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Abstract

The neocortex is a complex neurobiological system with many interacting
regions. How these regions work together to subserve flexible behavior and
cognition has become increasingly amenable to rigorous research. Here, I
review recent experimental and theoretical work on the modus operandi
of a multiregional cortex. These studies revealed several general principles
for the neocortical interareal connectivity, low-dimensional macroscopic
gradients of biological properties across cortical areas, and a hierarchy of
timescales for information processing. Theoretical work suggests testable
predictions regarding differential excitation and inhibition along feedfor-
ward and feedback pathways in the cortical hierarchy. Furthermore, model-
ing of distributed working memory and simple decision-making has given
rise to a novel mathematical concept, dubbed bifurcation in space, that po-
tentially explains how different cortical areas, with a canonical circuit or-
ganization but gradients of biological heterogeneities, are able to subserve
their respective (e.g., sensory coding versus executive control) functions in a
modularly organized brain.

533

mailto:xjwang@nyu.edu
https://doi.org/10.1146/annurev-neuro-110920-035434
https://www.annualreviews.org/doi/full/10.1146/annurev-neuro-110920-035434


Contents

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534
2. FOUR PRINCIPLES OF LARGE-SCALE NEOCORTICAL

ORGANIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
2.1. Quantitative Characteristics of the Cortical Connectome . . . . . . . . . . . . . . . . . . . . 535
2.2. Macroscopic Gradients of Cortical Heterogeneities . . . . . . . . . . . . . . . . . . . . . . . . . 537

3. DISTRIBUTED CORTICAL DYNAMICS AND PROCESSING . . . . . . . . . . . . . . 538
3.1. A Hierarchy of Timescales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538
3.2. Experimental Observations of a Temporal Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . 539
3.3. Top-Down Processing and Gated Interareal Communication . . . . . . . . . . . . . . . . 541

4. DISTRIBUTED COGNITION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543
4.1. Distributed Working Memory: Bifurcation in Space . . . . . . . . . . . . . . . . . . . . . . . . . 544
4.2. Dopamine Modulation of the Whole Cortex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
4.3. Distributed Decision-Making and Ignition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549

5. SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551

1. INTRODUCTION

Experimental studies that falsified phrenology were pioneered by Karl Lashley a century ago. Le-
sioning increasingly larger portions of the brains of rats trained to carry out memory tasks, Lashley
observed that behavioral performance deteriorated to a degree in proportion with the lesion size.
This finding led him to propose the idea of equipotentiality: namely, outside the primary sensory
areas, multiple parts of the brain work together, and when one part is damaged, its function can
be assumed by another part through plasticity (Lashley 1929). In much of the twentieth century,
because of technical limitations on single-cell recording from behaving animals, neuroscientists
have predominantly focused on local circuits, such as place cells in the rodent hippocampus or
visual motion direction and velocity tuning of neurons in the primate middle temporal visual
area. As a result, our knowledge about the multiregional brain has been limited. While neural
processes underlying functions are distributed, the brain is organized modularly, and subsets of
brain regions are dedicated to different functions. A principled, mechanistic, and computational
understanding of localized versus distributed brain functions represents a major challenge.

The situation has begun to change notably in recent years, thanks to advances in the two pillars
of neuroscience: the brain connectome and neurophysiology of behaving animals. Research in
brain connectomics (White et al. 1986, Sporns 2009, Seung 2012, Swanson & Lichtman 2016,
Abbott et al. 2020, Wang et al. 2020) has produced quantitative connectivity data at microscopic,
mesoscopic, and macroscopic scales (Hagmann et al. 2008, Bohland et al. 2009, Glasser & Van
Essen 2011, Helmstaedter et al. 2013, Markov et al. 2014a, Harris et al. 2019, Xu et al. 2020, Xu
et al. 2021, Foster et al. 2021, Dorkenwald et al. 2022). These anatomical findings have yielded
crucial information about how specific neural circuits carry out precise computation, such as a
ring network for head direction encoding (Turner-Evans et al. 2020) and vector calculations for
navigation (Lyu et al. 2022) in the fruit fly Drosophila. At the same time, simultaneous recording
from many neurons in multiple brain regions of behaving animals has become feasible (Dotson
et al. 2017), especially with the invention of Neuropixels ( Jun et al. 2017, Steinmetz et al. 2021).
Both anatomical and physiological studies are aided by transcriptomics, which provides genetic
tools for classification of cell types and cell type–specific connectivity analysis (Luo et al. 2008,
Tasic et al. 2018, Krienen et al. 2020).
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In the following sections, I discuss new experimental and computational research that suggests
provisionally general principles of structure, dynamics, and cognitive processes in a large-scale
multiregional neocortex. I first summarize a particular line of connectomic analysis that has
produced a directed and weighted area-to-area neocortical connectivity matrix as well as a quan-
tification of cortical hierarchy. Then I review the developments of dynamic models that are built
on the new connectivity data and incorporate the concept of macroscopic gradients of synaptic
excitation and inhibition across the entire cortical mantle. Such modeling revealed a hierarchy of
timescales; its empirical tests and functional implications are covered next. In simulated delayed
response tasks, our model produces working memory representations that are distributed, but
they engage selective subsets of cortical areas rather than indiscriminately across the whole
system. Finally, in decision-making, it displays a transition from graded responses in sensory
areas to an all-or-none activation in prefrontal areas, akin to the ignition phenomenon proposed
in the global neuronal workspace (GNW) model of consciousness. Taken together, these results
offer insights into how differential functional capabilities may emerge, by virtue of bifurcations
in space, from a large-scale neocortex that is built on a canonical local circuit organization and
endowed with low-dimensional heterogeneities in the form of gradients of biological properties
(Wang 2020).

2. FOUR PRINCIPLES OF LARGE-SCALE NEOCORTICAL
ORGANIZATION

2.1. Quantitative Characteristics of the Cortical Connectome

The advances ofmagnetic resonance imaging (MRI) diffusion-weighted tractographymade it pos-
sible to noninvasively map out anatomical connection fibers in the brain. Functional connectivity
(FC) studies have been carried out using functional MRI (fMRI), electrocorticography, electroen-
cephalography (EEG), ormagnetoencephalography (MEG).These experiments inspired and ben-
efited from the use of graph theory, better known today as network science, applied to quantify
the brain’s connectivity (Sporns 2009, Fornito et al. 2016, Bassett & Sporns 2017).

