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Abstract

We review the theoretical and experimental progress in the Glauber model
of multiple nucleon and/or parton scatterings after the last 10–15 years of
operation with proton and nuclear beams at the BNL Relativistic Heavy Ion
Collider and the CERN Large Hadron Collider. The main developments
and the state of the art of the field are summarized. These encompass
measurements of the inclusive inelastic proton and nuclear cross sections,
advances in the description of the proton and nuclear density profiles and
their fluctuations, inclusion of subnucleonic degrees of freedom, experi-
mental procedures and issues related to the determination of the collision
centrality, validation of the binary scaling prescription for hard scattering
cross sections, and constraints on transport properties of quark–gluon
matter from varying initial-state conditions in relativistic hydrodynamics
calculations. These advances confirm the validity and usefulness of the
Glauber formalism for quantitative studies of quantum chromodynamics
matter produced in high-energy collisions of systems, from protons to
uranium nuclei, of vastly different size.
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1. INTRODUCTION

The central goal of high-energy nucleus–nucleus (AA) collisions is to study the collective ther-
modynamic and transport properties of quarks and gluons—the elementary degrees of freedom of
the theory of strong interaction, quantum chromodynamics (QCD) (1). Collisions of heavy ions
at center-of-mass (CM) energies above tens of GeV provide the only known experimental way to
produce a large multibody system of deconfined partons, the quark–gluon plasma (QGP), which
is predicted by lattice QCD calculations for energy densities above a critical value of εc ≈ 0.5 GeV
fm−3 (2, 3). Such collisions provide the only available known means by which to study in the lab-
oratory the thermodynamics of a system described by a non-Abelian quantum gauge field theory.

Larger transverse spatial overlaps of the two incoming ions lead to a larger volume of the cre-
ated system, which results in mesoscopic conditions leading to partial (local) thermalization and
subsequent collective behavior of the produced partons. Hence, the interpretation of data from
high-energy heavy-ion collisions relies on a detailed knowledge of the initial QGP matter dis-
tribution that results from the overlap of the two nuclei colliding at a given impact parameter b,
complemented by a theoretical modeling of its subsequent space-time evolution. To interpret the
experimental observations, it is crucial to derive from the data the transverse size of the created
QGP, as well as any event-by-event irregularities that arise from density and/or color fluctua-
tions, because the total and local depositions of energy in the collision chiefly influence the initial
conditions and the evolution of the strongly interacting system that is produced.

The generic method to study the properties of QCD matter relies on measuring the distribu-
tions of a variety of observables in AA collisions and comparing themwith the samemeasurements
in proton–proton (pp) and/or proton–nucleus (pA) collisions, where a QGP is not expected to
be produced. Common observables include particle production yields (e.g., light hadrons, heavy
quarks, quarkonia, jets, photons) as functions of their transverse momentum ( pT), pseudorapidity
(η), and azimuthal angle (φ) (4). Carrying out such quantitative comparisons among colliding
systems of different sizes requires appropriate normalization of the measured distributions by
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using, for instance, the number of participating nucleons (Npart), the number of independent
binary nucleon–nucleon (NN) collisions (Ncoll), the medium transverse area (A�), or the system
eccentricity (εn, given by the nth moments of its azimuthal spatial distribution), as described below.

Computation of the aforementioned quantities typically relies on describing multiple scat-
terings of the constituents (nucleons, themselves characterized by parton densities) inside the
colliding nuclei by using the so-called Glauber formalism, which is named after Roy Glauber’s
pioneering work on the use of quantum mechanical scattering theory to calculate cross sections
in pA and AA collisions (5, 6). The Glauber formalism is based on the geometric (i.e., eikonal)
approximation, which assumes that projectile nucleons travel along straight lines (i.e., with
negligible momentum exchanges compared with their longitudinal momenta) and undergo mul-
tiple independent subcollisions with nucleons in the target. In the original form of the Glauber
approach (7–9), the total hadronic cross section of a collision of two nuclei (nucleus A with A
nucleons and nucleus B with B nucleons) is given by a (2A + 2B + 1)-dimensional integral:

σAB =
∫

d2b
∫

d2sA1 · · · d2sAAd2sB1 · · · d2sBB

× TA (s
A
1 ) · · ·TA (s

A
A )TB (s

B
1 ) · · ·TB (s

B
B ) 1.

×
⎧⎨
⎩1 −

B∏
j=1

A∏
i=1

[
1 − σ (b − sAi + sBj )

]⎫⎬
⎭ ,

where b is the collision impact parameter and s denotes a position in the transverse plane. The
interaction probability σ (s) is normalized to give the nucleon–nucleon inelastic cross section
σNN = �d2s σ (s). The nuclear thickness function TA(b) = �dz ρA(b, z) describes the transverse
nucleon density by integrating the nuclear density ρ along the longitudinal direction z.

In the so-called optical limit of the Glauber model derived in Reference 9, local density fluctua-
tions and correlations are ignored so that each nucleon in the projectile interacts with the incoming
target as a flux tube described with a smooth density. The total cross section then reduces to

σAB =
∫

d2b
{
1 − [

1 − σNNTAB (b)
]AB} , 2.

where

TAB (b) =
∫

d2s TA (s)TB (s − b) 3.

is known as the nuclear overlap function, normalized as
∫
d2b TAB (b) = AB by integrating over

all impact parameters. Equations 1 and 2 give identical results for large enough nuclei and/or for
sufficiently small values of σNN.

In contrast to optical calculations, Monte Carlo Glauber (MCG) calculations (10–19) evaluate
the phase space of Equation 1 stochastically by distributing the A and B nucleons of nuclei A
and B, respectively, in coordinate space according to their corresponding nuclear densities and
separated by an impact parameter b sampled from dσ/db ∝ b.1 The nuclear transverse profiles are
usually approximated with parameterizations of charge density distributions extracted from low-
energy electron–nucleus scattering experiments (20, 21) that, for large spherical nuclei, are usually
described by two-parameter Fermi (2pF; also called Woods–Saxon) distributions, ρ(r) = ρ0/[1 +

1Hereafter, for simplicity, the impact parameter variable b (bNN) is used to denote the transverse distance
between the nuclei (or nucleon) centers.
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Figure 1

Event displays of initial transverse density profiles in the (x, y) plane of (a) Pb+Pb collisions at √sNN = 5.5 TeV with a triangular-like
shape (5–10% centrality) and (b) p+Pb collisions at √sNN = 8.8 TeV (0–1% centrality) generated with TGlauberMC (18). The colored
bidimensional surfaces indicate the local density (fm−2), following the weighting given by Equation 4 with α = 0.2. The gray circles
indicate spectator nucleons that do not participate in the collision process.

exp( r−Ra )], with half-density radius R and diffusivity a. Following the eikonal approximation, the
collision is treated as a sequence of independent binary nucleon–nucleon collisions; that is, the
nucleons travel on straight-line trajectories, and their interaction probability does not depend on
the number of collisions they have suffered before. In its simplest form, an interaction takes place
between two nucleons if the distance d between their centers satisfies d <

√
σNN/π . Alternatives

to this so-called black disk approximation—using, for example, a Gaussian-like distribution for
the nucleon overlap or more complex forms—are also used, as discussed below.

One of the most typical phenomenological applications of the Glauber model is to provide the
initial conditions for the number density [or entropy or energy densities, related to the particle
density via the QCD equation of state (EoS)] of the medium formed in nuclear collisions as input
for hydrodynamics calculations of its subsequent space-time evolution, a crucial element for the
observation of near-perfect fluidity of the QGP (22). The initial entropy profile in the transverse
plane at midrapidity (η = 0) is typically assumed to be proportional to a linear combination of
the number density of particles produced in soft (with yields assumed to scale as the Npart pairs)
and hard (scaling as Ncoll) scatterings (23):

s0(�r⊥ ) ≡ d2S
τ0 d2r⊥dη

∣∣∣∣
η=0

= C
τ0

[
1 − α

2
ρpart(�r⊥ ) + α ρcoll(�r⊥ )

]
, 4.

with the relative weight2 often taken as α = 0.2 at the CERN Large Hadron Collider (LHC).
Two typical snapshots in the (x, y) plane of the medium formed in Pb+Pb and p+Pb collisions
at the LHC are shown in Figure 1. Right after the collision, the spectator nucleons (gray circles
in Figure 1) continue undisturbed with the original longitudinal momenta inside the beam line,
whereas the hot and dense QGP formed at midrapidity at the LHC expands longitudinally at
about the speed of light and transversely at about 0.6 times the speed of light (24).

2The historical wounded nucleon model (WNM) (8) for low-energy heavy-ion collisions assumes an entropy
deposit only for each nucleon that engages in one or more inelastic collisions and would correspond to α = 0.
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Among the quantities derived from Glauber models, the initial azimuthal anisotropy of the
QGP system is an important one because it directly propagates to various flow components in the
final state through collective hydrodynamic pressure gradients and is thus particularly sensitive to
the transport and thermodynamic properties of QCDmatter (25). The harmonic eccentricities εn
of the produced QGP (with n = 2 being its ellipticity, n = 3 triangularity, etc.) are theoretically
defined as

εn ≡
∣∣∫ rneinφ w(r,φ)rdrdφ

∣∣∫
rn w(r,φ)rdrdφ

, 5.

where the weights w(r, φ) are often taken as the initial density of the medium derived from the
Glauber model itself via a linear combination of the underlying Npart and Ncoll distributions, as in
Equation 4.Assuming a linear hydrodynamics response, the final harmonic flows determined from
the azimuthal distributions of the produced hadrons via dN

dφ = N
2π

(
1 + ∑

n{2vn cos[n(φ − ψn )]}
)
,

where ψn is the flow plane angle for harmonic flow vn, are proportional to the initial eccentricity:
vn = κεn, with κ ≈ 0.2 depending on the EoS, and deviations being sensitive to the ratio of the
medium shear viscosity over entropy density η/s (22, 26–30). Whereas flow studies historically
focused on the elliptic component (v2), analyses of the higher Fourier harmonics have blossomed
in recent years because of the large flow signals observed in data from the BNL Relativistic Heavy
Ion Collider (RHIC) and the LHC (31–35). A typical Pb+Pb event at the LHC, leading to a
medium with a triangular-like profile, is illustrated in Figure 1a.

