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Abstract

Each of the macronutrients—carbohydrate, protein, and fat—has a unique
set of properties that influences health, but all are a source of energy. The
optimal balance of their contribution to the diet has been a long-standing
matter of debate. Over the past half century, thinking has progressed regard-
ing the mechanisms by which each macronutrient may contribute to energy
balance. At the beginning of this period, metabolic signals that initiated eat-
ing events (i.e., determined eating frequency) were emphasized. This was
followed by an orientation to gut endocrine signals that purportedly modu-
late the size of eating events (i.e., determined portion size). Most recently,
research attention has been directed to the brain, where the reward signals
elicited by the macronutrients are viewed as potentially problematic (e.g.,
contribute to disordered eating). At this point, the predictive power of the
macronutrients for energy intake remains limited.
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INTRODUCTION

Consensus is difficult to achieve on most topics in the field of nutrition, and the target seems to be
retreating. With imperfect knowledge of the function of human somatic cells and growing recogni-
tion of the contribution of genetics, epigenetics, the gut microbiome, and probabilistic behavioral
inputs, establishing cause and effect—let alone best practices for individuals and populations—is
problematic. One area of agreement is that body weight is a function of energy balance, and there
is evolving acceptance that body weight is based on energy itself rather than its source. Body
weight can be gained, lost, or maintained on diets varying in macronutrient composition (143,
157). Different health implications clearly exist for diets that emphasize one macronutrient over
another (a topic for which consensus is still elusive), but from a body-weight perspective, energy
is the common denominator. It is well known that the energy yield from each macronutrient
differs, but a key question is whether the unique properties of proteins, fats, and carbohydrates
hold particular implications for energy balance. This review considers the progression of thinking
about the roles of proteins, fats, and carbohydrates in appetitive sensations and feeding since the
middle of the last century.

Three eras are proposed to have existed over this interval (Figure 1). The boundaries between
the eras are not distinct, and elements of each are relevant in the present, but it is argued that
views have transitioned about the role played by each macronutrient. In the period from the
1950s to the 1970s, metabolism was emphasized, with the proposal of glucostatic, aminostatic,
and lipostatic theories predominating. Each of these views was based largely on a model in which
a decrease of one of the nutrients or a metabolite signaled the need for increased energy intake.
Hence, regulation of energy intake was largely based on a signal that initiated an eating event;
the sensation is termed “hunger.” The emphasis on hunger and meal initiation was logical at that
time, when overweight/obesity was not a health concern. Indeed, federal dietary recommendations
emphasized obtaining adequate energy (201). It follows that eating frequency was then viewed as
the primary driver of energy intake.

These theories lost favor, in part because their predictive power for energy intake was limited.
This limitation is not surprising given that eating frequency is only half of the equation that
defines total energy intake. The other half entails portion size, and this is where the field moved
during the 1970s through the first decade of the 2000s. During this era, gut signaling and its
influence on appetite and feeding were emphasized. Numerous gut peptides were identified, and
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Figure 1
The conceptualization of the primary regulatory controls of feeding elicited by the macronutrients proposes
that three eras existed over the past approximately 50 years. (a) The first era emphasized circulating
metabolic signals during the postprandial period that determined hunger and eating onset or eating
frequency. (b) The second era focused on endocrine signals, largely derived from the gut and conveyed
neurally or via the circulation to the brain, that influenced intake during an eating event and determined
portion size. During these two eras, the guiding principle was that physiological mechanisms and ingestive
behaviors were coordinated to promote homeostasis. (c) The present era is more oriented toward
nonhomeostatic, reward-driven behavior, in which signals generated by the macronutrients converge on the
brain and may be problematic for energy balance. Abbreviations: CCK, cholecystokinin; GI, gastrointestinal;
GLP-1, glucagon-like peptide-1; OXM, oxyntomodulin; PP, pancreatic polypeptide; PYY, peptide YY.
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evidence emerged that as nutrients entered the gastrointestinal tract, they stimulated secretion
of hormones, leading to sensations of satiation or fullness that prompted the termination of an
eating event (ghrelin is the exception). The orientation toward signals to terminate eating events
again fit the times, as this was the era when the prevalence of overweight and obesity increased
markedly and federal dietary recommendations shifted to warn against eating in excess of energy
needs. However, the primary focus on portion size also resulted in limited predictive power for
human energy intake.

With recognition that decades of research had not yielded dietary recommendations that most
of the population would follow, explanations of poor adherence were sought. The increased un-
derstanding of gut signaling systems, identification of “taste” receptors in the gastrointestinal tract
(and elsewhere), and advances in neural imaging capabilities led to a reorientation toward the brain
from 2000 to the present. More specifically, attention turned to reward centers that reportedly
drive excess intake. The brain has always been implicated in the metabolic and endocrine theories
of feeding, but it did not previously play the central maladaptive role that is ascribed to it now. In
this latest trend, the role of the macronutrients shifted from their contribution to homeostasis to
providing signals that provoke dysfunctional eating and addictive ingestive behaviors with con-
sequent health complications. We review the strengths and weaknesses of evidence underlying
this evolution of thinking from metabolic to endocrine to neural orientations for carbohydrate,
protein, and fat.

METABOLIC RESPONSES TO CARBOHYDRATE

The glucostatic theory of food intake regulation stemmed from recognition that the body has
limited capacity for carbohydrate storage but requires a constant glucose supply for the central
nervous system. The lateral hypothalamus (LH) and ventromedial hypothalamus (VMH) were
hypothesized to contain glucoreceptors sensitive to changes in circulating carbohydrate concen-
trations (179) measurable as differences in circulating arteriovenous (AV) glucose concentrations
(180, 182, 259). The LH was proposed as a hunger center and the VMH as a satiety center. Con-
siderable evidence supported the theory. Neural activity was observed in the VMH upon glucose
administration and in the LH with insulin administration, but neither protein hydrolysate nor fat
emulsion had such effects (6). Furthermore, damage to the VMH (40, 123) or lowering of blood
glucose concentrations (182) prompted food intake, whereas damage to the LH produced aphagia
and anorexia (76). Hunger was viewed as a mechanism for regulating glucose homeostasis (180,
182). Hunger following insulin administration was suggested as a homeostatic response against
hypoglycemia (259), and it introduced the possibility of hormonal influences on glucoreceptors
in the central nervous system (245).

However, scientific favor for the glucostatic theory began to wane as a larger picture emerged.
The emphasis on hypothalamic glucoreceptors was diminished by evidence that brain glucose
concentrations are unlikely to fluctuate widely in the short term (55) and arguments that glucostasis
is not the primary goal of feeding (99). Particularly problematic was the theory’s inability to explain
why hyperglycemia did not lead to decreased food intake in animals (121) or lower hunger and food
intake in humans (24, 234). Indeed, numerous rodent studies (76, 266) cast doubt on the presence of
hypothalamic glucoreceptors and differences in AV glucose—both core concepts of the glucostatic
theory—as key mechanisms controlling food intake. The theory also did not satisfactorily explain
the observation that epinephrine administration quickly triggers hyperglycemia while concurrently
reducing hunger without causing a difference in AV glucose. Additionally, it was noted in humans
that hunger and hyperphagia occurred with hyperglycemia in diabetes mellitus. To account for
this, Mayer modified the theory to propose that hunger in this instance was due to a reduction
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in glucose utilization as a result of abnormal carbohydrate metabolism rather than AV glucose
fluctuations (181).