Diffusion tractography does not yield directional information: measured fibers do not distin-
guish projections from area A to area B or the other way around; rather, the resulting connection
matrix is symmetrical. Also, due to a limited signal-to-noise ratio (Donahue et al. 2016), analysis
of diffusion tractography often focuses on all-or-none binary matrix. By contrast, retrograde or
anterograde tracing provides directional information as well as a reliable quantification of con-
nection weights. The publication of a quantitative matrix of macaque cortical connectivity from
the group of Henry Kennedy represents a significant recent advance (Markov et al. 2014a). In
that study of a subset of cortical areas, a retrograde tracer injected in a parcellated (target) area
labeled neurons in other (source) areas that project to the target area. The relative input weight
of one input area, among all source areas, was quantified by the fraction of labeled neurons (FLN)
found in that source area. This measure of connection weights spans five orders of magnitude
(Figure 1a); some interareal inputs are strong while many others are weak. Furthermore,Markov
et al. (2014a) reported that about 65% of all possible connections are present; thus, on the macro-
scopic scale, interareal connectivity is quite dense in macaque cortex. This is in contrast to the
early collation of connectivity data on the macaque brain (CoCoMac) matrix, which contains only
15% of all possible projections. Marmoset monkey cortex displays a comparable density of in-
terareal connectivity, as well as five orders of magnitude of FLN values (Theodoni et al. 2022).
In mouse cortex, interareal connection weights measured using an anterograde tracer span three
orders of magnitude (Oh et al. 2014), and the overall connection density is even higher than in
monkeys (Gămănųt et al. 2018).
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Figure 1

Interareal connections of macaque monkey cortex. (a) Relative weight of connection of one among all source areas to a target area is
quantified by the fraction of labeled neurons (FLN). FLNs span five orders of magnitude and are fit by a lognormal distribution.
(b) The FLN between a pair of cortical areas is an exponential function of their distance (red line), with the decay rate λ = 0.175 mm−1.
(c) Cortical connectivity spatial length as a function of gray matter volume (GMV). Shown is the base 10 logarithm of the decay rate λ

of the exponential distance rule of the mouse, marmoset, and macaque, computed in the same way in all three cases. The plot is a linear
fit on these three points with a slope of −2/9. The red square is the measured value of the decay rate in the rat, and the intersection of
the blue dotted lines is the predicted decay rate in the human. Panels a and b adapted from Wang & Kennedy (2016) with original data
from Markov et al. (2014a) and Ercsey-Ravasz et al. (2013). Panel c adapted from Theodoni et al. (2022) (CC BY 4.0).

In primates, generally, a feedforward projection—say, from visual area V1 to V2—originates
in the superficial layers, whereas a feedback projection (from V2 to V1) is mediated by neurons in
the deep layers (Maunsell & Van Essen 1983).Markov et al. (2014b) introduced a parametric mea-
sure called supragranular labeled neurons (SLNs) as the fraction of all labeled neurons in a given
source area that are located in the superficial layers 2 and 3, with values between 0 and 1. Using
SLNs of directed projections of pairs of areas, a consistent hierarchy can be established where each
area is assigned a hierarchical position. Similar hierarchy has been reported for marmoset mon-
keys (Theodoni et al. 2022). In mice, cortical hierarchy is also present but shallow (Gămănųt et al.
2018, Harris et al. 2019), suggesting a less hierarchical form of organization in the rodent cortex.
In macaque monkeys, there is a second top-down stream originating from neurons in the supra-
granular layer (Markov et al. 2014b). This observation led to the proposal of a dual counterstream
architecture (Vezoli et al. 2021), the functional implications of which remain to be explored.

An important finding was that the FLN of a pair of areas decreases exponentially with the
wiring distance between them (Figure 1b) with a characteristic rate λ (in mm−1) (Ercsey-Ravasz
et al. 2013). For macaque cortex, the characteristic spatial length 1/λmacaque = 5.7 mm. Therefore,
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a cortical network is not only a topological graph but spatially embedded, and the locational
relationship between nodes (areas) must be taken into account in a network description. This
exponential distance rule (EDR) holds for marmoset monkeys (Theodoni et al. 2022) as well as
mice (Horvát et al. 2016). Across nonhuman species, the decay rate of the EDR (λ) scales with
the gray matter volume following a power law with an exponent of −2/9 (Figure 1c). Using
this relation, we can extrapolate the decay rate of the projection lengths in the human cortical
connectome to be ∼0.1 mm−1, or a characteristic spatial length of 10 mm, a prediction that can
be tested experimentally. The observed new scaling remains to be explained theoretically.

Motivated by recently available data, Song et al. (2014) proposed a new class of spatially em-
bedded random networks for the interareal cortical system. The model is generative and thus can
be realized with an arbitrary number of parcellated areas. It captures the macaque data quite well,
including a span of connection weights comparable to that of the macaque cortex. Interestingly,
other network properties found in themodel turn out to be also supported bymonkey data, such as
rank-ordered in-degree (number of input areas for a target area) and out-degree (number of output
areas of a source area) sequences and the distribution of triad motifs (graphs made of three areas).

In summary, directed and weighted interareal connectivity of cortex displays three salient char-
acteristics. First, it is dense and follows a lognormal distribution of connection weights spanning
several orders of magnitude. Second, the classical notion of cortical hierarchy is quantified such
that each area is assigned a hierarchical position and the degree of feedforwardness or feedbackness
of any area-to-area projection is described parametrically. The hierarchy thus defined is steeper in
sensory areas than in association areas and shallower in mice than in monkeys. In a more extended
view, the cortex is organized in a two-dimensional plot defined by anatomy alone, with the radial
direction corresponding to the hierarchy, whereas different modalities and sensory versus motor
areas are separated along the angular direction (Mesulam 1990, Chaudhuri et al. 2015, Margulies
et al. 2016, Wang 2020). Third, the cortical circuit is spatially embedded according to the EDR.
Therefore, purely topological graphs are inadequate. Spatial networks (Barthélemy 2011) offer
a fuller description of cortical connections that takes into consideration spatial relationships be-
tween areas. It is worth noting that the connectivity data discussed above quantify anatomical
connectivity between parcellated cortical areas but not physiological strengths of synaptic con-
nections. Future efforts are desirable to improve such quantitative brain connectome with finer
spatial resolution and, importantly, cell type specificity of source and target neurons.

2.2. Macroscopic Gradients of Cortical Heterogeneities

The mammalian cortex is well known to show spatial heterogeneity of neuron density, pyramidal
cell size,myelin content in the gray matter, cortical thickness, and laminar differentiation (Amunts
& Zilles 2015, Barbas 2015). What are the statistical rules of cortical heterogeneity? Analysis of
genomic data in humans (Burt et al. 2018) revealed low-dimensional macroscopic gradients of
genomic variations across the cortical sheet, with the first principal component accounting for
nearly 30% of the variance and correlating strongly with a measure of cortical hierarchy. Mice
similarly display macroscopic gradients of brain-specific gene expression while showing notable
differences with primates (Fulcher et al. 2019). This is also true for other measures of cortical
heterogeneity. In particular, spines are small protrusions of pyramidal dendrites, with each hosting
a single excitatory synapse; therefore, the spine count per pyramidal cell represents a candidate
proxy for the average strength of excitation per pyramidal neuron, even though the physiological
strengths of individual synapses may vary considerably. Remarkably, in macaque monkeys, the
spine count per pyramidal cell displays a strong positive correlation with the hierarchical position
of cortical areas (Elston 2007, Chaudhuri et al. 2015); a pyramidal cell in prefrontal areas has
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about 10 times more spines than one in V1 (Supplemental Figure 1a). A graded increase of
spine count per pyramidal neuron has also been found in marmoset monkeys (Theodoni et al.
2022). By contrast, in mice, total spine count per pyramidal cell appears to be the same for V1 and
frontal areas (Gilman et al. 2017), suggesting that the macroscopic gradient of spine counts may
be a distinct feature of the primate cortex.

