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Abstract

Flexible behavior requires the creation, updating, and expression of memo-
ries to depend on context. While the neural underpinnings of each of these
processes have been intensively studied, recent advances in computational
modeling revealed a key challenge in context-dependent learning that had
been largely ignored previously: Under naturalistic conditions, context is
typically uncertain, necessitating contextual inference. We review a theo-
retical approach to formalizing context-dependent learning in the face of
contextual uncertainty and the core computations it requires.We show how
this approach begins to organize a large body of disparate experimental ob-
servations, from multiple levels of brain organization (including circuits,
systems, and behavior) and multiple brain regions (most prominently the
prefrontal cortex, the hippocampus, and motor cortices), into a coherent
framework. We argue that contextual inference may also be key to under-
standing continual learning in the brain. This theory-driven perspective
places contextual inference as a core component of learning.
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1. INTRODUCTION

Flexible behavior relies on the ability to lay down a variety of memories, including for episodic
events, motor skills, and decision-making. Research on learning and memory has, for the most
part, studied how individual memories are laid down, recalled, and modified, one at a time. These
studies use carefully controlled laboratory experiments, in which salient events and unambiguous
stimuli cue when a memory needs to be stored, and when and which memory needs to be recalled,
or modified. For example, studies of animal learning typically use easily discriminable stimuli
for conditioning or study spatial memory for the location of a single platform in a water maze.
However, in the real world, we process a continuous stream of sensorimotor experience and need
to lay down multiple distinct memories. This leads to the problem of how to manage our growing
repertoire of memories, when to create a new memory, and how to express and update existing
memories such that old memories are not (necessarily) forgotten as new memories are acquired.

There have been recent developments that place the idea of context central to the management
of such repertoires. Rooted in so-called mixture models that have long been pursued in machine
learning ( Jacobs et al. 1991,Singh 1991), a number of theories have argued that the brain organizes
memories according to discrete internally constructed contexts (Wolpert&Kawato 1998;Wolpert
et al. 1998; Haruno et al. 2001; Gershman et al. 2010, 2014; Collins & Koechlin 2012; Collins &
Frank 2013; Heald et al. 2021). As such, context serves to tag or index memories for subsequent
recall and updating. The effects of context on memory have been demonstrated in a diverse set
of cognitive domains, including classical conditioning (Redish et al. 2007, Gershman et al. 2010),
episodic memory (Howard & Kahana 2002, Zacks et al. 2007, Gershman et al. 2014), economic
decision-making (Collins & Koechlin 2012, Collins & Frank 2013), spatial memory (Gulli et al.
2020, Julian & Doeller 2021, Plitt & Giocomo 2021), and motor learning (Heald et al. 2018,
2021; Oh & Schweighofer 2019). These results suggest that successfully managing a repertoire of
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Continual learning:
the ability to learn
multiple tasks
sequentially without
forgetting old tasks

Normative approach:
a normative approach
is based on defining a
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Markov decision
process: a generative
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Markov decision
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inferred (e.g., from
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Reinforcement
learning: the study of
how artificial or
biological agents learn
from experience to
adapt their behavior so
as to improve their
performance as
measured by
cumulative rewards

memories hinges on our ability to determine which contexts are appropriate at different points in
time.

Although context is unambiguously defined in most laboratory experiments (at least from the
experimenter’s point of view), in the wild (and in general, from the animal’s perspective), it is any-
thing but (Heald et al. 2023). Thus, determining, or inferring, the currently appropriate context
is a core computational challenge in context-dependent learning. We start by reviewing a theo-
retical framework for formalizing contextual inference and how it controls memory expression,
updating, and creation. We then use this framework to organize our understanding of the neu-
ral bases of context-dependent learning. Finally, we review recent advances in training artificial
neural networks (ANNs) on continual learning tasks, that is, tasks that require managing multiple,
potentially interfering memories.We discuss how such models may inform the study of the neural
bases of context-dependent learning and, conversely, how a better understanding of the way the
brain solves contextual inference may provide useful clues for constructing more efficient artificial
continual learning systems.

2. A COMPUTATIONAL FRAMEWORK FOR CONTEXT-DEPENDENT
LEARNING

In order to study the neural bases of context-dependent learning, we introduce a normative
approach that starts from a generative model, which summarizes the causal and statistical re-
lationships between relevant quantities in the environment, such as contexts, sensory cues, and
actions—including the ways they may change over time. Some of these quantities, such as sensory
cues and actions, are directly observed by the brain, while others, such as contexts and reward
contingencies, are hidden, as they cannot be observed directly. While there have been a number
of different proposals for the precise form of the generative model (Wolpert & Kawato 1998;
Wolpert et al. 1998; Haruno et al. 2001; Gershman et al. 2010, 2014; Collins & Koechlin 2012;
Collins & Frank 2013; Sanders et al. 2020; Heald et al. 2021), here we focus on one particular,
recent example, the contextual inference (COIN) model of motor learning (Heald et al. 2021),
because it unifies a number of aspects of previous models, and it has been particularly successful
in accounting for behavioral data. Although, in its original form, the COIN model was developed
to understand the principles of motor adaptation, its foundational concepts are domain general.

Once the generative model is defined, learning amounts to the process of inferring the hidden
variables of the environment based on the observed variables and, in particular, inferring those
hidden variables that are assumed to change only slowly, or not at all, over time.1 Below, we de-
scribe this computational framework in formal detail, but the uninitiated reader is welcome to skip
forward to Section 3, where we begin by summarizing the main properties and predictions of this
framework more informally.

2.1. Generative Model

The generative model of the environment that is relevant for contextual learning is a variant of
the standard Markov decision process or, more generally, partially observable Markov decision
process that forms the basis of reinforcement learning (Sutton & Barto 2018) (see also below)
and its applications to neuroscience (Dayan & Abbott 2005). We illustrate the generative model

1Inferring hidden variables that vary on fast timescales (e.g., an animal’s location in the environment, or the
configuration of one’s arm) is also a highly relevant and challenging task for the brain, but one that is usually not
considered to belong to the realm of learning. In the following, to focus on learning, we ignore the inference
of most fast-changing hidden variables.
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(Figure 1) with respect to a mouse in a maze seeking food. In this framework, the (biological or
artificial) agent has a state at time t, st (themouse’s location in themaze), and can generate an action,
at (the mouse turning left or right). The mouse then receives sensory feedback, rt (the absence or
presence of a food reward), and experiences a state transition (the mouse moves to a new location).
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parameters that
control the statistics of
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sensory feedback, and
sensory cues depend
on states and actions

Figure 1 (Figure appears on preceding page)

A normative model of context-dependent learning. (a) Generative model, showing two consecutive time
steps, t − 1 and t. Context, ct, evolves over time (color represents the identity of the active context). Each
context j is associated with a set of contingencies, x( j)t , that may also evolve in time, independent of the
contingencies of the other contexts. (Only two contexts are shown for simplicity; in general, the number of
contexts and sets of contingencies can be unbounded.) The contingencies of the currently active context
(filled versus empty circles, respectively, gating black versus gray arrows) determine what sensory cue is received,
qt (pink), and how the agent’s action, at (green), changes its state, st (orange), and leads to sensory feedback, rt
(purple). In general, the contingencies of the active context can also affect the next context transition (not
shown for clarity), and states may not be directly observable. Panel a adapted from Heald et al. (2023).
(b) Inference, showing two consecutive time steps. The agent infers contexts (top, inferred posterior
distributions shown as histograms) and context-specific contingencies [middle, inferred posterior
distributions in a multidimensional space of contingencies illustrated with covariance ellipses, dimensions
(dim.) 1 and 2 shown] based on observed states, sensory cues, sensory feedback, and its own actions (bottom,
colors as in panel a). Contexts are color coded in top and middle as in panel a. Note that the probability that
a yet-unseen, novel context with default contingencies is encountered is also always computed (gray). In
columns 1 and 2, the context posterior at time t (column 1, top) is computed by fusing prior expectations
(propagated context posterior from time t − 1, not shown) with information about the current observations
(column 1, bottom). This posterior determines the degree to which information from the current observations
is used to update the inferred context-specific contingencies at time t + 1 (column 2,middle, memory
updating, pale blue distribution updated to bright blue distribution) and whether a new memory is instantiated
(column 2,middle, memory creation, the red posterior over contingencies updated from the gray posterior
over contingencies of a novel context). In column 3, for each represented context, the expected values of
actions (curves in context-specific colors) are computed based on the inferred contingencies of that context.
In column 4, the final expected values of actions (green curve) are the weighted sum of their context-specific
values, with the weighting determined by the posterior probabilities of the corresponding contexts (memory
expression). The action with the highest final expected value is chosen (vertical green line; potentially with
some decision or motor noise, not shown). Note that memory creation, expression and updating can all
occur on the same time step, but they are shown here on separate time steps to avoid visual clutter.

