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Abstract

High-resolution vibrational spectra of C–H, O–H, and N–H stretches de-
pend on both molecular conformation and environment as well as provide a
window into the frequencies of many other vibrational degrees of freedom
as a result of mode mixing. We review current theoretical strategies that
are being deployed to both aid and guide the analysis of the data that are
encoded in these spectra. The goal is to enhance the power of vibrational
spectroscopy as a tool for probing conformational preferences, hydrogen
bonding effects away from equilibrium, and energy flow pathways. Recent
years have seen an explosion of new methods and strategies for solving the
nuclear Schrödinger equation. Rather than attempt a comprehensive re-
view, this work highlights specific molecular systems that we have chosen
as representing bonding motifs that are important to chemistry and biology.
We focus on the choices theoretical chemists make regarding the level of
electronic structure theory, the representation of the potential energy sur-
face, the selection of coordinates, preferences in basis sets, and methods of
solution.
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1. INTRODUCTION

This review examines theoretical approaches to interpreting the intriguing spectral features as-
sociated with C–H, O–H, and N–H stretch molecular vibrations. Rather than observing a single
transition for each of these vibrations, there are many transitions whose presence is a result of
resonance interactions with other energetically near-lying states. The rich information content
embedded in the numbers, positions, and intensities of these lines allows scientists to gain insights
into motions of molecules and the features of the potential energy landscapes that lead to these
motions. In so doing, they learn about hydrogen bonding strengths, conformational preferences,
and energy flow pathways. The information content of IR and Raman spectra is most clearly re-
vealed with theoretical calculations supporting innovative experiments, and this review focuses on
such comparisons. Rather than explore one technique or a specific molecular system, we review
select works in this field that enable us to highlight common threads of research. In exploring the
similar approaches to complex problems, one can get a better understanding of the underlying
challenges to the theoretical modeling of high-frequency vibrations.

This area of research is backed by an ever advancing and growing theoretical machinery com-
prised of powerful computers and elegant computational algorithms. The goal of all this research
is to solve the nuclear time-independent Schrödinger equation (TISE) and interpret the results.
There are three crucial steps in the solution process. First, one must express the Hamiltonian
and dipole moments as functions of their coordinates and for the former the conjugate momenta.
Second, one must choose a representation or basis so that one can express the Hamiltonian in a
matrix form. Finally, one must be able to find the associated eigenvalues, eigenfunctions, and in-
tensities for the 3N − 6 degree of freedom Hamiltonian, where N is the number of atoms. There
is a continuum of variations and extensions to each of these steps, and the methods one pursues
in calculating these quantities depend on the size of the system and how accurately one wants to
know a select set of these eigenfunctions, eigenvalues, and intensities. The approach one prefers
depends sensitively on the scientific questions one is trying to answer and the research interests
and skills of the investigator.

Although kinetic energy operators can be complex, the biggest challenge to expressing aHamil-
tonian as a function of positions and momenta is the potential energy, and perhaps its derivatives,
at select configurations of the atoms that make up themolecular system.Electronic structure pack-
ages enable one to do this. One chooses the appropriate level of calculation based on computer
resources and accuracy, accepting the fact that the desired accuracy is often unattainable given
one’s resources. Having calculated the potential at select points one determines the potential en-
ergy surface (PES) that describes the functional dependence of the potential in a form that allows
for easy evaluation at arbitrary points (1–13). A common goal is to find the best global represen-
tation using the fewest ab initio points. The resulting expressions need to be rewritten in a set of
coordinates and in a form that allows for easy evaluation of matrix elements. These coordinates
should also minimize the kinetic couplings and allow for ready evaluation of those matrix ele-
ments. In making these choices, one must do so with a basis set in mind. A notable example is the
basis of discrete variable representations (DVRs) for which the potential matrix integrals reduce
to evaluating the potential at select points in configuration space (14).

The final step, as mentioned above, is to solve for the eigenvalues and intensities. Direct ma-
trix diagonalization is the most straightforward approach. Unfortunately, the computation time
for this method scales as N 3, where N is the size of the basis set. For this reason, there are im-
portant algorithmic advances occurring that are extending the size of molecules and values of
energies that can be treated by exploiting iterative methods. In instances in which memory stor-
age becomes an issue, matrix iteration methods such as those by Lanczos (15–21) and Davidson
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(22) have proven more useful than those of direct diagonalization. These methods rely on rapid
matrix product evaluations that are aided by efficient storage. Garnier clearly delineates many of
the central advances in this area (23). Basis set contractions have long been a pivotal way to reduce
the size of variational calculations and costs of storing wave functions. Recently, however, workers
have turned to the methods of tensorial factorization as a powerful technique for achieving similar
goals (24–30).The alternating least squares minimization approach (31) is one of the most popular
ways of carrying out this factorization.

Excellent packages have been developed that take advantage of the abovementioned consider-
ations. These include TROVE (32), MULTIMODE (33, 34), GENIUSH (35, 36), DYNAMOL
(37), and PyVCI (38, 39), as well as those based on themulticonfiguration time-dependentHartree
(MCTDH) method (40–43). The variety of systems and the coupling pathways that are encoun-
tered in molecular systems benefit from different sets of approximations, representations, and ease
of interpretation. Each of the above software packages has areas in which they excel.