Another phenomenologically relevant quantity often derived fromMCGmodels is the average
path length L(b) in the QGP reference frame, traversed by a given perturbative probe (such as
an energetic parton) produced in the collision (36–38). The L(b) dependence of the energy loss
suffered by a parton going through a QGP provides valuable information on the jet-quenching
mechanism and on the medium properties (39).

All Glauber quantities mentioned above (TAA ,Ncoll,Npart, A�, εn, L) depend on the impact pa-
rameter b, which is not directly measurable by the experiments but is monotonically correlated
with the overall multiplicity of produced particles in the collision: A smaller impact parameter (i.e.,
a more central collision) will on average lead to a higher particle multiplicity. The reaction cen-
trality is usually expressed in percentiles of the total inelastic hadronic cross section; 0% indicates
“most central” (i.e., fully head-on collisions at b = 0 fm), and 100% indicates “most peripheral”
(i.e., grazing collisions beyond which there is no QCD interaction3)—corresponding to b � RA +
RB, where RA and RB are the nuclear radii. Experimental measurements performed in intervals of
multiplicity can be mapped to centrality ranges using Glauber-based simulations, and from there
they can be extended to all other relevant quantities.

This review aims to summarize the main theoretical and experimental progress achieved in
the Glauber formalism in the 15 years since a previous review summarized the status of the field
at RHIC energies (41). Key differences at the LHC (with TeV colliding energies per nucleon—up
to 50 times larger than those studied at the previous RHIC energy frontier) compared with
previous accelerators are driven by the increased importance of the nucleon substructure and
by the fact that even the particle multiplicities produced in small collision systems (pp, p+Pb)
can reach values as large as those measured in Cu+Cu collisions at 200 GeV (42). An example
of the high-density medium formed in p+Pb collisions at the LHC is shown schematically in
Figure 1b. Many of the Glauber model developments have occurred in parallel to experimental
and theoretical studies of pp, pA, and AA collisions at the LHC as well as prospective studies

3Significant electromagnetic interactions of the ions can also happen in ultraperipheral interactions (40) at
impact parameters larger than the sum of their nuclear radii.
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for future facilities, such as the Future Circular Collider (FCC) (43). This review is organized
as follows. Section 2 covers measurements and calculations of the proton and nuclear inelastic
cross sections. Section 3 discusses several improvements in the description of the proton and
nucleus transverse profiles. Section 4 reviews phenomenological applications of the Glauber
model (e.g., for comparisons of hard scattering cross sections among pp, pA, and AA systems) as
an underlying framework for heavy-ion Monte Carlo (MC) event generators and to define initial
conditions for hydrodynamics evolution models of the collision process. Section 5 examines the
experimental methods used to determine the collision centrality and discusses their inherent
biases. The review ends with a summary of the main conclusions in Section 6.

2. INELASTIC PROTON AND NUCLEAR CROSS SECTIONS

A key ingredient of all Glauber calculations, via Equations 1 and 2, is the inclusive inelastic
nucleon–nucleon cross section, σNN, evaluated at the same CM energy √sNN as the pA or AA
collision under consideration. The value of σNN receives contributions from (semi)hard parton–
parton scatterings (also called minijets), which are computable above a given pT ≈ 2 GeV cutoff by
perturbativeQCD (pQCD) approaches, as well as from softer peripheral scatterings of a diffractive
nature with a scale not far from �QCD ≈ 0.2 GeV. Because of the latter nonperturbative contri-
butions, which cannot be computed from first principles QCD calculations to date, one resorts to
phenomenological fits of the experimental data to predict the evolution of σNN as a function of√sNN . At high CM energies (above a few tens of GeV), any potential difference due to the valence
quark structure is increasingly irrelevant because the bulk of the pQCD cross section proceeds
through gluon–gluon scatterings, and all experimental measurements of pp and pp̄ (as well as nn
and np) collisions can be combined to extract σNN.

The collision energy dependence of the inelastic cross section σNN is shown in Figure 2
from all measurements available to date, including results from fixed-target studies in the
range √sNN ≈ 10–30 GeV performed in the 1970s–1990s (44); data from pp̄ colliders [UA5 at√
s = 200 and 900 GeV (45); E710 (46, 47) and CDF (48, 49) at

√
s = 1.8 TeV] and pp colliders

[STAR at
√
s = 200 GeV (50); ALICE at 7 TeV (51); ATLAS at 7, 8, and 13 TeV (52–55); CMS at

7 and 13 TeV (56, 57); LHCb at 7 and 13 TeV (58, 59); and TOTEM at 2.76, 7, 8, and 13 TeV (60–
64)]; and the AUGER result at

√
s = 57 TeV derived from cosmic-ray (proton–air) data (65). The

experimental σNN values were obtained either (a) via the subtraction σ pp = σ tot − σ el, where σ tot

and σ el were accurately measured in dedicated forward Roman pot detectors [TOTEM (60–64)
and ALFA (53–55)], or (b) from measurements of inelastic particle production data in the central
detectors collected with minimum-bias (MB) triggers. The latter measurements are less precise
than the former ones because they require an extrapolation, dominated by diffractive contribu-
tions, to forward regions of phase space not covered by the detectors. Many MCG codes, such as
Glissando (11, 14, 19), use the COMPETE collision energy parameterization of the NN cross
section (66), as provided in the PDG 2018 Review of Particle Physics (44). However, such a rela-
tively complex multiparameter expression is required only when aiming at a reproduction of the
NN cross section data over the full collision energy range that has been experimentally measured
(down to

√
s ≈ 1 GeV). For the regime of energies relevant at colliders, the

√
s dependence of the

experimental σNN results can be fit to a simpler parameterization, as in Reference 18:

σNN(s) = a+ b lnn(s). 6.

This fitting results in a= 28.84± 0.52, b= 0.0458± 0.0167, and n= 2.374± 0.123with goodness-
of-fit over number of degrees of freedom χ2/Ndf = 0.7 (and s given in GeV2 units).Table 1 shows
the derived σNN values relevant for Glauber calculations at RHIC, LHC, and FCC energies.
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√
s ≈ 10 GeV–100 TeV fitted to Equation 6.

The inset shows the ratio of the data divided by the value of the fit. Data from References 44–65.

The value predicted for the top RHIC energy of √sNN = 0.2 TeV, σNN = 41.3 ± 1.2 mb, is con-
sistent with (though more precise than) the value directly measured by STAR (σNN = 43.82+1.39

−1.46
mb) (50); it is also consistent with the typical 42 ± 3 mb used so far in the RHIC literature (41).
At the top FCC energy of √sNN = 100 TeV, the expected cross section of σNN = 107.5 ±
6.5 mb is also in agreement with the value derived from the average of various model predictions,
105.1 ± 2.0 mb (67).

From σNN, one can then use Equation 2 to derive the corresponding values for the pA and
AA inelastic cross sections. The σ pA and σAA results for the p+Pb and Pb+Pb (p+Au and Au+Au
for RHIC) systems are listed in the bottom two rows of Table 1. The quoted uncertainties ac-
count for the propagated σNN uncertainties plus, in quadrature, the uncertainty resulting from
independently varying the density parameters by one standard deviation. The latter uncertainties
amount to about 2% and 1.5% for Pb+Pb and p+Pb collisions, respectively, and are dominated by
the uncertainty of the neutron skin width. The Glauber calculation gives σMC

Pb+Pb = 7.55 ± 0.15 b

Table 1 Inelastic NN, pA, and AA cross sections at collider energies
√
s (TeV)

Cross section 0.2 5.5 8.8 14 39 63 100
σNN (mb) 41.3 ± 1.2 68.3 ± 1.2 73.6 ± 1.4 79.2 ± 1.9 93.0 ± 3.8 100.2 ± 5.1 107.5 ± 6.5
σ pA (b) 1.75 ± 0.03 2.10 ± 0.03 2.13 ± 0.03 2.17 ± 0.03 2.26 ± 0.04 2.30 ± 0.05 2.35 ± 0.05
σAA (b) 6.84 ± 0.14 7.64 ± 0.15 7.71 ± 0.16 7.78 ± 0.16 7.93 ± 0.16 8.00 ± 0.17 8.07 ± 0.17

The first row shows values of the nucleon–nucleon inelastic cross section σNN extracted from Equation 6 and the data plotted in Figure 2 (44–65). The
second and third rows show computed values of the pA and AA hadronic cross sections at center-of-mass energies relevant for collisions at the Relativistic
Heavy Ion Collider, the Large Hadron Collider, and the Future Circular Collider. The quoted σ pA and σAA values are for p+Pb and Pb+Pb collisions
everywhere, except for the results at √sNN = 0.2 TeV that correspond to p+Au and Au+Au collisions.
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at √sNN = 2.76 TeV and σMC
p+Pb = 2.09 ± 0.03 b at √sNN = 5.02 TeV, in good agreement with

the measured values of σ Pb + Pb = 7.7 ± 0.6 b (68) and σ p + Pb = 2.06 ± 0.08 b (69) as well as
σ p + Pb = 2.10 ± 0.07 b (70). The measured ALICE and CMS inelastic p+Pb and Pb+Pb cross
sections thus provide an inclusive validation of the Glauber model at TeV energies. This fact fur-
ther justifies the common application of the Glauber approach to derive pp cross sections from
cosmic-ray proton–air cross section measurements (65).

