"\ ANNUAL
f\ ¥ REVIEWS

Annu. Rev. Pharmacol. Toxicol. 2022. 62:55-84

The Annual Review of Pharmacology and Toxicology is
online at pharmtox.annualreviews.org

https://doi.org/10.1146/annurev-pharmtox-052220-
010446

Copyright © 2022 by Annual Reviews.
All rights reserved

itevs CONNECT

www.annualreviews.org

* Download figures

* Navigate cited references

* Keyword search

* Explore related articles

* Share via email or social media

Annual Review of Pharmacology and Toxicology

Zaman Mirzadeh,! Chelsea L. Faber,!?
and Michael W. Schwartz?

'Tvy Brain Tumor Center, Department of Neurosurgery, Barrow Neurological Institute,
Phoenix, Arizona 85013, USA; email: zaman.mirzadeh@barrowneuro.org

2UW Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle,
Washington 98109, USA; email: mschwart@uw.edu

Keywords

glucose homeostasis, diabetes, central nervous system, autonomic nervous
system, insulin-independent glucose disposal, glucose effectiveness,
therapeutics

Abstract

Historically, pancreatic islet beta cells have been viewed as principal regula-
tors of glycemia, with type 2 diabetes (T2D) resulting when insulin secre-
tion fails to compensate for peripheral tissue insulin resistance. However,
glycemia is also regulated by insulin-independent mechanisms that are dys-
regulated in T2D. Based on evidence supporting its role both in adaptive
coupling of insulin secretion to changes in insulin sensitivity and in the reg-
ulation of insulin-independent glucose disposal, the central nervous system
(CNYS) has emerged as a fundamental player in glucose homeostasis. Here,
we review and expand upon an integrative model wherein the CNS, together
with the islet, establishes and maintains the defended level of glycemia. We
discuss the implications of this model for understanding both normal glucose
homeostasis and T2D pathogenesis and highlight centrally targeted thera-
peutic approaches with the potential to restore normoglycemia to patients

with T2D.
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1. INTRODUCTION

The circulating level of glucose is determined by the balance between rates of appearance (via syn-
thesis, release from storage, or ingestion) and disappearance (via utilization, uptake, or excretion).
This balance is influenced by the ongoing energetic demand of every organ that requires adequate
glucose provision to ensure reproductive fitness and survival across ever-changing environmental
conditions. While many regulatory checkpoints have evolved to safeguard glucose storage and
allocation, the central nervous system (CNS) has the unique capacity to compare the energetic
needs of the body with the predicted effects of possible behaviors. By integrating environmental
cues of food availability with interoceptive signals of stored and circulating fuel, the CNS works
cooperatively with pancreatic islets to adjust glucose production, storage, and utilization to estab-
lish the biologically defended level of glycemia (BDLg) (1) (Figure 1). In type 2 diabetes (12D),
the BDL is pathologically elevated such that plasma glucose is maintained at a higher level (2, 3),
and accumulating evidence implicates both brain and islet dysfunction in this process. Failure to
address these pathological processes increasing the BDLg is a fundamental shortcoming of cur-
rent antidiabetic medications premised on augmenting insulin action—plasma glucose lowering
will be short-lived if competing homeostatic mechanisms that increase glycemia in T2D are not
also targeted. This shortcoming is borne out in the disappointing results of current T2D phar-
macotherapy: Despite the introduction of more than 40 new US Food and Drug Administration
(FDA)-approved drugs over the past decade, the fraction of T2D patients falling short of glycemic
targets remains at approximately 50% (4).

Current approaches to T2D treatment are based on an islet-centered view of glucose homeo-
stasis that has dominated the field since insulin was discovered over 100 years ago. According to
this view, T2D results when pancreatic beta cells fail to compensate for progressive insulin resis-
tance (5), usually associated with obesity (6). While we agree with this model of T2D pathogenesis,
we note that it is incomplete without considering the role of insulin-independent mechanisms of
glucose disposal that are also impaired in T2D (see Section 3) (7, 8). Insulin-independent glucose
disposal contributes roughly 50% to intravenous glucose tolerance (9), accounts for up to 80%
of glucose disposal in the basal state (i.e., in the absence of exogenous nutrients) (9, 10), and is
among the first deficits detected in individuals who develop T2D (11, 12). The CNS can potently
modulate insulin-independent glucose disposal (13) and synchronously adjust insulin secretion
and sensitivity during physiological challenges to glucose homeostasis (14). As T2D is associated
with anomalies affecting brain areas and neurocircuits that regulate these processes, a role for the
CNS in T2D pathogenesis warrants careful scrutiny.

In this review, we summarize contributions made by both pancreatic islets and insulin-
independent mechanisms to overall glucose disposal and T2D pathogenesis, discuss the role of the
CNS in these processes, and evaluate the potential of CNS-targeted strategies for future treatment
of this common disease.

2. THE ISLET-CENTERED MODEL OF GLUCOSE HOMEOSTASIS

January 12, 2022, commemorates the centennial anniversary of the first administration of insulin
to a human (15). The discovery that a crude pancreatic extract could resolve hyperglycemia in
type 1 diabetes (T'1D), a previously fatal condition, constitutes a landmark achievement in
medicine. Insulin’s discovery triggered a paradigm shift in the field of diabetes research: It sparked
the field of islet biology, led to the identification of insulin-producing beta cells, and heralded a
new islet-centered model of glucose homeostasis. Though headlines at the time of insulin’s dis-
covery proclaimed the cure to diabetes was imminent, 100 years later, this prediction remains to
be fully realized. In this section, we review this islet-centered model of glucose homeostasis and
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Figure 1

Mechanisms governing the biologically defended level of glycemia (BDLG). The BDLg is determined by
the balance between rates of glucose appearance into and disappearance from the circulation, and imbalance
in these rates contributes to the elevated BDLg in type 2 diabetes (T2D). In health, acute deviations from
the BDL are counteracted by both insulin-dependent and insulin-independent mechanisms that restore
blood glucose levels into the normal range. Responses to rising blood glucose levels (dashed arrows) include
increased glucose-stimulated insulin secretion (GSIS) by the pancreatic beta cell, which, together with the
ability of glucose to independently facilitate its own disposal [termed glucose effectiveness (GE)], increases
glucose uptake by peripheral tissues and inhibits hepatic glucose production (HGP). Conversely, a fall in
blood glucose levels triggers adaptive neuroendocrine and autonomic counterregulatory responses (CRRs,
solid arrows) that collectively increase glucose appearance into the circulation and decrease its removal. These
responses include increased secretion of glucagon, cortisol, and epinephrine (which stimulate HGP), while
insulin secretion is inhibited to prevent a further fall in blood glucose. In T2D, the lower boundary of the
BDLg is increased (as reflected by a higher glycemic threshold for inducing CRRs), and the same is true of
the upper boundary of the BDL, as evidenced by diminished rates of glucose disappearance (owing to
reduced GSIS, insulin resistance, and reduced GE) and failure to suppress HGP. The net outcome is a
persistently elevated BDLg in T2D. Figure adapted from images created with BioRender.com.

present evidence that invokes a prominent, collaborative role for CNS mechanisms in both normal
and abnormal glucose homeostasis.