Against this backdrop, our work examines a selection of systems of experimental interest.Given
the breadth of the field, the review highlights specific problems inwhich including anharmonicities
andmodemixing is essential.We begin with normal modes, as they are both the simplest andmost
important tool for describing vibrations.We then consider perturbative treatments that highlight
the importance of resonances as well as electrical and mechanical anharmonicities. Closely re-
lated to perturbative treatments are effective Hamiltonian treatments in which simple local mode
Hamiltonians are used to describe how the C–H stretch region can be used to distinguish con-
formational preferences, even though this is a region dominated with Fermi coupling interactions
with scissor modes. Our review then turns to reduced-dimensional treatments of ab initio–based
Hamiltonians. For O–H and N–H stretches, we review studies of bonding motifs that are chosen
to gain insights into hydrogen-bonding effects that are realized as a result of molecular motions.
In the final part of our review, we examine three very different treatments of the vibrations of
the formic acid molecule focusing on the factors mentioned above, and we place them within
the context of current research activities to assign spectra and interpret resonance couplings. This
component of the review highlights the techniques used to represent the potential and to solve the
nuclear TISE.We choose this molecule because the extensive spectroscopic data that are available
provide an excellent benchmark for describing the coupling pathways due to the many resonance
interactions. As such, the analysis provides a challenge to perturbative techniques that are cur-
rently receiving substantial interest. In addition, the molecule has a low-energy conformer that
requires potential fitting strategies beyond the typical Taylor series expansion of normal modes.

2. HIGH-RESOLUTION SINGLE-CONFORMER SPECTROSCOPY
AIDED BY NORMAL MODES

For many molecular studies, especially those of semirigid molecules, normal mode investigations
of the lower-frequency modes provide the desired level of theory for determining spectral assign-
ments and conformational preferences.Given their importance, we review such treatments before
moving on to our treatments of anharmonicities.

High-resolution single-conformer vibrational spectroscopies (44–51) of large biomolecules
allow experimentalists to uncover spectral patterns that are hidden at room temperatures.Normal
mode calculations have proven to be critically important in modeling the observed line positions
and intensities in order to identify bonding preferences. These calculations are carried out with
electronic structure computer packages that provide stable structures and IR spectral positions
based on the double harmonic approximation. The force field is assumed to be harmonic, and
the dipoles are approximated as having constant and linear contributions. The most widely
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Figure 1

IR predissociation spectra of GlyH+(D2) (a) and β-AlaH+(D2) (b) compared with harmonic spectra calculated at the cam-B3LYP
(c) and def2TZVP/GD3BJ (d) levels. An asterisk indicates an isomer that has been assigned to the experimental spectrum. The spectra
cover the frequency range, from NH2 bends to OH stretches. Figure adapted with permission from Reference 53; copyright 2020
American Chemical Society.

used theories are scaled density functional methods that have the advantage of being fast and
reasonably accurate (52). Andersson & Uvdal (52) found a scaling for the B3LYP/6-311+G(d,p)
basis that leads to agreement of 93% of the fundamentals being predicted to within 2% of the
experimental results for a large data set.

The work of Fischer et al. (53) provides a nice example of this approach. They recorded high-
resolution D2-tagged IR spectra of the GlyH+(H2O)n and β-AlaH+(H2O)n species in order to
reveal and compare the microsolvation motifs. Figure 1 shows a comparison between normal
mode theory and a D2-tagged IR spectrum of the bare species. This study includes additional
comparisons of the successively hydrated species that allow their bonding preferences to be de-
termined. The study of such clusters is significant; these relatively small systems offer a spectral
resolution, as is evident in Figure 1, that allows us to test our ability to predict the relative sta-
bility conformers, a stability that depends sensitively on the same noncovalent interactions and
hydrogen bonding strengths as those found in the liquid phase.

A second example of the power of the scaled density functional theory (DFT) approach is
evident in the study of Lawler et al. (54). The goal there was to reveal conformational preferences
of peptide backbone structures that were designed to form β-hairpin loops. The single scaling
factor that is typically used was found to be inadequate for the 1,600–1,800 cm−1 region, a region
that is commonly associated with the amide I vibrations. In these protonated peptides the C=O
stretch fundamentals can experience extensive mixing with the N–H bending fundamentals of the
NH+

3 group. A scaled localized normal mode Hamiltonian was developed that has one scaling
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factor for C=O stretches and another for the N–H bending. This updated model describes this
spectral region with enough accuracy to allow the conformer specific spectra to be assigned to
computationally determined low-energy structures.

3. APPLICATIONS OF SECOND-ORDER PERTURBATION THEORY

3.1. General Implementation Considerations

To improve on normal mode predictions of transition energies and intensities, one needs to in-
clude anharmonicities and higher levels of electronic structure theory. A simple and time-honored
approach for doing this is to calculate the cubic and select quartic terms in the Taylor series ex-
pansion of the potential with respect to the normal modes for use in second-order perturbation
theory (55, 56), although local modes have also been found to be effective for perturbative treat-
ments (57–59). The normal coordinate Taylor series expansion coefficients are readily calculated
using finite differences of Hessian elements that can be calculated analytically with many levels of
electronic structure theory. These methods have been incorporated into many electronic struc-
ture packages for use in what is now referred to as vibrational second-order perturbation theory
(VPT2).

The VPT2 level of treatment of the vibrations has been shown to be sufficiently accurate that
one can use it to test the quality of PESs.A study that clearly demonstrates this is the Puzzarini et al.
(60) investigation of the vibrations of uracil. An important aspect of this work is that the authors
build on the idea of Handy and coworkers (61) to demonstrate the utility of hybrid methods in the
force field description. Hybrid methods are widely used and involve calculating quadratic terms
at a higher level of theory than the cubic and quartic terms. The motivation is clear. There are
far fewer quadratic terms than cubic and quartic terms, the spectral results are most sensitive
to the quadratic terms, and the higher-order terms are less sensitive to the level of electronic
structure theory. Puzzarini et al. (60) explored the use of coupled-cluster level theory for energies
and intensities with and without anharmonic terms calculated at the density functional level. This
study compares hybrid results to MP2-level calculations, focusing on the role of basis sets as well
as the perturbative treatment of the resonant coupling terms.