3. DEVELOPMENTS IN THE DESCRIPTION OF THE INITIAL STATE

In the past 15 years, there have been numerous developments related to the description of the nu-
cleon and nuclei radial profiles in Glauber models, including the incorporation of various sources
of event-by-event fluctuations (particularly relevant for collisions involving light ions and/or pro-
tons), subnucleonic degrees of freedom, neutron skin effects, and deformed light- and heavy-ion
distributions. The most important advances regarding these topics are summarized in this section.

3.1. Proton Transverse Profile

The transverse profile of the proton (or, generically, of the nucleon) is of key importance in many
aspects of the Glauber formalism. First, in nuclear collisions, it determines the NN interaction
probability, and its realistic description is particularly important for proper description of proton–
nucleus results (where intrinsic fluctuations in the proton shape aremore relevant than in AA colli-
sions). Second, it is a prime ingredient ofMC event generators for pp collisions [e.g., Pythia 8 (71),
Herwig++ (72)] to reproduce, through the underlyingmultiparton interactions (MPIs), the prop-
erties of inclusive hadron production both in MB collisions—as a sum of the particle production
activity from all, central to peripheral, pp collisions—and in the so-called underlying event (UE)
that accompanies hard scatterings at the LHC (73). Third, the proton transverse distribution is
also a basic element in calculations of double- and triple-parton scattering cross sections in proton
and nuclear collisions, where the effective N-parton scattering (NPS) cross section bears a simple
geometric interpretation in terms of powers of the inverse of the integral of the pp overlap func-
tion over all impact parameters, σeff,NPS = [

∫
d2bT n

pp
(b)]−1/(n−1) (with n = 2, 3, . . . , N for double,

triple,N scatterings) (74). Efforts to improve the treatment of pp collisions within a Glauber-like
approach based on their impact parameter and underlying parton–parton scatterings have
attracted increased interest in recent years to interpret high-multiplicity pp results where collec-
tive (QGP-like) phenomena have been observed in the data (75–77)—a possibility anticipated in
Reference 78.

The most simplistic approach used in Glauber models is to consider a fixed proton shape at
all colliding energies; any varying distributions of its parton contents (valence and sea quarks,
gluons) and their correlations are disregarded. The simplest form is a hard-sphere parameteri-
zation with uniform density, ρ(r) = 1

4/3 πR3 θ (D− bNN), where θ is the Heaviside step function,
with a radius consistent with electron–proton scattering fits giving a root-mean-square radius
Rrms ≈ 0.8 fm (79). A profile more consistent with the proton charge form factor is given by
an exponential, ρ(r) = 1

8πR3 e
−r/R, reproducing to a large extent the spatial distribution of its va-

lence quarks,withR = Rrms/
√
12 = 0.234 fm.A singleGaussian ansatz, although not very realistic,

makes subsequent calculations especially transparent and therefore has been used in some analyt-
ical approaches. A double Gaussian ansatz, ρ(r) ∝ 1−β

a31
e−r2/a21 + β

a32
e−r2/a22 , which corresponds to a

distribution with a small core region of radius a2 containing a fraction β of the total matter em-
bedded in a larger region of radius a1, is a common choice [available, e.g., in the Pythia 8 MC
generator (80)].
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(a) Yield of high-pT charged particles in multiplicity classes measured in pp collisions at
√
s = 5.02 TeV normalized to their minimum-

bias yield (82) compared with HG-Pythia and Pythia 8 predictions. (b) Nucleon–nucleon collision probability distribution using
Equation 9 for various ω values in NN collisions at

√
s = 5.02 TeV compared with the results from the Hijing and Pythia 8 (Monash

tune) overlap profiles.

In MC event generators for pp collisions, parameterizations of the impact parameter depen-
dence of the overlap function, rather than the individual radial density of each colliding proton,
are usually used. In Pythia 8, the pp overlap is parameterized as

Tpp (b) = m
2πr2p �(2/m)

exp [−(b/rp)m], 7.

normalized to one,
∫
d2bTpp (b) = 1, where rp is a characteristic “radius” of the proton, � is the

gamma function, and the exponent m varies between a more Gaussian-like (m ≈ 2) to a more
peaked exponential-like (m ≈ 1) distribution. The popular Pythia 8 Monash parameter settings
(tune) use m = 1.85 (81). In the Hijing (10) and Herwig++ (72) generators, the pp overlap is
approximated by the Fourier transform of the proton electromagnetic form factor as

Tpp (b) = μ2

96π
(μb)3 K3(μb), 8.

where μ ∝ 1/rp is a free parameter, and K3 is the modified Bessel function of the third kind. In
Hijing, μ = 3.9/

√
σNN/2π is used to describe the dependence of μ on the effective size of the

proton.
The importance of properly taking into account the proton transverse profile in pp collisions

at LHC energies is illustrated in Figure 3a, which shows the high-pT hadron yield (normal-
ized to its impact parameter–integrated value) as a function of centrality measured by the AL-
ICE Collaboration at

√
s = 5.02 TeV. The multiplicity classes are obtained by ordering events

according to the charged particle response in the ALICE VZERO scintillators (2.8< η < 5.1 and
−1.7 < η < −3.7) for events with at least one charged particle produced at midrapidity (|η| <
1). Central pp collisions feature yields about 10 times larger than those of MB collisions (pe-
ripheral pp collision yields are about 10 times smaller), consistent with the expectation from the
MPI picture (83). The centrality dependence of the yields is well reproduced by HG-Pythia (84)
and (slightly less well) by Pythia 8 (Monash tune), where the former basically corresponds to
Pythia with the proton overlap profile given by Equation 8.

The above discussion highlights the importance in MCG simulations of the choice of the
NN collision profile, whereby two nucleons collide if their impact parameter is less than a
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given distance parameter D ≈√
σNN/π . The simplest collision profiles used are the hard sphere,

p(bNN) = θ (D− bNN) (also called black disk), and Gaussian, p(b) = exp(−ab2/D2), with a fitted to
reproduce the σNN inelastic cross section (e.g., a = 0.92 at RHIC energies) (14), although more
involved probabilistic ways to model the NN interaction have been known for a long time (85).
At LHC energies, a modification of the collision profile proposed in References 14 and 86 uses
a parameterization based on the Euler �(z) and incomplete �(α, z) gamma functions:

p(bNN) = G�
(
1/ω,

Gb2NN

D2ω

)/
�(1/ω), 9.

where ω interpolates between the hard sphere (ω → 0) and Gaussian (ω → 1) cases. The choice
(G, ω) = (1, 0.4) reproduces the measured σNN ≈ 73 mb and σ pp, el ≈ 25 mb LHC results.
Figure 3b compares NN collision profiles for varying values of the ω parameter and with
the Pythia 8 Monash and Hijing choices for pp collisions at

√
s = 5.02 TeV. The latter two are

obtained via p(bNN) = 1 − e−kTpp (bNN) so that 2π�p(bNN) dbNN gives σNN, as is commonly done
for profile functions. One can see that the Pythia 8 Monash and Hijing profiles correspond
approximately to the ω = 0.6 choice in Equation 9.

An extension of the nuclear Glauber approach to pp collisions at the parton level is described
in Reference 78, where, by analogy to the nuclear case, the thickness function of a proton with
Ng partons is written as Tp(x, y) = Ng�dz ρ(x, y; z), normalized to �d2b Tp(b) = Ng. The overlap
function of a pp collision at b can be obtained as a convolution over the corresponding thickness
functions of each proton normalized to

∫
d2bTpp (b) = N 2

g . From the partonic cross section σ gg,
one can then define the number of binary parton–parton collisions in a pp collision at impact
parameter b: Ncoll,gg(b) = σgg Tpp (b). Hence, the probability of an inelastic parton–parton interac-
tion at impact parameter b can be defined as Pinel

gg (b) = 1 − e−σgg Tpp (b) , where the value of σ gg is
obtained by requiring that the proton–proton inelastic cross section obtained from the pp over-
lap function,

∫
d2b[1 − e−σgg Tpp (b)] = σpp, match the σ inel

pp ≈ 40–80 mb values measured at RHIC
and LHC energies (Table 1). Values of σ gg ≈ 6 mb are used that are consistent with a simplistic
perturbative gluon–gluon cross section of σgg = K · (9/2)π α2

s /p
2
T for αs ≈ 0.5 at a pT cutoff of

order 1 GeV, where K ≈ 2 is a factor accounting for higher-order pQCD corrections. The final
particle multiplicity density in a pp collision follows the same impact parameter dependence as
that of the number of binary parton–parton collisions,Ncoll, gg(b), and the average multiplicity in a
pp collision integrated over all impact parameters is dNMB

dη = dN0
dη

∫
d2bNcoll,gg(b)Pinel

gg (b) ; the abso-
lute normalization dN0/dη is chosen to reproduce the MB particle multiplicity of dNMB/dη ≈ 10
measured at midrapidity in pp collisions at LHC energies (87).