GABAergic inhibitory neurons subdivide into various categories (Markram et al. 2004). A dis-
inhibitory motif was proposed theoretically (Wang et al. 2004) and supported amply by experi-
ments (Kepecs & Fishell 2014, Tremblay et al. 2016, Cardin 2018), realized by three inhibitory
subtypes defined by their projection targets: (a) to the perisomatic region of pyramidal cells and
controlling spiking output of excitatory neurons, (b) to pyramidal dendrites for input control, and
(c) to dendrite-targeting inhibitory cells.The ratio of input-controlling and output-controlling in-
hibitory cells displays a macroscopic gradient (Supplemental Figure 1b) in mice (Kim et al. 2017)
and monkeys (Kondo et al. 1999, Torres-Gomez et al. 2020), with progressively fewer output-
controlling and more input-controlling interneurons from early sensory areas to association areas.

In summary, macroscopic gradients represent a principle of large-scale cortical organization
(Wang 2020, Bernhardt et al. 2022). The dynamic and functional implications of these macro-
scopic gradients across the entire cortical mantle are discussed in the remainder of this article.

3. DISTRIBUTED CORTICAL DYNAMICS AND PROCESSING

Computational modeling of information processing and behavior in a large-scale brain system has
drawn attention recently (Eliasmith 2013). Structural data provide crucial information for large-
scale cortical modeling (Izhikevich & Edelman 2008,Deco & Jirsa 2012, Breakspear 2017). Using
FLNs (Markov et al. 2014a) and SLNs (Markov et al. 2014b), a dynamic model of the macaque
cortex can be developed. How should each area be modeled? The answer depends on the scien-
tific aim of a study. Consider first the idea of a canonical circuit valid for all cortical areas from V1
through prefrontal cortex (PFC), but in which there is a macroscopic gradient of synaptic excita-
tion.Mathematically, a canonical architecture is implemented by an identical excitatory-inhibitory
recurrent network for each local area—for instance, using a population firing rate model from
Binzegger et al. (2009) or Wong & Wang (2006). Long-range area-to-area connectivity is given
by measured FLNs.With the assumption that measured spine count (Elston 2007) is proportional
to the synaptic excitation strength per neuron, a macroscopic gradient is introduced to vary across
areas.

3.1. A Hierarchy of Timescales

Chaudhuri et al. (2015) found that a hierarchy of timescales naturally emerges from such a large-
scale cortex model (Supplemental Figure 2). The hierarchy of time constants is functionally
desirable. On the one hand, primary sensory areas should operate quickly to encode and process
rapidly changing external stimuli. On the other hand, prefrontal and parietal cortical areas should
have slow transients in the form of ramping activity required for accumulation of information in
decision-making (Gold & Shadlen 2007, Wang 2008, Shadlen & Kandel 2021). The wide range
of time constants emerges from the model, which depends on both a macroscopic gradient of
synaptic excitation and complex feedback loops in the multiregional cortical system.

These results raise questions of how to explain a hierarchy of timescales. Consider the system
in the resting state to be approximated by a linear and highly complex dynamic system (Nozari
et al. 2020), for which time constants are given by the real parts of eigenvalues (Strogatz 2016).
What are the system’s essential properties required for the generation of a broad range of time
constants, and given the dense connectivity, why are disparate eigenmodes spatially segregated
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rather than intermixed throughout the system? Mathematical analyses (Chaudhuri et al. 2014,
Li & Wang 2022) identified specific conditions under which a cortical circuit realizes spatial
localization of time constants. A macroscopic gradient of biological properties is important
for generating a broad range of time constants. Intuitively, recurrent excitation prolongs the
effective time constant of a neural circuit, because a positive feedback enables neural activity
to increase for a longer time than in the absence of reverberation (Seung 1996, Wang 2001).
Thus, heterogeneity of synaptic excitation as well as inhibition (which shapes network dynamics)
creates a broad range of time constants. Furthermore, each long-range projection pathway must
be balanced, in the sense that the long-range excitatory-to-excitatory projection is counteracted
by the local excitatory-to-inhibitory one (Vogels & Abbott 2009), which is aided by a larger gain
of the input-output relationship for inhibitory neurons than excitatory neurons. Consequently,
the net interareal input is weak relative to local recurrent dynamics. This is consistent with the
observation in the tract-tracing experiments that the majority (80%) of cortical connections are
part of the local circuit and originate within the injected area itself; long-range inputs from other
cortical areas are relatively weak compared to local synaptic connections (Markov et al. 2014a).

3.2. Experimental Observations of a Temporal Hierarchy

A hierarchy of temporal response windows or timescales is supported by several lines of empir-
ical evidence. Spurred by computational findings (Chaudhuri et al. 2015), Murray et al. (2014)
analyzed single-neuron data recorded from macaque monkeys performing different tasks in five
laboratories. In support of the model, the characteristic time constant of neural fluctuations dis-
played a systematical increase along the hierarchy (Figure 2a) (see also Ogawa & Komatsu 2010,
Runyan et al. 2017, Cavanagh et al. 2018, Wasmuht et al. 2018, Fascianelli et al. 2019, Spitmaan
et al. 2020, Maisson et al. 2021, Manea et al. 2021). The range of the observed time constants
is smaller than that in the model, possibly for several reasons. In particular, adjusting model pa-
rameter values can achieve a better quantitative comparison with data. More importantly, the
biological cortex is a highly nonlinear system for which time constants are not uniquely defined
but depend on its internal state; the exact range of time constants varies over the brain’s states and
behaviors.

Supporting evidence was also reported for mice, from a survey of spiking activities in eight
thalamic and cortical visual areas (Siegle et al. 2021). The extracted time constant from each area,
as calculated using the same analysis as used byMurray et al. (2014), increases with the anatomical
hierarchy (Harris et al. 2019) (Figure 2b). Siegle et al. (2021) also reported that the size of a single
neuron’s spatial receptive field (RF) is progressively larger along the hierarchy in mice, as is well
known in other species (Lennie 1998). Thus, along the visual cortical hierarchy, neural circuits
are endowed with increased capability of integration in both space and time. Spatial integration
can be achieved through convergence of projections onto neurons in one area from neurons with
smaller RFs in an upstream area. The model of Chaudhuri et al. (2015) offers a mechanism for
a hierarchy of temporal response windows, in parallel with the enlargement of spatial response
fields in the cortical hierarchy. The hierarchy of time constants demonstrates the importance of
a macroscopic gradient of circuit properties across the cortex. In zebrafish, a wide range of time
constants engaged in accumulation of information for decision-making has been demonstrated
and shown to be spatially segregated (Dragomir et al. 2020) (Figure 2c).