In a systematic and wide-ranging investigation, Roy et al. (62) and more recently Roy (63)
have compared the energies and intensities of fundamentals and overtones that have been calcu-
lated with second-order perturbation theory using a zero-order vibrational self-consistent field
(VSCF) basis for results of various levels of electronic structure theory. Roy and colleages found
that the CCSD(T)/cc-pVTZ basis yields a 1.4% mean absolute error for the 135 fundamentals of
16 molecules.

3.2. VPT2 Applications

VPT2 can be used to model the O–H and C–H stretching regimes if one is thoughtful in the
treatment of the Fermi resonance interactions (64–71). The recent work by Lee and cowork-
ers on IR spectroscopy of polycyclic aromatic hydrocarbons (PAHs) should be mentioned in
this regard (64–66). Owing to the many resonance interactions, a large polyad model (72) is
constructed, allowing for many interacting states. These studies were based on DFT force
fields due to the large size of the PAH molecules. The resonance identification was based on
separate force constant magnitudes and energy difference thresholds. The quality of their C–H
stretching predictions was impressive given the wide range of PAH sizes that were considered.
Interestingly, for some of the larger PAHs (73), the experimental spectra are more congested than
the theoretical predictions. Given our current understanding of the onset of state mixing in large
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systems (74), it is not surprising that simple polyad treatments of C–H stretches are not able to
describe eigenstate-resolved spectra in large molecules.

Looking at smaller systems, Franke et al. (70) applied VPT2 to the study of i-propyl and
n-propyl with good success.The C–H stretch regime of these radicals was measured by generating
the radicals in the gas phase and promptly solvating them in a beam ofHe nanodroplets.This work
was followed by an in-depth perturbative analysis of which anharmonic terms should be treated
as resonances in the C–H stretch regions for several molecules (71). Figure 2 shows the impres-
sive results from that work (71), in which different predicted spectra correspond to the different
criteria that were considered in Figure 2a–d for identifying interactions as being resonant.

This work also carefully describes the importance of choosing the appropriate levels of theory
and basis sets in the electronic structure calculations. In the comparison shown in Figure 2, the
potential was calculated at the CCSD(T) level of theory using atomic natural orbital basis states
(75), a basis that appears to provide exceptional results. As is commonly done, the force field is a
hybrid force field in which the quadratic couplings are calculated with an ANO1 basis set and the
cubic/quartic and dipole terms are calculated with ANO0 basis sets. To appreciate the quality of
this work, the reader should compare the scale of the wave number axes in Figures 1 and 2.

Electrical anharmonicity is caused by higher-order terms in the dipole moment expansion.
Given the similarity between Figure 2d and Figure 2e, one might conclude that electrical anhar-
monicity is relatively unimportant for describing this spectral region.We now turn to a system in
which this is definitely not the case.

Stropoli et al. (67, 68), in an experimental/theoretical collaboration, have recorded the spectra
of H2-tagged cryogenically cooled X− · HOCl (X = Cl, Br, and I) ion–molecule complexes (see
Figure 3) with the goal of examining the spectroscopic implications of a strong anionic H-bond
to an acid OH group. The work builds on previous studies of the less acidic X− · HOH ion com-
plex. Spectra in both the O–H stretching and HOCl bending regimes were recorded to examine
the effects of varying acidity. A beautiful feature of this system is that as the acidity increases
from X = I to Cl, the O–H stretch frequency decreases and is essentially tuned through a Fermi
resonant interaction with the OH bend overtone, with Br− ·HOCl showing the most pronounced
resonant coupling. This simple resonant picture, however, cannot alone account for the spectral
complexity, and theoretical calculations were needed to discover the nature of the coupling
mechanisms.

VPT2 was carried out with the PyVibPTn package (69) to investigate the coupling using
MP2/aug-cc-pVTZ levels of theory for X = Cl and Br and MP2/aug-cc-pVTZ-pp and effective
core potentials for X = I. This code allows both excitation of states with more than two quanta
and substantial flexibility in the choice of resonances. As in the work of Franke et al. (71), and
as demonstrated in Figure 2, this flexibility is crucial when investigating states with complicated
coupling pathways. A surprising finding was that there are low-frequency modes between the ion
and the complex that reveal themselves as important contributors to the richness of the spectral
congestion.

Even at the frequency of the OH bend there are several surprising features that are revealed.
The double-harmonic approximation predicts a single line corresponding to excitation of the bend
fundamental.However, as can be seen in Figure 4, there are additional peaks. The expected νHOCl

transitions are shown for both the VPT2 theory and the experiment. The theoretical analysis re-
vealed that the out-of-plane H motion has a large quadratic dipole moment that arises owing to
this motion, modulating the strength of the H-bonding interaction. This effect is so pronounced
that it leads to the overtone 2νoopH having an oscillator strength that is often larger than the
bend fundamental. Furthermore, moving from right to left in the figure corresponds to increas-
ing the basicity of X−, and one clearly sees the corresponding shift of the overtone to higher
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Figure 2

IR spectrum of isoprene compared with various VPT2 simulations. The most rigorous simulation is shown
in blue. (a) VPT2+F based on individual energy difference and force constant magnitude tests. (b) VPT2+F
based on the Martin test. (c) VPT2+F based on the “large effective Hamiltonian” model. (d) VPT2+K based
on the “large effective Hamiltonian” model. (e) VPT2+K based on the “large effective Hamiltonian” model
and assuming electrical harmonicity. Transitions due to a different isoprene conformer are indicated with
arrows. Figure adapted with permission from Reference 71; copyright 2021 American Chemical Society.
Abbreviation: VPT2, vibrational second-order perturbation theory.

wave numbers. Intriguingly, for the intermediate case shown in Figure 4b the second line van-
ishes. The authors explain this disappearance as a result of destructive interference of two bright
states that have mixed because they are Fermi coupled, a result that is revealed in the VPT2
calculations.
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Comparison of hydrogen bonding modifications in (a) X− · HOH and (b) X− · HOCl. Figure adapted from
Reference 67 with the permission of AIP Publishing.