Therefore, according to this generative model, (the distribution of ) rt and the (distribution of the)
next state, st+1, depend on the current state, st, together with the agent’s action, at, in a manner
defined by a set of primary contingencies (e.g., the current configuration of walls in the maze and
the location of food inside it). In addition, there may exist sensory cues, qt (the general appearance
of the room containing the maze), that are unrelated to states, actions, and feedback and also
depend on the primary contingencies.2 The primary contingencies may themselves change over
time (some passageways become obstructed or new ones may open), controlled by some other
(secondary) contingencies [e.g., the volatility of the environment (Piray & Daw 2020)].

Critically, central to context-dependent learning is the assumption that there may exist several
such sets of (primary and secondary) contingencies in parallel, x( j)t ( j = 1, 2, . . .), and the identity
of the currently active one (i.e., the one that gets to control sensory cues, state transitions, and
feedback) is determined by the current context, ct (e.g., the maze identity) (Figure 1a).Note that it
is because there are multiple contexts that sensory cues become relevant: They can be informative
as to the context (different mazes may be associated with different-looking rooms). However, as
opposed to states, once the context is known, sensory cues are no longer informative as to the
relation between actions and feedback.

Finally, context can also change over time (depending on context-specific transition probabili-
ties, which can be regarded as further secondary contingencies), and when it does, it is thought to

2Although sensory inputs do not come to the brain already labeled as sensory feedback or sensory cues, studies
in humans suggest that the brain spontaneously categorizes stimuli into these two classes (Collins & Frank
2016).
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timescale on which the
maze layout changes)

instantaneously switch which set of contingencies is active (Figure 1a; gating connections from
context nodes to the active versus nonactive context-specific contingencies, expressing their con-
trol, or lack of control, of observations). One important aspect by which previous and more recent
models of contextual learning differ is the extent to which they allow context transition proba-
bilities to be structured, that is, whether and how much transition probabilities depend on (or
conversely, generalize across) “from” contexts, “to” contexts, both, or neither (for a review, see
Heald et al. 2023; for a more general comparison beyond transition probabilities, see Heald et al.
2021, section 7 of the supplementary information and extended data table 1).

Note that, theoretically, the distinction between contexts and states need not be as clear cut
as we depict it here. States (rather than just contexts) may also be hidden, sensory cues may also
depend on states (rather than just on contexts), and transitions between contexts (rather than
just those between states) may also depend on actions and states. In this more general frame-
work, contexts may simply correspond to higher-level, more slowly changing components of a
high-dimensional, hierarchical hidden state representation. For example, although in typical ex-
periments contexts may be naturally operationalized by different experimental rooms and states as
positions within a maze situated in a room, the mouse may actually integrate all these into a single
multiresolution map of its environment. Nevertheless, it may be computationally advantageous
to distinguish between high-level contexts [often referred to as tasks (Xie et al. 2021)] and low-
level states. Moreover, there is both behavioral and neural evidence suggesting that (the internal
representations of ) contexts may have a special status (see below), and so for the purposes of this
review, we maintain a qualitative distinction between contexts and states.

2.2. Contextual Learning as Recursive Inference

The ultimate goal of a reinforcement learning agent, and arguably also of the brain, is to choose
actions, at, adaptively so as to maximize (cumulative) rewards (that are included in our notion of
sensory feedback, rt). Although there are many algorithmic strategies that can be used for this
(Sutton & Barto 2018), the most flexible class of algorithms that makes the best use of limited
experience with the environment (i.e., most data efficient) is based on a generative model of the
environment (i.e., it is model based). Thus, the task for the brain in context-dependent learning
can be formalized as the inference of the hidden variables of the generative model described in
Section 2.1, based on the observed sensory inputs andmotor outputs (actions).To reduce the com-
putational complexity of learning, and especially of choosing actions (i.e., expressing memories,
albeit at the cost of reduced data efficiency and behavioral flexibility), the brain may also combine
model-based inference of context with model-free strategies for learning within individual con-
texts (Singh 1991). Although we consider the fully model-based setting below, our focus will be
on the inference of context, which thus remains relevant even in such a hybrid learning system.

2.2.1. The targets of inference: environmental contingencies and context. The key hidden
variables to be inferred are the contingencies specific to each context that has been encountered so
far, x( j)t , and the identity of the current context, ct (see the top half of Figure 1a). In our example
with the mouse foraging for food, it needs to infer the layout (and other features such as the
volatility; see below) of each maze it has encountered (the contingencies) and the identity of the
maze it is currently in (the context). The observations that can be used for this are the state, st;
the sensory feedback, rt; the sensory cue, qt; and the agent’s own action, at (see the bottom half of
Figure 1a).3 While treating the contingencies of the environment as hidden variables has been a

3In general, states are themselves hidden variables, and as such they need to be inferred by the brain, but in
order to focus on learning we treat them as directly observable here (see also Section 2.1).
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common feature of formal theories of learning, treating the current context as an additional hidden
variable is a relatively recent innovation (Gershman et al. 2010, 2014; Collins & Koechlin 2012;
Heald et al. 2021) that has far-reaching consequences, as we see below. This choice is motivated
by a simple fact we already highlighted in Section 1: From an animal’s perspective, context is only
defined ambiguously in most situations, especially in ecologically relevant ones.

2.2.2. The result of inference: the posterior distribution. Optimally, the result of infer-
ence should be a posterior probability distribution defining the joint probability of all possible
combinations of the current values of all hidden variables given the history of all previous observa-
tions, P(ct , x

( j=1,... )
t |s0:t , a0:t , r0:t , q0:t ). This distribution can be computed recursively, incorporating

the most recent observations into the posterior computed in the previous time step. The joint
posterior over all hidden variables at any point in time can be conceptually separated into two
components: the posterior distribution over the current context (see the top row with histograms
in Figure 1b), and the posterior distributions over the contingencies of each possible context (see
the middle three rows with covariance ellipses in Figure 1b). In particular, it is sufficient to rep-
resent posterior context probabilities and posteriors over contingencies for only those contexts
inferred to have been encountered so far. Besides these, the novel context probability, that is, the
total probability of all yet-unseen contexts, also always needs to be represented (see the top row
in Figure 1b), together with an additional set of default contingencies for all such contexts (see
the lowest covariance ellipses in the middle of Figure 1b).

Critically, all the agent’s experience pertinent to a given context is captured by the corre-
sponding posterior over contingencies. In other words, in this framework, the posterior over
contingencies specific to a given context constitutes the memory of that context. Alternatively,
to reduce computational and representational complexity, instead of inferring a full posterior
distribution, most theories posit that only single estimates of contingencies are learned (but see
Section 4.3). Yet other, altogether model-free strategies may not try to infer or estimate the con-
tingencies of the environment at all and instead learn other kinds of representations (such as value
functions or policies). Whatever the precise nature of the context-specific representations be-
ing learned, we henceforth refer to them as memories. Importantly, the principles of contextual
learning we describe in the next section apply to nearly all kinds of memories, regardless of their
representational content.