The existence of macroscopic gradients implies that cortical areas are not the same, in contrast
to commonly practiced graph theoretic analysis of FC. Intuitively, one expects that FC would
resemble anatomical connectivity more closely if nodes were indeed the same; therefore, the
global dynamics would be predominantly determined by the interactions between nodes. This
was confirmed in simulations of our multiregional macaque cortex model (Chaudhuri et al.
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Figure 2

Hierarchy of time constants in the neocortex. (a) Time constant extracted from autocorrelation function of neuronal spiking
fluctuations during baseline of eye fixation in five cortical areas of macaque monkeys as a function of an anatomically defined
hierarchical position. (b) Time constant of autocorrelation function of neuronal spiking fluctuations in thalamic LGN, the LP, V1, and
five higher-order visual cortical areas (LM, AL, RL, PM, and AM) of mice as a function of their anatomically defined hierarchical
positions. (c) Spatial distribution of information integration time constants in the brain of zebrafish performing a decision task.
(d) Hierarchy of time constants in human cortical areas underlying language processing. A hierarchy of speech processing timescale
(operationalized by measuring the temporal receptive window) in each region increases in a topographically organized manner, from
milliseconds up to minutes. Abbreviations: ACC, anterior cingulate cortex; AL, anterolateral area; AM, anteromedial area; LGN, lateral
geniculate nucleus; LIP, lateral intraparietal area; LM, lateromedial area; LP, visual pulvinar; LPFC, lateral prefrontal cortex; MT,
middle temporal visual area; OFC, orbitofrontal cortex; PM, posteromedial area; RL, rostrolateral area. Panel a adapted from Murray
et al. (2014) (CC BY 4.0). Panel b adapted with permission from Siegle et al. (2021). Panel c adapted with permission from Dragomir
et al. (2020). Panel d adapted with permission from Hasson et al. (2015).

2015). Studies combining model simulations with fMRI data from human cortex showed that
their computational model captured the measured FC significantly better when a macroscopic
gradient of synaptic excitation and inhibition was incorporated into the model than in the absence
of it (Demirtąs et al. 2019, Kong et al. 2021), in support of Chaudhuri et al. (2015). These works
highlight the need to take macroscopic gradients into consideration in future network studies of
large-scale brain dynamics, especially in the FC analysis.
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A hierarchy of timescales represents a new general principle of the neocortical organization of
functional importance. First, it can be deployed for representation of temporal context of stimuli
from the environment (Hasson et al. 2008, Kiebel et al. 2008, Baldassano et al. 2017). Compre-
hension depends on temporal integration of stimuli: for instance, following the storyline when
watching a movie (Hasson et al. 2008). Second, since prefrontal and posterior parietal cortices
with slow dynamics mediate selective attention, their top-down signaling can instantiate proac-
tive attention on multiple timescales (Nobre & Stokes 2019). Third, human speech is an example
of information processing on multiple timescales (Poeppel 2003, Hickok & Poeppel 2007, Chien
& Honey 2020, Raut et al. 2020) (Figure 2d). Presumably, perception and appreciation of music
(Zatorre et al. 2002, Levitin 2006) also rely on a hierarchy of time constants in the brain.

3.3. Top-Down Processing and Gated Interareal Communication

The cortex is endowed with an abundance of feedback projections (Felleman & Van Essen 1991,
Gilbert & Li 2013, Kreiman & Serre 2020). Indeed, quantification of cortical pathways shows
that feedback pathways are more numerous and have a greater hierarchical reach than feedforward
ones.Top-down projections play important roles, such as selective attention (Desimone&Duncan
1995,Moore&Zirnsak 2017) and predictive coding (Rao&Ballard 1999, Summerfield et al. 2006,
Bastos et al. 2012). The central idea of predictive coding is that the brain is not merely a passive
receiver of sensory stimulation but constantly, and actively, generates inference about the external
world. Predictive coding involves a comparison between an expectation signal mediated by top-
down projection and sensory stimulus from bottom-up projection. In spite of its broad appeal and
potential as a general principle, up to now, predictive coding has just begun to be investigated
experimentally (Keller & Mrsic-Flogel 2018). Can the emerging large-scale cortex model shed
light on such top-down processes?

Since feedforward and feedback projections are layer dependent (Maunsell & Van Essen 1983,
Markov et al. 2014b, Vezoli et al. 2021), to examine the interplay between bottom-up and top-
down processes in a multiregional model, feedforward and feedback projections should be wired
in a layer-dependent manner. Mejias et al. (2016) extended the model of Chaudhuri et al. (2015)
to incorporate a laminar structure that is simple yet anatomically and physiologically constrained.
The extendedmodel is developed in three steps. First, each cortical area now consists of two layers:
a superficial layer (including layer 4) and a deep layer (below layer 4).This is minimal but adequate
for implementing interareal connections in a layer-dependent fashion. The synaptic connections
between the two layers are informed by neurophysiology (Thomson et al. 2002, Petreanu et al.
2009, DeNardo et al. 2015, Xu et al. 2016).

Second, numerous reports have documented that the superficial layer generates fast gamma
oscillations at about 40 Hz, while the deep layer shows slower synchronous oscillations, such as
alpha rhythm at about 10Hz or beta rhythm at about 15–25Hz (Buschman&Miller 2007, Buffalo
et al. 2011, Wang 2010). In the model, neuronal populations in the deep layer show a rhythm at
10 Hz, whereas that in the superficial layer oscillates at 40 Hz (Figure 3a). Because of the synaptic
interactions between the two layers, gamma oscillations in the superficial layer are modulated by
alpha rhythm, as observed experimentally (Spaak et al. 2012).

Third, for the interareal connections, a feedforward projection originates from the superfi-
cial layer and targets the superficial layer, and a feedback projection starts with the deep layer of
a source area, according to neuroanatomy. Less known are layer- and cell type–specific targets
of feedback projections in macaque monkeys, although some information is available for mice
(Petreanu et al. 2009, D’Souza et al. 2016, Young et al. 2021). In the model, for a feedback path-
way the weights of projections into the superficial and deep layers of a target area are adjusted as
free parameters.
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This model reproduces salient observations from monkey experiments on feedforward versus
feedback signaling (van Kerkoerle et al. 2014, Bastos et al. 2015) using a frequency-dependent
Granger causality measure. For instance, a feedforward signal from V1 to V4 selectively enhances
Granger causality in the gamma frequency range, whereas a feedback signal from V4 to V1 differ-
entially increases Granger causality in the alpha frequency range (Figure 3b). These observations
were reproduced by the model, provided that the feedback projection primarily targets excitatory
neurons in the deep layer.Whether the latter condition is necessary remains to be further studied,
both in models and experimentally.

