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Abstract

Slow photoelectron velocity-map imaging spectroscopy of cryogenically
cooled anions (cryo-SEVI) is a powerful technique for elucidating the vi-
brational and electronic structure of neutral radicals, clusters, and reaction
transition states. SEVI is a high-resolution variant of anion photoelectron
spectroscopy based on photoelectron imaging that yields spectra with en-
ergy resolution as high as 1–2 cm−1. The preparation of cryogenically cold
anions largely eliminates hot bands and dramatically narrows the rotational
envelopes of spectral features, enabling the acquisition of well-resolved pho-
toelectron spectra for complex and spectroscopically challenging species. We
review the basis and history of the SEVI method, including recent experi-
mental developments that have improved its resolution and versatility. We
then survey recent SEVI studies to demonstrate the utility of this technique in
the spectroscopy of aromatic radicals, metal and metal oxide clusters, nonadi-
abatic interactions between excited states of small molecules, and transition
states of benchmark bimolecular reactions.
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1. INTRODUCTION

Transient species lie at the heart of chemical reactivity and play a key role in almost all complex
reaction mechanisms. In the gas phase, open-shell free radicals are important in combustion
chemistry (1, 2), atmospheric chemistry (3, 4), and astrochemistry (5, 6). Heterogeneous chemistry
on a bulk surface is catalyzed at reactive sites, and these sites can be modeled by considering the
structure, spectroscopy, and reactivity of metal and metal oxide clusters (7, 8). Nonadiabatic
molecular dynamics following photoexcitation of small molecules are inextricably linked to the
vibronic structure of the involved excited states (9, 10). Transition states and weakly bound adducts
along a reaction coordinate govern molecular behavior and reactivity at the most fundamental level
(11, 12).

Anion photoelectron spectroscopy (PES) is a versatile tool for studying these unusual species
(13–15). Nearly any neutral molecule or cluster can be probed with anion PES, provided that
it has a positive electron affinity (EA) and the corresponding anion can be synthesized. These
conditions are often satisfied for free radicals, making them an appealing target for anion PES (16–
19). Low-lying electronic excited states of exotic neutral species are also easily probed. The ability
to mass-select anions prior to spectroscopic interrogation also makes PES an excellent method for
size-dependent cluster studies. The evolution of geometries, bonding motifs, electronic structure,
and other properties can be tracked as a function of cluster size as one approaches the bulk limit
(20–24). Finally, PES is also one of the few ways to spectroscopically probe neutral unimolecular
and bimolecular reactive surfaces, through photodetachment of a bound anion similar in geometry
to the desired neutral transition state (25, 26).

Experimentally, a packet of mass-selected molecular anions, A−, is intersected with a laser beam.
If the laser photon energy exceeds the binding energy of the electron to the anion, a photoelectron
may be detached:

A−+hν → A+e−. 1.

The kinetic energy distribution of the nascent electrons is measured. This distribution can show
discrete features corresponding to detachment to specific neutral electronic and vibrational quan-
tum states. The energy given to the system by the photon (hν) must be conserved between over-
coming the binding energy of the electron to a given neutral state (eBE) and the kinetic energy
of the outgoing photoelectron after detachment (eKE):

eBE = hν − eKE. 2.

The energetics of this process are shown schematically in Figure 1. Photoelectron spectra are
typically plotted in eBE because this quantity is independent of the choice of photon energy. An
anion PES experiment can directly yield the EA and energetics of the electronic and vibrational
levels of the neutral. Photoelectron angular distributions (PADs), which report on the electronic
symmetry of a photodetachment transition, can also be extracted.

Photoelectron spectroscopy has somewhat relaxed selection rules compared to bound-bound
electronic spectroscopy because of the ability of the photoelectron to carry away whatever kinetic
energy and angular momentum is necessary for a given transition. Any neutral state accessible by
removal of an electron from an atomic or molecular orbital can be formed by photodetachment.
There are thus no dipole-forbidden transitions, and with a single photon energy, transitions can
be made to all allowed states lying lower in eBE than hν. Neutral states are accessible with spin
multiplicity differing by ± 1 from that of the anion; for instance, both singlet and triplet neutral
states are accessible from detachment of a doublet anion (27, 28).

Relative intensities of features in a photoelectron spectrum yield information about the differ-
ence in equilibrium geometries between the anionic and neutral states. The Franck–Condon (FC)
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Figure 1
Energetic principles of slow photoelectron velocity-map imaging (SEVI) spectroscopy. A photoelectron is
detached from the anion of interest using a tunable laser. The kinetic energy distribution of the resulting
electrons (eKE) is analyzed using a velocity-map imaging spectrometer, yielding high energy resolution for
the slowest electrons. Spectra are typically plotted in electron binding energy (eBE = hν – eKE), which is
independent of photon energy.
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factor |〈ψ f
v |ψ i

v〉|2 governs the selection rules for vibrational transitions between initial and final
states ψ i

v and ψ f
v and relative intensities of different transitions within an electronic band. Excita-

tion occurs to neutral vibrational levels in accordance with their net overlap with the initial anion
vibrational wavefunction. FC-allowed transitions can exhibit a change in vibrational quantum
number of �v = 0,±1,±2... for totally symmetric vibrational modes and �v = 0,±2,±4... for
nontotally symmetric modes. In practice, a large change in geometry between anion and neutral is
associated with large FC factors for vibrational modes whose motion distorts the molecule along
the displacement vector between anion and neutral equilibrium geometries. Nontotally symmetric
FC-forbidden modes can also appear by borrowing intensity through Herzberg–Teller vibronic
coupling to another electronic state (29, 30) or through resonant vibrational autodetachment
mediated by an anion excited state (31).