In contrast to inferring the values of hidden variables based only on past and present obser-
vations (Figure 1b), in some situations, it may be desirable to retrospectively refine inferences
made in the past based on subsequent observations, such as when recalling an episodic memory
(Gershman et al. 2014). In Bayesian inference, this type of retrospective inference is known as
smoothing and is a computationally challenging operation that requires storing the entire his-
tory of observations in memory. How the brain might approximate the fully Bayesian solution
to smoothing is unknown, though consolidation-like processes that replay previous experiences
(Pfeiffer 2020) are likely involved.

3. COMPUTATIONAL PRINCIPLES FOR MANAGING
MULTIPLE MEMORIES

The unique challenge of contextual learning is that it requires the agent to manage multiple mem-
ories, each corresponding to a different context. In particular, it needs to ensure that at all times
it expresses and updates existing memories and keeps creating new memories as appropriate. The
normative theory developed in Section 2 reveals the computational principles governing how these
processes should optimally be organized. In particular, it implies that memory expression, updat-
ing, and creation need to be graded, or probabilistic, rather than all-or-none and deterministic, as
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in standard conceptualizations of these processes. It also specifies how the current context needs
to be continually inferred and how this contextual inference needs to control each of these graded
processes. In this section, we describe these computational principles in more detail. These prin-
ciples provide a set of important constraints on the putative neural mechanisms of contextual
learning, reviewed in Section 4. To aid intuition about the computational principles underlying
the managing of multiple memories, we continue to use the mouse in a maze example. We also
briefly refer to relevant work demonstrating these effects behaviorally in specific experimental
paradigms (for a recent more comprehensive review on behavioral effects, see Heald et al. 2023).

3.1. Contextual Inference

In order for memory expression, creation, and updating to be optimal, these operations should
be performed in a graded or probabilistic manner. This in turn requires the full distribution over
contexts, expressing the probability that each known context or a yet-unknown novel context is
currently active, and hence context uncertainty, to be represented at each point in time. This
contrasts with alternative approaches that ignore context uncertainty by only estimating the most
probable context. The distribution over contexts should not be independent at each point in time
(a priori) but should take into account the previous context distribution and the context transition
probabilities (or more generally, the dependence of the current context on the history of past
contexts).

The generative model described above (Section 2.1) is, perhaps, the simplest for contextual
inference as it assumes that exactly one discrete context (a hidden cause) is active at each point in
time. There are three major extensions to such a model in terms of compositional, continuous,
and hierarchical representations of contexts, which can each contribute to more powerful gen-
eralization. In compositional models, multiple hidden causes can be active at each point in time,
and hence a context is formalized as a unique combination of hidden causes. For example, when
navigating a maze to find a reward, it can be beneficial to represent the reward function (goal
location) and state transition function (mapping from states and actions to the next states) as two
separate hidden causes so that they can be combined in novel ways to solve new tasks (Franklin
& Frank 2020). Continuous representations of context allow the contingencies associated with
different contexts to vary along a continuum. For example, when manipulating objects, it may
be beneficial to consider different objects within a class (e.g., different cups) to lie on a manifold
of contexts, defined by continuously varying contingencies [such as their weight and visual size
(Braun et al. 2009)]. Finally, contexts may also be hierarchically organized, for example, because
different mazes in the same room may have different configurations but still share many of their
sensory cues, while mazes in different rooms will even differ in their sensory cues. In the following,
we focus on how the posterior distribution over contexts controls memory expression, memory
updating, and memory creation.

3.2. Memory Expression

The ultimate goal of having memories is to express them in behavior. The simplest form of how
contextual inference can control this is when the current context is known to the learner with
absolute certainty, that is, when the posterior distribution over contexts is all or none. In this
case, behavior is driven by a single memory: the one corresponding to the current context. The
normative strategy for choosing an action in a given context is to compute the value of every
available action in terms of the cumulative reward the agent expects to receive in the future
after choosing that action now—depending, of course, on its current state (see the arrow from
state at the bottom to context-specific value functions in the third column of Figure 1b) and its
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context-specific memories (see the arrows from the posteriors over contingencies to the value
functions in the middle of Figure 1b). Then, the action with the highest value can be chosen.

As there is often uncertainty about the current context, in principle, the memories for all con-
texts need to be mixed (Haruno et al. 2001, Gershman et al. 2017, Heald et al. 2021). In this case,
once the context-specific action values have been computed (see above), according to the rules of
Bayesian decision theory, the final expected value of each action is computed by averaging its value
across contexts,4 weighted by the posterior context probabilities, and the action with the highest
expected value can be chosen (see the arrow pointing from the context posterior of the second
column to the action-value function in the fourth column of Figure 1b). Thus, a key feature of
the model is that contextual inference controls the expression of memories in the actions the agent
chooses. In particular, the contents of several memories (those associated with contexts that have
a nonzero posterior probability) need to be mixed for optimal behavior. This is notably different
from classical accounts of memory recall that focus on how a single memory is retrieved at a time
(Hopfield 1982).

The graded mixing of memories provides an alternative account to even such a basic process
as memory extinction. Classical (Rescorla & Wagner 1972) and even more modern (Smith et al.
2006) accounts treat extinction as the overwriting (or erasure) of some previously established
memory trace and, as such, as being related to memory updating (see also below). In contrast,
when viewed through the lens of contextual learning, extinction may instead be due to the gradual
reexpression of the memory for the original context preceding the beginning of acquisition
(Gershman et al. 2010), as the newly acquired memory (associated with the acquisition context)
has no reason to be expressed. This naturally explains ubiquitous postextinction phenomena that
are widely regarded as difficult to reconcile with a simple overwriting-based account, such as the
slow spontaneous recovery of the extinguished memory with the passage of time (Rescorla 2004),
its fast evoked recovery in response to context-specific sensory cues [as in so-called ABA renewal
(Bouton & King 1983)] or sensory feedback [reinstatement (Rescorla & Heth 1975) or evoked
recovery (Heald et al. 2021)], or its rapid reacquisition [compared to the speed of its original
acquisition (Napier et al. 1992)].

3.3. Memory Updating

On each time step, the context posterior and thememories are updated by fusing information from
the past with information arriving in the current time step (see the transition from the first to sec-
ond column, respectively corresponding to time step t and t+ 1, in Figure 1b). For example, imag-
ine that a passageway that the mouse found to be open on previous trials now appears to be closed.
In principle, this experience in the current time step will require updating its existing memories,
representing information from the past (that the passageway used to be open). The extent of this
updating fundamentally depends on the balance between the reliability (or relevance) of present
versus past information. In principle, the higher the reliability of current information relative to
that of past information, the more memories should be updated in light of this new experience.

The key question then becomes,What determines the relative reliabilities of these two sources
of information? The reliability of existing memories (i.e., the relevance of past information they
store for the present) depends on the context-specific secondary contingencies describing how

4In general, in each context, the overall value of each action needs to incorporate its contributions to both
exploitation, by steering the organism toward more rewarding states, and exploration, by resolving uncertainty
about context (and other hidden variables), thus leading to higher rewards in the long run.Moreover, if actions
can also affect context transitions (Section 2.1), this will also need to be incorporated into action values.
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(and howmuch) the primary contingencies are expected to change over time. If, based on previous
experience, themouse has inferred that themaze configuration in a room tends to remain the same
for long periods of time, the new information about the passageway being closed may be chalked
up to happenchance and as such largely ignored. However, if previous experience tells the mouse
that the maze in a room is often reconfigured by some malevolent power (i.e., the experimenter),
then this same information will be used to update the mouse’s cognitive map of the maze. This
predicts higher effective learning rates in more volatile environments—an effect that has been
confirmed experimentally (Burge et al. 2008). Note that, however, this prediction changes when
the volatility of the environment is at the level of contexts rather than the level of contingencies
(i.e., between- rather than within-context volatility), for example, if the mouse is often transported
to an altogether different maze. In this case, rather than changes in the rate of adaptation being
driven by memory updating (proper learning), they may be due to changes in memory expression
[apparent learning, so called because from behavior alone it may appear as though proper learning
has taken place (Heald et al. 2021, 2023)].