Based on this general trend, Bastos et al. (2015) proposed a measure to deduce cortical
hierarchy from frequency-dependent Granger causality analysis. Using the same analysis as in the
monkey experiment, the computational model of Mejias et al. (2016) captures fairly well the hier-
archy deduced fromGranger causality analysis in themonkey experiment.This procedure is solely
based on physiological measurements, and in themonkey experiment, these authors found that the
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hierarchy thus deduced correlates strongly with the anatomically deduced hierarchy. This success
led Michalareas et al. (2016) to estimate cortical hierarchy based on noninvasive MEG mea-
surements of the human cortex. Note that in humans, the cortical hierarchy has not been firmly
established by purely anatomical means; therefore, a physiology-based approach is especially
valuable.

The laminar model of Mejias et al. (2016) suggests a circuit substrate for predictive coding, as
schematically shown in Figure 3c. Consider an area receiving a feedforward signalX onto pyrami-
dal neurons in the superficial layer, such as external stimulation propagating along the hierarchy.
A prediction signal Y from a higher area excites pyramidal neurons in the deep layers, which in
turn project to supragranular inhibitory neurons, thereby changing the sign from Y to−Y, and can
be compared with X as X − Y in pyramidal neurons of the superficial layers. Such a process can
occur as an inverse cascade in a deep cortical network. This model prediction remains to be tested
experimentally. In the real brain, a cortical area has several cell types, some of which signal expec-
tation rather than prediction itself (Fiser et al. 2016). Moreover, multiple subclasses of inhibitory
neurons are differentially targeted by feedforward and feedback projections. Therefore, there ex-
ist alternative or complementary scenarios; future work is needed to dissect brain mechanisms of
predictive processing (Keller & Mrsic-Flogel 2018).

Another challenge in efforts to understand a multiregional brain system is concerned with
gating of information flow, exemplified by selective attention (Olshausen et al. 1993). Gating be-
comes a broader challenge with the anatomical knowledge that interareal connections are dense;
any given area receives inputs from several dozen source areas and projects to equally numerous
target areas. “Pathway gating” (Yang et al. 2016) selectively allows inputs from particular area-
to-area pathways. Currently, there are several ideas about how gating is realized (Wang & Yang
2018). First, the disinhibitory motif (Wang et al. 2004) is generalized to pathway gating, with the
testable prediction that inputs from different source areas are clustered in separate parts of pyra-
midal dendrites, which are controlled by distinct subsets of somatostatin- or calbindin-expressing
inhibitory neurons (Yang et al. 2016). Second, frequency-dependent synchronization could en-
hance communication to certain but not all downstream areas, thereby modulating communica-
tion differentially (Fries 2005, Buschman & Miller 2007, Wang 2010, Hahn et al. 2019). Third,
information flow along a particular pathway may be encoded in a low-dimensional subspace of
the source area’s population activity (Kaufman et al. 2014, Gallego et al. 2017, Semedo et al. 2019,
Kohn et al. 2020, Yoo & Hayden 2020, Jazayeri & Ostojic 2021). Communication may also be
flexibly reconfigured in a context-dependent manner within a target recurrent network (Mante
et al. 2013). Using new tools like Neuropixels ( Jun et al. 2017), these scenarios can now be rigor-
ously examined using simultaneous recording from multiple brain regions while animals perform
rule-based task switching.

To summarize, in this section we highlighted the hierarchy of timescales as a newly established
general principle of the large-scale neocortex. The connectome-based model of a multiregional
cortical network opens the door for theoretical investigation of the interactions between bottom-
up and top-down processes in a layer-dependent manner. Extending such modeling in the future
will provide a computational platform to elucidate gated communication between cortical areas
in a complex cortex-wide network.

4. DISTRIBUTED COGNITION

Brain imaging experiments and single-neuron physiology have long documented that multiple
brain regions are engaged in basic cognitive processes like working memory (Baddeley 1987). For
instance, in a delayed response task in which the spatial location of a briefly shown stimulusmust be
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held in working memory across a short delay period of a few seconds, location-selective persistent
neural activity during a mnemonic delay has been observed in the posterior parietal cortex (Gnadt
& Andersen 1988), dorsolateral PFC (Funahashi et al. 1989), thalamus (Funahashi et al. 2004),
and basal ganglia (Hikosaka & Wurtz 1983) of behaving monkeys. How can we understand the
distributed nature of working memory (Christophel et al. 2017, Leavitt et al. 2017, Dotson et al.
2018)? Similarly, decision-making engages multiple brain regions (Siegel et al. 2015,Hattori et al.
2019, Pinto et al. 2019, Gallero-Salas et al. 2021), and value encoding for reward-based choice
behavior is widespread in the brain (Vickery et al. 2011). In a recent study with mice perform-
ing a perceptual decision task, recording from 30,000 neurons in 40 brain regions revealed that
sensory and selective choice signals are distributed differentially in distinct subsets of brain ar-
eas (Steinmetz et al. 2019). Moreover, several groups reported brain-wide activity correlated with
movements (Ahrens et al. 2012,Musall et al. 2019, Steinmetz et al. 2019, Stringer et al. 2019), even
in sensory areas presumably reflecting proprioceptive signals (Proske & Gandevia 2012) and/or
feedback projections from motor command centers that signal corollary discharges (Sommer &
Wurtz 2008, Schneider et al. 2014, Fiser et al. 2016, Schaffer et al. 2021, Zagha et al. 2022). The
advances in brain connectome and neurophysiology are now spurring efforts for mechanistic and
computational understanding of such distributed processes in the brain.

4.1. Distributed Working Memory: Bifurcation in Space

Mejias & Wang (2022) developed a large-scale model of distributed working memory using the
connectivity database for macaque monkey cortex of Markov et al. (2014a). In the model, each
area is described by a minimal recurrent network with two excitatory neural pools (selective for
information items A and B) and an inhibitory neural pool (Wang 2002, Wong & Wang 2006).
The model can be designed to explore different scenarios. For instance, when the local recur-
rent excitation is assumed to be insufficient to maintain persistent activity in any isolated area,
the observed working memory representation in the interconnected system necessarily depends
on long-distance connection loops between cortical areas, which extends the concept of synaptic
reverberation to a large-scale multiregional brain system. Figure 4a–c shows model simulation
of a visual delayed response task under this condition. Notably, responses to a brief input during
stimulus presentation cover posterior parts of the cortex, whereas persistent activity during the
delay period displays a spatial pattern involving frontal, parietal, and temporal areas. The per-
sistent activity level of each area plotted as a function of its hierarchical position exhibits a gap
in the firing rate that separates the areas with and without mnemonic activity (Figure 4d). This
is reminiscent of a bifurcation in an attractor model of working memory (Amit 1995, Brunel &
Wang 2001, Inagaki et al. 2019,Wang 2020). The term “bifurcation” denotes mathematically the
phenomenon of the emergence of qualitatively different behavior caused by a quantitative dif-
ference in the properties (such as the strength of synaptic excitation) of a nonlinear dynamical
system (Strogatz 2016). However, unlike a conventional bifurcation caused by varying an exter-
nally controlled parameter, here the abrupt transition from cortical areas not engaged in working
memory to those exhibiting persistent activity occurs in the space of cortical tissue; all areas are
interconnected through an abundance of long-range loops, and the transition is not sensitive to
changes of parameters. I call this novel phenomenon “robust bifurcation in space” as a mechanism
for distributed working memory. Similar to complex dynamic systems near a bifurcation (Nicolis
& Prigogine 1977), the model predicts unusual neural fluctuations in areas at the edge of the
transition (Figure 4d), which can be tested experimentally.