In this article we review developments in slow photoelectron velocity-map imaging (SEVI)
spectroscopy, a high-resolution variant of anion PES based on photoelectron imaging, and its re-
cent applications to cryogenically cooled anions (cryo-SEVI). The functional utility of anion PES
has historically been limited by the energy resolution of eKE detection and spectral congestion
caused by warm molecular anions. With SEVI, photodetachment is carried out close to threshold
and with selective detection of the slowest electrons, for which the energy resolution is best (32,
33). The flexibility and capability of this method are greatly enhanced by trapping and cryogeni-
cally cooling the anions prior to photodetachment, yielding spectra of complex molecular anions
with energy resolution as high as 1–2 cm−1 (34). In the following sections, we cover the history,
development, and technical details of SEVI spectroscopy. We then review several (cryo-)SEVI
studies from both our laboratory and elsewhere to illustrate the versatility and capabilities of the
technique.

2. A BRIEF HISTORY

The first anion PES experiment was reported by Hall and coworkers in 1967 (35) and was car-
ried out with a continuous ion source, a continuous-wave (cw) intracavity argon ion laser, and
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detection of the eKE distribution using a hemispherical energy analyzer. Even as other anion PES
technologies were developed, the cw method has remained a workhorse technique and has been
applied with great success by Lineberger, Ellison, Bowen, and others (13, 15, 21) to an extensive
array of atoms, small molecules, clusters, and complexes.

The development of pulsed anion PES by Johnson and coworkers (36) and Smalley and cowork-
ers (37) in the 1980s was spurred by the availability of shorter-wavelength and more flexible pulsed
laser sources and an interest in anions more easily generated in pulsed free jet expansion sources.
Initially, eKE distributions were measured via the time of flight (TOF) of the detached electrons,
either field-free or using a magnetic bottle scheme (38). With the advent of ion imaging (39) and
velocity-map imaging (VMI) (40) techniques, Sanov and others (41, 42) harnessed photoelectron
imaging as an attractive PES alternative that combines high collection efficiency with the ability to
detect low-eKE electrons and measure angular distributions. These pulsed techniques also made
possible the development of pump–probe time-resolved anion PES to study ultrafast dynamics in
small gas-phase molecules (43, 44).

The eKE resolution in anion PES is limited to about 50 cm−1 for the hemispherical analyzer
(29), 40–80 cm−1 at best for conventional electron TOF (45), and about 150 cm−1 for magnetic
bottle TOF (46). In photoelectron VMI, the energy resolution depends on the eKE of the detached
photoelectrons, with �eKE/eKE ∼ 3% reported for the original Eppink–Parker design (40).
These techniques are sufficient to measure electronic transitions, with vibrations resolved only in
favorable systems with amenable FC structure. Resolution poses a particular barrier for species
with low-frequency FC-active vibrations and in cases where warm ion temperatures lead to spectral
congestion.

To improve the energy resolution of these experiments, the Neumark group adapted zero
electron kinetic energy (ZEKE) spectroscopy, a technique developed by Müller-Dethlefs and
coworkers (47, 48) for neutral molecules, to studies of negative ions. In anion ZEKE, the photon
energy is scanned and only those electrons detached at threshold, with essentially zero eKE, are
detected (49). This yielded resolution as high as 1–2 cm−1 for atomic anions. Molecular systems
demonstrated more typical peak widths of ∼10 cm−1 because of rotational broadening (50).

However, anion ZEKE proved to be experimentally challenging and suitable only for a small
fraction of systems. In ZEKE spectroscopy of neutrals, electrons are excited to high-lying Rydberg
states and are pulsed-field ionized shortly before detection (51). Given the absence of Rydberg
states in anions, the physics of anion ZEKE is quite different, and the collection of ZEKE electrons
without distortion by stray fields is difficult. Additionally, photodetachment transitions of certain
symmetries can suffer from poor threshold cross section and cannot be measured with ZEKE (52).
Despite these limitations, ZEKE spectroscopy was applied to a number of molecular and cluster
anions (53–57).

The photodetachment microscopy method of Blondel and coworkers (58, 59), where atomic
anions are photodetached very close to threshold in the presence of an electric field, also warrants
mention. The resulting photoelectrons are imaged in order to observe an interference pattern from
which the eKE can be determined with great precision. This technique has been instrumental in
measuring atomic EAs with great accuracy and has also been applied to OH and SH (60), but
it appears to be less suited for studying more complex molecular systems and extended energy
ranges.