Another iteration of the theory focused on glycogen balance and considered glycogenolysis the
primary determinant of food intake and body weight (92). This view derived from evidence that
liver glycogen levels in mice tended to be lower prior to feeding (7), indicating a possible effect on
food intake and timing of meal initiation. Because glycogen stores are generally not saturated, with
a wide maintenance range (200–500 g), it was thought carbohydrate intake and its contribution
to energy maintenance varied to ensure carbohydrate balance (2). However, the body’s ability to
adjust substrates for energy utilization did not support a requirement of maintaining carbohydrate
storage as an element of food intake regulation (242).

Throughout its history, the primary focus on carbohydrate (glucose) modulation of ingestive
behavior and body weight centered on signals that initiated eating events. Continuous monitoring
of blood glucose concentrations in rats and humans led to the concept that short-duration blood
glucose dips act as a transient signal to initiate feeding (45). However, spontaneous meal initiation
did not always occur following such a dip (147), and meal initiation frequently occurred without a
change in blood glucose (15). Strong evidence against this hypothesis are euglycemic clamp studies
that show that independent manipulation of glucose or insulin does not alter appetitive ratings
(47). Nevertheless, this hypothesis continues to impact the direction of carbohydrate research in
relation to human feeding (107, 133). More recently, low-glycemic-index (GI) foods have been
purported to reduce appetite and increase satiety (127). Although reducing available carbohydrate
lowers glycemic and insulinemic responses, low-GI foods per se do not reliably reduce subjective
hunger or increase satiety, nor is GI predictive of appetitive sensations (3, 167).

The glucostatic theory is still espoused by some (70). However, strong evidence challenging
its importance under physiological conditions has relegated it to a lesser status than it once held.

METABOLIC RESPONSES TO PROTEIN

Evidence supporting a link between dietary protein consumption and appetite was formalized as
the aminostatic theory of feeding. Mellinkoff and colleagues noted an inverse association between
serum amino acid (AA) concentrations and reports of hunger (185). In its original conception, it was
a mechanism focused on eating frequency. Building on this theory, Booth et al. (36) concluded
that the relationship between dietary protein and appetite involved more than circulating AA
concentrations because reported hunger ratings remain low after AA concentrations return to
basal levels. Furthermore, fasting AA concentrations are not predictive of hunger sensations.

Nevertheless, considerable support exists for a central role for protein in the maintenance
of energy balance. Some work indicates that rodents fed a protein-deficient diet or animals ex-
periencing protein stress (e.g., during pregnancy) spontaneously select high-protein diets under
choice-feeding conditions (65). Such a specific appetite does not exist for carbohydrate or fat
(66). Among humans, both children and the elderly with compromised protein status express a
preference for soup containing casein hydrolysate, despite its stronger bitter taste, compared to
soup alone (191, 263). Other work with healthy humans indicates high protein intake results in
lower hunger, whereas low protein intake promotes the desire to eat protein-containing savory
foods (114). At the population level, protein intake is strikingly consistent cross-culturally, unlike
carbohydrate and fat intake (95), and has remained so over the recent three decades of markedly
increased overweight and obesity incidence in the United States (196). The aforementioned ob-
servations suggest a biological basis for regulation based on protein, and this culminated in the
proposition of the protein-leveraging hypothesis (231). According to this hypothesis, when the
proportion of protein need is not met, food intake will increase until an appropriate amount of
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protein is ingested. Conversely, protein-rich diets are purportedly ingested in low quantity because
they provide the requisite amount of protein with relatively less total energy.

When protein in chow is low or essential AAs are imbalanced, mice consume more energy
to compensate and reach a level of adequate protein intake (162). This phenomenon has been
replicated in numerous species (84, 85); however, not in humans. Direct assessments of protein
leveraging using diets containing 5–10%, 15%, and 25–30% of energy from protein (112, 177),
as well as protein from animal and plant sources (178), have yielded uniformly negative findings.
One trial (112) noted a small increase in energy intake on a diet containing 10% energy from
protein but no reduction of intake with the 25% version. The two other trials (177, 178) reported
the opposite, i.e., a small reduction of intake on a diet containing 30% energy from protein but
no increment on a diet with 5% energy from protein.

One possible explanation for the failure to document protein leveraging is that protein’s role
is overridden by other interrelated factors, such as dietary protein source, food form, and protein
quality. Consistent with Mellinkoff ’s original findings, rapidly absorbed protein sources have been
associated with stronger satiety in comparison with more slowly absorbed sources (e.g., whey versus
casein) (118). The former leads to higher acute postprandial circulating AA concentrations, thus
implicating protein digestibility (34). However, for some dietary protein sources, such as fish,
slower digestion and delayed peak plasma AA concentrations have been proposed as explanations
for protein’s satiety effects (257). Other work fails to reveal protein source differences on satiety
(152, 153). These inconsistent findings indicate that a single property such as digestibility or
absolute blood AA concentration cannot fully account for protein’s effect on appetite.

A protein satiety threshold has been proposed (200) but not confirmed. The concept of a
satiety ceiling effect is also under consideration (158). In some instances, pure protein loads are
studied, but such loads would rarely occur under customary dietary conditions. Data are limited
on a minimum quantity or increment required to decrease hunger or induce satiety.

The importance of protein’s food delivery system also reveals that an independent effect of
protein is not robust. When protein is ingested through a beverage, its reported stronger satiety
effect, relative to carbohydrate or fat, is diminished or lost (8). One explanation for the food-form
findings is the generally low concentration of protein in beverages relative to what may be present
in solid foods. Although some work reveals a positive association between the protein content of
a beverage and its ability to reduce hunger (151, 154), other work that has tested a high concen-
tration of protein does not support a strong protein satiety effect (223). In addition, consuming
predominantly protein-, carbohydrate-, or fat-containing beverages does not differentially affect
subsequent energy intake (63).

Given these variable findings, other aspects of protein metabolism have been explored, such
as diet-induced thermogenesis and the effects of protein on the maintenance of lean body mass,
with implications for resting energy expenditure. Though outside the scope of this review, it may
be noted that a two-week, controlled feeding intervention trial (271) revealed that participants
maintained weight on a twofold-higher-protein diet (30% versus 15% energy) compared to par-
ticipants on a diet matched on energy despite greater diet-induced thermogenesis. When switched
to a higher-protein, ad libitum diet, participants lost a significant amount of weight as a result
of reduced energy intake. These observations do not support a strong effect of protein’s high
thermogenic effect of food property on body weight.

Others reviewing longer-term dietary interventions also concluded that although high-protein
diets have a higher thermogenic effect of food, the effect is unlikely to contribute substantially
to weight loss (277). Clear evidence indicates that higher-protein, energy-restricted diets lead to
reduced loss of lean body mass. Maintenance of higher levels of metabolically active tissue should
aid energy expenditure and moderate weight gain or aid weight loss. However, these effects are
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small (277). Both of these latter explanations are dependent on marked elevations of energy intake
(e.g., doubling from 15% to 30% of dietary energy from protein), which have not proven feasible
on a chronic basis in a large proportion of the population.

METABOLIC RESPONSES TO FAT

In 1953, Kennedy proposed that the hypothalamic control of food intake was regulated by a
lipostatic mechanism designed to prevent excess fat storage (141). Parabiotic studies in mice
performed years later provided evidence of a circulating factor secreted in direct proportion to fat
mass that regulates body mass on a long-term basis (122). The factor, now known as leptin, was
cloned in 1994 (283), followed by the cloning of its receptor in 1995 (248). Soon after, circulating
concentrations of leptin were shown to correlate with fat mass in both rodents and humans (174),
providing further support of the lipostatic theory of regulation.