The reliability/relevance of currently incoming information is determined by two factors. First,
the better the quality of evidence it supplies, the more relevant it is for updating memories. For
example, if the mouse only saw the passageway to be closed from a distance, this observation may
be attributed to poor visibility, and as such ignored again. If, however, the mouse went all the way
to the end of the passageway to confirm it was closed, this strong evidence is worth registering in
memory.Second, specific to contextual learning, a givenmemory should only be updated inasmuch
as the current information comes from the same context as that associated with that memory.
More precisely, contextual inference should gate and modulate the updating of memories, such
that the extent to which memories are updated is proportional to the posterior probabilities of the
contexts to which they belong. Again, in contrast to classical notions of memory updating (e.g.,
via reconsolidation), this implies that when there is uncertainty about the current context (so that
several context probabilities are nonzero), multiple memories need to be updated in parallel. That
is, if the mouse is unsure which of two mazes it is currently navigating, the information about
the closed passageway needs to be incorporated into both memories. Consistent with this idea,
studies of single-trial motor learning have shown that under experimentally controlled contextual
uncertainty, multiple memories are updated in proportion to their posterior probabilities (Heald
et al. 2021).

3.4. Memory Creation

The notion of memory creation is naturally captured by Bayesian nonparametric models such as
the so-called Chinese restaurant process [and its hierarchical extension, the Chinese restaurant
franchise (Teh et al. 2006)]. These models assume that the number of contexts in the environment
are unknown and unbounded (i.e., can be infinite), such that when a new context is inferred, a
new memory is created. These models have been used to account for a wide range of context-
dependent phenomena in a variety of domains, including classical conditioning (Gershman et al.
2010), episodic memory (Gershman et al. 2014), economic decision-making (Collins & Koechlin
2012), and motor learning (Heald et al. 2021; for a more comprehensive overview of Bayesian
nonparametric models in context-dependent learning, see Heald et al. 2023).

According to thesemodels, in each time step,with some probability, a hitherto unseen context is
inferred to have been encountered, and a new memory for this context is added to the repertoire
of existing memories (see Figure 1b). The probability for this is given by the probability of a
novel context in the previous time step (see the novel context probability in the first column in
Figure 1b). The memory associated with this newly encountered context is an updated version
of the default posterior over contingencies of a novel, yet-unseen context (see the creation of the
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posterior and its updating in the second column of Figure 1b). As all contexts are assumed to have
existed indefinitely before they are first encountered, the contingencies for a novel context have
a stationary state distribution that is never updated (see the covariance ellipse, which remains
unchanged, in the second column of Figure 1b). For the mouse, this means that if no familiar
mazes are consistent with a set of observations (so that the probabilities of existing contexts are
all low, and consequently—as probabilities add to one—the probability of the novel context is
high), there is probably a new maze in place, and it is time to create a new memory for it. Thus,
contextual inference also controls memory creation.

Memory creation in the model is unlikely when small changes occur in the environment, as
errors will be small and current memories will be able to explain sensory cues and feedback. In
contrast, abrupt changes in the environment increase the probability of a new memory being
created. Consistent with this, deadaptation in motor control is slower after the removal of a grad-
ually, versus abruptly, introduced perturbation. The gradual introduction leads to the adaptation
of an existing memory so that, unlike the abrupt case, deadaptation cannot be quickly achieved by
switching the context back to the original memory. In contrast, the abrupt perturbation leads to a
newmemory being created, allowing preservation of the original memory for the unperturbed sit-
uation and subsequently rapid switching back to the unperturbed memory [a rapid process (Heald
et al. 2021)]. Analogous phenomena have also been described in a variety of other domains of
learning (Heald et al. 2023).

4. NEURAL BASES OF CONTEXTUAL LEARNING

The computational principles of contextual learning reviewed above (Section 3) provide a useful
framework for organizing the large body of data on its neural bases. At present, there is no uni-
fied circuit-level understanding of contextual inference and learning as described above. In this
section, we highlight studies implicating specific circuits and mechanisms underlying different as-
pects of contextual inference and learning. As contextual inference is critical for controlling all
aspects of contextual learning, we begin by reviewing experimental data about its neural under-
pinning. We then review data relevant for each of the main operations that contextual inference
controls—memory expression, updating, and creation—focusing on their aspects that are relevant
when multiple context-dependent memories need to be managed.

4.1. Contextual Inference

Although many brain areas have been implicated in some aspect of context-dependent learning,
here we focus on three areas that have been most extensively studied in paradigms tapping into
contextual inference: the prefrontal cortex (PFC), hippocampus, and thalamus.

4.1.1. Prefrontal cortex. The PFC is thought to play a key role in representing contextual
information (Botvinick 2008, Donoso et al. 2014, Soltani & Koechlin 2022). In our terminol-
ogy, PFC may be involved in both computing context probabilities and updating them based on
context transitions and sensory cues. This is broadly consistent with multiple areas within PFC
encoding abstract task rules (Wallis et al. 2001, Saez et al. 2015) and medial PFC being necessary
for switching between different rules based on sensory cues (Marton et al. 2018).

Implementation-level models of PFC corroborate its role in contextual inference. Collins &
Frank (2013) developed a neurobiologically explicit network model consisting of multiple mod-
ules corresponding to distinct areas within the corticobasal ganglia loop. When the network was
trained on an instrumental learning task with multiple hidden contexts (by pure reinforcement
learning), the module corresponding to PFC developed activations consistent with contextual
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inference. This network model also provided an approximate implementation of a Bayesian non-
parametric model of contextual learning, similar to the one described in Section 2, which itself
explained a wealth of behavioral data from humans performing the same task.

If PFC is involved in computing context probabilities, then lesioning it, or interfering with its
function, should impair behaviors that rely on the maintenance and updating of context proba-
bilities. This is broadly consistent with a large body of neuropsychological literature describing
how patients with PFC lesions have difficulties maintaining behavioral flexibility between con-
texts (Shallice & Cipolotti 2018). Going beyond simple behavioral impairments, perturbing (by
transcranial magnetic stimulation) the dorsolateral PFC led to the directed forgetting of episodic
memories—a process that is thought to be based on the suppression or substitution of the
representation of the context relevant to those memories (Anderson & Hulbert 2021).

In animal learning experiments with rats, lesioning the medial orbitofrontal cortex (OFC),
a major subdivision of PFC, resulted in a pattern of decision-making impairments (diminished
Pavlovian-instrumental transfer and outcome devaluation) that was mostly well accounted for
by the putative role of OFC in contextual inference [except for a lack of effects on reinstatement
(Bradfield et al. 2015)]. In addition, as we saw above, extinction and subsequent savings on relearn-
ing are behavioral effects that bear the signatures of contextual inference. In particular, they reflect
the increasing expression of thememory of the pre- or postacquisition context, respectively, driven
by the growing probability that each of these contexts is active. Indeed, lesions of OFC slow down
extinction (or the relearning of a previous set of contingencies) in classical conditioning (Butter
1969). This may be because, rather than reexpressing a previous memory (by apparent learning, a
potentially rapid process),OFC-lesioned animals need to update their current memory (by proper
learning, a relatively slow process) (Wilson et al. 2014).