The field thus remained open for a molecular photodetachment technique that could bridge
the gap between the versatility and experimental simplicity of conventional anion PES and the
high energy resolution of ZEKE and photodetachment microscopy; cryo-SEVI was developed to
fill this niche.
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Figure 2
(a) Current configuration of the Berkeley cryo-SEVI apparatus. Ions are generated in a pulsed ion source, cryogenically cooled in a RF
ion trap, mass-selected by TOF, and photodetached with a tunable laser at various fixed wavelengths. A VMI spectrometer (40) focuses
the resulting photoelectrons onto an imaging detector (39). (b) Experimental raw and reconstructed images from detachment of atomic
F− at 358.9 nm, and the photoelectron spectrum in kinetic energy space after radial integration of the reconstructed image and
conversion from velocity space to kinetic energy space. Abbreviations: CCD, charge-coupled device; cryo-SEVI, slow photoelectron
velocity-map imaging of cryogenically cooled anions; eKE, electron kinetic energy; fwhm, full width at half-maximum; MCP,
microchannel plate; RF, radiofrequency; TOF, time of flight; VMI, velocity-map imaging.

3. ANION CRYO-SEVI

Cryo-SEVI is a high-resolution variant of earlier pulsed photoelectron imaging experiments. The
current version of the Berkeley cryo-SEVI apparatus is shown in Figure 2a and has been described
in detail elsewhere (32–34).

Three experimental conditions allow for improved energy resolution:

� Low VMI extraction voltages magnify the photoelectron image on the position-sensitive
detector, selectively detecting the slowest electrons and leading to better-resolved features.
The VMI lens is also mounted collinearly with the ion flight path, eliminating contributions
of ion velocity spread to the photoelectron energy resolution.

� Photodetachment is carried out close to threshold for each transition of interest, yielding
low-eKE photoelectrons. Because VMI spectrometers have a relatively constant�eKE/eKE
(40), the absolute energy resolution is best for small eKE, as shown in Figure 2b. New VMI
lens designs have also demonstrated significantly improved �eKE/eKE (61–64).

� Ions are trapped in a cryogenically cooled radio-frequency ion trap held at T = 5 K (65,
66), where they are thermalized to their ground vibrational and electronic states through
collisions with buffer gas (67) in order to limit spectral congestion by eliminating hot bands,
sequence bands, and rotational broadening (34).

Under these conditions, SEVI can achieve energy resolution of ∼1 cm−1 full width at half-
maximum (fwhm) for atomic systems and molecular peak widths down to 2–3 cm−1 fwhm (62, 64,
68). The energy resolution is best for slow electrons, so a SEVI spectrum is typically obtained by
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tuning the photodetachment laser wavelength through a particular photodetachment band in steps
of 50–500 cm−1. The high-resolution spectra obtained over each energy window are then stitched
together and appropriately normalized (see Section 4.1) to create a composite high-resolution
SEVI trace.

Several research groups have developed similar photoelectron imaging experimental capabili-
ties. Wang and coworkers (69, 70) use a high-resolution VMI spectrometer coupled to an electro-
spray ionization (ESI) ion source and a cryogenic ion trap, while von Issendorff and coworkers (71)
have coupled a cryogenic trap to a conventional photoelectron imaging setup. Ning and cowork-
ers developed a high-resolution imaging spectrometer (68) and have recently added cryo-cooling
capabilities (72). The Heaven group (73) has recently reported results from a new SEVI setup, and
a new cryo-SEVI instrument has just been developed by the Garand group (74). The Lineberger
group (75, 76) uses a VMI photoelectron spectrometer that can be operated in a SEVI mode.
Work to develop new photoelectron imaging capabilities is also ongoing in the Sanov (77) and
Gibson (78) laboratories.

4. APPLICATIONS

4.1. Vibrational Structure of Polycyclic Aromatic Hydrocarbon Radicals

The spectroscopy of free radicals has been a frontier area for many years because of their reactive
nature and spectroscopic complexity (79, 80). Anion PES is a powerful and versatile method for
investigating free radicals, which almost always have positive EAs. The corresponding anions are
often closed-shell species that are straightforward to generate, after which they are mass-selected
and photodetached to form the radical of interest. The resulting photoelectron spectrum maps
out the energetics and vibronic structure of the free radical (15).

These capabilities are enhanced with the ion cooling and high resolution afforded by cryo-
SEVI, as demonstrated in work where we extract accurate EAs, fundamental vibrational fre-
quencies, and term energies of low-lying electronic states of organic radicals (81, 82) for which
conventional anion PES yielded largely unresolved spectra (83). Our recent study of the 9-, 1-,
and 2-anthracenyl (C14H9) radicals exemplifies the capabilities of cryo-SEVI to investigate specific
radical isomers with many low-frequency vibrational modes and congested FC envelopes (64). As
polycyclic aromatic hydrocarbon radicals, these species are important combustion intermediates
(84) and may be carriers of anomalous infrared (IR) emission bands in the interstellar medium
(85).

The structures of the three anthracenyl anion isomers are shown in Figure 3. Specific anthra-
cenyl isomers are prepared by reacting 9-, 1-, and 2-trimethylsilyl-anthracene precursors with F−,
which selectively forms the respective deprotonated 9-, 1-, or 2-anthracenyl anion thanks to the
strong fluorine–silicon bond (86). This gas-phase synthesis has also been used to prepare specific
anion isomers in SEVI studies of the propynyl, naphthyl, and furanyl radicals (82, 87, 88).

Cryo-SEVI spectra of the 9-, 1-, and 2-anthracenyl electronic ground states are shown in
Figure 3. First, a low-resolution overview spectrum is measured at a photon energy well above
the eBE of the band of interest. Each peak in the composite high-resolution spectrum is scaled
to match the intensity of the overview spectrum to minimize threshold effects that can distort
relative peak intensities. Density functional theory (DFT) FC simulations are also plotted. The
spectra of all three isomers show dense but well-resolved vibrational structure that is accurately
predicted by FC simulation.