Other extensions of the nuclear MCG simulations exist that can account for subnucleonic
degrees of freedom (e.g., three constituent valence quarks) (16, 17, 19, 88, 89). The number of
partonic constituents and the way to distribute them in pA and AA collisions—between the two
extremes of being bound to individual nucleons (according, e.g., to a radially exponential nucleon
form factor) or freely distributed over the nucleus (following a global 2pF profile)—must be cho-
sen so as to reproduce basic experimental quantities (inelastic cross sections σNN, σ pA, σAA, overall
particle multiplicities) and have a different impact on the event ellipticity and triangularity. Ac-
counting for subnucleonic degrees of freedom is particularly important for generating realistic
initial conditions for small QGP systems at the LHC, as discussed in Section 4.3.

3.2. Fluctuations and Correlations

Traditionally, Glauber studies dealt only with average nucleon and nuclear transverse densities,
but in the last decade more studies have incorporated event-by-event shape fluctuations gener-
ated by various underlying mechanisms. Such developments have been largely motivated by an
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increasing number of experimental observations that pointed to the need for enhanced eccen-
tricity fluctuations in order to explain, for instance, the large azimuthal harmonics—direct (90),
elliptic (91), and triangular (29, 31–35) flows—observed in the data.

There are two obvious sources of fluctuations in MCG simulations: fluctuations in the posi-
tions of nucleons within the nucleus and fluctuations at the subnucleonic level. The former are, in
principle, properly accounted for by conventionalMCG simulations (92), andwe thus focusmostly
on the latter. Nucleons are composite quantum mechanical systems with varying spatial and mo-
mentum configurations of their internal quark and gluon constituents, and the overall transverse
area occupied by their color fields changes event-by-event—a phenomenon often referred to as
color fluctuations (CFs) (93–95). Such fluctuations can lead to potentially large changes in the
effective collision-by-collision nucleon transverse size that are often not accounted for in MCG
codes, notably when the NN interaction is approximated by a simple black disk approach (see
above).Whereas such CFs tend to average out in central AA collisions, they are of importance for
pp and pA collisions. CFs have been evaluated theoretically in terms of the cross section for in-
elastic diffractive processes in pN scattering—a method often referred to as the Glauber–Gribov
approach (96), generalized to the nuclear case (93)—and have been phenomenologically encoded
into an event-by-event variation of σNN given by a probability distribution of the following form:

Pσ (σNN) = C
σNN

σNN + σ0
exp−

(
σNN−σ0
σ0 �

)2
, 10.

where σ 0 denotes the mean σNN value, and � denotes its (normalized) width. The normalization
C is computed from the provided input (mean σNN and �) requiring �σPdσ/�Pdσ = σ 0, with
the dispersion given by the ratio of inelastic diffraction over the elastic cross section at t= 0 (zero
momentum exchange). Variations of the nucleon interaction strength naturally lead to increased
fluctuations in the number of participant nucleons and binary nucleon collisions (e.g., longer tails
in the Npart and Ncoll distributions) compared with the pure eikonal picture. Example distribu-
tions for p+Pb collisions at the LHC with varying width values � = 0, 0.5, and 1.0 are shown
in Figure 4a. Microscopic refinements in the MCG treatment of fluctuations from diffractive
scatterings in pA collisions have been discussed in Reference 97, which proposed a log-normal
parameterization instead of Equation 10. In addition, CFs explain the existence of partonic con-
figurations of the nucleon with smaller-than-average interaction strength that lead to observable
differences in the centrality dependence of single-jet production in d+Au and p+Pb collisions
observed in data from RHIC and the LHC (98, 99). Such events are characterized by a configura-
tion in which a large fraction of the proton momentum is carried by a single parton (e.g., x � 0.1)
that is more spatially compact than the average, and their interaction strength is thereby reduced
with respect to the eikonal limit (100). The standard MCG models underestimate the associated
number of peripheral events with low hadronic activity, while they overestimate the central ones
with large hadronic activity, although inclusive jet production rates remain unmodified.

Most Glauber-like calculations are based on the pure eikonal approximation and disregard
higher-order terms of the expansion given by Equation 1 that account for short-range two- and
three-nucleon correlations (many-nucleon correlations are further suppressed). The impact of
realistically correlated NN configurations (centrally correlated nucleon configurations, two-body
full correlations, three-body chains) on the medium eccentricity has been studied in Reference 85,
which found that their combined effects cancel out and bring the results close to the case of no
correlations. The impact of NN correlations and their interplay with diffractive effects on Ncoll

have been estimated in Reference 101. The authors found that such correlations decrease by a few
percent theNcoll values (and increase by a few percent the σ pA and σAA results) compared with the
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(a) Comparison of the Ncoll distributions for p+Pb collisions at the CERN Large Hadron Collider with different values of the
Glauber–Gribov corrections given by � = 0, 0.5, and 1.0 in Equation 10. (b) Average fraction of pp, pn, and nn collisions for Pb+Pb
(solid curves) and p+Pb (dashed curves) obtained by incorporating a neutron skin in the Pb density profile. Both distributions were
obtained with TGlauberMC. Panel b adapted from Reference 18 (CC BY 4.0, copyright American Physical Society).

pure Glauber results but that such effects are canceled out when taking into account diffractive
(i.e., Gribov inelastic shadowing) corrections that act in the opposite direction. The number of
nucleons that are diffractively excited in the multiple collisions but revert back to their ground
state before the scattering process is completed both increases the nuclear transparency (i.e., re-
duces the nuclear cross section) and reduces the Ncoll results back to the values obtained with the
conventional Glauber codes. Another possible source of correlations in MCG simulations is due
to the recentering procedure (18) by which the MC setup of the initial nuclear profile without
nucleon overlaps is done in such a way that the CM of each nucleus is fixed at a given location
in each event. Those correlations are found to be small, in particular for large nuclei (92). Corre-
lations at the parton level due to the interference of same-color gluons from different nucleons,
evaluated with the Dipsy generator (102) based on a BFKL resummation of small-x dipoles (103),
were found to have only a small effect (i.e., a few percent) for pA collisions with heavy nuclei.

3.3. Neutron Skin and Isospin Effects

The transverse profile of nucleons inside a nucleus is commonly described by a single 2pF dis-
tribution. This ansatz, based on studies of the charge distribution (protons) of nuclei with elec-
tromagnetic probes, is however not supported by measurements with strongly interacting probes.
The latter prefer instead two nonidentical distributions for protons and neutrons (104), in par-
ticular at the surface of heavy stable neutron-rich nuclei, such as 208Pb with a neutron excess of
N/Z ≈ 1.5 (105, 106). These differences appear because protons around the center of the nucleus
feel their common electromagnetic repulsion from all directions, which results in an electrostatic
equilibrium at a constant charge density, but the outermost protons at r� 6 fm,where the nucleon
density begins to drop, need additional skin or halo neutrons in the periphery to counteract the
outward Coulomb repulsion and maintain a sufficient nuclear surface tension.

The nominal heavy-ion species at the LHC is 208Pb, the heaviest stable doubly magic nucleus
and one of themost intensively studied isotopes.While the average charge radius of 208Pb is known
to within ±0.02 fm (21, 107), past estimates placed the uncertainty in the neutron radius at about
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±0.2 fm (108). Neutron point density parameters of Rn = 6.67 ± 0.03 (stat.) fm and an = 0.55 ±
0.01 (stat.) +0.02

−0.03 (syst.) fm have been measured by the Crystal Ball Collaboration via coherent pion
photoproduction (106), while the CERN LEAR experiment reports comparable values of Rn =
6.684 ± 0.020 (stat.) fm and an = 0.571 fm derived from antiproton–nucleus interactions coupled
with radiochemistry techniques (105). These data favor a peripheral neutron distribution in the
form of a neutron halo rather than a neutron skin; that is, the neutron distribution is slightly
broader than the proton one because of its larger diffusivity (an − ap ≈ 0.1 fm), but it has the
same half-radius as the proton distribution (Rp ≈ Rn ≈ 6.7 fm). The combined point density
distribution for protons and neutrons has been implemented in recent MCG simulations (18) via
the weighted sum of the individual 2pF distributions. For peripheral Pb+Pb collisions, this results
in a maximum ∼4% increase in Ncoll and approximately half this percentage for p+Pb collisions,
largely driven by the increase of the central radius in the double 2pF (D2pF) compared with the
2pF parameterization. If one focuses instead on the transverse distribution of the underlying d
quarks, the dominant flavor in neutrons, larger effects are expected for precise phenomenological
studies of isospin-dependent gauge boson (γ,W±, and Z) cross sections in nuclear compared with
proton collisions (109–112).Figure 4b shows the average fraction of pp, pn, and nn scatterings for
Pb+Pb and p+Pb collisions versus centrality, illustrating the increasing relevance of the neutron
density for peripheral collisions.