4. EFFECTIVE HAMILTONIANS FOR C–H STRETCHES

The Zwier group has pioneered the use of resonant ion–dip IR (RIDIR), fluorescence-dip IR
(FDIR), and UV–UV hole burning spectroscopies to probe molecules in supersonic expansions
to record conformer-specific spectra (44, 45). Using the results of these methods, the Zwier and
Sibert groups have collaborated to develop effective Hamiltonians for the C–H stretch region of
the IR spectra (76–80). The form of these Hamiltonians is based on second-order perturbation
theory. In contrast to the above VPT2 descriptions, they chose to work in a set of localized normal
modes (79, 81–83).The Reiher group (84, 85) realized,whenever a molecule has a number of char-
acteristic vibrations consisting of close-lying delocalized normal modes, that one can carry out an
orthogonal transformation of the corresponding normal coordinates and obtain a new set ofmodes
that describe spatially localized vibrations.Different schemes have been proposed for carrying out
the localization (76, 84–89), but we have found, that for C–H stretches and CH2 scissors, the re-
sults are insensitive to the details of the localization scheme. The starting point of our approach is
a Hessian calculated at the B3LYP/6-311++(d,p) level of theory.Using cyclohexane as an example
(90), diagonalization of the Hessian yields six normal modes that correspond to scissor vibrations.
The appropriate orthogonal transformation of these modes leads to the localized scissor modes.
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H2-tagged X− · HOCl spectra for (a) X = Cl, (b) X = Br, and (c) X = I are compared with inverted stick spectra calculated at the
MP2/aug-cc-pVTZ level of theory/basis with VPT2 anharmonic correction. Calculated spectra were empirically shifted to recover the
experimentally observed positions of the overtone of the out-of-plane H atom, 2νoopH transition. The orange peaks are predicted as
arising from additional resonances. Figure adapted from Reference 67 with the permission of AIP Publishing.
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The lower triangle of the corresponding symmetric Hamiltonian matrix is as follows (90):

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1455.5
3.3 1455.5
5.1 3.3 1455.5
0.8 5.1 3.3 1455.5
5.1 0.8 5.1 3.3 1455.5
3.3 5.1 0.8 5.1 3.3 1455.5

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. 1.

This Hückel-like Hamiltonian describes six degenerate localized CH2 scissor vibrations that
are coupled to each other at the harmonic level. In contrast to valence local modes (91, 92), the
localized normal modes are decoupled from all other modes at the harmonic level. As a result,
the eigenvalues of this Hamiltonian, which neglect the quadratic couplings proportional to
a†i a

†
j + aia j , correspond to a very good approximation of the results of a normal mode frequency

analysis at the B3LYP/6-311++(d,p) level of theory.
The effective Hamiltonian model for the C–H stretches takes a similar form, but this Hamil-

tonian is more complicated because it includes six axial and six equatorial C–H stretches as well
as the overtone and combination states of the CH2 scissor modes. These modes are included
owing to the Fermi mixing that occurs for these vibrations. The effects of anharmonicities and
corrections for the use of the DFT level of theory are accounted for by scaling of the diagonal
elements of the stretches by 0.960 and the scissors by 0.975 (79). The Fermi coupling, which is
localized to the stretch-scissor couplings on individual CH2 groups, is 22.0 cm−1 in this model.
Previous work has shown that there are corrections to the cubic contribution at higher orders
in perturbation theory (57), so it is expected that this value is less than the values obtained via
electronic structure theory. Additional anharmonic contributions are taken from second-order
perturbative treatments of model systems and are assumed to be transferable between the scissor
and stretch vibrations of all CH2 and CH3 groups (79).

Figure 5 shows a result from an investigation into the conformational preferences of pentyl-
through decylbenzene (93). These preferences were determined under jet-cooled conditions in
the gas phase by combining information from laser-induced fluorescence excitation spectra, FDIR
in the alkyl C–H stretch region, and Raman spectra. This particular figure compares the FDIR
spectra of the all-trans conformer of decylbenzene to the local mode theoretical prediction. The
motions that contribute to the spectra are highlighted by dividing the local C–H stretch dipoles
into contributions from asymmetric and symmetric CH2 stretches and a CH3 stretch contribution
and then selectively turning these contributions on and off.The figure also shows those twomodes
that are linear combinations of the asymmetric modes and that carry the majority of the oscillator
strength.Using these comparisons with other conformers in addition to Raman and laser-induced
excitation spectra, Hewett et al. (93) were able to identify many conformers, including those that
should be characterized as folded structures in which the chain bends back over the phenyl π

cloud.
This local mode model was recently extended to include pseudorotation in cyclopentane. This

molecule has unusual thermodynamic (94), spectroscopic (95–99), and dynamical properties (97–
100) as a result of ring puckering. This puckering leads to a low-frequency internal motion known
as pseudorotation (101). This motion is essentially barrierless and can be treated with a particle
in a ring Hamiltonian with eigenvalues Erot = Bφ�2, with � taking on integer values and Bφ =
2.8 cm−1, a value determined by femtosecond time-resolved Raman rotational coherence spec-
troscopy (100). The dependence of coupling to C–H stretches and scissors is due to the fact that
the pseudorotation leads to the C–H stretches switching from equatorial to axial and back as
the pseudorotation angle increases by 2π . By carefully tracking the angular dependence of the
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(a) Experimental spectrum of the all-trans conformer of decylbenzene is compared with the theoretical spectrum and its dipole
decomposition. (b) The two major delocalized asymmetric modes are displayed as well. Figure adapted from Reference 93 with
permission from The Royal Society of Chemistry.

