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Abstract

A long-standing recognition that information from human genetics studies
has the potential to accelerate drug discovery has led to decades of research
on how to leverage genetic and phenotypic information for drug discovery.
Established simple and advanced statistical methods that allow the simul-
taneous analysis of genotype and clinical phenotype data by genome- and
phenome-wide analyses, colocalization analyses with quantitative trait loci
data from transcriptomics and proteomics data sets from different tissues,
and Mendelian randomization are essential tools for drug development in
the postgenomic era. Numerous studies have demonstrated how genomic
data provide opportunities for the identification of new drug targets, the re-
purposing of drugs, and drug safety analyses.With an increase in the number
of biobanks that enable linking in-depth omics data with rich repositories of
phenotypic traits via electronic health records, more powerful ways for the
evaluation and validation of drug targets will continue to expand across dif-
ferent disciplines of clinical research.
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INTRODUCTION

Comprehensive knowledge of therapeutic targets is essential for advancing drug discovery and
developing better and safer therapeutic agents. Close to 10% of drugs from Phase I clinical trials
end up being approved (1). Most fail in Phase II clinical trials, and approximately 75% of the
failures are attributable to safety concerns or lack of proof of efficacy.Therapeutic agents approved
between 2009 and 2018 had an estimated median cost of $985.3 million for bringing a drug to
the market (2); thus, there is an obvious need for methods to increase the likelihood of success.
Retrospective studies have indicated that pursuing drug targets with support from human genetics
increases the likelihood of successful drug discovery at least twofold (3, 4).

Electronic health records (EHRs) have been increasingly utilized in genomic studies of dis-
eases and have provided several opportunities for cost-effective and extensive research (5). Dur-
ing recent decades there has been an increase in the development and launch of biobanks, and
the number of individuals genotyped or sequenced is growing rapidly. Linking biobanks to EHRs
enables researchers to analyze thousands of samples and associate genetic profiles with several
health outcomes. Furthermore, for the discovery of disease mechanisms and novel drug targets,
an instrumental factor is meta-analysis across cohorts, which is facilitated by the large number of
accessible biobanks all over the world and global initiatives that bring this information together
(6).

Here we describe the major approaches for leveraging EHRs and genomics for a more in-
depth process of drug discovery based on data from human studies. We describe how genomics
and EHRs have been used for the discovery of new drug targets, for the repurposing of drugs, and
for drug safety analysis.

METHODS FOR DRUG TARGET STUDIES BASED ON GENOMICS

Many different approaches and methods have been applied for leveraging both genomics and data
in EHRs for drug discovery and safety studies (Figure 1).

• Genome-wide studies
• Mendelian randomization
• Colocalization analysis
• Loss/gain-of-function variation
• Phenome-wide studies

• Medication prescriptions
• Diagnosed diseases
• Text mining of medical notes
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Figure 1

Different methods for the analysis of data from electronic health records and genomics for drug research.
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Genome-Wide Association Studies

Genome-wide association studies (GWASs) have added extensive knowledge to our understanding
of drug targets and effects by enabling hypothesis-free and systematic analysis of variants across
the entire genome. Further longitudinal collections of phenotypic information coupled with med-
ication exposure data from EHRs create an important platform for the analysis of drug effects. A
study exploring the results of 361 GWASs revealed that 62 of them pointed at a drug target devel-
oped for the same disease, and, furthermore, 92 genes weremapped to aGWAS trait different from
their drug indications, indicating potential for therapeutic repurposing, including denosumab for
the treatment of Crohn’s disease (7). A recent article further demonstrated a genomics-driven
drug-discovery framework using cross-population meta-analysis where the pipeline identified
144 drug/compound-disease pairs and demonstrated a catalog of candidate drugs for repo-
sitioning (8). For example, Namba et al. (8) highlighted possible drug candidates targeting
coagulation-related genes for venous thromboembolism (VTE), of which PROC, F2, and F10
are already targeted by approved drugs, and KLKB1 and F11 are targeted by drugs that are in
clinical trials for VTE.