The islet-centered model suggests that stability of the BDL¢ depends largely upon the beta
cell’s capacity to adjust insulin secretion to changes in circulating glucose levels. When blood
glucose levels rise after a meal, for instance, glucose-stimulated insulin secretion (GSIS) returns
blood glucose to its preprandial level by both suppressing further glucose production by the liver
and facilitating glucose uptake into peripheral tissues. Impairment of either GSIS or insulin ac-
tion reduces glucose disposal and incompletely suppresses hepatic glucose production (HGP),
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yielding hyperglycemia. In health, normal fluctuations in insulin sensitivity occurring daily (e.g.,
sleep or exercise) and seasonally (e.g., puberty, pregnancy, or aging) are counteracted by adaptive
changes in insulin secretion (6). In obesity, associated with persistently reduced insulin sensitivity,
a compensatory increase of beta cell function can still preserve glucose homeostasis. In genetically
susceptible individuals, failure of beta cells to meet this heightened demand for insulin secretion
is proposed to drive the BDL out of the normal range, producing T2D (6) (Figure 1).

Most therapies consequently aim to support or supplant beta cell function by augmenting in-
sulin secretion or sensitivity or by supplementing exogenous insulin itself. Designed to transiently
lower blood glucose levels, these approaches can prevent or delay T2D complications, but with
the accompanying risk of hypoglycemia and side effect of weight gain. More importantly, strate-
gies designed to simply lower the blood glucose level do not address the underlying pathological
processes that elevate the BDL¢ and therefore fail to induce sustained diabetes remission.

A core issue not addressed by current therapeutic modalities is whether beta cell dysfunction
in T2D is a primary disorder or a secondary consequence of severe metabolic derangements that
accompany the disease. Indeed, it is possible that both are true. The following discussion addresses
this fundamental question.

2.1. Cell-Autonomous and Non-Cell-Autonomous Mechanisms Governing
Insulin Secretion

The pancreatic beta cell is a highly specialized cell type that senses and responds to glucose in
a cell-autonomous manner, and impaired GSIS is a cardinal feature of T2D (16). Beta cell func-
tion is also strongly influenced by factors external to the islet, including input from the CNS.
Beta cell regulation by the brain involves both indirect (e.g., via neuroendocrine hormone se-
cretion) and direct [via the autonomic nervous system (ANS) and spinal sensory innervation
(Figure 2)] mechanisms (for reviews, see 17-19). Despite slight differences between humans and
rodents in the anatomy of islet innervation (20, 21), autonomic stimulation affects islet secretion
similarly across species. Sympathetic nervous system (SNS) outflow to the beta cell suppresses
both glucose-stimulated and basal insulin secretion, while parasympathetic nervous system (PNS)
outflow enhances GSIS (17, 22). By contrast, both SNS and PNS outflow to the islet increase
glucagon secretion (17). Evidence from multiple species (23, 24) indicates that the PNS is critical
for meal-associated GSIS, as muscarinic cholinergic receptor blockade with atropine suppresses
postprandial insulin secretion. Interestingly, in humans, atropine suppresses GSIS following an
oral, but not intravenous, glucose challenge, suggesting an interaction between the PNS and gut-
derived incretin peptides that augment insulin secretion, such as glucagon-like peptide 1 (GLP1)
(Supplemental Appendix 1) (24). Because vagal (PNS) fibers extensively innervate the gastroin-
testinal tract and other organs in addition to the pancreas (for detailed reviews, see 25, 26), at-
ropine’s effects on islet function may involve gut-vagal-brain hormone sensing (27, 28) or gastric
motility, in addition to direct effects on beta cells.

Islets are also innervated by spinal (dorsal root ganglion) sensory neurons. Deletion of TRPV1-
expressing spinal afferents (Figure 2) suppresses islet inflammation and preserves GSIS and beta
cell mass in several diabetic models (29-31). Like vagal afferents, however, spinal afferents in-
nervate multiple tissues, so indirect effects of TRPV1-mediated ablation on GSIS are possible.
Target-specific approaches (e.g., via retrograde viral tagging, as in References 32 and 33) are
needed to clarify whether sensory neurons directly modulate islet activity and/or sense the islet se-
cretory state. These studies will also help interpret recent work showing increases in nerve density
per islet, number of innervated islets, and size of intrapancreatic ganglia in humans with obesity
and T2D (21, 34).
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Figure 2 (Figure appears on preceding page)

Anatomy of glycemic control: central and peripheral mechanisms. (D) After a meal, nutrients digested by the GI tract are delivered
into the blood via the hepatic portal vein and circulated throughout the body. Postprandial elevations in blood glucose activate GSIS.
Effects of postprandial GSIS (purple circles) include suppression of HGP (directly via activation of hepatic insulin receptors and
indirectly via inhibition of glucagon release from pancreatic alpha cells) and stimulation of glucose uptake by insulin-sensitive tissues,
including skeletal muscle and adipose tissue. Nutrient ingestion also stimulates endocrine cells lining the GI tract to release the incretin
hormones, GLP1 and GIP. Incretins augment insulin secretion (yellow circle) and, via binding their cognate receptors expressed by
sensory afferents innervating the GI tract, convey information to the brain about the size and composition of ingested nutrients (for
reviews, see 26, 47, 48). () Spinal afferents (dark green) have their cell bodies within the dorsal root ganglia, which express molecules
such as the ion channel TRPV1 (activated by noxious heat) that processes nociceptive signals conveyed to the brain via the
spinothalamic tract. Spinal afferents also can exert effects by releasing inflammatory peptides such as SP and CGRP. Vagal afferents
(light green) also express SP/CGRP and can sense the local microenvironment through receptors that include the serotonin receptor
(SHTR3) in the pancreas and incretin receptors in the GI tract. Cell bodies of vagal sensory neurons are contained within the nodose
ganglion and convey sensory information to the CNS via projections to the N'TS. In addition to surveilling peripheral tissue function,
the CNS can influence peripheral glucose effector function via neuroendocrine systems, including the HPA axis (3)) and the ANS. In
response to stressful stimuli, activation of the hypothalamic-pituitary-adrenal axis causes the adrenal cortex to secrete cortisol, which
stimulates glucose production by the liver. (#) The SNS and PNS branches of the ANS innervate tissues throughout the body to
influence glycemia. Stimulation of the SNS (blue circles in (D) suppresses GSIS and increases glucagon release from the islets while
stimulating increased HGP from the liver via releasing the neurotransmitter NE, which binds to and activates adrenergic receptors on
pancreatic islet cells and hepatocytes. Stimulation of the PNS (orange circles in (D)) increases both insulin and glucagon secretion via
binding of the neurotransmitter ACh to muscarinic cholinergic receptors. In the postprandial state, the responses to PNS activation
promote glucose uptake and storage. Abbreviations: ACh, acetylcholine; ACTH, adrenocorticotropic hormone; ANS, autonomic
nervous system; CGRP, calcitonin gene-related peptide; CNS, central nervous system; GI, gastrointestinal; GIP, glucose-stimulated
insulinotropic polypeptide; GLP1, glucagon-like peptide 1; GSIS, glucose-stimulated insulin secretion; HGP, hepatic glucose
production; HPA, hypothalamic-pituitary-adrenal; NE, norepinephrine; NPY, neuropeptide Y; N'TS, nucleus of the solitary tract;
PACAP, pituitary adenylate cyclase—activating polypeptide; PNS, parasympathetic nervous system; SNS, sympathetic nervous system;
SP, substance P; TRPV1, transient receptor potential vanilloid 1. Figure adapted from images created with BioRender.com.

While identifying the cause of perturbed islet innervation and its functional consequences for
glycemic control requires further study, these observations raise the possibility that aberrant neu-
ral input contributes or predisposes to beta cell dysfunction in T2D. Among individuals who de-
velop T2D, beta cells may have an underlying genetic susceptibility to the deleterious impact of
influences extrinsic to the islet itself. This view is compatible with clear evidence that beta cell
dysfunction can result from sustained hyperglycemia (35) [referred to as glucotoxicity (36)] and
obesity-associated metabolic impairment (e.g., hyperlipidemia, systemic inflammation) (37, 38).
For these reasons, it remains uncertain the extent to which defective GSIS in T2D involves a
primary beta cell defect or instead is secondary to one or more beta cell-extrinsic factors.