5 × 5 elements of the local mode scissor Hamiltonian along with the dipoles, the eigenvalues and
spectral intensities were calculated in a direct product basis of the one-quantum scissor states and
particle in a ring basis function describing the pseudorotation (102).

The resulting prediction is compared to the experimental spectrum in Figure 6. In contrast to
the above experiments in which the ultracold temperatures of the molecular beam greatly reduce

1,400 1,420 1,440 1,460 1,480 1,500 1,520

Wave number (cm–1)

In
te

ns
it

y 
(s

ca
le

d) Experiment
Theory

Figure 6

Comparison of experiment and theory. Temperature is −26.1°C. Theoretical intensities are scaled to match
experiment. Individual lines are broadened by Gaussian functions exp [− (I − Io)/σ 2] with σ = 0.25 cm−1.
Figure adapted from Reference 102 with the permission of AIP Publishing.
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rotational congestion, these experiments were carried out at a temperature of −26.1°C. As a result
there are many initially populated pseudorotation states and both �� = 0 and ±1 vibrational
transitions are allowed, each being broadened by the rotational profiles expected by the rotational
selection rules.

The less than regular spacings observed in Figure 6 are a result of the coupling between the
scissors being modulated by the pseudorotation. The good agreement between theory and experi-
ment provides confidence that DFT force fields are accurately capturing this coupling. The mode
mixing is substantially more pronounced in the C–H stretch region, leading to spectra that are
qualitatively more complex than those that are usually associated with this spectral regime (103).

5. REDUCED-DIMENSIONAL VARIATIONAL APPROACHES

A second time-honored approach for investigating high-frequency vibrations is to target select
molecular vibrations and assume that these vibrations are uncoupled from the remaining de-
grees of freedom. Recently, the Kuo group has championed the use of this approach and has
demonstrated its power in a series of calculations (104–109). As an example, Kuo and colleagues
(104, 105) have investigated hydrogen-bond-induced Fermi resonances in N–H���H complexes.
Mishra et al. (105) compare theoretical to experimental IR spectra in the N–H stretching regime
obtained using IR–UV double-resonance spectroscopic methods (110). The theoretical methods
included 3D and 4D normal mode models at the MP2/aug-cc-pVDT level combined with direct
product DVR basis sets to set up Hamiltonian matrices whose solutions are determined by direct
diagonalization. Three of the degrees of freedom that are included are normal modes associated
with the NH2 stretches and bending; the fourth included a mode that was determined to be in
possible Fermi resonance. The essential spectral features were reproduced, but this satisfactory
agreement is attributed to the level of theory used to determine the molecular structures.

Using similar theoretical and experimental methods, the IR spectra of neutral dimethylamine
(CH3)2NH clusters (106) have been investigated in the N–H stretch and C–H stretch methyl
stretch regions. The N–H stretches are mostly detuned from the overtone of the bends, so the in-
teresting Fermi couplings are only observed for the C–H stretches. In this study (106), the methyl
groups were assumed to be sufficiently decoupled that they could be modeled independently of
each other. Furthermore, they were modeled with Hamiltonians that include six localized normal
mode degrees of freedom that include three C–H stretches and two bending vibrations and one
umbrella vibration. The localization is due to the normal modes being derived from diagonaliza-
tion of that block of the mass-weighted Cartesian Hessian describing the positions of the four
atoms of a methyl group.

Moving away from quartic force fields, generating a highly faithful analytical representation of
the discrete data of electronic structure energies for multidimensional systems poses a challenge.
Over the past decade, many general fitting approaches have been developed to represent high-
dimensional PESs for molecular systems consisting of more than three atoms (111). Common to
many of the approaches is representing the potential in the VSCF form, which is a progression of
one-body, two-body, and so forth up toM-body terms:

V(Q1,Q1, · · ·QN ) =
N∑
i=1

V (1)
i (Qi ) +

N∑
i=1

N∑
j=1

V (2)
i, j (Qi,Qj ) + · · · . 2.

The choice of coordinates is flexible, and the value ofM can be systematically increased until the
desired accuracy is achieved (33, 112–114).

Furthermore, VSCF form simplifies the fit of a full force field to one with at most M dimen-
sions. If theQi are also combined with their conjugate momenta to solve the TISE, then the VSCF
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form allows for easier evaluation of potential energy matrix elements because all integrations of
these elements are less than or equal toM dimensions. The VSCF form blends well with sum of
product (SOP) wave functions in tensorial decomposition (115). If one requires a permutation-
ally invariant PES to correctly describe the dynamics of interest, then additional steps should be
considered. Such potentials are outside the scope of this review, but they have been reviewed by
Qu et al. (12). We note that recent advances of collocation methods (116–118) show promise for
moving beyond the VSCF form.

Zhang et al. (106) compared the results of calculations based on potentials in the restricted
quartic form used in VPT2 to those based on potentials in the form of Equation 2 with M = 5,
in which potential-optimized DVR grids were used with five points per degree of freedom. This
study also explored hybrid methods in which the 1D and 2D grid points were determined at
the CCSD/aug-cc-pVDZ level and 3D to 5D grids were determined at the MP2/aug-cc-pVDZ
level. The results, displayed in Figure 7, highlight the sensitivity of the spectra to the details of
treatment of the PES.