Mendelian Randomization: Nature’s Randomized Trials

Several studies have indicated that Mendelian randomization (MR) is a very promising tool for
drug target studies. In MR, genetic variants are used as a proxy for exposure to assess the causal
effect of this event on an outcome phenotype. It relies on the fact that genetic variants are ran-
domly distributed to offspring, and therefore, evaluating the effects of genetic variants can func-
tion as nature’s version of randomized controlled clinical trials. MR methods have been proven
to be valuable in drug discovery, safety, and repurposing studies. MR methods have been used to
investigate drug safety and risk for on-target adverse effects; for example, a recent study indicated
that using genetic variants as a proxy of ACE inhibition was associated with an increased risk of
colorectal cancer (9). One example of repurposing is a massive study where MR was used to study
genetic variants in the IL-6 receptor (IL-6R) gene with the aim to assess the effect of IL-6R in-
hibition for primary prevention of coronary heart disease (10). Swerdlow et al. (10) found that
a variant (rs7529229) in IL-6R was associated with increased circulating IL-6 concentration (an
increase per allele of 9.45%) and reduced C-reactive protein and fibrinogen levels. In the analysis
of 25,458 coronary heart disease cases they further demonstrated that the same variant was asso-
ciated with decreased odds of coronary heart disease. Another study recently explored over 3,000
genes encoding druggable proteins to predict their potential as targets for Parkinson’s disease and
proposed 23 drug-targeting mechanisms with four possible drug-repurposing opportunities for
metformin, rocuronium, roledumab, and warfarin (11).

Recent years have paved the way for studies of circulating proteins that are also attractive as po-
tential drug targets. Using GWASs for the detection of protein quantitative trait loci (pQTL) can
expose disease-association pathways and reveal novel drug targets (12). Furthermore, using MR
to evaluate causality between protein levels and disease risk can support drug target validation and
provide explanations for the mode of action of a drug. One important study demonstrating the
power of pQTL studies in drug discovery was a genome-wide meta-analysis across 14 studies of
90 proteins associated with cardiovascular traits. Folkersen et al. (13) used MR for the identifica-
tion of potential causal disease pathways and found 14 proteins that are already included in clinical
drug development programs and 11 proteins that have not yet been targeted in clinical trials but
are promising target candidates. For example, strong evidence of causality was identified for epi-
dermal growth factor for the treatment of schizophrenia [Beta with 95% confidence interval (CI):
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−0.31 (−0.50, −0.13); p-value 9.9 × 10−4], pappalysin 1 (PAPPA) for type 2 diabetes [Beta with
95% CI: −0.27 (−0.42, −0.11); p-value 8.6 × 10−4], and spondin 1 (SPON1) for atrial fibrilla-
tion [Beta with 95% CI: 0.14 (0.06, 0.20); p-value 1.2 × 10−6]. SPON1 and PAPPA did not show
any strong evidence of inverse causality with other phenotypes, suggesting high specificity for the
intended indication.

In another important study where plasma protein levels were measured in 35,559 Icelanders,
938 genes encoding potential drug targets, with variants that influence levels of possible biomark-
ers for several diseases,were discovered (14).Further, a very recent study demonstrated the value of
humanmetabolomic data in drug target studies by employingMR to evaluate genetically predicted
effects of lipid-modifying therapies on the metabolome (15). These studies highlight the value of
combining different layers of omics data, including proteomics, genomics, transcriptomics, and
metabolomics, for enhanced drug discovery and development.