2.2. Insights from Genome-Wide Association Studies

A primary beta cell defect in T2D pathogenesis is also inferred from genome-wide association
studies (GWAS) data revealing over 400 gene variants associated with T2D risk, many of which
are expressed in beta cells (39). However, these variants collectively account for only about 20% of
T2D risk (39), and neither the causal role in T2D played by GWAS-identified transcripts (39) nor
the significance of their expression in beta cells versus other tissues is known. In fact, many T2D-
associated gene variants expressed in the islet are also expressed in the CNS, including genes en-
coding the glucose phosphorylating enzyme glucokinase (GCK) (40) and the ATP-sensitive potas-
sium (Karp) channel subunits SUR1 (ABCCS$) and Kir6.2 (KCN711) (41). The proteins encoded
by these genes play important roles in cellular glucose sensing in both the CNS and beta cells
(see Section 4). These observations collectively support a model in which individuals that go on to
develop T2D have a genetic predisposition to beta cell dysfunction that is aggravated by external
challenges to the beta cell, yielding progressive impairment of insulin secretion characteristic of

T2D.
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2.3. Islet Transplantation

In humans with T1D, implanting healthy donor islets is sufficient to restore normoglycemia (42).
Thus, the islet can function independently of CNS input to regulate glucose homeostasis in this
pathological setting. However, removing islets from neural control creates a nonphysiological state
that does not inform how glucose homeostasis normally works in natural conditions or how it goes
awry in 'T2D. In light of growing evidence that the brain, like the islet, can powerfully impact the
BDL via both islet-dependent and islet-independent mechanisms (detailed below), we infer that
the BDL is determined by cooperative interactions between brain and islet. This interaction is
exemplified by the adaptive coupling of insulin secretion to increased insulin sensitivity during
cold exposure, in which the SNS plays a pivotal role.

2.4. Dynamic Coupling of Insulin Secretion and Insulin Sensitivity During
Cold Exposure: A Paradigm for Understanding the Brain’s Role
in Glucose Homeostasis

"To maintain core body temperature in the cold, thermogenic tissues rapidly increase glucose uti-
lization to fuel heat production, including thermogenesis by brown adipose tissue and shivering
by skeletal muscle. Enhanced glucose utilization is facilitated in part by increased insulin sensi-
tivity in these tissues (43), which is essential to preserve core temperature in the cold (44). To
prevent blood glucose levels from falling during the resultant increase of glucose utilization, an
adaptive decrease in insulin secretion occurs with such rapidity and precision that blood glucose
levels remain stable throughout the transition to a cold environment. The effect of cold to sup-
press insulin secretion therefore cannot be attributed to a change in glucose stimulation of beta
cells, since glucose levels do not change. These observations illustrate how adaptive coupling of
insulin secretion to insulin sensitivity preserves normoglycemia when the energetic demands of
tissues change.

Based on the assumption that defective feedback between insulin-sensitive tissues and beta
cells underlies glucose intolerance in T2D (6), intensive effort has been devoted to identifying this
coupling signal, with candidates that include free fatty acids, intrinsic beta cell glucose metabolism,
and sensitivity to incretins (6, 45). While the role played by these factors remains uncertain, a clear
role for the SN has been demonstrated in adaptive coupling during cold exposure. Increased SNS
outflow not only drives heat production by thermogenic tissues (44, 46, 47) but also suppresses
insulin secretion (47). Blocking SNS outflow (with a-adrenergic receptor antagonists) prevents
both the cold-induced suppression of insulin secretion and the increase in insulin sensitivity (14).
Collectively, the observations above highlight the difficulty in distinguishing the intertwined roles
played by the islet and the CNS in glucose homeostasis—cooperative interactions between them
are essential.

2.5.Is Impaired Beta Cell Function a Cause or Consequence of T2D?

This question may have no correct answer and is perhaps not the most scientifically relevant or
clinically meaningful question. We view T2D as a heterogenous disorder involving multiple pe-
ripheral and central defects, where interactions between them create a vicious cycle that progres-
sively impairs both insulin-dependent and insulin-independent glucose disposal. Impaired beta
cell function—whether primary or secondary—plays a key role, but the gradual increase in the
BDL implicates defective CNS control mechanisms as well.

www.annualreviews.org « CNS Control of Glucose Homeostasis

61



FSIGT: frequently
sampled intravenous
glucose tolerance test

Sg: glucose
effectiveness derived
from minimal model
of glucose kinetics

Kg: glucose
disappearance constant
derived from FSIGT
test

Si: insulin sensitivity
index derived from
minimal model of
glucose kinetics

Supplemental Material >

62

3. INSULIN-INDEPENDENT MECHANISMS OF GLUCOSE DISPOSAL

Our understanding of insulin-independent glucose disposal has been limited by two hurdles:
(@) the perception thatitis a passive, unregulated process with limited relevance to glucose homeo-
stasis, and () it is hard to measure. The former has been abandoned in light of growing evidence
that this process can be rapidly and potently activated by the CNS (see Section 4), and the latter
was addressed by the development and validation of Bergman’s minimal model of glucose kinetics
(Supplemental Figure 1), which allowed this variable to be measured. In the original conception
of that model—derived by mathematical modeling of frequently sampled intravenous glucose tol-
erance (FSIGT) test data—glucose effectiveness (designated Sg in minimal model analyses) was
a parameter that measured “the quantitative enhancement of glucose disappearance due to an in-
crease in the plasma glucose concentration” that was not attributable to the action of insulin (48,
p- E673). That is, Sg was a measure of the effect of glucose to promote its own disposal down
a concentration gradient after an intravenous load (49). However, studies applying the minimal
model approach in humans revealed that Sg can change during acute experimental intervention
(50-52) and in disease (53-55). These seminal findings showed that this underappreciated vari-
able (and the various insulin-independent mechanisms that are represented by Sg) contributes
significantly to individual variance in glucose tolerance and T2D risk. A notable limitation of
Sg (glucose effectiveness as a measure of insulin-independent glucose disposal) is that since it is
based on the response to a glucose load (i.e., in FSIGT tests), it offers limited insight into insulin-
independent glucose disposal in the basal state, where it is quantitatively more important than the
insulin-mediated contribution (9, 52).

3.1. Reduced Insulin-Independent Glucose Disposal Predicts T2D Risk

"To enable minimal modeling of glucose kinetics in T2D patients, Welch et al. (55) developed an
FSIGT protocol using exogenous insulin to compensate for diminished GSIS characteristic of
T2D (minimal modeling of FSIGT data requires a dynamic interaction between changing plasma
insulin and glucose levels). In addition to the expected reduction in insulin sensitivity, Sg was
reduced by approximately 40% in T2D patients. Two subsequent studies (11, 56) implicate this
defect as causal in T2D pathogenesis.

In the first study (11), 18 lean and obese nondiabetic subjects underwent FSIGT testing and
were subdivided into two groups based on quantified glucose tolerance (Kg), with body weight
tending to segregate, though not exclusively, with Kg. Minimal modeling of the FSIGT data re-
vealed that subjects with lower Kg had not only the expected lower disposition index (DI, a com-
posite measure of insulin-dependent glucose disposal; Supplemental Figure 1) but also twofold
lower Sg. Glucose intolerance in nondiabetic subjects, therefore, appears to involve reductions in
the handling of glucose by both insulin-dependent and insulin-independent mechanisms.