Considerable vibronic and structural information can be extracted from cryo-SEVI spectra. In
each panel of Figure 3, the peak at lowest eBE represents the vibrational origin (00

0 transition),
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Figure 3
SEVI spectra of photodetachment to (a) the X̃ 2 A1 ground state of 9-anthracenyl and the X̃ 2 A′ ground
states of (b) 1-anthracenyl and (c) 2-anthracenyl. Low-resolution overview scans are shown in blue and
high-resolution traces in dark gray. Peaks indicating some contamination of the 1-anthracenyl isomer in the
2-anthracenyl spectrum are plotted in yellow in panel c. DFT FC simulations are shown in red.
Abbreviations: DFT, density functional theory; eBE, electron binding energy; FC, Franck–Condon; SEVI,
slow photoelectron velocity-map imaging. Figure adapted from Reference 64 with permission.

yielding experimental EAs of 1.7155 eV, 1.5436 eV, and 1.4671 eV for the 9-, 1-, and 2-anthracenyl
radicals. The decrease in EA as the site of deprotonation is moved reflects the energetic or-
dering of the anions. DFT calculations find that the 9-anthracenyl anion is lowest-lying, while
the 1-anthracenyl and 2-anthracenyl anions lie 0.13 eV and 0.18 eV higher in energy. By con-
trast, the 9-, 1-, and 2-anthracenyl radicals are nearly isoenergetic, falling within 0.02 eV of one
another.

The cryo-SEVI spectra show extensive vibrational structure, which can be attributed nearly
entirely to fundamentals, progressions, and combination bands of totally symmetric FC-active
modes in the anthracenyl radicals. The ion temperature and instrumental resolution are sufficient
to distinguish the 2-anthracenyl ν41 and ν42 fundamentals (inset of Figure 3c), which are split by
less than 3 cm−1. The most highly FC-active modes for each radical involve significant motion near
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Dipole-bound state
(DBS): a weakly
bound state where an
electron is bound by
interaction with the
molecular dipole
moment

the deprotonated site, as photodetachment removes an electron from an s-p hybridized molecular
orbital localized at that site. This is also consistent with DFT calculations, which suggest that the
C–C–C interior bond angle at the deprotonated site widens by ∼14◦ in all three systems upon
detachment to the radical ground state.

4.2. Conformation-Specific Cryo-SEVI via Resonant Autodetachment

SEVI spectra can be complicated by resonantly enhanced phenomena mediated by metastable
anion excited states. If an anion excited state lies within the manifold of neutral states, excitation
to vibrational levels of this state can compete with direct detachment to the neutral. The anion
excited state can then undergo autodetachment by converting vibrational, rotational, or electronic
energy into the electronic energy required to detach an electron (31, 89). The overall process is
given by

A− + hν → A−∗ → A+ e−. 3.

The distribution of neutral states formed by autodetachment generally differs from direct detach-
ment, resulting in a photoelectron spectrum that is not governed by FC factors. For example,
vibrational autodetachment often occurs according to a vibrational propensity rule that favors the
loss of one vibrational quantum (31).

Autodetachment has two distinct experimental signatures. It can result in a structured total
photodetachment cross section, in contrast to the smoothly varying cross sections associated
with direct detachment (Equation 1). Its signature in a PES is the appearance of new vibrational
features or a significant change in the relative intensities of existing features as a function of
photodetachment energy, as one passes in and out of resonance with the autodetaching state.

As an example of the complex interplay between direct detachment and autodetachment, Wang
and coworkers (90) have perfected a spectroscopic technique that combines cryo-SEVI with mode-
specific vibrational autodetachment from a diffuse dipole-bound state (DBS) of the anion of in-
terest. By acquiring cryo-SEVI spectra at specific, resonant photon energies, this method can
illuminate both the FC-forbidden vibrational structure of the neutral and the autodetaching vi-
brational levels of the DBS. The high resolution and spectral clarity afforded by cryo-SEVI is
necessary to resolve the specific neutral features populated by autodetachment. A number of rad-
ical species have been probed with this method, including phenoxy (90); 2-hydroxyphenoxy (91);
and deprotonated uracil (92, 93), thymine (94), and 2-hydroxypyrimidine (95).

Because the resonant autodetachment process is state-selective, it can be used to distinguish
the spectroscopic contributions from different conformers. The DBS of a single conformer can be
resonantly excited; it then autodetaches to populate the neutral vibrational levels of that conformer,
enhancing the SEVI signal of one species over the other. While separation of two conformers
connected by a hindered rotation is impossible at temperatures where the barrier is energetically
accessible, the low temperatures achieved in a cryogenic ion trap freeze out static populations,
which can then be probed independently.