Loss-of-Function and Gain-of-Function Variants from Sequenced Genomes

The declining cost of next-generation sequencing technologies in recent decades has enabled the
adoption of this method at a larger scale and has led to a rapid growth in the number of sequenced
genomes. It is expected that a massive number of variants not previously described will be discov-
ered. This paves the way for the discovery of rare loss-of-function (LoF) variants and protective
alleles that can also be used for further drug target studies. One recent elegant study by Nielsen
et al. (16) indicated that using different genomic approaches such as whole-genome sequencing,
imputation, GWASs, and downstream analyses enables the construction of well-powered studies
for the discovery of protein-altering variants that may point to promising pharmaceutical drug
targets. In this study, Nielsen et al. observed that silencing ZNF529 in human hepatoma cells
resulted in increased low-density lipoprotein (LDL) uptake, thus suggesting that the inhibition
of ZNF529 or its gene product could be regarded as a novel and promising drug target candi-
date for the treatment of dyslipidemia. Furthermore, anticipating the need for large-scale human
genomic data, the UK Biobank (UKB) plans to sequence the exomes of all ∼500,000 UKB par-
ticipants and recently released the results of the first 200,000 sequenced exomes (17). In this data
set, approximately 10 million exonic variants and 1,492 genes with at least one homozygous LoF
variant were detected. This tolerance to LoF variants, calculated as the ratio of the count of pu-
tative LoF variants observed in a population to the number expected based on mutation rates
(observed/expected), also referred to as the constraint score, is particularly interesting for drug
development and has also been surveyed in the Genome Aggregation Database (gnomAD) v2 data
set of 141,456 individuals (18). Minikel et al. (18) calculated constraint scores across all protein-
coding genes and made several important conclusions. For example, although known drug targets
were slightly more constrained compared to all genes (44% versus 52%), their distribution of
scores was qualitatively similar. They also observed a difference in constraint scores between cat-
egories of genes that were expected to vary in their degree of tolerance to inactivation, which has
also been reported by others (19, 20). These findings validate the usefulness of constraint in eval-
uating drug targets and emphasize that even essential genes can be highly successful as targets of
inhibitory drugs.Thus, to enable the full potential of GWASs for drug discovery, the resequencing
of candidate drug target genes should be considered in the context of discovery of both LoF and
gain-of-function alleles. Furthermore, linking these in-depth genomic data with rich repositories
of phenotypic traits—information that is systematically stored in the EHRs or collected at focused
clinical biobanks—will enable the thorough evaluation and validation of identified potential drug
targets (17, 21).
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Phenome-Wide Studies in Longitudinal Data from EHRs

EHRs yield longitudinal phenotypic information onmedication exposures and diagnosed diseases,
thus making them a powerful platform for different studies on both drug discovery and drug ef-
fects. Records of the health information of individuals are generated at the point of care by health-
care providers, and systematic collection enables sharing and accessing across health-care systems
to obtain more comprehensive clinical care (22). The information stored in the EHRs includes a
combination of structured and unstructured data with information on demographics, medical and
surgical history, allergies and medications, diagnoses and procedures, and reports from various
clinical studies (22, 23). Thereby, EHRs enable us to construct a detailed clinical picture of each
individual that can be used for research. Data for research studies are pseudonymized, meaning
that any information that can identity a subject is replaced by pseudonyms as unique identifiers.
Structured data use a uniform format for recording information and use controlled vocabularies
such as International Classification of Disease (ICD) codes for patient diagnoses, procedures, and
complications and the Anatomical Therapeutic Chemical classification system for classification
of drugs. Although these codes were primarily created for billing purposes, they have become ex-
tremely valuable in medical research as well. The Observational Medical Outcomes Partnership
(OMOP) common data model provided by the Observational Health Data Sciences and Infor-
matics collaborative (24; https://ohdsi.github.io/TheBookOfOhdsi/) is an example of a global
effort toward uniform standards and tools for harmonizing electronic health data for research.The
concept behind the OMOP common data model is to transform data contained within disparate
databases into a common format and representation (coding schemes, terminologies, vocabular-
ies), which will then allow systematic analyses using a library of standard analytic tools that have
been written based on the common format.