Spontaneous recovery has been suggested to be another behavioral signature of memory ex-
pression driven by contextual inference (Heald et al. 2021) (see also Section 3.2).Here, introducing
a working memory task, which is known to tax PFC resources, led to a boosting of spontaneous
recovery (Keisler & Shadmehr 2010). This seemingly paradoxical effect (interference makes a be-
havioral effect greater rather than smaller) has been explained by a model in which the working
memory task specifically affects the active maintenance of current context probabilities (Heald
et al. 2021). According to this explanation, when context probabilities are not actively maintained
and updated, they revert to a set of default values that are stored in long-term memory (instead
of working memory) and that favor the acquisition context, as it has been experienced for a long
time.

Functional imaging studies have shown that OFC represents the abstract state of the task
(see, e.g., Wilson et al. 2014), especially when it is hidden and must be inferred (Schuck et al.
2016, Nassar et al. 2019, Schuck & Niv 2019). One prominent demonstration of this effect used a
paradigm in which participants had to judge the age (in our terminology, the state; old or young)
of one of two simultaneously displayed categories (house or face) on each trial (Schuck et al. 2016,
Schuck & Niv 2019). The relevant category (in our terminology, the context) was not indicated
directly to participants but depended on the relevant category of the previous trial, as well as on
the age on the previous two trials. To fully account for these dependencies, the authors defined
the task state as a conjunction of the current and previous category and age. Interestingly, three
out of these four variables (previous and current category and previous age) were represented
in OFC, but not the current age. The authors argued that this was because the current age was
directly observable, whereas the other variables were hidden. However, Bayesian models of per-
ception suggest that stimulus features such as age are also hidden and must be inferred. Instead,
we suggest that the previous age and previous category (together with the age from two trials ago,
which was untested) are sufficient statistics of the posterior distribution over the current context,
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while the current age is not. Thus, if OFC is involved in contextual inference, we would expect
the combination of these variables to be decodable in OFC—just as has been found (Schuck et al.
2016). This interpretation makes the prediction that the age from two trials ago should also be
decodable, which remains to be tested.

More direct evidence for the role of PFC in contextual inference comes from studies that
combine functional imaging with Bayesian multiple-context models. Such studies suggest that
PFC does not represent a single context at a time (e.g., the most likely active one) but represents
multiple contexts and the probability that each of them is currently active. For example, in an eco-
nomic decision-making task in which state-action-feedback contingencies could switch based on
a hidden context, anterior regions of PFC, and ventromedial PFC in particular, were shown to en-
code the current reliability of different context-specific behavioral strategies (Donoso et al. 2014)
(Figure 2a). These reliability signals are formally analogous to the posterior context probabilities
(often termed responsibilities) of Bayesian multiple-context models (Heald et al. 2021).

The aforementioned studies demonstrated the representation of inferred contexts in PFC even
in the absence of explicit information about the existence of different contexts and when contex-
tual inference needed to combine information about context transitions as well as action-outcome
contingencies. However, they did not specifically test whether full posterior distributions are rep-
resented over contexts, as would be required theoretically. More direct evidence for this comes
from an experiment in which participants had to infer the current context (which sector of a sa-
fari park they are in) after viewing a sample of animals from that context. OFC responses were
best explained as representing the (log-transformed) posterior distribution over contexts given
those stimuli, outperforming alternative representations, such as the most probable context or
the uncertainty over contexts (Chan et al. 2016). However, the paradigm used in this study was
specifically designed so that full-context posteriors needed to be represented to perform well
while—compared to some of the previous studies—only relatively impoverished context-specific
information was required to be learned (the distribution of animals in each context, but no actions
or structured context transitions). Therefore, it remains an open question whether these results
generalize to richer, more challenging contextual inference settings.

Direct neural recordings from monkey OFC (and other prefrontal cortical areas) confirmed a
neural representation of context in the PFC, even on trials when context was hidden and as such
had to be inferred (Saez et al. 2015, Bernardi et al. 2020). Nevertheless, similar context-encoding
representations were also found in other brain areas, including the hippocampus and amygdala.
These studies indicate that context is encoded in an abstract way in prefrontal (and hippocampal)
areas, orthogonal to other task-relevant variables [e.g., stimulus identity (Bernardi et al. 2020)].
Such abstraction allows flexible generalization to novel combinations of context and other vari-
ables. Interestingly, when assessed using a simple condition-specific linear decoder, only activities
in the amygdala, but not those in OFC or other cortical areas, were predictive of behavioral errors
(Saez et al. 2015). However, the level of abstraction of neural representations, assessed using a
decoder that was required to generalize across conditions, was predictive of behavioral errors in
prefrontal (and other cortical) areas (Bernardi et al. 2020). More importantly, although the tasks
used in these studies often required the animals to infer context from past observations, without
providing unambiguous sensory cues on a given trial, only the representation of the experimentally
defined veridical context was tested. Thus, whether and how probabilistic inferences are reflected
in neural activities in these tasks remains unknown.

At the level of neural circuits, the evidence for the causal role of PFC in contextual inference
is somewhat mixed, at least in the relatively simple behavioral paradigms used so far. Optoge-
netic suppression of PFC (anterior cingulate) projections to primary visual cortex in an odd-ball
paradigm (in which deviant stimuli ostensibly lead to the inference of a novel context) has shown
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Figure 2

Neural bases of contextual learning. (a) Prefrontal cortex encodes context probabilities. Participants learned strategies that involved
choosing an action (correct button press) in response to a state observation (number displayed on a screen). The state-action
contingencies occasionally switched between three possibilities, necessitating different context-specific strategies. Brain areas in which
(functional MRI) activations correlated with the probability (strategy reliability, derived from a behavioral model) of the context
associated with either the participants’ current strategy (magenta) or with alternative strategies (cyan). Panel a adapted with permission
from Donoso et al. (2014). (b) Hippocampal activity samples from context-specific maps under context uncertainty. Hippocampal
activity was recorded as rats navigated one of two spatial environments. Occasionally, animals would be teleported between the
environments by instantaneously switching sensory cues. (Left) Time series (columns show successive theta cycles) of correlations
between current neural population activity and reference activity associated with each location in environment A (top, red) and
environment B (bottom, blue). A teleportation from environment A to B took place shortly before this series. The correlation shows
evidence of spontaneous flickering between the hippocampal place-field maps associated with each environment despite no change in
the environment during this period (green cross shows current location). (Right) Histogram shows a temporary increase in the number of
flickers after a change in the environment. Panel b adapted with permission from Jezek et al. (2011). (c) Hippocampal representation of a
prior distribution over contexts. Hippocampal activity was recorded as mice navigated through virtual reality environments that could
morph between two extremes by continuously varying the frequency of a sinusoidal grating on the walls, thus giving rise to a continuum
of contexts. Mice experienced one of two different distributions of contexts, characterized by different distributions of the morphs (rare
versus frequent morph distributions shown as red versus blue thick lines, respectively). Thin lines show the prior reconstructed from the
hippocampal activity of individual mice exposed to the rare (left) and frequent (right) distributions. The prior approximated the true
distribution for each condition. Panel c adapted with permission from Plitt & Giocomo (2021). (d) Context-dependent motor learning.
Nonhuman primates reached to targets under two possible force perturbations applied to the hand [forces applied by a robotic interface
that act in clockwise (CW) or counterclockwise directions (CCW)] or unperturbed. Neural state space shows preparatory activity (after
dimensionality reduction) in dorsal premotor and primary motor cortex for movements to the same 12 targets (points) under the three
possible contexts: before learning (black), CW perturbation (red), and CCW perturbations (blue). Projections of the neural state space
are shown on the floor and wall. Panel d plotted from data in Sun et al. (2022). (e) Neural representation of extinction in the mouse
amygdala during fear conditioning. Change in a distance measure between the neural representation of the conditioned stimulus (CS)
during training (conditioning and extinction) and the prelearning representation of the unconditioned stimulus (US) (red) or CS (blue).
Negative values mean the representations become more similar. Panel e adapted with permission from Grewe et al. (2017).

that contextually appropriate responses (larger responses to deviants) depend on an intact PFC
input (Hamm et al. 2021). Another study used an olfactory delayed match-to-sample paradigm
(Wu et al. 2020) that can also be seen as engaging contextual inference, such that the sample stim-
ulus acts as a sensory cue indicating the context, which in turn determines the mapping from the
test stimulus to the correct response. In this study, although context could be decoded from OFC,
other relevant cortical areas also carried such signals, including a primary sensory cortical area (the
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piriform cortex) and a premotor area [the anterolateral motor cortex (ALM)]. More importantly,
optogenetic inactivation of OFC did not impair context-dependent behavior in this case (effects
on neural responses were not studied), while that of ALM did.