To investigate whether either of these impairments is predictive of future T2D, a prospective
cohort study was conducted in 155 normoglycemic offspring of parents who both had T2D (56).
FSIGT and minimal model analysis were performed at baseline, and subjects were followed for up
to 25 years. In the 25 subjects that developed T2D, reductions of both Sg and insulin sensitivity
(Si) were manifest at least 10 years prior to developing T2D. Remarkably, none of the subjects
with Sg and Si above the median developed T2D, whereas those with Sg and Si values below the
median had a 76% cumulative incidence of T2D over 20 years, with reduced Sg imparting the
greatest relative risk—15 times greater risk of developing T2D comparing the lowest and highest
quintiles of Sg. These studies provide compelling evidence linking impaired insulin-independent
glucose disposal to T2D pathogenesis. It was only years later that the potent capacity of the brain
to regulate insulin-independent glucose disposal came to light (Section 4).
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3.2. Reconciling Insulin-Dependent and Insulin-Independent Mechanisms
of T2D Pathogenesis

The hypothesis that T2D arises when beta cells fail to compensate for insulin resistance (57)
has extensive support, including cross-sectional and longitudinal studies implying that an early
beta cell defect develops as a consequence of insulin resistance (for detailed reviews, see 6, 58).
Whether assessing groups at high risk for developing dysglycemia (16, 59, 60) or populations
that are phenotypically not commonly obese (61, 62), these studies consistently suggest that an
early impairment of beta cell function—measured by insulin secretion and/or DI (Supplemental
Figure 1)—is predictive of T2D.

Unexpectedly, recent evidence suggests that insulin hypersecretion, rather than beta cell dys-
function, identifies otherwise normal individuals at risk for T2D. In a recent prospective cohort
study conducted by Ferrannini and colleagues (63), 1,168 healthy adults with normal glucose tol-
erance were stratified according to their level of insulin secretion, and advanced statistical methods
were used to ensure virtually identical insulin sensitivity between strata. After a period of 3 years,
subjects with higher insulin secretion were more likely to progress to impaired glucose tolerance
or T2D than those with lower insulin secretion. This result, which is consistent with other human
(64-68) and animal studies (69-73), suggests that primary insulin hypersecretion is a triggering
event in T2D pathogenesis (74), possibly by precipitating subsequent insulin resistance (69, 70,
75-79).

A paradoxical finding in the study by Ferrannini and colleagues (63) is that insulin hypersecre-
tors had worse glucose tolerance despite having equivalent insulin sensitivity. Notably, insulin
hypersecretion, normal insulin sensitivity, and worsened glucose tolerance simply cannot coexist
unless the other key determinant of glucose tolerance—insulin-independent glucose lowering—
is reduced. This interpretation is consistent with evidence cited above linking reduced insulin-
independent glucose disposal to T2D pathogenesis (11, 56). Although additional work is required
to explain the reduced glucose tolerance in this cohort (63), reduced hepatic glucose uptake [reg-
ulated largely by insulin-independent mechanisms (81, 82) discussed below] may contribute, as
this process is known to be impaired in patients with T2D (83, 84).

3.3. Insulin-Independent Glucose Disposal and Hepatic Glucose Flux

As the recipient of portal venous blood from the gastrointestinal tract, the liver is uniquely placed
to monitor glucose appearance after a meal (1). Following meal ingestion, the glucose level enter-
ing the liver through the portal system is much greater than that of the arterial circulation. First
described in dogs by Cherrington and colleagues (81, 85), this negative arterial-portal glucose
gradient (termed the portal signal) is specific to the postprandial setting and produces a robust,
insulin-independent increase in net hepatic glucose uptake (NHGU), in effect directing the liver
to switch rapidly from glucose output in the fasted state to glucose uptake following a meal. Cher-
rington and colleagues (86, 87) provide evidence that (#) in the fasted state, basal sympathetic
tone to the liver blocks NHGU, and the portal signal suppresses sympathetic activity to pro-
duce a sharp rise in NHGU; (b) within hepatocytes, this response involves increased activity of
glucokinase and glycogen synthase, which increase glucose uptake and glycogen synthesis, respec-
tively (88); (¢) chronic high-fat diet (HFD)/high-fructose diet feeding abolishes portal signal in-
duction of NHGU together with reductions in glucokinase content and activity, glycogen synthase
activity, and glucose tolerance (89, 90); and (d) sympathetic denervation along the common hepatic
artery in the HFD/high-fructose diet-fed dog partially restores NHGU, independent of insulin,
thereby improving glucose tolerance (91).
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This work thus suggests that overnutrition heightens sympathetic tone to the liver and blocks
the ability of the portal signal to drive the normal meal-induced increase of NHGU. This inter-
pretation is supported by earlier work in dogs in which long-term epinephrine infusion, to mimic
effects of chronic sympathetic activation, induces a nearly two-thirds drop in Sg, with no differ-
ence in Si or insulin secretion (92). How might these findings impact our understanding of T2D
pathogenesis?

3.4. Evidence for Autonomic Dysfunction in T2D Pathogenesis

Several studies suggest that autonomic dysfunction and excessive sympathetic tone are early pre-
cursors of T2D (93). Prospective cohort studies have shown that both baseline norepinephrine
levels and sympathetic reactivity predict future T2D risk (94-96). Two large prospective cohort
studies in ethnically distinct patient populations recently demonstrated that reduced heart rate
variability, a biomarker of dysautonomia with sympathetic-parasympathetic imbalance (favoring
sympathetic tone), was associated with significantly increased T2D risk (97, 98). Cross-sectional
studies show increased resting muscle sympathetic nerve activity in T2D patients compared to
patients with impaired glucose tolerance (99) or obesity alone (100). Other human (101-104) and
animal (105) studies suggest that diet-induced obesity (DIO) is associated with chronically ele-
vated sympathetic nerve activity.

Thus, in addition to the role played by beta cell dysfunction, both reduced Sg and dysautonomia
(characterized by increased sympathetic tone) are consistently predictive of increased risk for T2D.
Since insulin-independent mechanisms predominate in the control of basal glycemia, explaining
up to 80% of overall glucose disposal (9, 52), and since reduced Sg is an expected consequence
of increased sympathetic tone to the liver, we propose that an individual’s propensity to develop
T2D may depend on primary or acquired defects in these centrally controlled parameters.

4. AN INTEGRATIVE MODEL FOR CNS CONTROL OF GLUCOSE
HOMEOSTASIS AND T2D PATHOGENESIS

Many brain regions have the capacity to influence glycemia, including several nuclei within the
mediobasal hypothalamus [such as the ventromedial nucleus (VMN), arcuate nucleus (ARC), par-
aventricular nucleus, and lateral hypothalamus] and the hindbrain (including the nucleus of the
solitary tract) (Figures 2 and 3). Neurons in these regions are anatomically well positioned to in-
fluence rates of glucose production and disposal by polysynaptic relays involving both limbs of the
ANS, as well as via neuroendocrine secretion (26, 106) (Figure 2). Many neuronal subsets in these
brain regions also express the molecular machinery necessary for intrinsic glucose sensing (see the
sidebar titled Cellular Mechanisms of Glucose Sensing) and receptors for hormones and nutri-
ents, raising the possibility that their effects on glucose homeostasis are regulated by circulating
cues of energetic status, in addition to afferent neural input.