Biobanks with the possibility of linking to EHRs have enabled the emergence of new ap-
proaches for leveraging all this information for research. A reverse GWAS approach, termed
phenome-wide association study (PheWAS), was developed where a genetic variant is analyzed
against multiple phenotypes to explore disease-gene associations (25). The first PheWAS in 2010
enabled successful replication of four known single-nucleotide polymorphism (SNP)-disease as-
sociations for multiple sclerosis, Crohn’s disease, coronary artery disease (CAD), and rheumatoid
arthritis (26) that resulted in the increasing popularity of using this method for research. Stud-
ies have also shown the potential of PheWASs for drug repurposing. By linking drug-targeted
genes in the DrugBank database to the gene-phenotype associations in published PheWAS re-
sults (27), Rastegar-Mojarad et al. (28) validated the disease indications of drugs in 127 cases, and
they further identified 2,583 cases that had strong potential for novel drug-disease associations.
They highlighted the LDLR gene as an example of the repurposing potential of porfimer for the
treatment of hypercholesterolemia and targeting the TERT gene as a repurposing opportunity for
zidovudine in the treatment of diabetes. Another study demonstrating PheWASs as a powerful ad-
dition to current approaches for drug discovery interrogated 25 SNPs that were previously linked
to 19 candidate drug targets throughGWASs, analyzed their association with 1,683 clinical binary
end points in four large cohorts, and meta-analyzed 145 end points to provide between-cohort
comparisons of the results (29). They managed to replicate 75% of known GWAS associations
and identified nine study-wide significant novel associations. These study results supported the
inhibited targeting of PNPLA3 for the treatment of liver disease. However, the results also in-
cluded associations with multiple other end points such as acne and high cholesterol levels, which
indicates potential for relevant on-target adverse events. Discovery of potential drug side effects is
clearly one of the important strengths of PheWASs in drug target evaluation.Another study specif-
ically applied PheWASs for the detection of potential adverse drug effects and validated findings
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for 13 of 16 gene–drug class pairs (30). The authors also showed that PheWASs can replicate pub-
lished safety information across multiple drug classes. PheWASs also have the potential to predict
or validate negative findings from randomized clinical trials. A study where ICD-10 coding was
used to define clinical end points validated findings from previous randomized controlled trials by
determining that a LoF variant in PLA2G7 had no associations with the improvement of vascular
diseases such as stroke and coronary events (31).

Extracting Free Text from EHRs by Natural Language Processing

While structured data in EHRs are consistent and can be readily applied for research, unstructured
data do not follow a particular format by allowing health-care providers to enter free text with-
out constraints. Therefore, the analysis of unstructured data requires specific text-mining tools
like natural language processing (NLP) for the extraction of relevant information (23). This ap-
proach enables researchers to further uncover phenotypic information embedded in the free-text
documents and use it for research, including studies for drug discovery.

Applying NLP methods to extract adverse drug events from EHRs has been demonstrated
in different countries (32–34). This approach was also successful in identifying individuals with
penicillin allergy in the Estonian Biobank and Vanderbilt University’s BioVU, where GWASs
and fine mapping of human leukocyte antigen alleles were possible due to linked genotype data,
thereby enabling the discovery of new insights into the genetics behind penicillin allergy (35).
Other innovative methods include translating clinical text data into a text-based phenome that
can be used for PheWASs (36), thus creating the potential to add further information and reveal
unknown associations. A more broadly used approach has been aggregating one or more diagnosis
codes (e.g., ICD-9 and ICD-10 codes) into so-called phecodes, corresponding to distinct diseases
or traits (27, 37–39), which have subsequently been used in GWASs and PheWASs.

HARNESSING GENOMIC AND EHR DATA

For Discovery of Associations

There is now a long-standing recognition that using knowledge from studies of human genetics
has a strong potential to accelerate drug discovery. It enables us to first discover genes relevant
for human disease and then turn to model organisms for studies of underlying mechanisms. Cur-
rently, the most prominent example of genetic association studies leading to the identification
of potential drug targets is the PCSK9 story. The first studies made evident that gain-of-function
variants in this gene were associated with elevated LDL levels and that this gene may have a causal
role in CAD (40). This finding was followed by the assumption that LoF alleles of PCSK9 may
have functionally opposite effects and thus result in reducing the risk of CAD. Further, GWASs
and resequencing and epidemiological studies all confirmed that LoF variants reduce LDL levels
and thereby lifetime risk for CAD (41–43). This observation resulted in the development of two
monoclonal antibodies that inhibit PCSK9 and that were granted US Food and Drug Administra-
tion (FDA) approval in 2015 (44). Thus, human genetic studies accelerated the drug development
process from discovery to an approved drug within 12 years.