Strong evidence both supports and refutes leptin’s influence on appetite, energy intake, and
body weight. The most compelling positive findings derive from studies in leptin-deficient ro-
dents and humans. Administering leptin to ob/ob mice results in reduced food intake and weight
loss (mainly due to loss of fat mass) (117). Administration of leptin to children with leptin de-
ficiency results in decreased food intake and significant weight loss (mainly fat mass) (80, 81).
These effects indicate leptin signaling can impact both food intake and fat storage. However,
the majority of individuals with obesity have elevated circulating leptin concentrations and de-
velop leptin resistance, resulting in a poor and inconsistent response to leptin administration
(274).

Both rodent and human studies have provided evidence opposing the role of leptin as “the”
long-term regulator of fat mass. Although serum leptin is elevated in overfed rats, concentrations
return to normal within two days after the overfeeding ceases, although decreased food intake
persists beyond this time (272). In addition, overfeeding obese rats that lack functional leptin
receptors still induces a subsequent decrease in food intake (272). Additional work has raised
questions about the link between leptin secretion and body fat stores. In both lean and obese indi-
viduals, plasma leptin concentrations decrease during energy restriction (12, 71, 145). However,
decreased plasma leptin concentrations associated with energy restriction in normal-weight men
and women were only partially explained by weight loss and were not associated with changes in
body fat (71). Furthermore, in normal-weight to obese women consuming an energy-restricted
diet, leptin decreased significantly only within the first week and then remained low, whereas body
fat decreased more linearly throughout the 12-week trial (12).

Leptin was originally thought to be a long-term regulator of energy status, but evidence of
short-term leptin regulation has also been reported. Under- or overfeeding individuals for a
three-day period influences leptin concentrations when a eucaloric diet is restored, suggesting
that leptin responds to short-term alterations in energy balance (49). The magnitude of increase
(with overfeeding) or decrease (with underfeeding) in leptin greatly exceeded that expected if leptin
were altered solely based on changes in body fat. In addition, a seven-day energy-restricted diet
induced a significantly greater decrease in circulating leptin than could be explained by weight lost
during this period (71). Leptin also negatively correlated with hunger after short-term changes
in food consumption in lean individuals (49). However, when leptin was administered to obese
individuals after a 10% weight reduction, it resulted in increased fullness following meals and a
lower perceived food consumption, but no actual difference in food intake (145). Although these
studies suggest leptin serves as a short-term appetitive signal in normal-weight individuals, plasma
leptin concentrations exhibit a diurnal pattern (269) and thus do not directly reflect changes in
appetitive sensations during a 24-hour period.
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Evidence also supports the short-term regulation of food intake by fatty acid oxidation. When
mitochondrial β-oxidation is inhibited, rats on a medium (18%)-fat diet exhibit a significant
increase in food intake, whereas no effect is observed in rats on a low (3.3%)-fat diet (225). In
addition, rodents and humans decrease food intake when consuming a diet rich in medium-chain
triacylglycerols (MCTs) (198, 260). MCTs contain 8-C and 10-C saturated fatty acids that can
enter the portal vein directly and are rapidly oxidized once they reach the liver. Inhibiting fatty
acid oxidation in the liver increases food intake in rats administered MCTs, whereas no effect is
observed in response to long-chain triacylglycerols (LCTs) (198). In a human study, a preload
containing MCTs significantly reduced food intake in nondieting women during a meal provided
30 minutes later, but it had no effect on the intake of dieters (218).

In contrast, several studies in both normal-weight and obese individuals have shown that
supplementing a meal with MCTs versus LCTs has no effect on food intake or appetite ratings
at a subsequent meal (239, 261). However, when an additional MCT or LCT load of test oil
was provided one hour before an ad libitum meal, individuals who received the MCTs consumed
significantly less (239). In a longer-term study in which women with obesity were administered
a very-low-energy diet supplemented with either MCTs or LCTs for four weeks, hunger ratings
were lower and satiety ratings were higher after MCT-supplemented meals were consumed, but
only during the first two weeks at 5 and 40 minutes following the meal (149). These findings sug-
gest that MCTs may have very short-term effects on food intake and satiety, but they do not extend
to subsequent meals, and the body adapts to these effects if MCTs are consumed chronically.

Furthermore, the digestion of dietary fat affects appetite through its effects on gastric volume. In
a study where intragastric distention was fixed to resemble postprandial fullness, an intraduodenal
infusion of a lipid emulsion increased gastric volume and fullness ratings more than either a mixed-
nutrient or protein solution (82). In another study, both LCT and MCT infusions increased gastric
volume and fullness sensations, but not when administered along with a lipase inhibitor (83). This
suggests that the digestive products of triacylglycerol elicit these effects. Compared to a glucose-
supplemented meal, a high-fat meal elicited higher fullness ratings at any given gastric volume,
despite the faster gastric empting rate and lower energy content of the high-carbohydrate meal
(175). Collectively, these studies suggest that the digestive products of dietary fat induce greater
fullness sensations than other macronutrients.

In contrast, observations that high-fat diets lead to passive overconsumption and weight gain in
humans (32) suggest that weak inhibitory mechanisms enable excess fat intake. In one exemplary
study, individuals consumed more energy from an ad libitum meal containing an array of high-fat
foods than from foods high in carbohydrates, which suggests that the satiating properties of fat
are not as potent as those of other macronutrients (30). In addition, a breakfast supplemented with
fat did not decrease hunger ratings or energy intake of a snack provided 90 minutes later when
compared to the breakfast without the additional fat (30). A lack of inhibitory mechanisms to
prevent excess fat consumption may have been beneficial when food was scarce and eating events
did not occur often, but now that fat is abundant in the food supply, it seems to enable weight
gain. The observation that fat preference positively correlates with percent body fat (184) suggests
that the palatability of this macronutrient contributes to its overconsumption. Overall, the high
palatability and availability of dietary fat seem sufficient to prompt food intake without eliciting a
precise reduction of portion size through its satiety and satiation properties.

ENDOCRINE RESPONSES TO CARBOHYDRATE

An endocrine function for the gastrointestinal tract has been recognized since the seminal work
on secretin by Bayliss & Starling in 1902 (19). The repertoire of gut peptides that control digestive
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processes has grown to more than 20. Gut peptides are secreted by 15 to 20 types of enteroen-
docrine cells partially characterized by the peptides they release and their anatomic location. The
gastrointestinal tract is now viewed as the largest endocrine organ in the body.

The effect of cholecystokinin (CCK) on gallbladder contraction was demonstrated in 1928
(130), but its influence on energy intake (meal size) in rodents was not established until 1973
(109). This finding prompted the search for other peptides that modulate appetite and ingestive
behavior, with characterization of more than a dozen hormones [including obestatin, nesfatin-
1, CCK, PYY, glucagon-like peptide-1 (GLP-1), GLP-2, oxyntomodulin, glicentin, gastric in-
hibitory polypeptide, neurotensin, somatostatin, 5-hydroxytryptamine, and secretin] as holding
anorexic properties and one (ghrelin) with orexigenic activity. These satiety hormones are secreted
by enteroendocrine cells termed “open” because they have microvilli exposed to the lumen that
contain receptors for nutrient signals derived from ingesta passing through the tract. These nu-
trient receptors are located on I-cells (the source of CCK) in the proximal and L-cells (the source
of GLP-1, GLP-2, and PYY) primarily in the distal tract. However, L-cells are also present in
the duodenum. Other enteroendocrine cells, such as the P/D1-like cells in the stomach, that
secrete ghrelin are termed “closed” and likely do not monitor the nutrient mixture in the gas-
tric lumen. Ingestion of monosaccharides and complex carbohydrates (28, 29) is associated with
ghrelin secretion, but this is probably not directly responsive to nutrient signaling, as closed-form
enteroendocrine cells respond to neural and hormonal signals.