In the model, both local and long-range excitatory connections increase along the cortical
hierarchy. To ensure network stability in spite of strong excitatory loops, the model assumes a
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counterstream gradient of targeting inhibitory neurons (Figure 4a). Namely, the ratio of weights
of interareal inputs to excitatory and inhibitory neurons for a projection increases with its SLN
value, so that for feedback projections (with small SLNs), there is a small bias in favor of target-
ing inhibitory neurons. This counterstream inhibitory bias not only helps to stabilize the system’s
dynamics but also explains the absence of elevated persistent activity in early sensory areas where
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Figure 4 (Figure appears on preceding page)

Distributed working memory representation in a large-scale monkey cortex model in which none of the isolated areas is capable of
generating persistent activity. (a) Model schema. Zooming in illustrates interareal connections between V1 and V2, each with two
selective excitatory neural pools (purple and green) and an inhibitory neural pool (blue). Feedforward projection predominantly targets
excitatory cells, whereas feedback projection more strongly targets inhibitory neurons (thick arrowed lines). (b) In model simulation of a
visual delayed response task, activities of the two excitatory neural populations are shown for 6 sample areas. Blue lines represent
activity of the neural pool selective for the shown stimulus, and orange lines represent activity of the neural pool nonselective for it.
(c) The activity map is confined to the posterior part of the cortex during stimulus presentation. By contrast, persistent activity is
distributed in the frontal, parietal, and temporal areas after stimulus withdrawal. Firing rate is shown in color. (d) Mnemonic firing rate
of the selective neural pool in each area during the delay period is plotted as a function of its hierarchical position. Those areas
displaying persistent activity are separated from those that do not by a gap in the firing rate (red arrow). Simulation results use the
model from Mejias & Wang (2022). Abbreviations: 8B, frontal eye field Brodmann area 8B; 9/46d, dorsolateral prefrontal cortex
Brodmann area 9 and dorsal 46; 24c, anterior cingulate cortex Brodmann area 24; FB, feedback; FF, feedforward, LIP, lateral
intraparietal area; MT, middle temporal area; V1, primary visual cortex.

the net effect from top-down projections is inhibitory. Note that this is not necessarily inconsis-
tent with some functional MRI studies showing working memory representation in sensory areas
(reviewed in Sreenivasan et al. 2014, but see Xu 2020), because the blood-oxygen-level-dependent
signal is strongly correlated with synaptic inputs (rather than spiking activity), which reflect both
excitatory and inhibitory currents. At first sight, this idea seems to contradict empirical evidence
that top-down signaling enhances firing of sensory neurons by selective attention, which shares a
brain substrate with working memory. However, selective enhancement by attention simultane-
ously increases neural firing in some neurons while suppressing other neurons (Martinez-Trujillo
& Treue 2004, Ardid et al. 2007), so the overall effect could be net inhibitory (Huang et al. 2019,
Yoo et al. 2021). Moreover, predictive coding in its simplest form posits an overall inhibitory
top-down influence (as −Y in Figure 3c). The counterstream inhibitory bias represents a new
hypothesis that is experimentally testable.

To further analyze self-sustained collective dynamics of the cortex, individual areas were le-
sioned in model simulations (Mejias & Wang 2022). The persistent activity pattern did not dis-
appear abruptly by such manipulations. Instead, the number of areas engaged in working mem-
ory representation gradually decreases as increasingly more randomly selected areas are lesioned,
demonstrating the robustness of distributed working memory. However, certain areas are more
important than others, in particular, those areas in the parietofrontal network. The model can
also be used to simulate cell type–specific transient inactivation using optogenetic manipulation
to fully understand the underlying network mechanism of distributed working memory. These
results begin to clarify the distributed nature of working memory encoding.

Interestingly, a large-scale circuit displays a large number of distributed persistent activity pat-
terns (attractors).Here, distinct attractor states are defined in terms of their spatial patterns, which
do not depend on the number of selective excitatory neural pools per area. For instance, in a two-
area network, there are at most three spatial pattern attractors (with one of the two, or both,
showing persistent activity), independent of the number of selective neural pools in each area.
Using a numerical approach to identify and count distinct attractors, many attractors are identi-
fied. For example, some engage the temporal lobe, others do not; a few involve the frontal polar
area 10. Each of these distributed working memory attractors engages a subset of cortical areas,
and frontal areas are commonly involved. Importantly, some of them are not accessible by stimu-
lation of a primary sensory area, suggesting that they serve internal processes other than working
memory of external stimulation. After all, mental processes such as thinking and reasoning, as well
as emotional feelings, are largely freed from the physical world, which can be realized by various
self-sustained attractor patterns of distributed brain activity.
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4.2. Dopamine Modulation of the Whole Cortex

It is well known that dopamine has a major impact on working memory function (Brozoski et al.
1979). Stimulation of the D1 receptors (the most common type of dopamine receptors in the
cortex) in the PFC is important to delay period activity, but either too little or too much stimu-
lation can abolish delay period activity and impair working memory performance (Arnsten et al.
1994, Williams & Goldman-Rakic 1995, Vijayraghavan et al. 2007). In vitro studies of slices of
PFC found various intricate effects of dopamine on interactions between cell types in PFC that
potentially underlie this inverted U-shaped dosage dependence. D1 receptor agonists increased
the slow and voltage-dependent N-methyl-d-aspartate (NMDA) component of synaptic excita-
tion (Seamans et al. 2000). Dopamine also led to a shift from somatic to dendritic inhibition in
single pyramidal cells (Gao et al. 2003) and modulation of potassium channels that contribute to
neuronal adaptation (Arnsten et al. 2019).

While it is known that dopamine signaling is not uniform in the cortex, there has been lit-
tle quantification of how it differs throughout the cortex. Using the technique of quantitative in
vitro receptor autoradiography to quantify the density of receptors across brain areas (Zilles &
Palomero-Gallagher 2017), Froudist-Walsh et al. (2021) found that D1 receptor density per neu-
ron varies in the form of a systematic gradient across the cortex. D1 receptor density increases
along the cortical hierarchy, such that early sensory areas have relatively few D1 receptors per
neuron, while neurons in the prefrontal and lateral parietal areas have a large amount of D1 re-
ceptors (Figure 5a). This finding demonstrates that the concept of macroscopic gradients in the
cortex (Wang 2020) also holds for neuromodulation.