From a teleological perspective, a neural-based glucoregulatory system makes sense given the
brain’s substantial energetic demands and its dependence upon glucose as a fuel. Phylogenetic ev-
idence supports the notion that glucoregulatory functions, including glucose sensing and insulin
secretion, originated in neural cell types that preceded the evolution of pancreatic islets (117).
Interestingly, the beta cell shares many morphological, transcriptional, and electrophysiological
properties with nerve cells (118) despite originating from a distinct embryonic germ layer (endo-
derm). These observations have spurred the hypothesis that specialized endodermal cells adopted
a neuronal transcription program during beta cell evolution, while glucoregulatory systems in
the brain were largely preserved (117). This concept, though speculative, fits well with accruing
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Figure 3

Hypothalamic neurocircuits in glycemic control. The hypothalamus is a forebrain structure situated ventral to the thalamus and dorsal
to the pituitary gland and median eminence. It is an important component of the hypophyseal portal system. The mediobasal
hypothalamus exhibits reciprocal connectivity with hindbrain structures, including the nucleus of the solitary tract (N'TS), as well as
with neighboring hypothalamic nuclei (#77ows indicate connectivity in hypothalamus inset). The median eminence is a
circumventricular organ with fenestrated capillaries that increase vascular permeability (indicated by dashed red lines in circular insets)
and that receives dense innervation from hypothalamic neurons [including from parvocellular neurons of the paraventricular nucleus
(PVN)], which release hypophysiotropic hormones (e.g., corticotropin-releasing factor) into the pituitary portal system, thereby
directing pituitary secretions. Heightened vascular permeability of the median eminence exposes neurons in the adjacent arcuate
nucleus (ARC) to higher levels of circulating nutrients and hormones than seen by brain regions located behind the blood-brain barrier
(bold red line), such as the ventromedial nucleus (VMN), PVN, and lateral hypothalamic area (LHA). The ARC is also adjacent to the
third ventricle (3V), permitting access to factors circulating in the cerebrospinal fluid, and receives afferent neuronal input from
multiple brain regions conveying information about energetic demands, environmental cues of time and food availability, and
cue-reward associations. These dynamic and varied inputs are integrated by pro-opiomelanocortin (POMC)- and agouti-related
peptide (AgRP)-expressing neurons in the ARC that are regulated in a reciprocal manner and drive opposing effects on glycemia and
energy balance, in part, by engaging melanocortin receptor signaling in downstream neurons. Hypothalamic network activity is also
shaped by interactions with neighboring glia, including astrocytes and microglia. In addition to providing structural support for
neurons and their projections, astrocytes and microglia play critical roles in neurovascular coupling, neurotransmitter uptake, synaptic
pruning, immune surveillance, and inflammatory signaling (for a detailed review, see 116). In the setting of overnutrition, these cell
types engage in a hypothalamic-specific reactive gliosis—characterized by cellular morphological changes, including enlarged, extended
processes and heightened release of proinflammatory cytokines—that contributes to the metabolic consequences of diet-induced
obesity. Figure adapted from images created with BioRender.com.
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CELLULAR MECHANISMS OF GLUCOSE SENSING

As recently reviewed (107-110), glucose-excited and glucose-inhibited neurons increase their electrical activity in
response to a rise or fall, respectively, in ambient glucose levels. Glucose-excited neurons and pancreatic beta cells
employ analogous glucose-sensing strategies: After GLUT2-mediated glucose entry and phosphorylation by glu-
cokinase, glycolysis and oxidative phosphorylation of glucose increase cytosolic ATP levels, triggering the closure
of ATP-sensitive potassium (Karp) channels and cell depolarization. In contrast, glucose-inhibited neurons are ac-
tivated when glucose is low via a mechanism involving reduced glucose phosphorylation by glucokinase, elevation
of AMP:ATP levels, AMP kinase activation, and closure of membrane chloride channels. Whether neuronal glu-
cose sensing is required for normal neuronal activity and central nervous system control of glycemia is debated.
Although brain glucose levels parallel circulating levels, brain glucose entry is tightly controlled by the blood-brain
barrier (BBB), and glucose concentrations in brain interstitium (0.7-2.5 mmol/L) are considerably lower than in
the circulation (3.9-5.6 mmol/L in health) (109, 111). Thus, direct neuronal glucose sensing is more likely to be
relevant in specialized brain regions, called circumventricular organs, not protected by the BBB. Alternatively, neu-
ronal glucose sensing may involve indirect mechanisms such as the metabolism of lactate released from neighboring
glia (112) and/or afferent neural input from peripheral glucose sensors (26, 113-115).

evidence of the central control of glycemia and provides a framework for understanding the
complex contribution of the mammalian CNS to glucoregulatory functions delegated to the islets.

We hypothesize that glucose homeostasis depends upon the ability of the CNS to (#) reliably
detect interoceptive signals regarding the circulating glucose level, () rapidly and precisely com-
pute the anticipated homeostatic consequences of possible behaviors, and (¢) regulate the balance
between rates of glucose production and glucose utilization by adaptively adjusting autonomic and
neuroendocrine outflow to glucose effector organs, including the pancreas and liver. Combined
with evidence that normal islets can compensate for progressive impairment of glucose effective-
ness or insulin sensitivity, we infer that normal CNS and islet function may be permissive for
normal glucose homeostasis, with islet compensation (e.g., insulin hypersecretion) limiting the
consequences of central glucoregulatory dysfunction (e.g., impaired Sg) when it is mild but not
when it is more advanced. Defects in both central control and islet function may therefore be
required for disease progression. Here, we consider the cause(s) of central glucoregulatory dys-
function with the potential to raise the BDLg in T2D.

4.1. Does Reduced Brain Glucose Sensing Contribute to T2D Pathogenesis?
Lessons from the Defense Against Hypoglycemia

One possible explanation for the increased BDLg in T2D is that it is a CNS response to a
perceived glucose deficiency. The brain response to a fall in blood glucose is well character-
ized, involving highly coordinated neuroendocrine and autonomic counterregulatory responses
(CRRs) that collectively restore normoglycemia (for detailed reviews, see 114, 119). These re-
sponses include secretion of epinephrine, corticosterone/cortisol, and glucagon, which, combined
with suppression of insulin secretion and elevation of HGP, rapidly return low blood glucose
levels back to the BDL¢ (Figure 1). Multiple research groups have identified subsets of VMN

CRR:
counterregulatory neurons whose activity is required for full CRR generation during systemic hypoglycemia, im-
response plicating the VMN as a central node in the underlying neurocircuitry (120-123). If the same

neurons are activated experimentally when glucose levels are not limiting (i.e., during normo-
glycemia by optogenetic or chemogenetic stimulation), diabetes-range hyperglycemia is rapidly
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elicited by activating CRRs normally reserved for the response to hypoglycemia—including, para-
doxically, suppression of GSIS despite profound hyperglycemia (120-122, 124). As diminished
GSIS, hyperglucagonemia, and elevated HGP are features common to both CRRs and 12D,
pathological overactivation of neurocircuits (e.g., VMN) that function to mobilize glucose may
contribute to diabetic hyperglycemia. This is a provocative idea, but both direct and indirect evi-
dence support this possibility.

The glycemic threshold for triggering CRRs (presumably, the level at which the brain perceives
a glucose deficit) is elevated by 40% or more in people with T2D compared to nondiabetic in-
dividuals (125, 126). Despite this elevated threshold for CRR activation, the magnitude of CRRs
(and their ability to raise blood glucose) is preserved, implying that adaptive responses to glu-
cose deficiency are intact, but the degree of hypoglycemia needed to mount them has lessened.
This effect is even more pronounced in monogenic diabetes resulting from glucokinase muta-
tions (126), suggesting that defective glucose metabolism (and putatively cellular glucose sensing)
raises the glycemic threshold for CRR initiation. Although glucokinase is expressed in multiple
tissues, including brain and islets, a specific role for central glucokinase activity is supported by
rodent studies in which increasing glucokinase activity in the ARC improves GSIS and glucose
tolerance (127). Together, these findings support a model of T2D pathogenesis in which the cen-
tral representation of glucose deficiency occurs at a blood glucose level higher than the normal
hypoglycemia threshold (Figure 1).