Gastrointestinal peptides may modulate appetitive sensations and glucose tolerance by neural,
endocrine, paracrine and/or autocrine mechanisms. The initial work on endocrine signaling in the
gastrointestinal tract focused on the stomach and small intestine but more recently has expanded
to range from the oral cavity to the colon. The promise that manipulation of these modulators
of feeding and glucose tolerance could be harnessed to address the growing overweight/obesity
and diabetes problems, identified in the late 1970s in the United States, prompted research that
expanded understanding of gut biology but has not yet yielded the hoped-for clinical results.

The oral sweet-taste receptor, first characterized in 2001, binds an array of sugars as well as low-
calorie sweeteners (LCSs). In addition to providing a sensory signal that is inherently pleasant and
guides food choice, rodent taste cells that bind sweeteners also express GLP-1 (68, 246). GLP-1
may be involved in sweet-taste signaling and may also enter the circulation, where it could exert a
direct anorexic effect in the brain. The concentration of GLP-1 released from taste cells is limited,
but because there is little or no dipeptidyl peptidase-IV present to degrade the molecule, as occurs
following release from L-cells in the distal intestine, it may exert a larger effect than expected.
The cephalic-phase insulin response has traditionally been ascribed to vagal-mediated pancreatic
secretion, but recent findings now suggest there may also be an endocrine contribution via taste
cell release of GLP-1 (146). Alternatively, a signaling system activated by selected sweeteners
independent of the sweet receptor may be contributing (110). Such a system has been described
in mice, but whether it exists in humans is not known. The cephalic-phase insulin response is
significantly correlated with postabsorptive insulin concentrations (251) and has been associated
with ingestive behaviors (212). However, the roles of glucose and insulin in mediating appetite
and feeding under physiological conditions are questionable (47).

In the early 1960s, gastric infusions of isocaloric test solutions of glucose and starch were
reported to slow the rate of gastric emptying (129). Subsequent work revealed that glucose ingested
orally or administered gastrically had a greater effect on plasma concentrations of insulin than did
intravenous glucose (207). This effect, termed the “incretin effect,” suggested that signals from
the gut are important in the hormonal regulation of postprandial glycemia (9). Since that time,
additional evidence has documented that digestive products of dietary carbohydrates are effective
stimuli for the secretion of multiple gut peptides in the small intestine, most notably the incretins,
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GIP, and GLP-1. Recent evidence suggests glucose or fructose may trigger CCK release as well
(150, 236), though treatment with the sweet-taste inhibitor lactisol does not alter CCK release
(108), and the TAS1R2 component of the sweet-taste receptor is not coexpressed with CCK (59).

Ghrelin is an orexigenic hormone secreted in the stomach. Its release is not driven by luminal
sensing of carbohydrate. Indeed, several reports note hunger ratings precede changes of ghrelin
(98, 161). Additionally, postprandial concentrations of ghrelin are not predictive of meal requests
or the energy content of the meals (38).

Peptides are secreted in the intestine by several mechanisms. First, there is suggestive evidence
for a learned anticipatory secretion that would presumably have a neural or hormonal basis (57,
258). Interestingly, suppression of the premeal GLP-1 rise leads to lower, rather than greater, food
intake. This finding is inconsistent with the reported anorexic effect of GLP-1, but it may reflect the
lack of suppression of orexigenic signals (64, 212). Second, glucose can pass through the sodium-
glucose-linked transporter-1 on L-cells, depolarizing the cell and releasing peptides. Intravenous
glucose administration does not suppress food intake acutely, whereas a direct relationship exists
with intestinal glucose (215). This finding is consistent with the hypothesis that glucose transport
is required for carbohydrate-mediated reduction of food intake (72). Third, selected nutritive
sweeteners and LCSs can bind to the T1R2/T1R3 sweet-taste receptor on enteroendocrine cells
and effect peptide release. Enteroendocrine cells that express the receptor also possess the elements
required for taste transduction such as α-gustducin, transient receptor potential cation channel
subfamily M member 5, and phospholipase Cβ2. However, the terminology of gut taste may be
inappropriate, given that the signal generated is not conveyed by taste nerves or decoded in taste
cortex, and it does not lead to a sweet percept. Nutrient sensing more aptly characterizes the
function of these cells distributed along the entirety of the gastrointestinal tract. Once released,
the peptides may act as autocrine or paracrine signals; bind to receptors on the afferent vagus
nerve, generating a neural signal; or reach the brain via the circulation.

Identification of sweet-taste molecule receptors on intestinal enteroendocrine cells raised the
question of whether LCSs would also be metabolically active in the gastrointestinal tract. Such
activity is the case in cell culture (131), but support for similar activity in animal models (101) and
humans has been weak. Trials have reported no effect of sucralose on plasma GLP-1 or plasma
glucose (171), no effect on GLP-1 and an increase in glucose (206), a rise of GLP-1 with no
effect on glucose (41), and an elevation of GLP-1 with a lower glucose concentration (253). The
matter has not been resolved at this point. It also has not been confirmed that nutrient signaling
mechanisms identified through in vitro studies hold under physiological in vivo conditions.

Ingestion of high-fructose corn syrup has increased markedly over the past four decades, leading
some to hypothesize that this increase poses a particular risk for positive energy balance and weight
gain. However, in humans fructose has only a comparable effect to glucose on gastric emptying,
incretin release, rate of glucose absorption, postabsorptive glucose concentration (165), appetite,
energy intake, and energy compensation (234). Fructose is sweeter than glucose or sucrose, so it
could have stronger rewarding properties. However, fructose is rarely experienced alone (243).

The density of enteroendocrine cells is highest in the colon, so signaling molecules that are
not absorbed in more proximal regions or are generated in the colon may also prompt a robust
hormone response. The concept that fermentable carbohydrates could be a source of signaling
molecules that affect gut peptide concentrations associated with glucose and energy balance dates
back to the late 1980s and early 1990s (111, 168). Presently, there is considerable interest in
the role of the microbiota in fermenting dietary fibers to yield short-chain fatty acids (SCFAs)
such as acetate, propionate, and butyrate. SCFAs influence the expression of G-protein-coupled
receptors (GPRs) and can bind to free fatty acid receptor (FFAR)2 (GPR43) and FFAR3 (GPR41)
on L-cells, resulting in secretion of peptides such as GLP-1 and PYY, the two principal drivers
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of the ileal break, which slows gastric emptying and gastrointestinal transit and augments satiety.
However, animals lacking these two receptors have normal responses to SCFA and improved
glucose tolerance (247), revealing redundancy in the system and uncertainty about the mechanism.

Evidence linking fermentable fiber, the microbiota, and gut peptides in humans reveals in-
consistent associations among gut peptide concentrations, appetite, and energy intake (78). This
inconsistency may reflect the fact that the microbiota generates many bioactive compounds that
exert effects in multiple organs (52). Additionally, much of the work on this topic is short term,
and the effects of fermentable fiber may be on proliferation of enteroendocrine cells, which would
reflect chronic feeding patterns (150). The impact of fiber on satiation may be overestimated
(51, 138), and its contribution to energy intake may be underestimated. It is uncertain whether
increasing fiber intake to moderate energy balance will have the desired effect.

Taken together, strong evidence indicates that simple and complex dietary carbohydrates
prompt the secretion of gut satiety peptides. Although carbohydrates would be expected to be
highly satiating and thus consumed in limited portion sizes, this has not been the common ex-
perience, particularly for carbohydrates in beverages. This appears to belie the importance of
endocrine signaling for carbohydrates on ingestive behavior. The reasons are many and include
(a) the possibility that dietary patterns influence enteroendocrine cell density, and thus peptide
concentrations, in the gastrointestinal tract (224, 273); (b) executive function can, and frequently
does, override physiological signals; and (c) no single peptide acts independently, and many factors
influence the pattern of hormonal responses to eating. It is uncertain whether it will be productive
to continue to explore carbohydrate-driven endocrine mechanisms that are primarily related to
only one facet of intake (portion size) to modulate appetite and intake for preventive or therapeutic
purposes.