The Wang group (70, 96) has used this technique to disentangle cryo-SEVI spectra of the
two 3-hydroxyphenoxy (3-HPO) radical conformers. The two 3-HPO conformers are shown in
Figure 4a. Both syn and anti 3-HPO have sufficient dipole moments to support a DBS, whose
binding energies can be measured via threshold photodetachment (96). The anions are prepared
in an ESI source and cooled in a cryogenic trap. While the syn conformer is calculated to be
slightly more stable than the anti conformer, they are close enough in energy that both species
are formed and observed experimentally. The nonresonant SEVI traces shown in Figure 4b show
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Figure 4
(a) Schematic structures of the anti and syn 3-hydroxyphenoxy conformers. Representative (b) nonresonant and (c,d ) resonant
cryo-SEVI images and spectra of 3-hydroxyphenoxide taken at various detachment wavelengths. Peaks labeled with A and S
superscripts represent vibrational levels of the anti and syn conformers, respectively. Abbreviation: cryo-SEVI, slow photoelectron
velocity-map imaging of cryogenically cooled anions. Figure adapted from Reference 70 with permission of AIP Publishing.

contributions from both syn and anti 3-HPO, with the vibrational origins of the two species split
by 67 cm−1.

The cryo-SEVI spectra show features and relative intensities that vary strongly with wave-
length, indicating contributions from resonant autodetachment; representative traces are shown
in Figure 4c,d. The resonantly accessed DBS states and the neutral levels populated after autode-
tachment can be assigned through comparison with calculated DFT frequencies and measured
DBS binding energies of the two conformers.

Figure 4c(i–iv) shows cryo-SEVI traces taken at photon energies that resonantly excite vi-
brational fundamentals of either the syn or anti DBS, which then autodetach by loss of a single
vibrational quantum to populate the corresponding syn or anti vibrational origin. The SEVI traces
in Figure 4c(v),d result from resonant excitations of combination band and overtone DBS states,
which autodetach to preferentially populate relevant neutral vibrational fundamentals. In total,
Wang and coworkers mapped out more than 30 DBS resonances of syn and anti 3-HPO, which
aided in the characterization of 14 vibrational fundamentals of the two conformers, including
several FC-forbidden modes inaccessible with conventional cryo-SEVI.

4.3. Structural Isomers of Metal Oxide Clusters

Catalysts based on transition metal oxides catalyze many fundamental chemical reactions. Hence,
there is considerable interest in developing a molecular-level understanding of what underlies
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this chemistry. Many of the reactive properties of surfaces arise from defect sites, where the local
stoichiometry and bonding motifs differ from the bulk crystal structure; uncovering the detailed
reaction mechanisms at these active sites is a fundamental goal of physical chemistry (97). These
considerations have motivated studies of gas-phase metal oxide clusters that, in addition to being
tractable for both experimental and computational study, have a high proportion of reactive surface
atoms analogous to bulk surface defects (98). Clusters display dramatically different structures and
reactivity as a function of size; their study can therefore elucidate the evolution of properties and
emergence of macroscopic phenomena as one moves toward the bulk. By determining how the
size and composition of a cluster govern its reactivity, one can gain insight into the workings of
bulk catalysts (99, 100).

The spectroscopy of transition metal oxide clusters can be challenging, and contributions
from multiple low-lying spin states (101, 102), electronic configurations (103, 104), and structural
isomers (105, 106) must be considered. The study of these species with anion PES has been limited
by poor vibrational resolution resulting from numerous low-frequency vibrational modes and
warm ion temperatures, as clusters formed in a laser ablation source heat up during condensation
(107, 108). The development of cryo-SEVI has made tractable the full vibrational characterization
of size-selected metal oxide clusters, even those containing multiple transition metal atoms (101,
102). As an example, our study of the Ti2O4

− and Zr2O4
− anions (109) allowed for conclusive

determination of the minimum-energy and next lowest-lying structures of these species and served
as a confirmation of high-level theoretical work.

The M2O4
−/0 (M = Ti, Zr) clusters have three possible low-energy geometries, as shown

in Figure 5a. Anion photoelectron spectra have been reported in the literature for Ti2O4
−, but
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with insufficient energy resolution to resolve any vibrational structure, making assignment of a
structural isomer unclear (23, 110). Li & Dixon (111, 112) carried out CCSD(T) calculations
for the M2O4

−/0 (M = Ti, Zr) species and found that the Ti2O4
− and Zr2O4

− anions take on
C2v and C3v geometries, respectively, although the other structures are low-lying (Figure 5b).
These calculations indicated that, while the M2O4

− structures should have similar EAs, resolution
of vibrational structure and comparison to FC simulation would allow for distinction between
isomers.

The cryo-SEVI spectra of Ti2O4
− and Zr2O4

− are shown in Figure 5c,d. The Ti2O4
− spectrum

shows a weak but extended progression of peaks spaced by ∼180 cm−1 (band A), which becomes
buried under more intense photoelectron signal at higher eBE with a peak spacing of 95 cm−1 (band
B). The Zr2O4

− spectrum also shows two overlapping bands, one considerably more intense than
the other, with differing characteristic peak spacings: Band A begins with a strong vibrational origin
and has irregularly spaced vibrational structure, while band B underlies it with a weak progression
of peaks spaced by 95 cm−1. For both M2O4

− species, bands A and B have distinct anisotropies in
the SEVI images, suggesting that they correspond to two different photodetachment transitions.