3.4. Light and Heavy Deformed Nuclei

For a number of years, the RHIC machine has provided collisions with a variety of ions beyond
the nominal gold nucleus—ranging from the lightest species, such as deuteron (2H) and helium-
3 (3He) (113), to the heaviest ones, such as uranium (U) (114)—as a means to study the system
size dependence of various QGP-related signals. As mentioned above, for spherical nuclei, the
probability density distribution in MCG models is sampled from the underlying 2pF or D2pF
radial probability functions and is taken to be uniform in azimuthal and polar angles, but light
species such as 2H, 3He, tritium (3H), helium-4 (4He), carbon (12C), oxygen (16O), and sulfur (32S)
have dedicated parameterizations of their transverse profiles. For deuteron, the Hulthén form
ρ(r′ ) = ρ0( e

−ar′ −e−br′
r′ )2, with a = 0.228 fm−1 and b = 1.177 fm−1, and r′ = 2r denoting the distance

between the proton and neutron, is often employed (115–117). For 3H and 3He nuclei, configu-
rations are computed from Green’s function MC calculations using the AV18/UIX Hamiltonian,
which correctly sample the position of the three nucleons, including their correlations (118). Sim-
ilarly, results of wavefunction-based calculations are available for 4He, 12C, and 16O (119). For
slightly deformed nuclei, such as sulfur, the Fermi distribution is modified with an extra parame-
ter w and a Gaussian term, ρ(r) = ρ0

1+w(r/R)2

1+exp( r
2−R2
a2

)
. Details for all relevant parameterizations can be

found in References 15, 119, and 120.
Description of the transverse profile of heavy deformed nuclei starts with the 2pF expressions

modified with an expansion of R in spherical harmonics, ρ(r) = ρ0(1 + exp [r−R(1+β2Y20+β4Y40 )]
a )−1,

with Y20 =
√

5
16π [3 cos

2(θ ) − 1], Y40 = 3
16

√
π
[35 cos4(θ ) − 30 cos2(θ ) + 3], and deformation pa-

rameters β2 (quadrupole) and β4 (hexadecapole) (21). The higher harmonic eccentricities εn of
the initial QGP produced in collisions of deformed nuclei, such as U, are particularly sensitive
to the parameterization of their profiles. A proper description of collisions of heavy deformed
nuclei also must account for their relative, tip-on-tip and side-on-side, orientations. Tip-on-tip
collisions produce a smaller elliptic flow but larger particle multiplicities (entropy densities),
whereas side-on-side collisions generate a larger elliptic flow but a smaller multiplicity. The scal-
ing of v2,3 flows with multiplicity in ultracentral collisions (0–1% centrality percentile) in small
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and deformed systems produced in U+U, d+Au, 9Be+Au, 9Be+9Be, 3He+3He, and 3He+Au
collisions at RHIC energies, including and excluding fluctuations from subnucleonic degrees of
freedom, has been theoretically studied in References 121 and 122. This work indicates that such
collisions can help discriminate between different initial entropy densities of the QGP medium
formed at RHIC and the LHC (123, 124). Implications for the extraction of QGP transport
properties, such as its viscosity, are further developed in Section 4.3.

4. PHENOMENOLOGICAL APPLICATIONS

The Glauber model has multiple important phenomenological applications in nuclear collisions
at colliders. We consider three typical cases here: (a) in the definition of the baseline scalings for
comparing hard scattering cross sections in pp, pA, and AA collisions; (b) as an underlying frame-
work for MC event generators used in high-energy heavy-ion and cosmic-ray physics; and (c) to
provide realistic initial-state conditions of the created QGP for subsequent space-time evolution
in hydrodynamics codes. Below, we succinctly review the basic ideas and latest progress in these
three areas.

4.1. Binary Scaling for Hard Scatterings

One of the most common uses of the Glauber model is to properly normalize the fractional cross
sections or yields for the production of a given particle in hard scattering processes (i.e., partonic
processes characterized by mass and/or pT scales above a few GeV) in AA and pA collisions so that
they can be compared with those expected in the simpler pp collisions where no QGP formation
is, in principle, expected. For pQCD observables that do not suffer any final-state effects, the as-
sumption of binary scaling allows the extraction ofmodifications of the nuclear parton distribution
functions (PDFs) compared with the free proton ones.

It is informative to recall the basic scaling rules for perturbative scatterings in nuclear colli-
sions (125, 126). For a given hard process A+B→ h+X, from the generic Equation 2 for the inclu-
sive AA cross section, one obtains the following relationship between pp and nuclear collisions:

σ hard
AB =

∫
d2b σ hard

NN TAB (b), and, therefore, σ
hard
AB,MB = A · B · σ hard

NN , 11.

where the second expression for the inclusive hard cross section is obtained by integrating
the first expression over the impact parameter. The associated MB invariant yield per nuclear
collision,Nhard

AB = σ hard
AB /σAB, for a given hard process in an AB collision compared with that of a pp

collision, is 〈Nhard
AB 〉MB = A·B

σAB
· σ hard

NN , where σAB is the inclusive inelastic AB cross section given by
Equation 2. The average nuclear overlap function for MB collisions is

〈TAB〉MB ≡
∫
d2bTAB (b)∫

d2b
= A · B

σAB
. 12.

The corresponding expressions for any given impact parameter b can be obtained by multiplying
each nucleon in nucleus A with the density along the z direction in nucleus B, integrated over
nucleons in nucleus A:

Nhard
AB (b) = σ hard

NN

∫
d2s

∫
ρA(s, z′ )

∫
dz′′dz′ ρB(|b − s|, z′′ ) ≡ σ hard

NN · TAB (b). 13.

Similarly, one obtains a useful expression for the probability of an inelastic NN collision or,
equivalently, for the number of binary inelastic collisions, Ncoll, in a nucleus–nucleus collision at
impact parameter b:

Ncoll (b) = σNN · TAB (b). 14.
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Nuclear modification factors RAA measured for (a) isolated photons as a function of pγT (130) and (b) Z bosons as a function of
rapidity (136) in Pb+Pb collisions at the CERN Large Hadron Collider compared with perturbative quantum chromodynamics NLO
calculations with nuclear parton distribution functions. Abbreviation: NLO, next-to-leading order. Panel a adapted from Reference 130
(CC BY 4.0, copyright CERN). Panel b adapted from Reference 136 (CC BY 4.0, copyright CERN).

From this last expression, one can see that the nuclear overlap function, TAB (b) = Ncoll (b)/σNN

[mb−1], can be thought of as the hard scattering integrated luminosity (i.e., the number of hard
collisions per unit of cross section) per AB collision at a given impact parameter.

The expressions above allow one to write the standard binary (or point-like) collision scal-
ing formula that relates the hard scattering yields in nuclear and proton collisions as NAB(b) =
Ncoll(b)·Npp. The nuclear modification factor for hard scattering processes is thereby defined as
the ratio of AA over scaled pp cross sections and/or yields (here, differential in pT and η) as

RAB(pT, η) = d2σAB/dpTdη
(A · B) d2σpp/dpTdη 15.

for MB collisions, and it is dependent on b as

RAB(pT, η; b) = d2NAB(b)/dpTdη
TAB (b) d2σpp/dpTdη

= d2NAB(b)/dpTdη
Ncoll (b) dNpp/dpTdη

. 16.

In the absence of any final- and/or initial-state effects, one expects RAB = 1 for any hard scattering
process. The equality of Equations 15 or 16 to unity,modulo few-percent nuclear PDF effects (see
below), for colorless hard probes that do not suffer final-state interactions in the produced QGP,
was confirmed previously in heavy-ion collisions at SPS and RHIC as well as (more recently) at
LHC energies. This, in itself, constitutes a validation of the basic assumptions of the Glauber
model itself. Prominent examples include the production yields of photons (127–130) andW and
Z bosons (131–138) in p+Pb and Pb+Pb collisions.

Figure 5 shows the RAA values measured for isolated photons (130) and Z bosons (136) as
functions of pγT and rapidity |yZ|, respectively, in Pb+Pb collisions at the LHC. Both ratios are
around unity with small variations due to nuclear PDF modifications related either to the in-
creased number of d quarks in the Pb nucleus compared with protons (isospin effects) and/or to
few-percent (anti)shadowing effects at the large virtualities (Q ≈ pγT,mZ) probed in the underlying
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partonic scatterings. Under the key assumption of binary scaling, the precision of the Pb+Pb data
(experimental uncertainties of a few percent in the case of electroweak gauge bosons) allows the
derivation of the EPPS16 (139), nCTEQ15 (140), and nNNPDF2.0 (141) nuclear PDFs at next-
to-leading order (NLO) and, more recently, also at next-to-next-to-leading order (NNLO) (142)
accuracy, through global fits combining nuclear deep inelastic scattering (DIS) and LHC elec-
troweak boson data. Precision electroweak boson measurements in Pb+Pb collisions can also be
used to derive a data-driven normalization, in principle independent of the Glauber model, for
any other measurements of hard probes in Pb+Pb collisions, as explored in Reference 143.

4.2. Heavy-Ion Monte Carlo Event Generators

All existing generic event generators of ultrarelativistic pA and AA collisions—such as
Hijing 1.0 (10), Hijing 2.0 (144), Epos-LHC (145), Ampt (146), Qgsjet-II (147), Dpmjet-
III (148), and the more recent Pythia 8–based (149) Angantyr (150) code—internally rely on a
Glauber picture to model the early stage of the collision through the proper computation of the
number of inelastic subcollisions for any reaction centrality. The main differences among models
arise from their treatment of the underlying (semi)hard scatterings: minijets in the case of the
Hijing, Angantyr, and Ampt codes, which are mostly used in collider physics; and Regge–Gribov
cut pomerons (also called parton ladders, giving rise to one or two strings spanned between two
colliding nucleons, or between a nucleon and another pomeron) in the case of the Epos-LHC,
Qgsjet-II, and Dpmjet-III codes, which are mostly used in cosmic-ray physics (151). The final
hadronization of partons or strings is carried out via (variations of ) the Lund fragmentation
model (152) in all generators.