ENDOCRINE RESPONSES TO PROTEIN

In 1970, Booth et al. (37) demonstrated that intakes of a midday and subsequent meal were
lower when the earlier meal was higher in protein. Subsequent studies in humans supported
these findings (37, 219). In addition to decreased energy intake, self-reported hunger and desire
to eat were significantly lower with high-protein compared to high-carbohydrate meals (124).
Hypotheses for the increased satiety due to protein included higher circulating AAs (related to
Mellinkoff ’s aminostatic theory discussed previously) (185), increased thermogenesis with protein
intake (75), sensory-specific satiety (262), and stimulation of gut hormone release (193). However,
the associations between protein exposure and gut peptide release are weak and inconsistent.
These weak associations stem, in part, from influences of the quantity, quality, and type of protein
ingested on gut peptide secretion.

Research into the effect of the quantity of protein consumed on appetitive peptide concentra-
tions began in the early 2000s. Findings were suggestive of positive effects, but not compelling.
Meals containing 14%, 25%, and 50% protein (21) increased GLP-1, PYY, and glucagon dose
dependently but had no effect on GIP, CCK, or ghrelin. Feelings of fullness also increased dose
dependently; however, this increase had no effect on ad libitum energy intake. A review of acute
feeding studies in humans noted that higher-protein interventions led to lower hunger, lower
ghrelin, and increased fullness in only 35%, 37%, and 55% of trials, respectively. GLP-1 or
PYY concentrations of the high-protein groups were elevated in only 47% of trials, and food
intake at a challenge meal was lower in only 18% of trials with a high-protein intervention (158).
These inconsistent results may be due to limitations of preload design protocols and interstudy
differences in protein intake levels. Weaknesses of the preload paradigm include assessment of
laboratory-based atypical eating behavior, variability of test meals (both composition and timing),
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inconsistent challenge loads (75), a short time window between eating events (241), and fixed meal
times instead of meal request. These studies also manipulate protein load relative to meal compo-
sition (e.g., percent of energy, percent by weight) and consumer characteristics (e.g., energy need,
percent body weight), thus hampering the isolation of protein effects.

Protein source and quality have also been explored as predictors of satiety, reportedly mediated
by gut endocrine signals. Results from these studies are numerous and inconclusive (1, 48). Dif-
ferent types and combinations of proteins result in variable peptide release (67). Ghrelin secretion
notably varies with protein source (likely through an indirect mechanism). When the amount of
protein is controlled, dairy, plant, and animal protein lead to, respectively, a reduction, reduction
to a lesser extent, and increase in plasma ghrelin (16, 77) postprandially, though appetite ratings
remain similar.

Effects of whey and casein are frequently contrasted (118, 202) because whey is digested and
absorbed more rapidly than casein (34). Whether these digestive peptides directly stimulate appeti-
tive peptide release or whether the digestion rate of dietary protein modulates release is uncertain.
A liquid whey preload reportedly leads to significantly lower energy intake, increased fullness,
decreased desire to eat, and elevated GIP, GLP-1, and CCK compared to an isocaloric casein
preload (118). The increase in CCK with the whey preload has been attributed to the 64 AA
peptide product of whey digestion, caseinomacropeptide (197). Early research with rat models in-
dicated caseinomacropeptide stimulates release of CCK (26); however, subsequent human studies
found that caseinomacropeptide alone or with an energy-containing preload had no effect on sub-
jective satiety, CCK release, or food intake (116). A review on the satiating effect of dairy proteins
(22) concluded that whey protein stimulates secretion of GLP-1 more than other proteins do,
but there is no clear evidence that CCK, PYY, and ghrelin concentrations are affected by protein
source.

Discovery of endogenous satiety peptides lead to experimentation with exogenous administra-
tion of synthetic forms of these peptides. In these experiments, administration of peptides reduced
energy intake and/or increased feelings of satiety (18, 94, 226). However, a meta-analysis examin-
ing the difference between exogenous concentrations and endogenous production levels of PYY,
GLP-1, and CCK found that concentrations of exogenous PYY and GLP-1 that elicited a satia-
tion response were significantly above physiologic concentrations, leaving open questions about
their nutritional relevance in humans (176). Macronutrient composition was not evaluated in the
above meta-analysis, limiting the ability to determine the effect of protein on satiety peptide levels.
Greater consideration is being given to the issue of whether gut peptide hormones are released
primarily to signal satiety or instead primarily to regulate digestive processes with appetitive sen-
sations only associated with hormone concentrations (132). The effect of one macronutrient such
as protein and the release of any one or combination of appetite peptides are unlikely to be the
primary drivers controlling energy intake.

ENDOCRINE RESPONSES TO FAT

A link between lipid consumption, gut peptide secretion, and satiety was reported as early as
1937, when an extract from intestinal secretions collected after an oral olive oil dose suppressed
feeding in rabbits (173). Because later research documented that dietary lipids are potent stimuli
for the release of peptides such as CCK and PYY, some researchers hypothesized that lipids are
the primary regulator of energy balance (20).

The endocrine mechanisms by which dietary lipids reportedly influence ingestive behavior
and digestive processes are mediated by signals that begin in the oral cavity. In rodents, oral fat
exposure reduces the variability of gastric emptying under conditions of different load rates (137)
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and augments pancreatic exocrine (125, 155) and endocrine (56) secretions. In humans, oral fat
exposure elicits gastrin, gastric acid, and ghrelin secretion (120, 276, 278) and enhances gastric
emptying (120). In addition, oral exposure stimulates release of gut peptides such as CCK (275) and
GLP-1 (278). These products are also released by the detection of medium- and long-chain fatty
acids in the small intestine in a dose-dependent manner (85, 166, 172). In one study, an intestinal
infusion of C12:0, but not C10:0 or control, significantly reduced “desire to eat” and “hunger”
ratings (although it increased nausea, which is typical of medium-chain fatty acid administration)
(85). The results of this study corresponded to one in which male participants consumed 2,857 kJ
less energy at a single buffet meal compared to controls.

Some studies show that long-chain fatty acids are even more potent stimulators of gut peptide
release, as PYY secretion responds in proportion to increasing chain length of fatty acids, and
CCK concentrations increase more in the first 30 minutes after ingestion of long-chain compared
to medium-chain fatty acids (84). Even so, fatty acid chain length appears to have no differential
effect on hunger ratings or energy consumption in lean subjects (211).

Although they are not a result of dietary fat intake, SCFAs are generated by the microbiota
through fiber fermentation (255) and also stimulate secretion of gut peptides, such as PYY and
GLP-1 (60). However, administration of acetate (C2:0) and propionate (C3:0) does not reduce
energy intake (134, 222). Indeed, SCFAs are a source of energy (8 kJ/g) and can increase one’s
energy balance by approximately 150 additional kcal per day through energy harvesting by the
microbiota (136).

The effect of fatty acid saturation on the secretion of gut peptides and appetitive sensations
is also not established. Some work suggests consumption of meals high in saturated fatty acid
(C12:0+16:0+18:0) leads to lower hunger and greater fullness scores compared to loads containing
either monounsaturated fatty acid (C18:1) or polyunsaturated fatty acid (C:18:2+C18:3) (148),
whereas other work indicates that no significant association exists between fatty acid saturation
and gut peptide secretion, appetitive sensations, or food intake (4, 240). Even when differences are
noted, energy compensation in the period following test meal consumption offsets the reduction
in energy intake, which indicates that the effect of fatty acids and gut peptides on energy intake
may be only acute (156).