The two bands are assigned to photodetachment of distinct anion isomers, each landing in
a neutral state with the same corresponding molecular structure. The contribution of different
anion isomers can be assigned by comparison to FC simulations; when vibrational features are
fully resolved, the different isomers have strikingly different spectral fingerprints. For Ti2O4

−, the
180-cm−1 and 95-cm−1 spacings of band A and band B match well, respectively, with the calculated
FC-active terminal oxygen wagging modes of the neutral C2h and C2v isomers. In Zr2O4

−, the
strong vibrational origin and several FC-active modes of band A match the predicted photoelectron
spectrum of the C3v isomer. The 95-cm−1 spacing of the Zr2O4

− band B, like that of the Ti2O4
−

spectrum, clearly points to the C2v isomer.
Our preparation of cold ions is likely to favor the most stable anion isomers. Considering

the most intense band in the spectrum of each M2O4
− species, it appears that the lowest-energy

anion isomers are the C2v structure for Ti2O4
− and the C3v structure for Zr2O4

−. Based on the
assignment of the weaker bands, the second-lowest-energy isomers are the C2h and C2v structures
for Ti2O4

− and Zr2O4
−, respectively. The observed ordering agrees with the calculations of Li &

Dixon (Figure 5b). Even the relatively simple M2O4
− clusters have proved challenging to model

computationally, and the cryo-SEVI results provide an important experimental benchmark to
confirm the structures, frequencies, and energetics of these species. The natural extension of this
work is to study the reactive complexes of metal oxide clusters with small molecule substrates as
more explicit models for catalysis, in line with the work of Jarrold and coworkers (113).

4.4. Structures and Low-Frequency Vibrations of Noble Metal Clusters

Despite the fact that bulk gold is quite inert, gold nanostructures have high catalytic activity and
varied applications in materials science, sensing, and electronics (114). As with the metal oxide
clusters discussed in Section 4.3, the study of gas-phase gold clusters is a good starting point to
gain insight into their size-dependent geometries, electronic structure, and behavior (115). Noble
metal clusters can also be doped with atoms of other elements to form alloys with new and tunable
properties.

Wang and coworkers (116, 117) have carried out several anion PES studies of pure and
doped gold clusters. With their high-resolution SEVI work on the Au4

− (118) and Au2Al2−

(119) clusters, they have been able to confirm the geometries of these species and resolve very
low-frequency vibrational structure. Clusters were formed by laser ablation of either a pure gold
or mixed gold-aluminum target, with helium carrier gas seeded with argon. While the Wang
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and geometrical structures and FC-active vibrational mode displacements for (c) Au4

− and (d ) Au2Al2−.
Panels a and c adapted from Reference 118 with permission. Panels b and d adapted from Reference 119 with
permission.

group does not have a cryogenic ion trap coupled to their laser ablation source, the clusters
appear to be produced under sufficiently cold conditions for spectroscopic clarity.

Earlier PES studies of Au4
− reveal only partial vibrational structure for this species (120, 121),

but ion mobility measurements (122) and theory (123) suggest that the ground-state anion isomer
has a planar C2v Y-shaped structure, as shown in Figure 6c. While neutral Au4 is predicted to take
on a planar D2h rhombus structure (123), vertical detachment from the anion ground state will
yield information about the C2v neutral isomer.

The SEVI spectra shown in Figure 6a confirm the assignment of Au4
− to the C2v isomer.

The spectra are dominated by a vibrational progression (peaks A, B, C, etc.) with a fundamental
frequency of 171 cm−1. Spectra taken under warm source conditions show that a hot band appears
below the vibrational origin, yielding the corresponding frequency of 135 cm−1 for Au4

−. These
frequencies are assigned to the ν2 vibrational mode, whose displacement is shown in Figure 6c.
Mode ν2 is expected to be highly FC active, as it corresponds to significant Au–Au stretching in
the base of the Au3 moiety, and detachment of Au4

− removes an electron from an antibonding
molecular orbital localized to these two atoms. The localization of this orbital also leads to an
increase of 40 cm−1 in the calculated ν2 frequency from anion to neutral, in good agreement with
what is observed experimentally.

The Au2Al2−/0 alloy clusters, interestingly, both prefer C2v tetrahedral geometries, with little
geometry change upon detachment. The SEVI traces of Au2Al2− shown in Figure 6b reveal two
short vibrational progressions with frequencies of 305 cm−1 and 57 cm−1. These correspond to
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modes ν1 and ν3 (Figure 6d). Two hot bands, labeled with asterisks, lie below the vibrational
origin and report on the two lowest-frequency totally symmetric modes of the anion.

It is compelling that the Au2Al2−/0 alloy clusters take on a three-dimensional tetrahedral ge-
ometry, while the pure Au4

−/0 clusters prefer planar geometries, albeit two different ones. Pure
gold clusters are thought to prefer planar structures because of relativistic effects that enhance
5d-6s hybridization and lead to very directional bonding (124). The SEVI results indicate that
this preference is disrupted by interactions with aluminum atoms, suggesting that the nanoscale
geometries of these species are highly tunable as a function of composition.