The utility of the localized fragment normal mode approach was further demonstrated in
a beautiful study that explored the changes that occur in the N–H stretch spectral region of

c   DVR@CCSD/aDZ//MP2/aDZ

(DMA)3 (experimental)

2,600 2,700 2,800 2,900 3,000 3,100
Wave number (cm–1)

b   DVR@MP2/aDZ

a   QP@MP2/aDZ

Figure 7

Comparison of theoretical spectra of the C–H stretch region of (CH3)2NH (DMA), calculated with (a) a
quartic potential in restricted quartic form used for VPT2, (b) numerical PES using DVR calculated with
MP2/aug-cc-pVDZ, and (c) the hybrid PES discussed in the text. Experimental data of DMA trimer
reported are shown at the bottom for comparison. Figure adapted from Reference 106 with the permission
of AIP Publishing.
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TMA-H+ . . . N2

TMA-H+ . . . CO

TMA-H+ . . . C2H2

TMA-H+ . . . H2O

TMA-H+ . . . EtOH

3,8003,6003,4003,0002,800 3,2002,600
Wave number (cm–1)

Experimental IR photodissociation spectra
Theoretical IR absorption spectra

Figure 8

The experimental IR photodissociation spectra (black) of TMA-H+���X (X = N2, CO, C2H2, H2O, and
EtOH) and theoretical IR absorption spectra (green) simulated by the 3D ab initio anharmonic vibrational
Hamiltonian at CCSD/aug-cc-pVDZ (119). The series of acceptors moving down the figure is in order of
increasing proton affinities, these being 494, 594, 641, 691, and 776 kJ mol−1, all of which are less than the
proton affinity of TMA 949 kJ mol−1. Spectra of fully deuterated methyl groups leave positions of peaks
unchanged. Figure adapted with permission from Reference 119.

ion–molecule complexes (CH3)3N–H+ · X (TMA-H+���X) as the proton affinity of X is in-
creased (119). This investigation built on and extends the work of Roscioli et al. (120), who have
systematically studied the IR spectra associated with the motions of a proton shared between two
closed-shell molecules, [A·H+ ·B], recognizing the importance of these systems as soft binding
motifs in biological processes.

A key result of the Huang et al. (119) work is shown in Figure 8, where the spectral series are
compared with the theoretical calculations of a localized normal mode fragment model that in-
cludes the N–H stretch that is Fermi coupled to the two bending overtones involving the H atom.
This compelling study indicates a successively increasing redshift of the N–H stretch as it is tuned
past the Fermi-coupled overtones.

The local fragment model of the Kuo group (119, 121) is similar to the local mode monomer
(LMM) model of the Bowman group (122–125). In this model, the fragments are the water
monomer units. Diagonalization of the Hessian leads to nine degrees of freedom, two of which
correspond to the O–H stretching modes and one of which corresponds to the bend. An an-
harmonic 3D vibrational potential is constructed by considering motions along these normal
coordinates, keeping all other coordinates constrained to their equilibrium values. These calcu-
lations make use of the many-body water WHBB (Wang–Huang–Braams–Bowman) potential
developed by this same group (126). The LMM approach was favorably benchmarked for the
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dimer by comparing it with higher-dimensional calculations. This work uses direct diagonaliza-
tion of Hamiltonian matrices, where the basis functions are obtained in the VSCF approach (127,
128). In the initial work ofWang & Bowman (122), the final spectra predictions are a result of un-
coupled monomer modes, but the LMM can be extended to include couplings between the lowest
few eigenstates of each monomer (123). The beauty of the LMM is that it can readily be extended
to large systems. Recently, Yu & Bowman (125) modeled the vibrational spectroscopy of the three
low-lying conformers of the H3O+(H2O)20 cluster. All three clusters have similar spectra, and the
agreement with experiment is good. The spectral complexity arising in both the theoretical and
experimental results makes detailed comparison difficult.

6. VARIATIONAL AND PERTURBATIVE STUDIES OF FORMIC ACID

To illustrate the inherent challenges in the representation of the PES and the solution of the TISE
that are faced with medium-sized molecules, we present three distinct treatments of the vibrations
of the formic acid molecule. There are extensive spectroscopic data available for this molecule. As
such, Suhm and coworkers (129, 130) have championed its use as a benchmark (131) for vibrational
models describing coupling pathways. The molecule also has two low-energy conformers shown
in Figure 9 that require potential fitting strategies that extend beyond the typical Taylor series
expansion of normal modes.

Before we start comparing approaches, we return to a discussion of the PES and its VSCF
form of Equation 2. Quartic representations of potentials remain a popular choice among

O3

O4

H2

H5

trans formic acid cis formic acid

1

O3

O4

H2 H5

1

–100 –50 0 50 100 150 200 250 300

En
er

gy
 (c

m
–1

)

4,500

4,000

3,500

3,000

2,500

2,000

1,500

1,000

500

0

Torsion

Figure 9

Potential energy curve and torsional states of trans and cis formic acid. Figure adapted with permission from
Reference 132; copyright 2021 American Chemical Society.
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research groups that are pushing the limits of our ability to calculate eigenstates of vibrational
Hamiltonians. A leading reason is that these representations can be obtained relatively easily
from electronic structure calculations. A second reason is that these potentials have an SOP form
that is ideal for methods based on tensor decomposition, rapid evaluation matrix-vector products
used in iterative methods, and analytical shortcuts that aim to reduce vector storage costs. As an
example, Thomas et al. (26) have calculated all the eigenstates of naphthalene up to 1,100 cm−1

above the zero-point energy (ZPE) by cleverly reducing the rank of the vectors that need to be
stored in the iterative process. An important downside of the quartic potential energy force fields
based on normal modes is that they lead to the presence of unphysical conformational regions
that require special treatments (133, 134).