The literature relating lipid intake to appetitive sensations and diet is difficult to assess due
to differential interindividual responsiveness. For example, sex and body mass index may affect
the gut peptide response to unsaturated lipids. Although not well studied, almond oil containing
mainly oleic acid (18:1) increases CCK concentrations and decreases hunger ratings in females
but not males (44), and a duodenal infusion of a lipid composed primarily of long-chain unsatu-
rated fatty acids (intralipid) did not increase CCK and GLP-1 in males, nor did it result in any
differences in energy consumption (39). A trial with a similar experimental paradigm and a more
aggressive dosing scheme observed increased gut peptide concentrations but still no difference
in energy intake in treated males (210). Additionally, adiposity may be an important determinant
of responsiveness, as indicated by findings that an intestinal infusion of oleic acid increases CCK
concentrations to a greater degree in lean as compared to obese individuals (237), and that fol-
lowing administration of long-chain fatty acids, ghrelin concentrations in obese males decline less
after a meal than do concentrations in lean males (230).

Overall, the evidence suggests that dietary lipids stimulate secretion of gut peptides reported to
hold satiation/satiety effects but have limited impact on long-term energy intake. There are several
reasons for this limited effect. First, gut peptides act primarily on meal size and generally not on
eating frequency (62). Indeed, high-fat diets are often associated with positive energy balance
and weight gain that has been attributed to tolerance or adaptation of the gastrointestinal tract
response to the chronic consumption of a high-fat diet (73). Second, subgroups of responders may
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exist (possibly related to sex or body mass index) as well as gradations of responsiveness within
categories without a dominant pattern (33, 43). Third, the range of lifestyles and conditions within
a population may make certain gut peptides the primary determinant in some situations but not
others (279). Finally, other physiological systems may override satiety signals from gut peptides
(192). Thus, under customary dietary conditions, the consequence of intestinal lipid signaling and
gut peptide secretion on appetite and energy intake is limited.

NEURAL RESPONSES TO CARBOHYDRATE

Views of the role of carbohydrates in energy balance have transitioned: Carbohydrates were once
emphasized for weight management (99), then were viewed as being more neutral (128), and
presently are often regarded as especially problematic (13, 169). This current view is particularly
true for refined carbohydrates, which some contend stimulate appetite and activate brain reward
systems, leading to addictive ingestive behaviors that promote positive energy balance. However,
the veracity of this view is not established.

Reports on food addiction rarely specify an active component but instead implicate high-
sugar, high-fat, energy-dense, highly processed foods. A lack of agreement on the definition of
“processed” and disagreement over how to calculate energy density are problematic (69, 270).
Interestingly, the degree of food processing is often highlighted because it reportedly reflects the
rate of nutrient absorption. However, it is unclear why sugar and fat are concurrently implicated,
as they have markedly different rates of gastric emptying and absorption into the circulation.

High palatability is another attribute linked to addiction, with opposing claims that foods have
been formulated to be “hyperpalatable” (11, 105) and that highly processed foods have lost the
sensory appeal they held when “natural.” Neither position has scientific standing because liking
and preference are learned attributes (189), as reflected by the many distinct global cuisines and
evidence that familiarity is a strong predictor of acceptability [as seen with sugar (164), fat (179),
and salt (25)].

Sweetness is another often-cited dimension of addictive foods. Studies with mice indicate that
tasting sugar without digestion stimulates dopamine release (14). If sweetness is the effective
signal, then addictions would be expected for LCSs. In humans, dopamine release is greater for
sucrose compared to LCS solutions (97, 233). However, some studies on consumers of diet soda
have observed similar activation of brain reward systems when sucrose and saccharin-sweetened
beverages are consumed and a significantly greater dopaminergic response in comparison with
consumers of nondiet soda (97, 113). One explanation holds that the regular use of LCS decreases
the response of reward centers to sucrose and thereby leads to increased ingestion (221, 244).
Whether reduced responsivity (42) (if it occurs) leads to greater intake as a means to achieve a
desired level of stimulation or lower intake due to lower reward value is an open question. The
two largest meta-analyses of randomized controlled trials investigating the association between
LCS and obesity indicate LCSs are associated with lower body mass index (186, 217), and this
finding has been supported by a more recent randomized controlled trial (208).

Another challenge to the view that sweetness is the driver of addictive feeding stems from
work with trpm5−/− mice lacking the ability to taste sweetness. These mice significantly prefer a
sucrose solution over a sucralose solution (61) and have significantly increased activation of the
dopaminergic system, indicating that the postingestive energy contribution of sugar may be the
primary driver of reward center activity (61).

Other work indicates that LCSs activate the opioid system responsible for liking but that
nutritive sweeteners activate dopamine pathways responsible for working to attain substances (91,
233). This finding raises questions about the hypothesis that sweetness as provided by LCSs is
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addictive, because the motivation to attain the substance, not just liking it, is a necessary component
of addiction.

Measurement issues hamper the study of sweetness and addiction. The Yale Food Addiction
Scale, which is based on drug abuse diagnostic tools in the fourth edition of the Diagnostic and
Statistical Manual of Mental Disorders, is the instrument most widely used to classify individuals
as food addicted (10). However, the reliability of the scale has not been established (96, 104).
Furthermore, much of the literature on this issue draws on measurements of dopamine. In rodents,
some evidence indicates that the taste of sugar elicits the release of dopamine dose dependently
(12). However, dopamine may be released in the absence of a rewarding stimulus and may also
remain unchanged in the presence of a rewarding stimulus (229). In addition, the amount of
dopamine released depends on the novelty of food and decreases after repeated exposure to the
same food, in contrast to exposure to drugs of abuse, which elicit continued dopamine release
(12). The absolute magnitude of the reward system response to sugar is also markedly smaller
compared to that of drugs of abuse (10, 12). Thus, the dopaminergic system is an imperfect index
of reward system activation and addiction. In light of the limited support for addiction to any one
food (121, 284), some have suggested framing the issue as “eating addiction” (121). This would
be in line with the recent recognition of other behavioral addictions, such as computer gaming
(216). However, the question remains as to whether “addiction” or some other descriptor, such
as “disorder,” is more apt.

Finally, the putative implications of sweet food addiction are not clear. A primary basis for
concern about sugar addiction is a posited link to increased energy intake and weight gain. Surveys
reveal that only approximately 5% of the population (3% of males and 6.7% of females) would
be classified as food addicted (203). A meta-analysis determined the prevalence of food addiction
as 11.1% of the normal-weight population from 6 included studies compared with 24.9% of the
overweight/obese population from 14 included studies (213). Given that approximately 68% of
the US population is either overweight or obese (93), this trait could not be ascribed a major role in
the etiology of this pervasive problem. Others have narrowed the argument to focus on individuals
with binge eating disorder. Several rat models have implicated sugar addiction in the context of
binge eating disorder (53). However, in humans, it is possible to have binge eating disorder and
not be food addicted, according to current classification methods, and those classified as addicted
do not necessarily have binge eating disorder (106). Thus, binge eating disorder lacks sensitivity
and specificity as a marker. Addictive behavior does not seem to fit the two popular models of
weight gain in the population. A small, systematic, positive energy balance does not follow from
the expected more gluttonous intake pattern of addicted individuals in an environment where
energy is readily available. Alternatively, if weight gain stems from periodic (e.g., holiday) eating
(228, 282), it would suggest that the addictive trait manifests only episodically rather than being
a stable trait of an individual.

The recent demonization of sugar as a driver of addictive eating behaviors that promote obesity
requires resolution of many outstanding issues, including determining (a) what the offending agent
actually is (e.g., sweetener, sweetness, palatability), (b) how to reliably and accurately measure and
quantify responses to a stimulus, (c) intra- and interindividual variability in susceptibility, and
(d ) health implications.