Additional support stems from evidence that brain glucose uptake is reduced in humans with
obesity and T2D (128, 129). While the underlying mechanisms are poorly understood, a role for
overnutrition in hypothalamic dysfunction has been proposed. In rodents, 3 days of HFD feeding
is sufficient to induce hypothalamic gliosis (130) (reactive astrocyte formation and proinflamma-
tory microglial infiltration with deleterious consequences for resident neurocircuits; for a detailed
review, see 116) (Figure 3). Further, obesity is attenuated in mice fed a HFD by interventions that
block this microglial inflammatory activation (131). HFD feeding also suppresses brain glucose
uptake via endothelial downregulation of the glucose transporter, GLUT1 (132); over time, these
responses are associated with hypothalamic angiogenesis, which may reflect compensatory vascu-
lar remodeling (132, 133). Studies in humans have similarly shown that both hypothalamic gliosis
(134) and the number of hypothalamic arterioles (133) are increased in obesity and T2D. Address-
ing whether and how these vascular changes affect brain glucose sensing, neurocircuit function,
and T2D pathogenesis are priorities for future studies.

4.2. Hypothalamic Glucoregulatory Neurocircuits: the Melanocortin System

Among the brain’s distributed network of glucoregulatory neurons, those in the hypothalamic
ARC have received the most attention. By virtue of their privileged anatomical position nestled
between the circumventricular median eminence and the third ventricle (Figure 3), ARC neurons
can sense nutrients and hormones circulating in both the blood and cerebrospinal fluid (for re-
views, see 135, 136). ARC neurons not only adjust their activity according to energetic state (137),
feed-forward cues of nutrient availability (137, 138), and metabolic demand (139) but also exert
strong effects on energy (140, 141) and glucose (41, 142) homeostasis, many of which involve the
central melanocortin system.

The melanocortin system, a highly conserved cellular signaling pathway, directs catabolic and
anabolic metabolism depending upon the balance of melanocortin 4 receptor (MC4r) binding to
two opposing ligands, each expressed by a distinct subset of ARC neurons (143). The anabolic
arm is activated by agouti-related peptide (AgRP), an inverse agonist of MC4r that is released
in response to caloric insufficiency. By reducing MC4r signaling, AgRP promotes increased food
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intake, reduced energy expenditure, and weight gain (1, 143). Conversely, the catabolic arm is
driven by the MC4r agonist a-melanocyte stimulating hormone [a-MSH, derived from its pre-
cursor pro-opiomelanocortin([POMC)] in response to caloric excess. MC4r activation by a-MSH
suppresses appetite and raises energy expenditure (143). Loss-of-function MC4r mutations in ro-
dents and humans result in profound early-onset obesity; polymorphisms at the POMC gene locus
are associated with T2D risk (144-146). Growing evidence suggests that reduced melanocortin
signaling due to AgRP and POMC neuron dysfunction predisposes to glycemic abnormalities
characteristic of T2D (147, 148).

4.3. CNS Regulation of Insulin-Independent Glucose Disposal

Among the most impressive examples of central glucoregulatory capacity is the finding that in-
tracerebroventricular infusion of the adipocyte-derived hormone leptin restores normoglycemia
to rodent models of insulin-deficient T'1D [induced by streptozotocin (STZ), a beta cell toxin] (for
areview, see 149). Leptin-mediated glucose normalization is associated with increased autonomic
outflow to the liver (150), suppressed gluconeogenesis and HGP (151), reduced hyperglucagone-
mia (151, 152), and increased brain and peripheral tissue glucose uptake (151). These findings
raise the question, how can leptin action in the brain ameliorate diabetes induced by beta cell
destruction unless the brain plays a role in the hyperglycemia of insulin deficiency (2)?

To address this question, we consider recent evidence that inactivation of select glucoregu-
latory VMN neurons (whose activity promotes CRRs during hypoglycemia) greatly diminishes
STZ-mediated hyperglycemia (123). This suggests that hyperglycemia elicited by severe insulin
deficiency requires activation of these neurons. Earlier evidence similarly implicated VMN activ-
ity in diabetic hyperglycemia, as intra-VMN delivery of brain-derived neurotrophic factor (153)
or leptin (154) comparably resolves STZ-mediated hyperglycemia via insulin-independent mech-
anisms. However, given that leptin deficiency develops as a consequence of insulin deficiency and
fat loss in STZ-treated mice, whether centrally driven hyperglycemia in this setting is due to in-
sulin versus leptin deficiency per se is unclear.

Evidence suggests that both may contribute. For example, HGP is suppressed by central ad-
ministration of either insulin or leptin (151, 155), primarily via Kxrp-mediated neuronal hyperpo-
larization (41, 155). Consistent with this notion is recent evidence of an important role for Kyrp
channels in the control of ARC AgRP neuron activity in relation to glucose homeostasis. Specifi-
cally, (#) genetic deletion of Kyrp channels in AgRP neurons elicits their hyperactivity, leading in
turn to hyperglycemia, insulin resistance, and obesity (41), and (b) central administration of Karp
channel openers (resulting in neuronal silencing) reduces blood glucose by suppression of HGP
(156). In humans, systemic delivery of Kxrp channel antagonists blunts hyperglycemia-induced
suppression of HGP by nearly 50%, suggesting that similar brain mechanisms may contribute to
glycemic control in humans (13). These findings highlight hypothalamic regulation of HGP as a
promising target for glucose lowering in T2D.

4.4. CNS Control of Insulin Sensitivity

The CNS is capable of driving rapid, parallel changes in insulin secretion and sensitivity during
cold exposure, suggesting that aberrant neural activity could conceivably underlie defective
coupling of these determinants of glycemia during T2D progression. Multiple brain regions
have the capacity to drive rapid and reversible changes in peripheral insulin sensitivity (157),
and daily changes in insulin sensitivity appear to be orchestrated by the central circadian system
(158). Magnetic resonance imaging (MRI)-based evidence in humans has linked obesity-induced
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hypothalamic gliosis to systemic insulin resistance and glucose intolerance, suggesting that a
hypothalamic defect contributes to obesity-associated metabolic impairment (134). Metabolic
improvement induced by bariatric surgery in women with T2D is associated with an improved
MRI signature of hypothalamic gliosis (159), suggesting that the underlying neuropathological
process may be reversible. Future studies that clarify the contribution of gliosis and associated
mechanisms driving aberrant neurocircuit activity to insulin resistance and T2D pathogenesis
are a scientific priority.

4.5. CNS Regulation of Beta Cell Mass

As discussed in Section 2, the CNS has the capacity to surveil and regulate islet activity during
acute challenges to glucose homeostasis such as meal intake, insulin-induced hypoglycemia, and
cold exposure. Beyond these functions, the ANS also affects the development and plasticity of the
endocrine pancreas (160). Animal models with reduced parasympathetic activity during postnatal
development exhibit diminished beta cell mass and GSIS in adulthood (161), whereas beta cell
proliferation is increased when cultured islets are treated with muscarinic agonists. Since adrener-
gic stimulation has the opposite effect, available evidence points to direct and counteracting roles
for the two limbs of the ANS in regulating beta cell mass (162-165). Manipulating the balance be-
tween sympathetic and parasympathetic outflow, therefore, may present a promising therapeutic
approach to the preservation of both beta cell mass and function in T2D.