4.1.2. Hippocampus. Information stored in the hippocampus has long been considered to serve
as indices to patterns of neocortical activity produced by particular episodes (Káli & Dayan 2004,
Teyler & Rudy 2007). This is broadly consistent with a role in contextual inference, inasmuch as
context probabilities are essentially indexing which memories need to be expressed and updated.

More specifically, several lines of evidence point to the hippocampus as a key brain region
that represents information about context and, in particular, spatially defined contexts (which ar-
guably have special ecological relevance for most animals). Indeed, the hippocampus has been
implicated in maintaining a cognitive map of the environment (O’Keefe & Nadel 1978). More-
over, like the OFC (see Section 4.1.1), it has been suggested to encode cognitive maps in the broad
sense, capturing the relationships between sensory cues, states, actions, and feedback (Wikenheiser
& Schoenbaum 2016, Behrens et al. 2018)—much like the relationships governed by the context
variable in our model (Figure 1a).

Classical work on fear conditioning demonstrated that pairing a foot shock with an auditory
tone in a particular chamber (i.e., spatial context) leads to occasional fear responses (behavioral
freezing) in the same chamber even in the absence of the tone and, conversely, to the conditioned
auditory tone even when in a different chamber. Critically, lesioning the hippocampus selectively
dampens fear to the context (but not to the tone) previously associated with the shock, albeit this
role seems to be time limited (Kim&Fanselow 1992). In some cases, inactivating the hippocampus
may also dampen fear renewal when the tone is presented outside of the extinction context (Holt
& Maren 1999).

The neural representation of spatial context is widely thought to rely on the activity of place
cells. As place cells have place fields (the region of physical space that needs to be occupied by the
animal in order for a given cell to become active), their joint population activity provides a neural
representation of the animal’s location (see, e.g., the heat map in the leftmost bottom frame of
Figure 2b). Critically, due to remapping (a change in relative place field locations with a change
in environment), the activity of place cells also encodes the environment, or the spatial context
(see the leftmost top versus bottom frame of the heat map in Figure 2b). While remapping is
most often induced by placing animals in a different environment, and thus changing the combi-
nation of sensory cues available, remapping has also been observed when the animal’s behavioral
policy needed to be different in the same environment (Markus et al. 1995). This is in line with
context determining not only sensory cues but also the mapping of states and actions to feedback
and thus, ultimately, the policy that is best for acquiring rewards (Figure 1a). Indeed, a formal
mathematical model of contextual inference very similar to the one we propose here (Figure 1b)
(but without a concept of context transitions) has been able to account for a number of different
(and sometimes puzzling) features of remapping, such as its dependence on sensory cues (includ-
ing their variability), training and testing protocol, and its variability across animals (Sanders et al.
2020).

Contextual inference requires that, at any time, the brain represents a probability distribu-
tion over contexts, rather than just a single (e.g., the most probable) context (see Section 2.2).
One proposal for how hippocampal responses might encode probability distributions is based
on probabilistic sampling (Savin et al. 2014). This predicts that context representations in the
hippocampus should dynamically alternate over time even under constant experimental condi-
tions. Evidence for this proposal comes from experiments showing that the context encoded by
hippocampal activity can flicker between representing two different spatial environments, such
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that in each cycle of the hippocampal theta oscillation (lasting for ∼125 ms) a single context is
represented coherently across the population, but the represented context occasionally changes
across subsequent theta cycles spontaneously, without changes in sensory cues ( Jezek et al. 2011)
(see the left side of Figure 2b). Moreover, also in line with sampling-based inference, the fre-
quency of flickers was shown to increase following a switch in sensory cues (see the right side of
Figure 2b), which—under a suitable model of context transitions—are ostensibly periods of time
with increased contextual uncertainty.

Contextual inference, as a form of Bayesian inference, involves the combination of current
sensory information with prior expectations to make inferences about the current context. In par-
ticular, prior expectations should reflect the probability distribution over contexts experienced
during training. In accordance with this, recent recordings of large neural populations showed that
hippocampal ensembles encode context in an experience-dependent manner (Plitt & Giocomo
2021). More specifically, the particular prior distribution of contexts (defined over a spectrum
of continuously morphed environments) used for training could be decoded from hippocampal
activity (Figure 2c).

The hippocampus may also contribute to contextual inference more indirectly via its effects
on OFC. During periods of rest, a functional MRI study found that the human hippocampus
replayed sequences of previously experienced task states (Schuck & Niv 2019) that embody our
notion of context (see Section 4.1.1).Moreover, themore faithfully the statistics of these sequences
reflected the transition structure of task states, as defined by the task, themore accurately task states
could be decoded from OFC during task performance. In turn, decoding accuracy in OFC was
positively correlated with task performance. As long as there is a causal relationship underlying
these correlations, these results suggest that hippocampal replay may play a role in constructing
the task-relevant representations in OFC that underlie contextual inference.

4.1.3. Thalamus. The PFC has reciprocal connections with thalamus, which in turn receives
strong inputs from the basal ganglia, a brain structure that has been implicated in context-
dependent action selection (Hikosaka et al. 2000, Collins & Frank 2013, Klaus et al. 2019). By
integrating inputs from many different cortical areas, thalamic circuits are well situated to com-
pute contextual signals that can rapidly reconfigure cortical representations. Indeed, it has been
suggested that the thalamus acts as an optimal Bayesian observer of context, computing likelihoods
that update posterior context probabilities in cortex (Rikhye et al. 2018). Consistent with this view,
inhibition of mediodorsal thalamus in mice leads to perseveration of actions appropriate for a pre-
vious context following a change in context, such as a reversal of action-outcome contingencies
(Parnaudeau et al. 2013, 2015).

4.2. Memory Expression

An emerging view of how memories are recalled by networks of recurrently connected neurons is
based on a dynamical systems perspective. This perspective was anticipated by classical theories
(Hopfield 1982), and it has recently gained experimental support, particularly in the field of motor
control, that is, in the context of the expression of motor memories (Vyas et al. 2020). According to
this perspective, the evolution of the state of a neural population is best understood in terms of the
dynamical rules that govern how the next neural state is caused by the current neural state and in-
puts. In general, inputs can be either transient, such as those that set the initial (preparatory) state
of motor cortex before movement offset, or tonic, persisting while the neural trajectory unfolds,
or even longer, across many consecutive movements. Transient inputs are ideally suited to convey
information about the current environmental state (e.g., the target of reaching) for which an action
needs to be chosen, while tonic inputs are ideally suited to convey information about the current
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context. Indeed, population dynamics in motor cortex during reaching have been well described
by a mostly autonomous (i.e., not input-driven) dynamical system, in which different reaching
directions correspond to different preparatory neural states to which the system is driven by ap-
propriately tuned transient inputs (Kao et al. 2021b). Thus, the memory of a context, determining
the mapping of environmental states to actions, is embedded in the dynamics of the circuit that
determine how a neural trajectory evolves from an initial state to generate a sequence of motor
commands to reach a target.