The Hijing generator relies on the eikonal approach to determine the number of inelastic sub-
collisions of two types: soft NN collisions treated as in the Fritiof approach (153), and (multiple)
hard parton–parton collisions treated perturbatively as in Pythia.The transverse momentum cut-
off pT, 0 ≈ 2 GeV that separates hard from soft scatterings increases slowly with collision energy
(logarithmically, similar to the evolution of the inelastic cross section given by Equation 6) so
that the total number of minijets per unit transverse area satisfies p2T,0/π > TAA (b) σhard/(πR

2
A ),

where σ hard is the pQCD cross section for 2 → 2 parton scatterings, and TAA (b) is the overlap
function of the AA collision. The probability for an inelastic NN collision is given by dσNN =
2π bNN dbNN [1 − e−(σsoft+σhard )TNN (bNN)] with TNN (bNN) given by Equation 8. At √sNN = 0.2 and
5.02 TeV, σ hard = 11.7 and 124.3 mb, respectively, and the associated number of MPIs per NN
interaction is distributed as P(Nhard

NN ) ∝ e−〈Nhard
NN 〉, around the average number of hard scatterings

determined by bNN and given by 〈Nhard
NN 〉 = σhard TNN (bNN). The average number of hard collisions

per NN collision increases from 〈Nhard
NN 〉 = 0.28 to 1.77 between √sNN = 0.2 and 5.02 TeV. The

total number of hard scatterings for an AA collision is then obtained by summing over all NN
collisions in the MCG; that is,Nhard = ∑Ncoll

i=1

(
Nhard

NN

)
i.

The Ampt code directly uses the Glauber initial conditions generated by Hijing as input for
its parton cascade evolution. The most recent heavy-ion event generator is Angantyr, which
follows a Glauber approach similar to that of Hijing but further accounts for Glauber–Gribov
corrections by dividing up each inelastic subcollision as either single diffractive, double diffractive,
or absorptive (i.e., nondiffractive). CF effects are implemented through a model with fluctuating
nucleon radii, resulting in a fluctuatingNNcross section inspired by the approach of Reference 94.

At variance with other generators, Epos-LHC keeps track of how many times a given nucleon
interacts with nucleons from the other nucleus and separates them event-by-event into the “core”
(nucleons that collided more than once) and “corona” (nucleons that interacted exactly once).
Event-by-event, a fraction of the string segments that do not overlap (i.e., corona) fragment into
hadrons normally, following the Lund stringmodel,whereas the other clusters with high density of
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strings are used to create a (QGP-like) core that can flow and hadronize collectively. Such a two-
component core–corona medium leads to a consistent reproduction of the particle multiplicity
dependence of a number of observables (e.g., <pT>, ratio of different hadron yields) in pp, pA,
and AA collisions (145). The subsequent collective expansion of the medium, which is defined by
the initial core particle density, is taken care of by relativistic hydrodynamics equations.

Apart from the hadronic MC event generators mentioned above, generators of ultraperipheral
(photon-induced) nuclear collisions, such as Starlight (154) and Superchic 3 (155), also employ a
Glauber approach to determine the nonhadronic overlap probability needed to compute the cross
sections of purely exclusive final states. In Starlight, the probability of having no hadronic inter-
actions is given by Pno.had(b) = e−σNNTA (b), where TA (b) is the nuclear thickness function. For large
nuclei, applying this probability function is roughly equivalent to imposing a b > RA condition on
their photon flux. This probability is also used when the photon is emitted by the proton, leading
to an effective γ flux in pA collisions that is considerably smaller than one calculated directly from
the electromagnetic proton form factor.

4.3. Initial Conditions for Quark–Gluon Plasma Hydrodynamics
Evolution Calculations

The strongly interacting medium created in AA collisions at the LHC is a dynamical system that
expands, cools down, and transforms into a hadron gas at times around τ = 10–15 fm/c (27).Under
such conditions, the QGP properties can be extracted only by comparing the experimental mea-
surements of the hadronic final state with theoretical predictions that include a model of the full
space-time evolution of the heavy-ion collision process (156). The current state of the art for the
QGP evolution is given by three-dimensional viscous relativistic fluid dynamics calculations (26,
29, 30, 157, 158)—where the plasma thermodynamic properties evolve according to the lattice
QCD EoS (2, 3) with nonideal corrections encoded in the medium shear viscosity η—matched to
a hadron transport cascade [often, the UrQMD code (159)] once the energy density drops below
εc. The largest source of uncertainty in the extraction of medium properties from data–theory
comparisons lies in the description of the initial state of the QGP (28), which we discuss below.

Hydrodynamics models start their evolution at τ 0 from a given input entropy (or energy)
density in the transverse plane s0(�r⊥ ). In principle, such initial conditions should be consistently
derived by solving the nonequilibrium evolution of the matter created in the first parton–parton
interactions, but achieving thermalization of the interacting fields in ultrashortO(1 fm) timescales
remains a difficult theoretical problem in heavy-ion physics (160). Therefore, one assumes that
the produced matter has (pre)equilibrated, and the initial conditions are usually given by one of
the following:

1. the number density of produced gluons after the primary collisions, via s0(�r⊥ ) ∝
d2Ng/(τ0d2r⊥dη), derived analytically—for instance, in models such asMC-KLN (161, 162)
and IP-Glasma (163, 164) based on the color glass condensate (CGC) effective theory for
parton saturation in heavy-ion collisions (165)—or by pQCD NLO calculations with ad
hoc parton saturation, such as EKRT (166, 167); or

2. MCG profiles, such as those shown in Figure 1, obtained with the ansatz given by
Equation 4 with α adjusted to match the observed multiplicity distributions, or simi-
larly generated with one of the MC event simulations (e.g., Hijing, Epos) discussed in
Section 4.2.

The corresponding local deposition of the entropy density from the underlying (parton or
nucleon) collisions, and thereby the transverse area and azimuthal anisotropies of the produced
medium, is then model dependent. The TRENTo approach (168) has parameterized all different
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approaches with a generic function of the participant target and projectile thickness functions
T part
A,B as

s ∝
(
T part

A
+ T part

B

2

)1/p

17.

with a continuous parameter p that effectively interpolates among different entropy deposition
schemes. For p = (1, 0, −1), this generalized mean reduces to arithmetic (T part

A
+ T part

B
)/2, geo-

metric
√
T part
A T part

B , and harmonic [2T part
A

T part
B

/(T part
A

+ T part
B

)] means, while for p → ±∞ it asymp-
totes to maximum s ∝ max(T part

A
,T part

B
) and minimum s ∝ min(T part

A
,T part

B
) functions. The gener-

alized Equation 17 maps different model calculations for suitable values of the parameter p. The
Glauber wounded nucleon model (WNM), with s ∝ T part

A
+ T part

B
, is equivalent to the generalized

mean ansatz with p = 1. The IP-Glasma approach—which combines CGC effects of the incom-
ing gluon distributions, where the gluon thickness function Tg(b) is a Gaussian function of the
impact parameter (from the center of the probed nucleon) with a width constrained by HERA
DIS data (169), with an event-by-event classical Yang–Mills evolution of the produced glasma
gluon fields—deposits density following T part

A
· T part

B
. The default entropy deposition parameter

p= 0 of TRENTo, derived from a global fit to multiple experimental data, produces similar initial
eccentricities to IP-Glasma (168). In the KLN model, the gluon multiplicity Ng can be deter-
mined perturbatively in the kT-factorization CGC approach from the parton saturation momenta
of each nucleus Q2

sat ∝ TA , leading to s ∝ Tmin
[
2 + log(Tmax/Tmin)

]
. This would correspond to a

parameter p ≈ −0.67 in the generalized ansatz given by Equation 17. The EKRT approach com-
bines collinear factorized pQCD minijet production with a simple model of gluon saturation and
predicts an energy density given by ε0 ∝ Q3

sat with saturation momentum Qsat = f (TA, TB), corre-
sponding to an exponent p ≈ 0.

Smaller, more negative, values of p pull the generalized mean toward a minimum func-
tion and hence correspond to models with more extreme gluon saturation effects, leading
to the following schematic hierarchy of more saturated initial conditions: WNM < IP-
Glasma, TRENTo, EKRT < MC-KLN. Of course, such a hierarchy accounts only for average
density effects, and the different approaches also feature key physics differences that lead to more
(or less) QGP shape fluctuations and, thereby, larger (or smaller) eccentricities εn that signifi-
cantly affect the extractions of, for instance, the medium viscosity/overentropy (η/s) ratio from
comparisons of measured azimuthal flow coefficients vn with the hydrodynamics predictions. In
particular, the IP-Glasma model also generates the full energy–momentum tensor of the medium
with momentum anisotropies with a length scale [of the order of Q−1

s (x) = 0.1–0.2 fm] smaller
than those present in other calculations (0.4–1 fm), resulting in a finer structure of the initial
entropy density compared with the MC-KLN and MCG models (163).