4.6. Targeting the Brain to Induce Sustained Diabetes Remission

Preclinical studies have demonstrated the ability of multiple centrally administered peptides, in
addition to leptin, to elicit diabetes remission in rodent T2D models. Peptides in the fibroblast
growth factor (FGF) family have received the most attention, based on evidence that central ad-
ministration of FGF19 (166), FGF21 (167), and FGF1 (168-171) promotes insulin-independent
glucose lowering in rodent models of T2D via activation of FGF receptors in the mediobasal
hypothalamus. Strikingly, the glucose-lowering effects of FGF1 are quite long lived: A single
intracerebroventricular administration of FGF1 normalizes glycemia for months in the leptin-
deficient (0b/0b) mouse model of T2D (168) via an action in the ARC (170). Unlike conventional
antidiabetic medications that elicit glucose lowering, FGF1 treatment does not increase the risk
of hypoglycemia, nor does it alter insulin secretion or sensitivity. Instead, FGF1 appears to medi-
ate its effects by restoring the BDLg to normal (168). Investigation into mechanisms underlying
this FGF1 effect has identified extracellular matrix remodeling (172) and sustained inhibition of
AgRP neurons coupled with increased melanocortin signaling (173) as likely targets for this effect.
Clarifying where, how, and why FGF1 works to normalize BDL in T2D is a priority for future
work.

5. CNS-TARGETED THERAPEUTIC STRATEGIES FOR T2D:
LOOKING TO THE FUTURE

Growing evidence that CNS-targeted therapies can normalize the BDLg in preclinical T2D mod-
els (151, 168) underscores their untapped potential as future T2D treatments. Supplemental
Table 1 lists currently approved antidiabetic drug classes (and examples) with CNS-based
metabolic effects. Below we discuss the most promising of the approved agents, the GLP1R ag-
onists (Supplemental Appendix 1), to highlight the potential of centrally mediated drug action
even when the drug’s development was not predicated on central action. We then propose fu-
ture therapeutic strategies targeting both central and peripheral glucoregulatory neural control

www.annualreviews.org « CNS Control of Glucose Homeostasis

Supplemental Material >

69


https://www.annualreviews.org/doi/suppl/10.1146/annurev-pharmtox-052220-010446

Supplemental Material >

70

mechanisms with the potential to enhance both insulin-dependent and insulin-independent glu-
cose disposal as a path toward T2D remission/disease modulation.

5.1. GLP1R Agonists

Long-acting GLPIR agonists are among the more promising new drugs for T2D. Semaglutide, a
once-weekly subcutaneously administered GLP1R agonist, was evaluated in the SUSTAIN clin-
ical trial program in over 8,000 patients across the T2D spectrum. These trials demonstrated
superior glycemic control and weight loss with semaglutide versus all comparators (including in-
sulin, other GLPIR agonists, and dipeptidyl peptidase inhibitors) (174, 175). Semaglutide also
has shown efficacy for clinically meaningful (~15%) weight loss in obese patients without dia-
betes (176).

GLPIR agonists elicit multiple glucose-lowering effects that include augmentation of GSIS
(via a direct effect on beta cells) and reductions of food intake and body weight that are me-
diated centrally. Identifying contributions of various subnetworks of GLPIR+ neurocircuits
(Supplemental Appendix 1) to the pleiotropic effects of GLP1 is an active area of research.
Another active area of research involves the development and validation of intermixed, unimolec-
ular, multiagonist peptides involving combinations of GLP1, glucagon, and/or glucose-stimulated
insulinotropic polypeptide (GIP) (177). The goal of this strategy is to enhance GLP1% activity by
broadening tissue targets and synergizing within tissues (e.g., brain and islet) that express multiple
receptors. Several preclinical (178, 179) and Phase I and II clinical studies (180, 181) have demon-
strated that these drugs may outperform single agonists in sustained glycemic improvement and
weight loss and provide a promising path forward for GLP1-related agents (177). The roles of the
brain and the islets as targets for these drugs are an active area of study, and it is likely that both
contribute.

5.2. Future Prospects for CNS-Targeted T2D Remission

Perhaps the most important lesson from preclinical models of T2D is that CNS-targeted therapies
have the potential to induce T2D remission by restoring BDL¢ to normal (unlike current non-
surgical treatment options). Two notable examples are intracerebroventricular injection of FGF1
in rodent models of T2D (168) and of leptin in rodent models of T1D (151). In both cases, BDL
normalization appears to require suppression of abnormally hyperactive ARC AgRP neurons, pos-
sibly coupled with POMC neuron activation, thereby increasing melanocortin signaling (41, 173).
FGF1 is ineffective in normalizing BDL¢ in T2D models with deficient melanocortin signaling
(173). Leptin is ineffective in normalizing BDL¢ in T1D models in which leptin receptors are
deleted from AgRP neurons (41).

How does one pursue translation of these preclinical models? A first step would be to test the
safety and efficacy of the agents themselves in large animal models. One such study is underway for
FGF1 in a nonhuman primate model of T2D. Safety and efficacy of centrally administered leptin
has been tested in nonhuman primates (182, 183). A pilot study of peripheral administration of
metreleptin (modified to increase half-life, which is approved for use in lipodystrophic diabetes)
has been completed in T'1D patients (184). While glycemia was not significantly improved in this
study, preclinical findings suggest that leptin must be administered directly into the brain for its
antidiabetic effects to be observed (151). A pilot study to test the safety and efficacy of central
administration of leptin in T1D patients is therefore a priority. Such a strategy has the potential
to elicit effective and sustained normalization of glucose without the risks of hypoglycemia (185)
and weight gain (186).
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Parallel efforts aimed at translation may further dissect the cellular and molecular mechanisms
of promising agents. At multiple time points after intracerebroventricular FGF1 injection into
obese diabetic mice, a recent comprehensive transcriptomic analysis across mediobasal hypotha-
lamic cell types revealed other potentially druggable pathways (173). Notably, the transcriptomic
response of astrocytes displayed prominent neuroprotective and neuron-interacting phenotypes,
with evidence suggesting increased astrocytic coverage of AgRP neuron synapses. Some of these
cellular signatures are common to other neurological disease processes, including ischemic stroke,
and therefore may highlight the potential of drug candidates co-opted from other disease states.

A critical consideration for any centrally targeted pharmaceutical will be the pharmacokinetic
nuances of drug delivery to the brain. This highlights the therapeutic potential of strategies that
increase hypothalamic melanocortin signaling for treatment of T2D and associated metabolic dis-
orders. The close proximity of AgRP neurons to the median eminence, which has a fenestrated
blood-brain barrier (BBB), suggests that drugs aimed at silencing these neurons might access them
via the circulation. In other cases, however, centrally targeted therapies that are administered sys-
temically will have to traverse the BBB and contend with unique pharmacokinetic properties of
CNS drug delivery (187). Promising alternative possibilities include intranasal (188) or catheter-
based intrathecal delivery (189) (Figure 4).

In addition to pharmaceuticals, other therapeutic modalities for restoring brain neural cir-
cuit disorders include (#) deep brain stimulation, currently FDA-approved for Parkinson’s disease,
essential tremor, dystonia, obsessive compulsive disorder, and epilepsy (190), and (/) CNS gene
therapy via antisense oligonucleotides (191) or stereotactic virally delivered gene therapy (192),
which are being investigated in Huntington’s and Parkinson’s diseases, respectively, with promis-
ing results.