For realistic variational calculations, one must move beyond quartic normal mode expansions
and consider themore general VSCF formof the potential.The choice of coordinatesQi to use in a
VSCF expansion is an open one. Normal coordinates are most often used because of the excellent
zero-order picture they provide and the well-known form of the kinetic energy operator (91).
Cheng & Steele (87) realized that by transforming to a set of localized normal modes the VSCF
expansions convergemore rapidly than those expressed in normalmodes without overly increasing
the complexity of the kinetic energy operator. Since the early days of force field development (135),
it has been recognized that the internal bond-angle extension coordinates provide the best low-
order VSCF form (136), and the convergence properties of the localized normal modes follow
from this observation. The basic idea is that couplings are localized in space. As an example, let us
consider cubic coupling terms. The only important three-body terms are those in which all three
valence coordinates are in the same spatial region. Because normal modes can be delocalized over
the entire molecule, there are no simple rules as to when one expects these cubic terms to be
small.

Richter and colleagues (137, 138) in their adiabatic generation of an adiabatic PES (AGAPES)
procedure have pursued the construction of VSCF potentials in which the Qi in Equation 2 are
internal valence coordinates for the reason mentioned above. They have applied the procedure to
several systems with excellent success (138–140). The curvilinear form is particularly well suited
to instances in which the large-amplitude motion is localized along a single internal coordinate.
This is the case for the cis/trans isomerization of formic acid. An important advance has been
the numerical treatment of the complex kinetic energy operators (36, 141, 142) that allows these
coordinates to be combined with their conjugatemomenta to describe aHamiltonian.An excellent
example of this use can be found in variational treatments of the water dimer (143), in which
the authors carefully examined various reduced-dimensional models, such as those described in
Section 5, in order to understand the role of couplings in this important hydrogen-bonded system
that continues to receive considerable attention (143).

To further improve the accuracy and reduce the number of ab initio points that one must cal-
culate to fit the potential, Richter and colleagues have developed a procedure that determines
not only the value of M that should be adopted but also which individual contributions to the
M-body term that need to be included. For example, there are many three-body terms,V (3)

i, j,k, but
only some may be important. The procedure they developed answers this question systematically.
This selection procedure is based on an iterative procedure in which the contribution of an addi-
tional point is judged based on the extent to which its contribution affects the energies contributed
from Hamiltonians whose potentials are assumed to follow from the previously calculated V (M−1)

terms as well as the current contribution that is being considered.The positions of the coordinates
associated with a point to be added are based on a weighted-average interpolation error scheme.
As in many surface fitting approaches, the contribution can be fit in a least squares or interpola-
tion procedure using a suitable set of basis functions. For example, for the stretches qi, Richter
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and colleagues (137, 144) expand the potential in terms of Morse functions [1−exp (−αqi)]. The
related interpolation approach of Dawes et al. (2, 3) also has the attractive feature that additional
points are chosen automatically based on a given criterion. In these works the points are chosen
at the maximal differences between second- and third-order fits in the interpolation.

Richter & Carbonnière (144) applied the AGAPES procedure for formic acid to obtain a full-
dimensional formic acid potential, which they fitted to 660 single-point energies at the CCSD(T)-
F12a/aVTZ level. The authors report the fit to be accurate up to 13,327 cm−1. This number of
points is less than that needed for the full quartic surfaces of the cis and trans isomers.These authors
combined their SOP potential with a kinetic energy operator that can also be written in SOP form,
following the work of Gatti & Iung (145) and others. The combination of these two approaches
would require large direct product basis sets of individual modes because of the importance of
off-diagonal quadratic coupling contributions. However, the SOP form can be combined with
the tremendous flexibility of the choices as to how single-particle functions of MCTDH can be
defined (40, 43, 146). These choices combined with other enhanced efficiencies such as the block
Davidson relaxation scheme allowed for eigenvalue determination over a wide energy range using
time-dependent methods.

This study provided energies and eigenfunctions of all the cis and trans states up to 3,116 cm−1

and 4,073 cm−1 above the ZPEs, respectively (144). The results were compared with the exper-
imental fundamentals and found to agree within 5 cm−1. The AGAPES interpolation error is
based on eigenvalue differences because this is the metric used for the PES fit. The authors report
a 2.5 cm−1 average error for the vibrational energy levels up to 6,000 cm−1 above the ZPE level
of about 7,327 cm−1.

Tew & Mizukami (132) chose an alternative method to fit the potential that illustrates a com-
plementary method with enhanced flexibility in fitting at the cost of requiring more ab initio
points. Their calculation is performed at a level of theory CCSD(T)(F12∗)/cc-pVTZ-F12 com-
parable to that of Richter & Carbonnière (144), but the form of the potential is very different.
To distinguish these potentials, we use the authors’ initials and refer to them as the PES-TM and
PES-RC surfaces. The PES-TM is not constrained by the VSCF form of Equation 2. Instead it
is based on 1D–4D grids of distributed Gaussian basis functions, with the grids being functions
of select interatomic distances of atoms. As in the VSCF expansion, the number of required func-
tions rapidly increases as one moves to higher dimensions. Because the Gaussians are functions of
the interatomic distances, these potentials can be readily constructed to be invariant to permuta-
tion identical nuclei. The huge advantage of the Gaussian basis is that it allows one to fit a much
greater variety of shapes of potential energy landscapes.