NEURAL RESPONSES TO PROTEIN

AAs are precursors for transmitters in serotonergic, dopaminergic, and opioid brain reward path-
ways (209). The serotonergic system contributes to the hedonic impressions of food and satiation
more than to hunger. The rate of serotonin synthesis is limited by tryptophan availability. Although
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proteins may be rich in tryptophan, the availability of tryptophan in the brain is determined by
the plasma ratio of tryptophan to other large neutral AAs because all of these AAs compete for
uptake across the blood-brain barrier (87). Dietary carbohydrate augments tryptophan uptake in
the brain by stimulating insulin secretion, which enhances absorption of the AAs competing for
transport into skeletal muscle (281). In addition, insulin promotes the uptake of free fatty acids into
adipocytes, allowing unbound albumin to bind with tryptophan and hence preventing the uptake
of tryptophan by peripheral tissues. Although one study reported that intake of a tryptophan-rich
food reduces the preference for sweet foods in individuals with high anxiety (264), other studies
have not demonstrated such effects (e.g., 27). The importance of diet in influencing tryptophan
availability is uncertain because the brain maintains a pool of serotonin to cover needs during
intermeal intervals.

The dopaminergic pathway is involved in food-based reward as well and is most closely linked to
hunger. The synthesis of dopamine is dependent on its AA precursors, tyrosine and phenylalanine
(88). Similar to tryptophan, the availability of tyrosine in the brain is modifiable by diet and
depends on the plasma concentrations of its AA competitors. However, the influence of dietary
protein on dopamine signaling is not as well understood. In a recent study involving overweight
adolescents with a breakfast-skipping eating pattern, a high-protein breakfast elicited greater and
sustained plasma homovanillic acid concentrations (an index of central dopamine production) in
comparison with a normal-protein breakfast (126). Although this finding suggests that increased
protein intake is rewarding, other work has not documented such effects (50).

The opioid pathway is associated with the motivational aspects of feeding (17). Opioid peptides
can be formed from the hydrolysis of dietary proteins in the gastrointestinal tract (103). When
absorbed, opioid peptides can traverse the blood-brain barrier, where they produce opiate-like
effects (209). However, the functionality of this pathway with respect to human feeding is not
established.

The early focus on dietary protein as a modulator of appetite by providing precursor AAs
for neurotransmitter synthesis was later augmented by documentation that dietary protein elicits
complex signals in the form of gut neuropeptides and hormones that converge on the brain
via the vagus nerve and through the circulation (135). These signals integrate with input from
peripheral sensory systems to influence the neural contribution to energy balance. Input from
neural circuits responsible for motivation, cognition, and hedonic impressions contributes further
to energy balance and guides food choice. The effects of dietary protein on food cravings are not
well characterized. Dietary protein is thought to reduce reward-driven feeding behaviors despite
being a precursor of the transmitters subserving reward pathways.

Centrally, the satiating effect of dietary protein is largely mediated by activation of neurons
in the nucleus of the solitary tract and arcuate nucleus of the hypothalamus (135). Activation
of noradrenergic and adrenergic neurons following high protein intake can enhance satiety and
decrease energy intake by increasing sensitivity to gut hormones such as CCK (79, 135). In ad-
dition, high protein intake can decrease mRNA expression of the vagal orexin-1 receptor, hence
reversing the inhibitory effects of orexin on CCK-mediated satiety (194). High protein intake
also upregulates the catabolic proopiomelanocortin pathway and downregulates the anabolic neu-
ropeptide Y/agouti-related peptide pathway in the arcuate nucleus (144, 190, 220). Leucine may
be the principal AA that modulates the satiety effects of high-protein diets. Leucine is associated
with activation of mammalian target of rapamycin and suppression of adenosine monophosphate–
activated protein kinase, intracellular pathways involved in satiety signaling in the arcuate nucleus
(220). In addition to a role of the arcuate nucleus and the nucleus of the solitary tract in feed-
ing regulation, other neural circuits, such as those mediating food-based reward, are garnering
significant attention.
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The hedonic properties of foods that guide selection and consumption are determined by in-
terconnections between several regions of the brain, primarily the orbitofrontal cortex, amygdala,
insula, nucleus accumbens, and dorsal striatum (142). Historically, sweet and fatty foods have been
considered rewarding (86), with limited consideration of protein. This may stem from the neutral
taste (D-Ala, -G∼u, L-His; D- and L-Arg, -As∼, -Ile, -Lys, -Pro, -Ser, -Thr, -Val) or unpleas-
ant taste (L-Leu, -Phe, -Trp, -Tyr; D- and L-Cys, -Met) of most AAs and proteins. Some AAs
(e.g., Gly; D-His, -Phe, -Trp, -Tyr; L-Ala, -Leu) (235), peptides (aspartame), and proteins (mon-
ellin and thaumatin) (227) are sweet, but these are not strongly preferred. In addition, mice (90)
and humans (204) avoid or negatively rate hydrolyzed casein in a dose-dependent manner. Even
umami-tasting L-glutamate is not preferred over sucrose when it is in the form of monosodium
glutamate (256). Furthermore, although proteins contribute approximately the same energy as
carbohydrates, they hold less appeal based on their metabolism. Nutrient-specific preferences can
develop through associative learning independently of energy or taste. For example, TRPM knock-
out mice that lack mechanisms for sweet-taste transduction prefer glucose to the sweet-tasting AA
L-serine (214).

Magnetic resonance imaging studies in animals and humans provide evidence of suppression
of regions associated with food motivation and reward after protein intake. In rats, protein con-
sumption is associated with a decrease in the blood-oxygen-level-dependent (BOLD) signal in
the amygdala (187). Moreover, in overweight female adolescent breakfast skippers, high-protein
breakfasts led to greater reductions in three-hour postbreakfast activation of insula and middle
prefrontal cortex (159) and reductions in predinner activation of hippocampal and parahippocam-
pal regions (160) compared to a normal-protein breakfast. In addition, the reductions in activation
of the aforementioned brain regions coincide with increases in perceived afternoon fullness (160)
and correlate with reductions in appetite (159). The protein status of an individual may influence
brain reward responses to food cues as well. Healthy women with a low protein status had higher
BOLD responses in the orbitofrontal cortex and striatum in response to food cues compared to
those with a high protein status (115). In the same study, women in a low protein state had a
higher ad libitum intake of protein following the intervention than those in a higher protein state.
This finding indicates that protein status may have implications for modulating reward-driven
feeding behaviors. Interpretation of this type of data requires caution because associations are not
necessarily straightforward. For example, reduced activation of the hippocampal regions after a
high-protein meal (160) may reflect changes in hippocampal-dependent learning and memory
rather than decreased reward. The hippocampus is also involved in the cognitive regulation of
feeding behavior, such as remembering when one last ate, conditioning associations with food,
and remembering the interoceptive sensory cues and how to act on them (23).

In summary, a multifold role for protein in the neural regulation of appetite and feeding
has been proposed, but the importance of that role has yet to be delineated. Effects may be
the manifestations of the orosensory properties of protein, protein-induced metabolic processes
converging on neural circuits, and central neural activity, all of which ultimately regulate feeding.
High-protein foods have generally not been implicated in disordered eating.