In an extension of our macaque cortex model to incorporate a gradient of dopamine modu-
lation, Froudist-Walsh et al. (2021) focused on examining the hypothesis that dopamine differ-
entially enhances dendritic inhibition and reduces somatic inhibition (Gao et al. 2003), in line
with the anatomical evidence that D1 receptor expression is higher in dendrite-targeting cal-
bindin or somatostatin-positive GABAergic cells than perisoma-targeting parvalbumin-positive
ones (Mueller et al. 2020). For that purpose, the local area model is extended to include the three
GABAergic cell types forming a disinhibitory motif (Figure 5b). In model simulations of a de-
layed visual response task, a target stimulus is first shown, which must produce a memory-guided
response at the end of the trial. Following a delay, a distractor stimulus is presented, which should
be ignored. A second delay period precedes the end of the trial. The activity map depicts the spa-
tial distribution of neural firing for two selective neural populations in each cortical area included
in the model (Figure 5c).When dopamine enhances dendritic inhibition and reduces somatic in-
hibition, the target leads to activity in the target-selective neural population spreading from the
visual system to the frontal and parietal cortex. The distractor produces only transient activity in
the distractor-selective neural population in the posterior areas but does not gain access to most
of the frontal and parietal cortices, and behaviorally relevant memory is preserved (Figure 5c). By
contrast, with low D1 activation, working memory is easily distracted, and persistent activity in
the second delay becomes selective for the distractor rather than the target (Figure 5c).

Based on empirical evidence (Seamans et al. 2000, Gao et al. 2003, Arnsten et al. 2019), in
our model, different targets of the D1 receptor have differential sensitivities: low-level dopamine
release enhances theNMDA receptor–mediated excitation and dendritic inhibition,whereas high-
level dopamine release has a net suppressive effect because of its modulation of a potassium cur-
rent. Consequently, the model exhibits an inverted U-shaped dependence on the dopamine mod-
ulation of persistent activity in the parietal cortex and PFC (Figure 5d), similar to experimental
observations (Arnsten 1998), now from the perspective of a large-scale cortical system.Optimality
in the intermediate dopamine level can be understood by the preferential targeting of long-range
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Dopamine modulation of a multiregional cortical system. (a) The D1 receptor density per neuron increases along the anatomically
defined cortical hierarchy. (b) An extended local circuit model with diverse types of inhibitory neurons. (c) Simulations of a working
memory task with a distractor.With a high dendritic-somatic inhibition ratio (top row), target-selective activity (red) is maintained in the
second delay in spite of the distractor that briefly causes activity in the distractor-selective neural population (blue) of visual cortical
areas (middle row). With a low dendritic-somatic inhibition ratio, persistent activity becomes selective for the distractor in the second
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Abbreviations: 3, primary somatosensory cortex Brodmann area 3; 10, frontal polar cortex Brodmann area 10; E, excitatory neurons;
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intestinal peptide/calretinin-expressing inhibitory neuron. Figure adapted from Froudist-Walsh et al. (2021) (CC BY 4.0).

connections to the distant dendrites, while local connections synapse the perisomatic region of
pyramidal cells (Petreanu et al. 2009). Once a stimulus-selective persistent activity has been en-
gaged by the initial cue, strong inhibition to the dendrites blocks distractor information in the
sensory areas from entering frontal and parietal areas (with high D1 receptor density) while leav-
ing excitatory reverberation relatively unaffected and able to maintain activity related to the be-
haviorally relevant cue. Furthermore, the model still works if a delayed response depends on the
second stimulus rather than the first stimulus, provided that the behavioral relevance of a stimu-
lus is learnt and correlated with phasic activity of dopamine neurons (Schultz 1998). Notably, the
model captures the meta-analysis results (Leavitt et al. 2017) of mnemonic persistent activity in
various cortical areas of the macaque cortex (Supplemental Figure 3).

This work illustrates a cross-level understanding that links receptors and diverse cell types to
recurrent circuit dynamics and to a basic cognitive function distributed across the cortex. Such
a modeling platform is valuable for addressing the current debate on precisely how distributed
are working memory representations—in particular, whether sensory areas are critically involved
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in working memory storage (Xu 2020). On the theory side, this large-scale cortex model is suit-
able for exploring passive short-term memory traces (by activity-silent mechanisms) versus active
working memory (Froudist-Walsh et al. 2021), a topic of current debate (Constantinidis et al.
2018,Miller et al. 2018,Wang 2021), and can be further used to elucidate the dynamical nature of
working memory representation in the future. Other open questions include the following: what
are the general rules that determine mechanistically which area or subnetwork of areas is essential
for working memory storage? Can the concept of bifurcation in space be rigorously established
mathematically?

4.3. Distributed Decision-Making and Ignition

The newly available model with anatomically measured interareal connectivity provides a plat-
form to revisit the classical problem of signal propagation (Perkel & Bullock 1968, Diesmann
et al. 1999). In a spiking neuron version of the large-scale macaque cortex model endowed with
highly heterogenous connection weights and an abundance of feedback loops ( Joglekar et al.
2018), in response to a brief stimulus to primary visual cortex V1, cortical areas fire a burst of
spikes with various onset latencies. A few areas, such as TEO, show more than one burst, as a
manifestation of complex patterns of communication across the highly recurrent cortical system
(Figure 6a).

The peak responses averaged over areas in each of the occipital, temporal, parietal, and frontal
lobes increase with the stimulus intensity in different ways. While the dependence is graded for
visual areas, the prefrontal activity displays a nonlinear thresholding effect, with virtually zero re-
sponse below the input threshold ( Joglekar et al. 2018) (Figure 6b). The unexpectedly observed
threshold for access to the PFC in the model resembles the so-called ignition phenomenon postu-
lated by the theory of GNW for access consciousness (Baars 1988, Dehaene et al. 2003, Mashour
et al. 2020) (Figure 6c). Access consciousness refers to subjective awareness of information. In
well-controlled neuroscientific experiments, access consciousness can be studied using simple tasks
(Crick & Koch 1990, Koch 2004, Dehaene 2014). For instance, in a detection task with a stimulus
intensity near the detection threshold, a subject sometimes reports the presence of the stimulus
but other times reports its absence, even though the physical stimulation is identical.While the ac-
tivity of neurons in sensory areas reflects external inputs, neural firing in frontal areas is correlated
with subjective awareness in primates (de Lafuente &Romo 2005) and rodents (Zagha et al. 2015).