Another key example is the SOST gene, which encodes sclerostin, a protein that is secreted by
osteocytes and negatively regulates bone formation. The discovery that a LoF mutation in SOST
leads to high bone mass (45) formed the basis for the development of romosozumab, a humanized
monoclonal antibody against sclerostin. It acts through sclerostin inhibition, which results in in-
creasing bone mineral density, and is therefore warranted for the treatment of osteoporosis (46).
In 2019, 18 years later, both the FDA and European Medicines Agency approved romosozumab
for the treatment of osteoporosis in postmenopausal women at high risk of fractures (47, 48).
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Furthermore, there are also a plethora of examples showing how findings from GWASs have
supported ongoing drug discovery efforts by confirming the desired effect of a drug under de-
velopment (reviewed in 49). In addition, GWASs have also retrospectively identified the genetic
basis for drugs already in use. Statins have been used to treat hyperlipidemia for a long time by
inhibiting 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, and a GWAS from
2008 confirmed that LDL levels are associated with variation in HMGCR, the gene that encodes
HMG-CoA reductase (50).

For Drug Repurposing

One of the most important and promising angles of implementing human genetics in drug discov-
ery is drug repurposing, a strategy to discover novel pharmacological effects for already-existing
and approved drugs. Drug repurposing enables skipping some of the steps in drug development,
thus potentially reducing the overall cost and timemoving from a discovered target to an approved
drug. The most remarkable example of drug repurposing initiated after discoveries made in the
analysis of GWAS data is the repurposing of monoclonal antibodies modulating IL-23 for the
treatment of Crohn’s disease (51, 52). The monoclonal antibodies ustekinumab and risankizumab
were first used for the treatment of psoriasis, and the former is now also officially approved for
the treatment of Crohn’s disease.

Though there are many studies demonstrating several repurposing candidates, it has been a
challenge to determine which of the repurposing candidates have the highest likelihood of suc-
ceeding. To tackle this problem, a recent study described a proof-of-concept approach on how
to identify and validate drug repurposing candidates using gene expression signatures, drug per-
turbation data, and clinical EHRs from BioVU (53). The approach was applied for two diseases,
hyperlipidemia and hypertension, and the effects of 10 approved drugs were replicated. Further-
more, 25 drugs approved for other indications were identified, and for five of these, the therapeutic
effects were further independently replicated in data from the All of Us Research Program. Thus,
this or similar approaches (8) have good potential to be high-throughput options for identifying
and prioritizing drug repurposing candidates.

For Evaluation of Side Effects

Genomics can also be applied to yield insights into potential adverse effects of drugs. Address-
ing naturally occurring variants in the human genome that alter the activity of a protein that is
targeted by a particular drug may help to predict the on-target side effects of this drug. In the
case of the osteoporosis drug romosozumab, the FDA included a Boxed Warning for the risk of
cardiovascular events, which was supported and validated by meta-analysis of outcomes from sev-
eral clinical trials and proof of LoF variants altering sclerostin function against phenotype data
in the UKB and Estonian Biobank (54). Thus, with such genetic analyses, an increased risk of
cardiovascular events could have been recognized before launching the clinical trials and perhaps
enabled a better trial design. Similarly, a large meta-analysis of clinical trials of statin therapy
indicated the known association of HMGCR with decreased LDL levels but also revealed a 9%
increased risk for type 2 diabetes (55). This suggested an on-target effect of statin use requiring
attention. A recent MR analysis of the genotype and EHR data of 53,385 individuals also repli-
cated this link between genetic variants in HMGCR associated with lower LDL cholesterol and
increased risk for type 2 diabetes (56). Another MR study identified potential protective effects
of variants in SCARA5 and TNFSF12 on cardioembolic stroke. To further explore whether these
potential drug targets of stroke affect other traits, a phenome-wide MR analysis was performed
that confirmed SCARA5 as a more promising target for the treatment of cardioembolic stroke,
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since TNFSF12 indicated additional associations with increased risk for four circulatory system
phenotypes (including intracerebral and subarachnoid hemorrhages), three digestive phenotypes,
and one injuries and poisonings phenotype, which indicate anticipated side effects when drugging
this protein (57). Furthermore, another recent study also indicated how human genetics data not
only help in selecting effective drug targets for development but also aid the development of safer
drugs by showing that phenotypes that have been associated with genes encoding drug targets can
predict side effects in clinical trials (58). Thus, genetic association with a nonrelevant phenotype
has proven to be a good indicator of the increased likelihood of corresponding adverse events.