At the LHC, elliptic v2 and triangular v3 flows have been studied by, for instance, the ALICE
Collaboration in Xe+Xe and Pb+Pb collisions at √sNN = 5.44 and 5.02 TeV, respectively.
Figure 6 shows the ratios of v2, 3/ε2, 3 as a function of particle transverse density [given by
(1/A�)dNch/dη], where εn and A� are derived from the initial conditions of various models
described above. The hydrodynamics expectation is that vn/εn increases monotonically with
the transverse density across different collision energies and systems, and a violation of such a
scaling may indicate an incorrect modeling of the initial transverse area A� and/or the azimuthal
anisotropies εn. The results of Figure 6 indicate that the standard MCG model using nucleons
(panel a) and the MC-KLN model (panel b) fail to reproduce the expected scalings for v2 (red
symbols), whereas the TRENTo model with p = 0 (equivalent to IP-Glasma) (panel c) and the
MCG model with constituent partons (panel d) feature better scaling behaviors across flow
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Figure 6

Comparisons of the ratio vn/εn (for n = 2 and 3) as a function of particle transverse density, (1/A�)dNch/dη, in Xe+Xe and Pb+Pb
collisions at the CERN Large Hadron Collider, where vn and dNch/dη have been measured by the ALICE Collaboration, and the εn
and A� parameters are derived using the initial conditions of various models. Abbreviations: MC, Monte Carlo; MCG,MC Glauber.
Figure adapted from Reference 170 (CC BY 4.0, copyright CERN).

coefficients and systems (although a drop at the largest densities is observed). These results
illustrate the types of constraints imposed by the data on initial-conditions medium models,
which in this case suggest the need for a higher number of subnucleonic sources in order to
achieve a steady increase of v2, 3/ε2, 3 for more central collisions.

Implications for the extraction of QGP transport properties, such as its viscosity constrained
from the experimental ratio of triangular over elliptic flows (v3/v2), have also been studied—for
instance, in References 120 and 121 for U+U collisions at RHIC energies. The work described in
Reference 120 indicates that a model overestimation of the ε3/ε2 ratio will imply a larger amount
of the viscous damping needed in the subsequent theoretical hydrodynamics evolution to match
the experimental U+U data. A critical comparison of initial conditions derived from IP-Glasma
andMCGmodels for light systems produced in p+Au and d+Au collisions at RHIC can be found
in Reference 171.

5. EXPERIMENTAL DEVELOPMENTS

On the experimental front, the LHC data have provided a wealth of new results that have helped
to improve the extraction of relevant quantities with the Glauber approach. We review here two
experimental aspects that are important in determining the reaction centrality in pA and AA colli-
sions. The centrality determination, a proxy for the (arguably) most important variable of Glauber
models—the collision impact parameter—is found to be subject to stronger biases at LHC ener-
gies than at lower CM energies.

5.1. Collision Centrality Estimates

As mentioned above, neither the impact parameter nor any derived Glauber quantity can be
directly measured experimentally. Instead, average quantities are obtained within Glauber ap-
proaches for classes of events whose inclusive particle multiplicities and/or energy distributions
can be reproduced by the corresponding calculation over a given b range. Since on average the im-
pact parameter is monotonically related to the overall particle multiplicity, one typically measures
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Figure 7

Distribution of the sum of amplitudes (V0M) in the ALICE VZERO detectors measured in Pb+Pb collisions at √sNN = 2.76 TeV
fitted with the NBD-Glauber model. Centrality classes are indicated by gray boxes. The inset focuses on the most peripheral region.
Abbreviation: NBD, negative binomial distribution. Figure adapted from Reference 172 (CC BY 3.0, copyright CERN).

multiplicity (or energy) distributions over a suitably large phase space. The mapping to calculated
quantities then proceeds in intervals of centrality or centrality classes, which are obtained by bin-
ning the distribution in fractions of its total integral. Centrality is then typically defined as the
percentile

ci = cAP
Mtot

∫ ∞

Mi

dN
dM

dM 18.

of the per-event multiplicity distribution dN/dM aboveMi relative to

Mtot =
∫ ∞

MAP

dN
dM

dM, 19.

whereMAP (<Mi) is the multiplicity value for which the fraction of total cross section was deter-
mined at the cAP point. The anchor point (AP) sets the absolute scale of the centrality. Clearly,
one would like to achieve MAP close to zero, which would result in cAP close to 100%. However,
because of trigger inefficiency and the increasing background contamination from ultraperiph-
eral photonuclear collisions, experiments typically can set the AP only between 80% and 90%
of the total hadronic cross section. As an example, Figure 7 shows the sum of the amplitudes in
the ALICE VZERO scintillators (at 2.8 < η < 5.1 and −1.7 < η < −3.7), which is called the
V0M centrality estimator and represents the uncorrected charged particle multiplicity distribu-
tion. The vertical lines in Figure 7 indicate the typical centrality binning obtained from slicing
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the distribution in fractions of the total integral starting from 90%,4 where smaller fractions refer
to more central collisions.

To determine the AP, one of two approaches is typically used. The first one involves simula-
tion of hadronic and electromagnetic processes, including a detailed description of the detector
response, and hence gives direct access to the fraction of hadronic events belowMAP. The second
one involves MCG modeling, together with a simple description for particle production at the
detector level, to simulate the uncorrected multiplicity distribution. The calculated distribution
describes the data down to the most peripheral events up to some point where background con-
tamination and trigger inefficiency start to matter. The point at which data and simulation start
to separate can be used to set the AP.

To model multiplicity in heavy-ion collisions, one exploits the fact that most initial-state NN
collisions can essentially be treated like MB pp collisions, with a small perturbation from rarer
hard interactions. The charged particle multiplicity in MB pp collisions at high energy can be
described by a negative binomial distribution (NBD) (87) given by

Pμ,k(Nch) = �(Nch + k)
�(Nch + 1)�(k)

· (μ/k)Nch

(μ/k+ 1)Nch+k , 20.

where μ is the mean and k is related to the width of the multiplicity distribution. Hence, the
multiplicity for heavy-ion events can be approximated as a superposition of many NBDs, quickly
approaching the Gaussian limit. A typical approach is to assume that the number of particle-
emitting sources can be described by the two-component approach f · Npart + (1 − f )·Ncoll as in
Equation 4. A minimization procedure is then applied to the distribution of hadronic activity to
determine the μ, k, and f parameters, with the values listed in Figure 7 obtained for a χ2/Ndf close
to unity. The AP can be determined with ∼1% (absolute) uncertainty. The centrality resolution is
at the level of a few percent in peripheral collisions and better than 1% in most central collisions.

Because of the finite kinematic acceptance, trigger inefficiency, and detector resolution, as well
as the possible biases of the event selection, the details of the centrality determination differ be-
tween experiments and even among collision systems within a given experiment. A short intro-
duction with references to the approaches at RHIC is given in Reference 41; for more details
on similar approaches at the LHC, we refer the reader to References 172 and 173 for ALICE,
Reference 174 for CMS, and Reference 175 for ATLAS. Alternative centrality estimators based
on the transverse energy measured at forward rapidities (approximately 3 < |η| < 5 for CMS
and ATLAS), as well as far-forward neutral energy in zero degree calorimeters (ZDCs) along
the beam line (172, 176), have also been employed. The same methods can be applied to deter-
mine the centrality in pA or d+Au collisions (177–179). However, unlike for collisions of larger
nuclei, the centrality determination is often subject to larger biases due to fluctuations in the cat-
egorization of events (see Section 5.2).

5.2. Collision Centrality Biases

As discussed in Section 4.1, medium effects on the yields of perturbative probes of the QGP are
in general quantified by the nuclear modification factor (Equation 16), defined as the ratio of the
per-event yield measured in AA collisions over the same yield expected from an incoherent super-
position of Ncoll binary pp collisions. However, event centrality classification involves selection of
event samples for which the properties of the underlying binary NN collisions may deviate from

4The range 90–100% is prone to potentially large contamination from photonuclear contributions and is
therefore often avoided.
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those of unbiased pp collisions (84). In this case, RAA (and RpA) can deviate from unity even in
the absence of nuclear effects. There are two main sources of selection bias. First, the number
of hard processes is suppressed for increasingly peripheral AA collisions because of a simple geo-
metric bias: The probability for collisions increases proportionally to b while the nuclear density
decreases, leading to an increased probability for more-peripheral-than-average NN collisions.
Second, the centrality selection, which relies mostly on measurements dominated by soft final-
state particles (the relative weight of soft-to-hard contributions to the total energy distribution
is given by the f ≈ 0.8 parameter in Figure 7), biases the average multiplicity of individual NN
collisions and therefore can affect the normalization of yields of collisions dominated by hard pro-
cesses. As shown in Figure 3a, hard scatterings are more probable in central NN collisions with
large partonic overlap, which leads to many simultaneous MPIs with lots of UE activity, and since
hard processes are dominated by the production of jets that fragment (or heavy resonances that
decay) into a large number of final hadrons, a peripheral AA event with a hard scattering often has
a hadronic activity much larger than what is typical of its centrality class. Since the AA (and pA)
centrality determination is based on ordering the measured multiplicity or summed energy in the
event, peripheral nuclear events with a hard scattering can thereby be wrongly assigned to a more
central class.