4.5. Nonadiabatic Vibronic Structure of Vinylidene

Vinylidene (H2CC), the simplest unsaturated carbene, is a high-energy isomer of acetylene with
a very low barrier to isomerization in its ground singlet electronic state (Figure 7a). As a result,
neutral vinylidene is difficult to isolate, and much spectroscopic work has instead searched the
high-lying states of acetylene for traces of isomerization and mixing with the vinylidene well (125).
Anion PES provides a more direct method to probe this species, as H2CC− constitutes the global
minimum isomer on the anionic C2H2

− surface. H2CC− is easily synthesized in the gas phase by
deprotonating ethylene (C2H4) with O−; its vibrational spectrum has been characterized using
infrared two-photon photodetachment and one-photon autodetachment (126). Detachment from
the H2CC− X̃ 2 B1 state allows transitions to both singlet and triplet neutral states, as illustrated in
Figure 7a; previous anion PES experiments by Ervin et al. (127) illuminated the energetics and
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some vibrational features of the H2CC ground singlet state (X̃ 1 A1) and low-lying ã and b̃ triplet
states. In that work, features in the singlet band were observed to be considerably broader than in
the triplet bands. Since the triplet states are predicted to have much higher isomerization barriers
than the X̃ 1 A1 state (128), this result was interpreted as an indication of rapid isomerization
dynamics in the ground singlet state.

A recent cryo-SEVI study of the two lowest triplet (ã3 B2 and b̃3 A2) and first excited singlet
(Ã1 A2) states of vinylidene provides a more complete picture of the complex vibronic structure
of the excited electronic states of this species (129). Cryo-SEVI spectra of the ã , b̃ , and Ã bands
are shown in Figure 7c,d for H2CC and Figure 7e,f for D2CC, accompanied by high-level pho-
todetachment simulations plotted as stick spectra. Calculations indicate that the energy ordering
of these states is ã < b̃ < Ã and that these three excited state surfaces demonstrate significant
(∼2 eV) barriers to isomerization to acetylene (Figure 7a).

The ã3 B2 bands (Figure 7c,e) exhibit regular vibrational structure assigned to totally symmet-
ric vibrational states with reference to theoretical stick spectra in dark pink and prior work (not
shown; see 127). At higher eBE, the overlapping b̃3 A2 and Ã1 A2 bands (Figure 7d,f ) are less
straightforward to interpret. Comparison with the simulated stick spectra in blue allows identi-
fication of features arising from the Ã band, which had been previously predicted (130) but not
experimentally observed. The b̃ band vibrational origin has been reported before (127), but we
newly resolve a collection of weak and irregular features (marked with asterisks) falling to either
side, not reproduced by the simulated stick spectra in red.

The intensities of these irregular features are independent of ion temperature, indicating that
they are not hot bands and instead reflect the vibronic structure of neutral H2CC. The spacing
of these features is too narrow to represent any harmonic frequencies of the b̃ state. The high
isomerization barriers indicate that these irregular features do not reflect coupling to the acetylene
well. Instead, it appears that these features result from nonadiabatic coupling with the nearby ã
state. We identify a conical intersection (CI) between the ã and b̃ states lying only 0.05 eV above
the b̃ state minimum (Figure 7b). Near the CI, dark ã state vibrational levels can borrow intensity
from close-lying bright FC-active levels of the b̃ state, as well as perturb their expected positions
and intensities.

The vinylidene excited states clearly exhibit interesting vibronic behavior even in the absence
of coupling into the acetylene well. In additional recent work (131), we discuss subtle effects of
isomerization in the cryo-SEVI spectra of the vinylidene X̃ 1 A1 ground state.

4.6. Transition State Spectroscopy of Bimolecular Reactions

Direct observation of the reaction transition state is one of the holy grails of chemistry (132).
Characterization of this unstable species—its geometry, energy relative to the product and reactant
asymptotes, and vibrational frequencies—can provide a wealth of information about the reactive
potential energy surface and how it governs chemical behavior. Photodetachment of a bound
anion similar in geometry to a neutral unimolecular or bimolecular transition state can yield a
spectrum showing structure characteristic of the neutral potential energy surface (25, 26). It is
possible to observe FC structure in modes perpendicular to the reaction coordinate and, more
interestingly, sharper features corresponding to discrete quantum states that are quasibound along
the reaction coordinate (26). Such resonances along the reaction coordinate can be very sensitive
probes of the transition state region and are an exceptional point of comparison between theory and
experiment.

The capabilities of cryo-SEVI transition state spectroscopy are well illustrated via the F +
H2 → H + HF reaction, a benchmark system for molecular beam scattering experiments
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(133–135). The weakly bound FH2
− anion has similar bond lengths to the neutral transition

state, but is linear while the F +H2 transition state is bent. The photoelectron spectrum is there-
fore dominated by a FC progression in the F–H–H bending motion. An energy diagram of this
photodetachment process is shown in Figure 8c. Early anion PES studies resolved the bending
progression but saw no hints of sharper structure from reactive resonances (136). Calculations pre-
dicted that resonances should be observable with higher resolution (137), but their identification
proved elusive in a preliminary SEVI study (138).

Revisiting the F+H2 (D2) reaction with cryo-SEVI finally allowed the resolution of resonances
in the product and reactant wells and near the transition state (139). The FH2

− (FD2
−) anions
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are produced by clustering F− with H2 (D2) buffer gas at cryogenic temperatures in the ion trap,
yielding considerably better ion signal than was achievable in a gas jet expansion. This proved
essential for achieving high signal-to-noise in the cryo-SEVI measurements.

Low- and high-resolution cryo-SEVI spectra of p-FH2
− and n-FD2

− are plotted in Figure 8a,b
alongside theoretical spectra that use new high-quality potential energy surfaces (140). Calculated
scattering wavefunctions at the energy of each peak are extracted to facilitate assignment of the
observed structure. Figure 8d shows plots of the wavefunctions in red and blue corresponding to
the labeled spectral peaks; the initial anion wavefunctions are shown in green.