Deep brain stimulation relies on modulating neural circuit activity using controlled electrical
fields emitted from chronically implanted electrodes. While future iterations of this technique
may provide a strategy for modulating glucoregulatory neural circuits, a current limitation of this
approach is that the electric fields generated are rather large compared to the relatively small and
cellularly heterogenous nuclei of the mediobasal hypothalamus. CNS gene therapy is an increas-
ingly viable strategy in select neurodegenerative disorders, with improved techniques for gene
delivery and coverage of the brain region of interest and an understanding of the genetic targets
that are most tractable (i.e., therapeutic gain versus loss of gene function) (192). The potential of
this approach in T2D is intriguing in light of preclinical studies demonstrating improved glucose
tolerance with ARC-specific transduction of the glucokinase gene (127), conferring improved neu-
ronal glucose sensing, and the aforementioned evidence of reduced brain glucose sensing in T2D
pathogenesis. Further investigation and refinement of the safety and efficacy of CNS gene ther-
apy for severe neurodegenerative diseases should ultimately lay the groundwork in the potential
application of this approach to chronic neural circuit disorders, including T2D.

5.3. Antidiabetic Strategies Targeting the Autonomic Nervous System

In addition to developing T2D therapies directed at the brain, the ANS presents an attractive
target based on its role as an essential relay between central neurocircuits and peripheral glucose
effectors. Modulating the PNS and/or SNS branch of the ANS in T2D may facilitate the balancing
of mechanisms governing BDL. Vagal efferents innervating beta cells not only stimulate GSIS
(193, 194) but can also promote beta cell proliferation and expansion (163-165), thereby offering
potential T2D disease-modifying treatment. Although uncertainty remains regarding the extent
to which the liver parenchyma is innervated by vagal efferent fibers (195), activation of these fibers
offers a potentially viable approach to inhibit expression of gluconeogenic genes, gluconeogenesis,
and HGP (196).
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Future prospects for central nervous system (CNS)-targeted type 2 diabetes (T2D) remission/disease
modulation. Device-based, CNS-targeted approaches to T2D disease modulation include (@) vagal nerve
stimulation targeting fascicles innervating liver, portal vein, and pancreatic islets, (@) spinal cord stimulation
with electrodes placed epidurally to target preganglionic sympathetic nerves in the intermediolateral cell
column (blue cell bodies in inset) innervating the celiac ganglion (~T5-T9 levels), and (@) intrathecal
catheter-based targeted drug delivery (e.g., leptin, fibroblast growth factor analogs) with infusion via an
implanted subcutaneous reservoir or pump. Figure adapted from images created with BioRender.com.

Conversely, vagal afferents are well documented to innervate the hepatic portal vein and are a
critical component of the glucose-sensing machinery that provides input relevant to the circulating
glucose level to central neurocircuits (e.g., for the response to hypoglycemia or the portal glucose
signal) (115,197-201). Recent work (115) characterizes a vago-vagal circuit, originating with vagal
afferents innervating the portal vein wall, directly contacting vagal efferents in the hindbrain dorsal
motor nucleus of the vagus (which in turn modulates hepatic and islet function). Therapeutic
strategies targeting these neurons, perhaps in combination with reduced SNS tone at the liver
and pancreas, may have the potential to lower the BDL in patients with T2D.

While cholinergic/anticholinergic drugs may be limited by off-target effects on other organs,
device-based neuromodulation using implantable vagal nerve stimulators (VNSs) offers a more
targeted approach. For example, if the vago-vagal circuit supplying the hepatic portal vein could
be specifically targeted with a VNS device, the circuit could potentially be dialed up or down as
needed to optimize the BDLg. Considerations in the development of this strategy will include
optimal placement of the electrode along the central-peripheral axis of the nerve (to reduce the
number of vagal fascicles destined for nonglucoregulatory organs) and the stimulation parameters
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(i.e., pulse width/frequency/duration to engage the highest fraction of desirable efferent/afferent
glucoregulatory vagal fascicles) (202-204). VNS is already FDA approved for use in epilepsy and
depression, and early proof-of-principle studies in patients with obesity and T2D show promising
results (205, 206) (Figure 4).

Alternatively, therapeutic strategies could target SNS modulation of the BDLg. As dis-
cussed above, increased sympathetic tone on beta cells suppresses GSIS (14), while stimulating
glycogenolysis and gluconeogenesis in hepatocytes, thus increasing HGP (26, 208, 209); con-
versely, sympathetic denervation of the liver in DIO dogs improves glucose tolerance (91). Simi-
larly, catheter-based renal sympathetic denervation in patients—developed for treatment-resistant
hypertension—surprisingly appears to reduce whole-body sympathetic nerve activity (210) and in
small early studies showed reduced fasting plasma glucose and insulin levels, suggesting improved
insulin sensitivity (211). Larger studies of this approach for T2D have not been conducted, but
meta-analyses of small studies failed to show that the antidiabetic effect is reliable (212). Inconsis-
tent results from this approach extend to its initial indication—hypertension—with randomized,
controlled studies showing both positive and negative outcomes for its efficacy (caveats cited for
negative studies included variability in denervation technique across study sites and patient selec-
tion criteria) (213).

Analogous to the considerations discussed for VNS above, effective SNS modulation may be
better achieved with more targeted, device-based neuromodulation. Implantable epidural spinal
cord stimulators are currently FDA approved and widely used as a targeted treatment for chronic
neuropathic pain (214). In Europe, targeted spinal cord stimulators are also used for ischemic pain
(e.g., angina) related to arterial insufficiency and have been shown to produce sympathetic block-
ade as part of their mechanism of action (215, 217). By extension, spinal cord stimulation (SCS)
modulation of SNS innervation of the islet and liver, by way of preganglionic sympathetic nerves
located in the intermediolateral cell column and projecting to the celiac ganglion, may provide a
tunable strategy for normalizing the BDLg in T2D. Furthermore, in patients with neuropathic
pain, SCS appears to modulate dorsal horn—dorsal column spinal sensory pathways that include
direct inputs from TRPV1+ dorsal root ganglion neurons (216), subsets of which innervate the
islets at the upper thoracic levels as discussed above (29-31). SCS thus offers multiple potential
mechanisms by which to modulate neural activity to and from peripheral glucose effectors.

Development of new therapeutic strategies targeting CNS control of glucose homeostasis will
be a formidable challenge. However, growing and undeniable evidence that the CNS plays a fun-
damental role in normal and abnormal glucose metabolism is a sign of an emerging era of CNS-
centered research and drug discovery in T2D.

1. Insulin-independent glucose disposal mechanisms predominate in the control of the
basal glucose level.

2. Type 2 diabetes (T2D) is associated with impaired insulin-independent glucose disposal.
Evidence that this impairment is primary in T2D pathogenesis is as compelling as the
evidence of a causal role played by a beta cell defect.

3. Inrodent models of type 1 diabetes and T2D, the brain can be targeted to normalize the
biologically defended level of glycemia (BDLg) via mechanisms that are largely, if not
exclusively, insulin independent.
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The mediobasal hypothalamus is the only known brain area capable of normalizing the
BDL in preclinical models of T2D, with increased melanocortin signaling engaged by
neurons in the arcuate nucleus likely playing a key role.

In both humans and preclinical models, obesity and T2D are associated with hypotha-
lamic pathology, including activation of glial cells (reactive gliosis) in areas involved in
glucose homeostasis; this pathological response may contribute to elevation of the BDL¢
by reducing neuronal sensing of (or responsiveness to) the circulating glucose level.

Neuronal subsets in the hypothalamic ventromedial nucleus that normally orchestrate
counterregulatory responses to glucose deficiency may aberrantly promote the elevated
BDLg in T2D; inactivation of these neurons in rodent T2D models elicits insulin-
independent glucose lowering.

. Future therapeutic strategies and drug discovery focused on central nervous system con-

trol of both insulin-independent and insulin-dependent glucose disposal offer significant
untapped potential yet to be addressed by current T2D treatments.
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