Due to the nonlinearity of neural circuit dynamics, different subspaces of the neural state space
can support different local dynamics. Thus, these subspaces can form the dynamical substrates
of independent modules capable of implementing context-specific memories (Mante et al. 2013,
Remington et al. 2018a, Wang et al. 2018, Flesch et al. 2022). A particular context-dependent
module can then be addressed by driving the neural state to the appropriate subspace by tonic (or
slowly changing) context-dependent inputs (Mante et al. 2013,Remington et al. 2018a,Wang et al.
2018), providing a mechanism by which context-specific memories can be differentially expressed.
Furthermore, the continuous nature of the state space means that context-specific memories can
be interpolated between, for example, by driving the neural state to a preparatory state in between
those for different contexts, allowing graded context probabilities to influence memory expres-
sion under context uncertainty. Alternatively, rather than selecting between different subspaces,
context-dependent inputs might change neural gains (Stroud et al. 2018) or engage different
thalamo-cortical loops via the basal ganglia (Logiaco et al. 2021), thus controlling the effective
connectivity of the network and the resulting neural dynamics even within a single subspace. This
mechanism might be particularly suitable for interpolating between different memories.

An elegant demonstration of these principles comes from recent studies of contextual motor
learning in nonhuman primates. In these experiments, macaques performed different reaching
movements while one of two opposing external force fields (corresponding to two different con-
texts) was applied to their arm. Recordings from motor cortex revealed that the subspace spanned
by different preparatory neural states was context dependent (Sun et al. 2022) (in Figure 2d, the
same colored points on each curve correspond to the same 12 reach directions, and the curve colors
to movement under different force fields). For example, learning to reach through two opposing
force fields resulted in two parallel subspaces that were each parallel to the subspace spanned by
the before-learning preparatory states and were separated along a dimension that was orthogonal
to this subspace (context dimension). The common dimensions shared by these context-
dependent subspaces may provide a mechanism by which learned behaviors can generalize across
contexts.

Similar principles have been shown to underlie flexible motor timing (Remington et al. 2018a).
In a time-interval reproduction task (Remington et al. 2018b), a random time interval between two
visual flashes was presented that monkeys needed to reproduce up to some context-dependent
multiplicative factor (1 or 1.5), which changed over blocks and was indicated by color cues.
Recordings from the dorsomedial frontal cortex revealed neural trajectories that were separated
according to initial condition (determined by the presented time interval) and an orthogonal
context-dependent axis, with trajectories in different parts of the state space evolving at differ-
ent speeds to reproduce different timing intervals. Analogous results were also found in a variant
of the same task, in which contexts were associated with different prior distributions over the pos-
sible time intervals that needed to be reproduced rather than different multiplicative factors with
which they needed to be reproduced (Sohn et al. 2019). Using a context-dependent cross-modal
decision task, a recent study found a similar representational geometry of context even in visual
cortex (Hajnal et al. 2021).
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4.3. Memory Updating

Within each context,memory updating should take into account uncertainty about the contingen-
cies being inferred. In line with this, recent evidence suggests that synapses adjust their learning
rates based on uncertainty, framing synaptic plasticity as Bayesian inference (Aitchison et al. 2021).
Across contexts, behavioral studies have shown that memory updating is modulated by the poste-
rior of contextual inference (Heald et al. 2021). A neural mechanism for such modulation, at the
level of synapses, would require an additional component to simple two-factor Hebbian mech-
anisms. One class of mechanisms that has been proposed is three-factor mechanisms in which
synaptic modulation depends on presynaptic and postsynaptic activity as well as the influence
of neuromodulators that can convey scalar information about novelty or reward (Frémaux &
Gerstner 2015). For example, tonically active cholinergic neurons of the striatum have been sug-
gested to gate the learning of striatum-dependent behaviors, providing a mechanism by which
memories can be protected from unlearning during extinction (Crossley et al. 2013). However,
conveying information about context probabilities requires more than just representing a single
scalar. How neuromodulatory influences could achieve this remains an open question.

4.4. Memory Creation

Memory creation involves two processes: novelty detection, that is, determining whether sensory
experience is explained by current representations or is novel, and memory instantiation. Nov-
elty has been proposed to be encoded in neuromodulatory signals. Brain areas such as the ventral
tegmental area (Lisman&Grace 2005,McNamara et al. 2014) and locus coeruleus (Takeuchi et al.
2016) signal novelty by releasing dopamine into the hippocampus. In this way, newly encoded hip-
pocampal representations,which are initially labile, are stabilized (McNamara et al. 2014,Takeuchi
et al. 2016), providing a mechanism by which new long-termmemories can be created.Contextual
novelty signals also arrive in the hippocampus from the hypothalamus (Chen et al. 2020) and could,
in principle, be used to trigger the creation of a new map of space (Sanders et al. 2020). In addi-
tion to dopamine, norepinephrine (the main neurotransmitter produced by the locus coeruleus)
has been suggested to signal unexpected uncertainty, when unsignaled context switches produce
strongly unexpected observations (Yu & Dayan 2005). Critically, through its effects on synaptic
plasticity, norepinephrine has also been implicated in the formation of memories (Palacios-Filardo
& Mellor 2019), making it an ideal substrate for inducing memory creation.

The cerebellum may play a key role in memory creation in conditioning paradigms.
Neuroimaging data show that amemory formed during fear conditioning remains within the cere-
bellum following extinction (Batsikadze et al. 2022), suggesting that distinct context-dependent
memories have been formed for acquisition and extinction in the cerebellum. Conversely, in cere-
bellar patients performing an ABA renewal eye-blink conditioning paradigm, extinction (during
B) is slowed and renewal (during the second A) is absent (Steiner et al. 2019), consistent with the
idea that a single memory has been updated throughout learning, independent of context, and that
an intact cerebellum is needed to create new context-specific memories for both the acquisition
of and extinction of eye-blink conditioning.

At the circuit level, evidence of the instantiation of a new memory has been observed in the
amygdala during fear conditioning and extinction in rodents. This was achieved by tracking a
measure of representational distance between the neural population responses to the condition-
ing stimulus (CS) and population responses to the CS prior to conditioning (Figure 2e) and the
unconditioned stimulus (US) (Grewe et al. 2017).CS responses becamemore similar to the US re-
sponse during conditioning. During extinction, the distance to US response increased, paralleling
the reduction in freezing. However, the representation did not return to baseline, as indicated by
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tasks due to one or
more subsequent tasks
having been learned

the constant distance of responses from the initial CS representation. This is consistent with the
idea that the neural circuit has been fundamentally changed by the incorporation of a newmemory
and hence cannot return to baseline. That is, extinction is not simply the reversal of learning. This
result parallels that seen in monkey motor cortex, whereby following deadaptation to a previously
learned force field, the neural activity did not return to baseline but instead retained a memory of
the force field (Sun et al. 2022).

Further evidence that extinction results in two context-specific memories in the amygdala
(conditioning and extinction memories) comes from studies demonstrating that unique neuronal
ensembles emerge following extinction. That is, fear neurons and extinction neurons coexist and
preferentially fire in response to the same CS when the animal freezes (renewal context) or does
not (extinction context), respectively (Orsini et al. 2013).

In cortical areas that use different subspaces of the neural state space to implement context-
specific computations (see Section 4.2), memory instantiation may correspond to expanding the
neural repertoire into a previously unused (i.e., outside-manifold) subspace (Oby et al. 2019).
Moreover, the creation of new memories may also be facilitated by increasing the number of
neurons in the circuit by neurogenesis, for example, in the dentate gyrus (Becker 2005, Gershman
et al. 2017).

5. CONTINUAL LEARNING

Contextual inference might also be key to understanding how the brain solves a fundamental
problem that has long haunted learning in ANNs. Although ANNs can solve challenging compu-
tational tasks when learned individually (LeCun et al. 2015), albeit typically with extensive training
to achieve high performance, crucially, they have difficulty learningmultiple tasks, especially when
those tasks need to be learned sequentially (continual learning, also known as lifelong learning).
As task-optimized ANNs have also been found to predict neural activity in a number of brain
areas, including the visual cortex (Yamins et al. 2014, Echeveste et al. 2020) and PFC (Mante et al.
2013, Stroud et al. 2021), understanding how they might be able to perform continual learning
may provide useful clues as to how the brain achieves the same.