In addition to the previously observed bending FC progression (peaks A, B, and C for FH2
−

and peaks D and E for FD2
−), we now resolve and assign several resonance features, representing

bound or quasibound states supported by the reaction potential energy surface. Features α, A, and
a in FH2

− and peaks b and c in FD2
− all manifest clearly in the accompanying simulations. The

nature of these resonances is revealed by their localization and nodal structure in the wavefunction
plots in Figure 8d. Peak A had previously been assigned to a delocalized direct scattering state,
but we now see that it is in fact a resonance localized near the F +H2 transition state, with three
quanta of excitation in the H–F stretching mode. Peaks a, b, and c are quasibound resonances
supported by the H. . .H–F (D. . .D–F) product van der Waals well, with different quanta in the
H–F (D–F) and H–HF (D–DF) stretching modes, while α is a weakly bound state supported by
the F. . .H2 reactant well. The product resonance corresponding to peak a had been predicted by
Russell & Manolopoulos (137) in 1996, but peaks b and c in the FD2

− spectrum had not previously
been predicted or observed.

The cryo-SEVI study of F + H2 demonstrated that high-resolution transition state spec-
troscopy experiments can serve as benchmarks for state-of-the-art theoretical treatment of bi-
molecular reactive surfaces. This motivated the application of the technique to a system with
considerably more degrees of freedom, the 7-atom F + CH3OH→HF + CH3O reaction (141).
Like the F + H2 reaction, F + CH3OH represents a favorable case for transition state spec-
troscopy, with a hydrogen-bonded CH3OHF− anion similar in geometry to the transition state
for abstraction of the hydroxyl H atom, as shown in Figure 9a.

Cryo-SEVI spectra of CH3OHF− and CH3ODF− are shown in Figure 9c,d, accompanied
by a high-level quantum dynamical simulation of the CH3OHF− photodetachment spectrum
in Figure 9b. The spectra are dominated by broad steps (labeled a–e), with an a–b spacing of
∼3,600 cm−1 for CH3OHF− detachment and ∼2,700 cm−1 for CH3ODF−. Previous photode-
tachment experiments (142, 143) also observed this stepped structure and assigned it to an H−F
stretching progression of the CH3O−HF product complex (PC). The location of the structure
with respect to the product and reactant asymptotes confirms that the observed structure lies in
the PC well.

With cryo-SEVI, we resolve fine structure spaced by ∼200 cm−1 superimposed on the broad
steps and not previously resolved. The nature of this structure can be explained with reference to
the vibrational adiabatic potentials (VAPs) shown in Figure 9a, which correlate to free HF(ν) +
CH3O products. The spectral steps a–e each represent detachment to an HF(ν = 0–4) VAP, while
the fine peaks within each step are resonances supported in the PC VAP wells with excitation in the
CH3O−HF stretching mode. This assignment is confirmed with reference to the nodal structure
of wavefunctions extracted from the quantum dynamical simulations (Figure 9e). For instance,
the a1, b1, and c1 wavefunctions show an increasing number of nodes along the H−F stretching
axis, while the a1, a2, and a3 wavefunctions add nodes along the CH3O−HF stretching axis.

While the states in feature a are bound with respect to the product asymptote, the states in
features b–e are metastable and will eventually dissociate via vibrational predissociation as H–F
stretching energy flows to translational motion along the reaction coordinate. As all resonances
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seen here also lie below the reactant asymptote, they are inaccessible to an F + CH3OH reactive
scattering experiment and therefore uniquely accessible with an anion PES scheme. Despite the
complexity of the F + CH3OH system, this study shows that its key dynamical features can still
be captured by a relatively simple physical picture.

5. SUMMARY AND OUTLOOK

Since our last review of the SEVI technique (33), new developments in cryogenic ion cooling
and velocity-map imaging have allowed for photodetachment studies of a wide range of complex
systems with excellent spectral clarity. The versatility of the cryo-SEVI technique in application to
nearly any bound anion has allowed for high-resolution studies of free radicals, metal-containing
clusters, nonadiabatic effects in the excited states of small molecules, and transition state spec-
troscopy of neutral reactive surfaces and metastable species. Recent cryo-SEVI work has shone
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light on decades-old questions in benchmark systems such as the metastable vinylidene carbene
and the F+H2 reaction, and theoretical advances have aided significantly in the interpretation of
these results.

Several promising future directions for the cryo-SEVI technique involve the incorporation of
more diverse means to synthesize and isolate exotic anions. We have begun work with a new laser
ablation cluster reactor source to study complexes of metal oxide clusters with small molecule
substrates (144). Another interesting possibility is to couple an ion mobility drift tube to the cryo-
SEVI spectrometer in order to separate different conformers (145). This could easily be coupled
to an ESI anion source, which has already been used with cryo-SEVI by the Wang group (69) to
great effect. Also of interest are more extensive tunable laser sources with which to probe these
species. We have recently built a difference frequency generation laser setup to generate tunable
IR light down to 4 μm (131) for high-resolution studies of species with low EAs.

The cryo-SEVI method has become established as a general and widely applicable spectro-
scopic tool, as is evidenced by its adoption in laboratories worldwide and its increasingly creative
application to diverse molecular systems. Promising developments are to be expected for many
years to come.
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