NEURAL RESPONSES TO FAT

Work conducted more than 50 years ago demonstrated that rodents prefer diets containing lard or
petrolatum over standard chow (119). Subsequent studies confirmed that both high energy yield
and sensory qualities (such as taste, texture, and smell) are characteristics that render fat highly
palatable and contribute to the preference for and intake of high-fat foods (3). An important role for
taste properties, in particular, has been documented in rodents by trials showing that (a) sham-fed
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rats prefer corn oil over mineral oil (188), (b) rats prefer nonesterified fatty acids to triacylglycerol
(139), and (c) rats prefer triacylglycerol to triacylglycerol plus a lipase inhibitor (blocking hydro-
lysis of fatty acids, the presumptive sensory signal) (139). This hedonic taste response in rodents
stands in sharp contrast to human responses, which are typically aversive (254). However, as is
the case with most bitter compounds, sampling nonesterified fatty acids in isolation and at high
concentrations generally elicits an aversive response, whereas in low concentrations and in certain
contexts, they may augment palatability in humans, just as bitter notes contribute positively to
the flavor profile of foods such as chocolate, coffee, and wine. No evidence for taste enhancement
currently exists with low concentrations of nonesterified fatty acids (though augmented flavor
appeal through olfactory cues is exploited by the food industry). In contrast, avoidance of foods
with high concentrations of nonesterified fatty acids, such as rancid foods, is well recognized in
humans.

Other work in rodents indicates that the energy yield from fat, independent of oral sensory
stimulation, is sufficient to motivate intake (252). Indeed, intragastric self-administration of lipid
emulsions mimics addictive-type ingestive responses. These responses include increased licking
rates during extinction and progressive ratio schedules of reinforcement as well as attenuated
striatal dopamine concentrations during extinction trials that increase again when fat exposure
is returned to maintenance concentrations (89). Thus, sensory and metabolic cues enhance the
appeal of high-fat foods. Whether these properties also uniquely contribute to intake of fat and
energy, in excess of need, is less clear.

Common experience indicates that fat is the least satiating of the three macronutrients (254).
This raises questions about the homeostatic control of feeding generally (163) or, if a system exists
(280), when and how it has been disrupted. One view is that the chronic consumption of high-
fat diets results in decreased responsiveness to satiety signals (33, 54). Recent work hypothesizes
that this adaptation to an obesogenic environment is a hippocampal-dependent phenomenon.
A number of early animal studies revealed that lesions of the hippocampus—an area within the
mesolimbic pathway involved in learning and memory as well as the regulation of eating behav-
iors (265)—result in dysregulation of food intake and obesity (5, 40, 123, 140). Another proposed
mechanism holds that dietary fat may modify food intake through activation of the mesolimbic
dopamine reward pathway (195). Oleoylthanolamide promotes satiety (100, 102, 199) and has been
posited as a lipid messenger linking excess energy intake and dopamine deficiency. Consumption
of a high-fat diet leads to a significant reduction of oleoylthanolamide synthesis, resulting in
dopamine dysregulation. This hypothesis is supported by evidence that intraperitoneal adminis-
tration of oleoylthanolamide is sufficient to restore dopamine release in high-fat-fed mice, and the
dopamine release is dependent on the PPARα-gastrointestinal-brain axis (252). Importantly, the
fat specificity of these mechanisms is not established. The dopamine reward pathway is suppressed
by excessive food intake, not simply by foods high in fat.

In contrast to an adaptation or injury explanation for a neural basis for high-fat feeding, it has
also been posited that selected individuals may have heightened responsiveness to the palatability
of high-fat foods, promoting intake in excess of energy need (31). Indeed, addictive-type eating
responses to high-fat foods have been described, just as for high-sugar foods. However, no consen-
sus exists as to whether there is a sufficient evidence base for high-fat food addiction (74, 170, 267).
One of the defining symptoms in addiction is withdrawal from the rewarding substance. Symp-
toms of withdrawal are associated with increased stress that results in relapse—that is, increased
seeking behavior for the reward (232)—and this has been reported in mice with fat withdrawal.
Animals fed a high-fat diet for four weeks exhibit a significant elevation in �FosB, and abrupt
withdrawal from the high-fat diet to a less palatable chow diet results in decreased concentra-
tions of active cAMP response element-binding protein (CREB). This result is associated with a
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significant increase in arousal and anxiety-like behaviors (170). Both CREB and �FosB alter neu-
ronal responsiveness to dopamine signaling, leading to a reduction in the rewarding effects of a
stimulus (170, 183).

Through a dietary reinstatement model, it was further observed that the mice experiencing
withdrawal were willing to endure an aversive environment to gain access to the highly preferred
high-fat diet. The authors speculated that acute withdrawal from a highly preferred high-fat diet
may elevate the stress state and reduce reward, which contributes to the drive for dietary relapse
(249). Despite the similarities between food and drugs of abuse on activation of reward centers,
one clear distinction is that the magnitude of responses to foods is a fraction of that observed to
drugs of abuse (183).

One study demonstrated that individuals develop a preference for fat during infancy, and
this preference is thought to predispose an individual to consume a predominantly high-fat diet
in adulthood (250). Mice acutely exposed to a high-fat diet during early life exhibit significant
alterations in biomarkers of dopamine responses (250). Moreover, in a 10-day macronutrient
choice preference test, mature adult mice showed a significant preference for a high-fat diet. But,
despite the increased proportional intake of the high-fat diet, there were no differences in total
daily energy intake or weight gain (250). Interestingly, breast-fed human infants are exposed to
a high-fat diet (∼50% of energy from fat) of human breast milk or formula, yet this is associated
with either no correlation or a lower incidence of overweight and obesity (46). Thus, translation
of the rodent literature to humans must be made with caution.

Functional magnetic resonance neuroimaging studies yield mixed findings on responses to fat.
Some work suggests there are individuals who are highly responsive to the reward value of foods
linked to their metabolic status (74, 142), whereas other work reveals hyporesponsiveness to food
reward. Obese individuals subjectively rated high-fat foods as being more pleasant than did their
lean counterparts, yet neuroimaging data suggest that obese individuals show less activation in
the dorsal striatum in response to the consumption of palatable foods and have reduced striatal
D2 dopamine receptor density (238, 268). Consistent with both the hyper- and hyposensitivity
theories, it has been hypothesized that individuals who are predisposed to obesity may experience
increased hedonic drive during the onset of adiposity gain. The increased exposure and consump-
tion of high-fat foods downregulates the dopamine reward pathway, leading to a reduction in
the hedonic value of those foods (74). Among obese individuals, this reduction in reward value
purportedly leads to the increased motivational drive to obtain and consume high-fat foods (74).
Support for this hypothesis is presently lacking in humans.

In summary, the rewarding properties of fats, both sensory and metabolic, have been associated
with low satiety and weight gain. Proposed mechanisms implicate low and high responsiveness of
individuals at both the neural and behavioral levels. None of the proposed mechanisms has yet to
be substantiated.

CONCLUSION

Perspectives on the roles of the macronutrients in appetite and energy intake have changed over
time. The digestive products and/or circulating metabolites of macronutrients have been viewed
as (a) signals to initiate eating events, thus determining eating frequency; (b) signals to terminate
ingestive events, thereby controlling portion size; and (c) signals that activate brain reward systems
that may dysregulate healthful eating. Drawing on these views, a wide variety of diets have been
proposed to accentuate or minimize each macronutrient to achieve a desired effect on appetite
and/or energy intake. Common experience over the past six decades reveals that no diet has
been widely successful, likely due to the failure of diets to adequately address effects on eating
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frequency and portion size concurrently, as well as the fact that ingestive behavior is guided by many
cognitive and environmental factors in addition to sensory appeal, appetite, and the metabolic,
endocrine, and neural signals stemming from macronutrient intake, digestion, and metabolism.
Furthermore, overweight and obesity result from many inputs in addition to energy intake, thus
weakening the predictive power of macronutrient distribution on this outcome. There may be
health reasons to emphasize one macronutrient over another in a diet, but from the perspective of
energy balance, the critical factor to address is total energy intake, rather than its source (143, 157).
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