There are two fundamental factors that make multitask and continual learning difficult in
ANNs (Rolnick et al. 2019): interference and catastrophic forgetting. Interference arises when
multiple tasks are incompatible, that is, they have different input-output mappings. This happens
regardless of whether the tasks are trained in an interleaved or blocked fashion (Kessler et al. 2021).
In contrast, catastrophic forgetting can happen even when the tasks are not incompatible. In this
case, the tasks are all well learned by an ANN when they are presented in an interleaved manner
(standard multitask learning), but when the tasks are experienced in a blocked fashion (continual
learning), substantial forgetting is observed (French 1999). Such catastrophic forgetting occurs
because the ANN weights are reoptimized for performance on each new task without reference
to performance on previous tasks.

A variety of mechanisms have been explored to prevent these problems and promote continual
learning in ANNs by using knowledge about context. A powerful solution is to create separate
networks (Aljundi et al. 2017), or subnetworks (Rusu et al. 2016, Li & Hoiem 2017), for each task
(context) and use an input representing the current context (task identity) to index the appropri-
ate (sub)network that needs to be called upon. To avoid having to grow the network with time,
whichmay limit generalization across tasks and require biologically implausible mechanisms, fixed
network architectures with context-dependent gating have also been studied (Masse et al. 2018,
Podlaski et al. 2020, Flesch et al. 2022). In these networks, a fraction of the units is used for each
task (while the rest are gated by setting their activities to 0). Alternatively, contextual inputs have
also been used to induce learned rotations of the input space (Zeng et al. 2019). These rotations
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allow the same inputs to map to different outputs for different tasks within the same network,
thereby reducing interference. It remains an open question which, if any, of these mechanisms
may be relevant to how context controls continual learning in biological circuits.

However, all these approaches are still task aware: They require access to ground-truth infor-
mation about task identity during training [and often at test time, too (van de Ven et al. 2022)].
This information is often explicitly given in the form of task labels (Rusu et al. 2016, Aljundi et al.
2017, Li & Hoiem 2017, Masse et al. 2018, Zeng et al. 2019), or sometimes it is more implicit,
for example, when only the boundaries between tasks are sign posted, but the identities of indi-
vidual tasks are not provided (Kirkpatrick et al. 2017, Lopez-Paz & Ranzato 2017, Rebuffi et al.
2017, Shin et al. 2017, Zenke et al. 2017). Furthermore, to ensure that each task is learned equally
well, several approaches also require networks to be provided with an equal amount of training
for each task (Lopez-Paz & Ranzato 2017, Rebuffi et al. 2017, Shin et al. 2017, Kao et al. 2021a).
Arguably, this is an unreasonable requirement for a lifelong learning algorithm, as, in general, an
equal amount of experience per task cannot be guaranteed in the wild and should not be expected.

In contrast, biological neural networks do not seem to suffer from the same problems. Over
the course of a lifetime, humans are able to learn a wide variety of tasks from a continuous stream
of sensorimotor experience (Pisupati & Niv 2022). In fact, humans can even benefit from blocked
training relative to interleaved training (Flesch et al. 2018)—the exact opposite of how the perfor-
mance of ANNs depends on the training regimen.This effect could be reproduced in an ANN that
received as contextual input a moving average of explicit information about task identity (Flesch
et al. 2022). The sluggishness of this moving average was similar to what can be expected from
contextual inference under a generative model of context transitions that prefers self-transitions
(Heald et al. 2021). This suggests that contextual inference may play a role in biological continual
learning, such that different tasks are assigned to different contexts. In this way, context can be
more reliably inferred when it is predictable, such as in a blocked design, and as a consequence,
proper learning can also be more efficiently focused on the appropriate context-specific repre-
sentations. In line with this (Lengyel 2022), interference is much reduced in roving paradigms
in perceptual learning when using training protocols in which trials corresponding to each task
(e.g., defined by the reference orientation in a fine orientation-discrimination paradigm) are either
blocked (Dosher et al. 2020) or organized into predicable sequences (Zhang et al. 2008) compared
to when they are randomly interleaved (Banai et al. 2010).

Importantly, humans are able to perform continual learning even without ever having been
given explicit information about task labels, that is, in a task-agnostic/task-free manner (cf. task-
aware continual learning in ANNs). By leveraging contextual (task) inference, continual learning
in ANNs can also begin to tackle the ecologically relevant and challenging task-agnostic set-
ting. Some recent progress has been made in this direction using Bayesian nonparametric models
(Nagabandi et al. 2018, Jerfel et al. 2019, Xu et al. 2020) that are broadly similar to the mod-
els that have been suggested to underlie contextual inference in humans and other animals (see
Section 3.4). Other approaches have performed contextual inference without inverting a well-
defined generative model. For example, in the dynamic mixture of experts model, reinforcement
learning was used to train a gating network that received input from the environment and output a
decision regarding which expert to use for the current task (Tsuda et al. 2020).This model was also
able to grow in capacity (like Bayesian nonparametric models), adding a new expert (also trained
via reinforcement learning) whenever existing experts were unable to solve a task. Some of these
approaches (Nagabandi et al. 2018, Jerfel et al. 2019) take context uncertainty into account when
performing memory updating, modifying the parameters (in our terminology, contingencies) of
all context-specific models in parallel based on the posterior probabilities of their corresponding
contexts. However, none of these approaches (Nagabandi et al. 2018, Jerfel et al. 2019, Tsuda et al.
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2020, Xu et al. 2020) take context uncertainty into account for expressing memories, as they only
express a single context-specific model/expert (the one associated with the most probable context)
at any moment.

6. CHALLENGES AND OPPORTUNITIES

We have reviewed the computations required for contextual continual learning and elements of
their putative neural underpinnings. However, there are still many gaps in our understanding of
the neural implementation of contextual inference andmemory creation, expression, and updating.
For a full understanding across different domains of contextual learning, including for episodic
events,motor skills, and decision-making, there are five key computational elements that will need
to be mapped onto neural circuit mechanisms.

First, neural circuits need to be able to maintain multiple memories simultaneously. There are
mathematical theories for how synaptic and cellular forms of plasticity might achieve this, but
comparatively little direct experimental evidence supporting these theories, especially in contin-
ual learning settings when multiple memories are explicitly tested. Second, contexts need to be
continually inferred, incorporating not only current sensory information but also prior experi-
ence with the probabilities of contexts and their transitions. Current experimental evidence for
this is sporadic and mostly circumstantial. Outstanding questions include the neural representa-
tion of posterior distributions over contexts and the division of labor—and interplay—between
PFC, hippocampus, and thalamus in contextual inference. Formal models of contextual inference,
similar in spirit to the one we presented here, making quantitative predictions about posterior
context distributions under specific conditions, should be useful for discovering and resolving the
neural correlates of these posteriors. Third, the neural mechanisms of memory expression need
to be context dependent. Fourth, the updating of memories also needs to be context dependent.
Fifth, there need to be distinct mechanisms for the creation of altogether new memories. While
there are experimental demonstrations for each of these, it remains to be shown that they can go
beyond all-or-none operations and instead be graded or probabilistic—specifically as controlled
by contextual inferences. Such graded forms of memory processing will likely rely on a large array
of mechanisms that are traditionally studied in isolation, such as neural gain control, neuromod-
ulation, synaptic plasticity, and large-scale interactions between cortical and subcortical regions.
Understanding the neural bases of context-dependent continual learning will require studying
these disparate mechanisms through the unifying lens of appropriate computational frameworks.
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