RAPID DRUG TARGET IDENTIFICATION DURING
A GLOBAL PANDEMIC

The COVID-19 pandemic has had a substantial impact on people’s lives and health and required
unprecedented response from health-care providers, scientists, and pharmaceutical companies.
Less than a year after the sequencing of the SARS-CoV-2 genome, vaccines were available, and
hundreds of clinical trials for different medications against severe COVID-19 have been run-
ning since the beginning of the pandemic. All the methods and approaches covered in this review
have also contributed to the identification of potential drug targets for COVID-19. Early in the
pandemic, scientists across the world joined forces in the COVID-19 Host Genetics Initiative
to conduct large genome-wide studies that could explain why some people do not get infected
by SARS-CoV-2 and why some experience more severe symptoms (59). Biobanks with existing
genotypic data and the possibility of linking to EHRs were central to this effort (60). In parallel,
several hospital-based studies were launched in countries that were heavily affected early on in the
pandemic.The first GWASs revealed several genes that were strongly associated with COVID-19,
including SLC6A20, LZTFL1, FYCO1, CXCR6, XCR1, and CCR9 at 3p21.31; FOXP4 at 6p21.1;
ABO at 9q34.2; OAS1, OAS2, and OAS3 at 12q24.13; KANSL1 at 17q21.31; DPP9, TYK2, and
PPP1R15A at 19p13.3; and IFNAR2 and IL10RB at 21q22.1 (61–64). Independent multi-ancestry
finemapping implicatedOAS1 as an effector gene at 12q24.13 that influenced COVID-19 severity
(65), and colocalization analysis integrating the results of a CRISPR screen (66) and cis-expression
quantitative trait loci (eQTLs) highlighted SLC6A20 and CXCR6 as potential causative genes in
the 3p21.31 locus associated with a higher risk for COVID-19.Moreover, lung-specific cis-eQTLs
from GTEx v8 (67) and the Lung eQTL Consortium (68) provided further functional evidence
that the COVID-19-associated variants in FOXP4,ABO,OAS1, and IFNAR2/IL10RBmodify gene
expression in the lungs (63). Further, a large-scale MR study of more than 3,000 blood proteins
replicated findings of blood markers associated with COVID-19 and implicated additional mark-
ers, including higher levels of a number of adhesion molecules such as SELE, SELL, PECAM-1,
and ICAM-1, for the prediction of risk for severe disease (69). A separate study of therapeutic
targets relevant to COVID-19 used MR analyses with genetic instruments based on published
COVID-19 GWASs and transcriptomic and proteomic data for 1,263 actionable proteins that are
already targeted by drugs that have been approved or are in development (70). Their findings pri-
oritized further trials of drugs targeting ACE2 and IFNAR2 for early treatment of COVID-19.
A recent important large-scale GWAS with 756,646 individuals across four cohorts identified a
rare variant in ACE2 (frequency 0.2–2%) that reduces the risk of SARS-CoV-2 infection, thus fur-
ther confirming how ACE2 expression levels influence COVID-19 risk. They demonstrated how
coupling genetics with EHRs extends the knowledge of COVID-19 host genetics and how larger
sample sizes provide additional power for the detection of rare variants (71). An earlier MR study
of genetic instruments mimicking the inhibition of the IL-6 receptor also indicated protective
effects against hospitalization due to COVID-19, indicating the potential efficacy of repurposing
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sarilumab or tocilizumabmonoclonal antibodies, which are approved for the treatment of arthritis
and other inflammatory conditions via inhibition of the IL-6 receptor. These initial results have
now been supported by a meta-analysis of 10 randomized clinical trials evaluating the efficacy and
safety of tocilizumab versus standard care in patients with COVID-19 (72).