Human studies using such paradigms combined with recording of event-related potential us-
ing EEG or MEG lend support to the GNW theory while revealing that the initial state of the
brain biases whether a given stimulus is perceived or not (Del Cul et al. 2007, Baria et al. 2017).
Specifically, conscious access corresponds to an all-or-none ignition of activity in the PFC, which
in turn triggers a broadcast of information content in the brain via its extensive long-range con-
nections. Van Vugt et al. (2018) carried out a monkey experiment with a detection task in which
the contrast of a visual stimulus was varied. Simultaneous recording from neurons in V1, V4, and
PFC found that firing of neurons in V1 and V4 was similar whether a near-threshold stimulus
was reported in a given trial, whereas activity of neurons in PFC displayed robust differences in
hit versus miss trials (Figure 6d). When no stimulus was shown, V1 and V4 neural activity was
similar in false alarm and correct rejection trials. By contrast, PFC neurons ramped up their firing
in false alarm but not correct rejection trials, up to a level similar to that in hit trials.

This detection experiment was simulated using our model of large-scale macaque cortex
(Klatzmann et al. 2022). By varying the magnitude of an input to V1, mimicking the contrast of
a visual stimulus, the model could capture the basic physiological observations and behavioral
performance from the monkey experiment of van Vugt et al. (2018). There is a transition from
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Ignition in a large-scale cortex. (a) Signal propagation across some areas but not others in response to a brief input to V1 in a large-
scale monkey cortex model of spiking neurons. The areas along the ventral stream showing strong response activity are indicated in
orange. The list of full names of cortical areas shown is provided in Markov et al. (2014a). (b) The peak response averaged over areas in
the occipital, temporal, parietal, and frontal lobes as a function of the intensity of a stimulus to V1. (c) Illustration of ignition as a
physiological signature of consciousness. (d) Average normalized activity of neurons in V1, V4, and dorsolateral prefrontal cortex
(DLPFC) of monkeys performing a visual detection task with intermediate contrast levels around the detection threshold. Neural
signals in visual areas predominantly reflect the physical stimulus in hit and miss trials, whereas neural firing in the DLPFC displays
strong responses correlated with subjective awareness in hit and false alarm trials. Panels a and b adapted from Joglekar et al. (2018).
Panel c adapted with permission from Dehaene et al. (2006). Panel d adapted with permission from van Vugt et al. (2018).

graded dependence on input magnitude in visual areas to all-or-none activity in the PFC. A
time-dependent analysis revealed a dynamic signature of the onset of ignition in the model,
similar to that observed in a human experiment using an auditory detection paradigm and
EEG recordings (Sergent et al. 2021). In the experiment, this stereotypical EEG signature was
correlated with reports during the task as well as in the condition of passive listening when no
detection was required, representing a biological marker of conscious processing independently
from behavioral response (the report), an important dissociation for elucidating the role of the
PFC in consciousness (Block 2019, Kapoor et al. 2020).

The global ignition phenomenon associated with access consciousness represents but one ex-
ample of a variety of distributed brain processes that can now be rigorously studied experimentally
and theoretically. Considerations of a complex, large brain system have brought to the fore new
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open questions, especially regarding the brain mechanism of interareal communication (Perich
et al. 2021). Since local circuit modeling has shown that working memory and decision-making
share a common brain mechanism (Wang 2002, 2008), it is likely that our large-scale cortical
model capable of working memory can be generalized to account for distributed perceptual de-
cisions (Siegel et al. 2015, Steinmetz et al. 2019, Wilming et al. 2020) and value-based choices
(Vickery et al. 2011, Hattori et al. 2019).

5. SUMMARY

For arguably the first time in neuroscience, it is now possible to build a biologically based computer
model of a large-scale,multiregional brain. In this review, I summarized recent progress in research
going beyond local circuits toward a neuroscience of the whole brain. In contrast to previous
computational modeling devoted to FC measured in resting states, here I focused on dynamics
during behavior and distributed cognitive processes. I discussed findings in support of general
principles about the global organization of the neocortex. First, the interareal connectivity weights
obey a wide lognormal distribution (Markov et al. 2014a, Oh et al. 2014). Second, the cortical
network is spatially embedded and obeys the EDR. These two characteristics are captured in a
new class of random network models of the cortex (Song et al. 2014). Third, the cortical hierarchy
is established quantitatively for the primate cortex (Markov et al. 2014b, Michalareas et al. 2016)
as well as for mice (Harris et al. 2019, D’Souza et al. 2022). Fourth, heterogeneities of synaptic
excitation and inhibition are not random among cortical areas; instead, they vary systematically
along certain low-dimensional axes in the form ofmacroscopic gradients (Wang 2020). Fifth, there
is a hierarchy of temporal integration windows in parallel with a gradual enlargement of spatial
RFs of neurons along the cortical hierarchy, predicted theoretically (Chaudhuri et al. 2015) and
supported by an increasing number of experiments (Murray et al. 2014, Cavanagh et al. 2018,
Siegle et al. 2021, Manea et al. 2021).

Computational works have also led to falsifiable hypotheses on the organization of synaptic
excitation and inhibition in the multiregional cortex. In particular, the NMDA/AMPA ratio is
higher at excitatory local and feedback connections than at feedforward ones.Moreover, feedback
projections tend to have a net inhibitory effect in the form of a counterstream inhibitory bias. In
a laminarly organized cortex, this can be realized by a strong top-down projection to excitatory
neurons in the deep layers of the recipient area, which in turn connect to inhibitory neurons in the
superficial layers. This scenario constitutes a candidate anatomical substrate for predictive coding.

The emerging picture is that equipotentiality would be the wrong conclusion from recent
experiments that reported whole-brain activations even during simple tasks (Musall et al. 2019,
Schaffer et al. 2021).Neural processes are both distributed and localized in the brain; the challenge
is to understand how. The biological macroscopic gradients combined with the mathematics of
nonlinear dynamic systems give rise to the new concept of bifurcation in space,whichmay hold the
promise for understanding cortical areas that share a canonical circuit architecture while exhibiting
distinct functional capabilities such as working memory.

This review focuses on the neocortex, which closely interacts with hippocampus, thalamus,
basal ganglia, cerebellum, amygdala and neuromodulatory systems through connection loops.
With experimental advances in the coming years, incorporation of subcortical structures in a more
comprehensive mathematical model will become possible and important for understanding how
the whole brain works during cognitive processes and behavior. Plasticity in such complex large-
scale brain systems underlying learning represents another widely open question in the nascent
neuroscience of multiregional large-scale brain systems.
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FUTURE ISSUES

1. What are the cell type–specific targets of top-down projections and their distinctive
synaptic dynamics?

2. What are the cell type–specific NMDA/AMPA ratios at feedforward, local recurrent,
and feedback projections?

3. Under what conditions and in which areas is the overall impact of a top-down projection
inhibitory rather than excitatory?

4. What are the salient differences in macroscopic gradients for synaptic excitation and
inhibition between rodents and primates?

5. What are the computational advantages of a hierarchy of timescales?

6. How can one incorporate a rich repertoire of information representations, such as ob-
ject (“What?”) and location (“Where?”) along the ventral versus dorsal pathways, in a
connectome-based model of the whole cortex?

7. What would be a mathematically rigorous theory and neurophysiological tests for bifur-
cations in space, denoting sudden emergence of qualitatively different functional capa-
bilities in a subset of brain regions?
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