
and potency of different aaRS inhibitors. While the active sites are often well conserved, subtle
differences can be exploited to enable differential inhibition. A common theme that is emerging
is that flexible residues or loops near the active site, coupled with ligand-induced conformational
changes, can underpin differential susceptibilities of Plasmodium and human enzymes. Such con-
formational changes are difficult to predict, illustrating the need for ongoing structural biology
studies to accompany medicinal chemistry efforts to improve potency and selectivity.

There are potential liabilities associated with aaRS-targeting compounds. For example, it is
clear that P. falciparum can acquire resistance to aaRS inhibitors. Inhibitors that bind only at the
amino acid–binding site may be susceptible to upregulation of amino acid accumulation (36),
while SNPs that inhibit binding at other pockets can be selected (35, 49, 72, 103). However,
some aaRS-targeted inhibitors show a low propensity for the selection of resistance using a stan-
dardized protocol (49), indicating that compounds with suitable characteristics can be achieved.
Inhibitors that target two or more aaRSs or bind tightly across the adjacent amino acid– and
adenylate-binding sites may be more refractory to the development of resistance.

Off-target activity is another potential liability, particularly for inhibitors that bind at the
adenosine-binding site. Inhibitors, such as the bicyclic azetidines and the ML901-Tyr adduct,
which bind across two binding sites, may avoid these issues. Compounds that bind across two sites
may also have increased binding affinity, and thus potency, though the complexity of synthetic
routes and poorer drug-like properties may be a disadvantage.

Looking ahead, the advent of nucleoside sulfamate proinhibitors is an exciting new opportu-
nity to generate inhibitors that target two binding pockets in situ. The proinhibitor mechanism
expands opportunities to achieve good oral bioavailability. It is also very exciting that a boron-
based aaRS suicide inhibitor (tavaborole) that forms a stable adduct with tRNALeu, trapping the
enzyme-bound tRNA in the editing site, has been approved by the US Food and Drug Admin-
istration as an antifungal agent (81). If a similar benzoxaborole inhibitor of PfLeuRS could be
identified, this would provide new avenues for development of dual-pocket-binding antimalarials.

In the absence of broadly effective vaccines, and in the face of emerging resistance to current
antimalarials, there remains an urgent need to develop new drug candidates. MMV criteria for
advancing antimalarial candidates are very stringent; and currently, no aaRS inhibitor has been
selected as a preclinical candidate.Nonetheless, given their potential to deliver potent and selective
single-dose treatment for uncomplicated malaria, across different strains and species, as well as
their potential for chemoprophylaxis and transmission blocking, aaRS inhibitors seem likely to
feature as next-generation antimalarials.
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