CONCLUSION

Taken together, large population biobanks and clinical biorepositories where genotypic data and
EHRs are linked, pseudonymized, and available for research provide invaluable resources for drug
discovery, validation, and repurposing.Established simple and advanced statistical methods that al-
low the simultaneous analysis of genotypic and clinical phenotypic data by genome- and phenome-
wide analyses, colocalization analyses with QTL data from transcriptomics and proteomics data
sets from different tissues, and MR are essential tools for drug development in the postgenomic
era. This fact was particularly highlighted by the rapid studies that identified potential drug re-
purposing opportunities during the global COVID-19 pandemic.

DISCLOSURE STATEMENT

The authors are not aware of any affiliations, memberships, funding, or financial holdings that
might be perceived as affecting the objectivity of this review.

ACKNOWLEDGMENTS

This work was supported by the Estonian Research Council (grant PRG184) and by the European
Union through the European Regional Development Fund (project no. 2014-2020.4.01.15-0012
GENTRANSMED).

LITERATURE CITED

1. Dowden H, Munro J. 2019. Trends in clinical success rates and therapeutic focus.Nat. Rev. Drug Discov.
18(7):495–96

2. Wouters OJ,McKeeM,Luyten J. 2020. Estimated research and development investment needed to bring
a new medicine to market, 2009–2018. JAMA 323(9):844–53

3. NelsonMR,TipneyH,Painter JL, Shen J,Nicoletti P, et al. 2015.The support of human genetic evidence
for approved drug indications.Nat. Genet. 47(8):856–60

4. King EA, Davis JW, Degner JF. 2019. Are drug targets with genetic support twice as likely to be
approved? Revised estimates of the impact of genetic support for drug mechanisms on the probability
of drug approval. PLOS Genet. 15(12):e1008489

5. Jensen PB, Jensen LJ, Brunak S. 2012. Mining electronic health records: towards better research appli-
cations and clinical care.Nat. Rev. Genet. 13:395–405

6. ZhouW, Kanai M,Wu K-HH,Humaira R, Tsuo K, et al. 2021. Global Biobank Meta-analysis Initiative:
powering genetic discovery across human diseases. medRxiv 2021.11.19.21266436. https://doi.org/10.
1101/2021.11.19.21266436

7. Sanseau P, Agarwal P, Barnes MR, Pastinen T, Richards JB, et al. 2012. Use of genome-wide association
studies for drug repositioning.Nat. Biotechnol. 30(4):317–20

8. Namba S,KonumaT,WuK-H,ZhouW,BiobankG, et al. 2021.A practical guideline of genomics-driven
drug discovery in the era of global biobank meta-analysis. medRxiv 2021.12.03.21267280. https://doi.
org/10.1101/2021.12.03.21267280

9. Yarmolinsky J, Díez-Obrero V, Richardson TG, Pigeyre M, Sjaarda J, et al. 2022. Genetically proxied
therapeutic inhibition of antihypertensive drug targets and risk of common cancers: a mendelian ran-
domization analysis. PLOS Med. 19(2):e1003897

www.annualreviews.org • Electronic Health Records for Drug Discovery 73

https://doi.org/10.1101/2021.11.19.21266436
https://doi.org/10.1101/2021.12.03.21267280


10. Swerdlow DI, Holmes MV, Kuchenbaecker KB, Engmann JEL, Shah T, et al. 2012. The interleukin-6
receptor as a target for prevention of coronary heart disease: a mendelian randomisation analysis. Lancet
379(9822):1214–24

11. Storm CS, Kia DA, Almramhi MM, Bandres-Ciga S, Finan C, et al. 2021. Finding genetically-supported
drug targets for Parkinson’s disease using Mendelian randomization of the druggable genome. Nat.
Commun. 12:7342

12. Suhre K, McCarthy MI, Schwenk JM. 2021. Genetics meets proteomics: perspectives for large
population-based studies.Nat. Rev. Genet. 22(1):19–37

13. Folkersen L, Gustafsson S, Wang Q, Hansen DH, Hedman ÅK, et al. 2020. Genomic and drug target
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