The geometric effect can be included in optical Glauber calculations by extending Equation 3
with a convolution of the nuclear thickness functions (depending on the overall b) with the NN
overlap function (TNN , depending on the bNN impact parameter) as

T ′
AB

(b) =
∫

d2s d2bNN TA (s)TB (s − b + bNN) TNN (bNN) , 21.

which effectively leads to a reduction ofNcoll in peripheral collisions compared with TNN = δ(bNN)
because of their increased probability for less-central-than-averageNN collisions. StandardMCG
calculations, which by construction include the geometric bias, do not use information about indi-
vidual NN collisions. Even though the NN collisions are still modeled as occurring incoherently,
the number of hard processes for a given centrality selection is taken not proportionally to Ncoll

but instead to

Nhard = Ncoll ·Nhard
NN /

〈
Nhard

NN

〉
, 22.

where Nhard
NN is the average number of hard scatterings in an NN collision for a given centrality

selection and
〈
Nhard

NN

〉
is its unbiased average value. The mean number of hard scatterings per colli-

sion depends on bNN and can be written as Nhard(bNN) = σhard TNN (bNN), where σ hard is the pQCD
cross section for 2→ 2 parton scatterings. Since the yields of hard and soft processes are correlated
via their common bNN, the NN collisions can be biased toward lower- or higher-than-average im-
pact parameters when ordering the measured multiplicity or transverse energy necessary for the
centrality determination.This fact leads to a selection bias onNhard

NN in addition to the inherent ge-
ometric bias. Because of the strong dependence of σ hard on

√
s, the selection bias is more relevant

at LHC than at RHIC (and negligible at SPS) collision energies.
The relevance of the selection bias induced by the correlation between soft and hard particles

is demonstrated in Figure 8, which shows the nuclear modification factors for charged particle
production, integrated above a large enough pT value (8 and 10 GeV), in p+Pb and Pb+Pb col-
lisions at √sNN = 5.02 TeV compared with calculations using HG-Pythia (84). The calculation,
which uses the Hijing model to determine the distribution ofNhard(bNN) in a nuclear collision and
Pythia 6.28 (Perugia 2011 tune) to generate the corresponding NN events, purposely does not
include nuclear modification effects, unlike most of the models discussed in Section 4.2. As for the
data, where the V0M estimator was used, the calculation determines the centrality using charged
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Nuclear modification factors for high-pT charged particles (above 8 or 10 GeV) as a function of centrality in
p+Pb (blue circles) and Pb+Pb (red squares) collisions at √sNN = 5.02 TeV (178, 180) compared with
calculations using HG-Pythia (84) (blue and red curves).

particles in the acceptance of the ALICE VZERO detectors. The calculation accurately describes
the p+Pb and very peripheral Pb+Pb data and indicates that the strong apparent suppression
from unity in this region results, in both cases, from the event selection. For more central Pb+Pb
collisions, where parton energy loss leads to the known large suppression of particle production
in Pb+Pb compared with pp collisions, the RAA is not affected by such biases.

The hard–soft event selection bias is particularly important when fluctuations of the centrality
estimator caused by bNN are similar in size to the dynamic range of Ncoll (as is the case in pA colli-
sions) and is strongly enhanced by trivial autocorrelations if the phase spaces for the measurement
and event categorization are nearby or overlap (177–179). The presence of a bias can be deduced
by computing the ratio between the averagemultiplicity of the centrality estimator and the average
multiplicity per average ancestor of the Glauber fit as demonstrated in figure 8 of Reference 178.
In contrast, centrality measurements based on zero-degree energy should not introduce any se-
lection bias, but the geometric bias could still play a role. In the so-called hybrid method (178),
the p+Pb centrality selection is based on ZDC neutral energy in the Pb-going directions (slow
neutrons), andNcoll is determined from the measured charged particle multiplicityM according to
Ncoll = 〈Ncoll〉·M/〈M〉, where 〈Ncoll〉 and 〈M〉 are, respectively, the centrality-averaged number of
collisions andmultiplicity. If soft and hard particle yields are affected in the same way, the selection
bias will cancel out in the nuclear modification factor.

6. SUMMARY

An outstanding topic in the physics of the strong interaction concerns the thermodynamic and
transport properties of hot and dense quark–gluon matter accessible to experimental study via
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high-energy collisions of nuclei. To correctly identify and interpret signals of collective partonic
behavior in AA collisions, one needs a realistic extrapolation of the baseline hadron production
properties of pp and pA collisions in which, in principle, no QGP is expected to be formed. The
Glauber model allows for arguably the simplest and most economical, yet successful, understand-
ing of collisions of extended hadronic objects based on an impact parameter b superposition of
independent elementary scatterings, each of which produces particles and thereby defines the lo-
cal and global density of the precursor QGP. Key derived quantities in Glauber models include
the nuclear overlap function TAA (b), number of participant nucleons Npart(b), number of binary
collisions Ncoll(b), transverse area A�(b), eccentricities εn(b), and average path length L(b) of the
strongly interacting medium produced at different collision centralities, which are fundamental
to the extraction of the QGP properties from the data. In this article, we have reviewed the main
developments and the state of the art of the Glauber approach to describe multiple scatterings in
proton and nuclear collisions after 10 years of operation with pp, p+Pb, and Pb+Pb collisions at
the LHC as well as with deformed light and heavy ions at RHIC.

The new LHC measurements (performed at CM energies 50 times larger than those at pre-
vious nuclear collisions) and the latest precision RHIC data for a variety of colliding systems
have required us to revisit and improve various ingredients of the MCG simulations. Our review
has first provided a new fit of the world measurements of the inclusive inelastic nucleon–nucleon
cross sections (σNN), a key ingredient of MCG models. The inelastic hadronic pA and AA cross
sections measured at the LHC are well reproduced by the corresponding MCG results derived
using σNN, a fact that confirms the overall validity of the Glauber model at the highest CM en-
ergies studied to date. Second, improved descriptions of the proton and nuclear density profiles,
including subnucleonic degrees of freedom and neutron skin effects and any associated sources
of fluctuations and correlations, have been examined. Third, we have reviewed the main applica-
tions of the Glauber model for collider studies. The binary scaling prescription to quantitatively
compare hard scattering cross sections in pp, pA, and AA collisions has been validated by measure-
ments of electroweak probes at the LHC whose yields are unaffected by final-state interactions in
the QGP.The use of the Glauber formalism inMC event generators for heavy-ion physics, as well
as to provide initial entropy–density profiles as input for relativistic hydrodynamics calculations,
has also been discussed. The importance of a realistic description of the medium eccentricities to
extract key transport properties (e.g., the QGP shear viscosity), from comparisons of elliptic and
triangular flowmeasurements at the LHC and RHICwith viscous hydrodynamics predictions, has
been highlighted. Last, the experimental procedures used and the inherent biases introduced by
them in the determination of the collision centrality from the data, which rely on the application
of the MCG model, have been briefly discussed.

As an illustrative summary of our review, Figure 9 shows the impact of different Glauber
model ingredients and experimental biases, presented as a ratio as a function of centrality of the
different elements over the default standard MCG calculation, for Pb+Pb collisions at √sNN =
5.5 TeV (Figure 9a) and p+Pb collisions at √sNN = 8.8 TeV (Figure 9b). The dashed red curves
in Figure 9 indicate the magnitude of the experimental shift introduced in measured nuclear
modification factors when not properly accounting for event selection (multiplicity- and process-
dependent) biases introduced by the centrality determination. These biases are significant in the
most peripheral centrality classes and need to be carefully modeled and/or corrected for, especially
when aiming at precisionmeasurements for large impact parameters.The other curves inFigure 9
indicate the ratio of the values ofNcoll obtained with modified ingredients with respect to standard
MCG simulations. Inclusion of Glauber–Gribov fluctuations (via Equation 10 with � = 1.0),
modified NN collision profiles (via Equation 9 with ω = 0.4), or neutron skin effects leads to
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Figure 9

Ratio of Ncoll as a function of centrality in (a) Pb+Pb and (b) p+Pb collisions at the CERN Large Hadron Collider obtained with the
various model developments discussed in this review, and for the optical limit (see Equation 3) normalized to the result obtained with
the conventional Monte Carlo Glauber model. In addition, the bias induced by the centrality determination is shown for a typical
experimental estimator (ALICE V0M, dashed red curves).

few-percent modifications of the Ncoll values in different centrality ranges, in principle within
the assigned Glauber model systematic uncertainties (18). An analytical calculation of Ncoll in the
optical Glauber limit leads, however, to significant underestimations of the number of collisions
for peripheral Pb+Pb and p+Pb collisions.

The results shown in Figure 9 emphasize the need for large quantitative corrections in the
Glauber model for the most peripheral AA and pA collisions. The availability of very large data
samples of electroweak bosons at the LHC with cross section measurements with few-percent
experimental uncertainties similar to or smaller than those of the Glauber model raises the possi-
bility of using them to define an alternative experimental proxy for the nuclear overlap function.
The ratio NV/(σV

NNNevt ), where σV
NN is the vector boson (V = ∑

W±, Z) production cross section
in NN collisions (which can be estimated from pp measurements) and NV/Nevt indicates the per-
event AA yields, has been suggested (181) as a data-driven TAA (b) proxy that would eliminate the
need for Glauber modeling and reduce corrections for centrality and event selection effects while
canceling out uncertainties in the determination of quantities such as RAA. Such a proposal would
require a higher level of theoretical accuracy (NNLO) in the nuclear PDFs and in their centrality
dependence to fully exploit the high-precision σV

pp measurements.
All in all, the results summarized in this review show that despite its simplicity (or, arguably,

thanks to it), the Glauber model has stood for over 50 years as an indispensable and useful baseline
approach to quantitatively compare collisions of systems of varying size, from protons to uranium
nuclei. Its continued ability to extract from the data key thermodynamic and transport properties
of strongly interactingmatter at the highest densities and temperatures accessible in the laboratory
will likely remain unchallenged for years to come.
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