There are two key additions to the fitting procedure that lead to its success. First, the fit poten-
tial is the difference between the ab initio potential and a potential written as a sum of 1D Morse
oscillators that in turn are functions of internuclear distances. The parameters of the Morse func-
tions are chosen so that their inclusion leads to the asymptotic form of the fit potential being
amenable to the Gaussian fitting. We have found that it is important to avoid fitting potentials
with Gaussians whenever the grid includes regions of rapidly increasing potentials, such as those
describing the inner repulsive walls, and their approach minimizes this problem. An attractive
feature of their algorithm is that the widths and positions of the Gaussians are preselected, based
on the choice of internal distance grids, which leads to a surface that is linearly dependent on the
unknown Gaussian expansion coefficients. The second attractive feature is the use of the LASSO
least squares method (147). Here, the coefficients of the Gaussian basis functions are determined
subject to a penalty that is proportional to the sum of the absolute values of the coefficients. Ideally
the LASSO fits include only those functions that are most needed in the data fitting. In principle,
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this procedure avoids overfitting of data and leads to a reduction in the fluctuations in the fits that
often arise from the overfitting.

Tew&Mizukami (132) fit 17,076 single-point energies using 90% for the training set and 10%
for the control set. In comparing to the ab initio data in the energy range 0 cm−1–15,000 cm−1,
they report root-mean-square deviations of 8 cm−1 in the training set and 18 cm−1 for the control
set. This range includes an accurate treatment of the large-amplitude torsion that is needed for
properly describing the 4,500 cm−1 barrier to isomerization from the trans to the cis conformer.
The large number of data points required to obtain this accuracy is a result of using fitting basis
functions whose linear combinations are able to describe a wide variety of shapes as opposed to
functions such as Morse functions that are tailor made for specific bonding types.

To solve the nuclear TISE, Tew & Mizukami used their program DYNAMOL (37) combined
with a Hamiltonian in the Hougen–Bunker–Johns (148) form. This Hamiltonian, when general-
ized as an internal coordinate path Hamiltonian (ICPH), is written in terms of a large-amplitude
curvilinear coordinate describing the torsion and 3N − 7 normal coordinates that are orthogonal
to the torsion and the vectors describing the rotation and overall translation of themolecule.Here,
N is the number of atoms. The ICPH is designed to minimize couplings among all the modes by
correctly treating curvature as necessary while retaining the advantages of the reduced coupling of
the normal modes where possible.The basis set used in the calculation is based off of the appropri-
ate boundary conditions; they use trigonometric functions for the torsion and harmonic oscillator
basis functions for the remaining degrees of freedom. The potential matrix elements are calcu-
lated via quadrature. It is assumed that it is sufficient to restrict couplings up to those ofM-body
terms, whereM is varied from 3 to 5 to test the validity of this approximation. The convergence
of their variational vibrational configuration interaction (VCI) calculation is tested by successively
increasing the total number of quanta allowed in the configuration interaction calculations as well
as the value ofM.

Nejad & Sibert (149) benchmarked second- and higher-order perturbation theory using the
above potentials and the corresponding variational results. These workers used a numerical ver-
sion of canonical Van Vleck perturbation theory (CVPT) (55, 57, 141). The numerical approach
allows one to use local or normal modes as well as curvilinear or rectilinear modes. The input is a
Hamiltonian written in terms of harmonic raising and lowering operators. They chose raising and
lowering operators of the curvilinear normal modes. They used the above two potentials by ex-
panding them in a Taylor series. The internal coordinate potential includes up to four-body terms.
These contributions include Taylor series expansion terms up to eighth, sixth, sixth, and fourth
for the one- to four-body terms, respectively. Simons–Parr–Finlan coordinates were used for the
stretches to improve the convergence properties (150). The exact kinetic energy operator (151)
is a function of the G-matrix elements. These elements are expanded through sixth order in the
internal coordinates with the exception of four-body terms,which are expanded through fourth or-
der. The potential-like contribution to the kinetic energy (151) is expanded through fourth order.
The spirit of the CVPT is to perturbatively transform away the off-resonant couplings and then
treat the remaining couplings between any possible near-degenerate states via diagonalization of
relatively small matrices.

The convergence of the perturbative results are shown in Figure 10a for the cis isomer. The
differences in nth order CVPT energies E(n) are plotted as a function of E(6) energies. The dif-
ference E(6) − E(4) is a measure of the uncertainty of the E(6) results. The matrices used for
describing the state mixing in each conformer consisted of a few hundred states.

The CVPT energy difference E(6) − E(2) is a gauge of the accuracy of VPT2 energies, as
these latter energies are closely related to CVPT energies E(2). For PES-TM, a comparison for
fundamentals and states with two quanta of excitation yields mean absolute deviations (maximum
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(a) CVPT energy differences E(6) − E(n) plotted as a function of E(6) for cis-HCOOH vibrational states, where n is the order of the
perturbation theory. States of a′ and a′′ symmetry are marked as crosses and exes, respectively. Only states best described as having a
maximum sum of four quanta of excitation are shown. (b) Deviation between experimental and computed formic acid fundamental wave
numbers (δexp = ν̃calc − ν̃exp). Data for all four H/D isotopologs are aggregated for cis and trans formic acid with 16 and 42 data points,
respectively. Plot compares CVPT (149) with ICPH (132) and MCTDH (144) for both conformers. These 42 points comprise 35 trans
fundamentals and their resonance partners that include the torsional overtone. For the ICPHmodel (132), 10 and 8 data points are used,
respectively, as the O–H stretch fundamental of cis is not reported, and deuterated data are not available. Each box extends from the
lower quartile to the upper quartile of the data, and whiskers extend out to twice the interquartile range. Outliers are marked as crosses,
and each box is bisected by a line indicating the median. Figure adapted from Reference 149 with the permission of AIP Publishing.

absolute deviations) below 1(3) cm−1 and 2(6) cm−1, respectively. The limitations of VPT2 are
revealed beyond two quanta, where the maximum absolute deviations compared to sixth order
CVPT amount to 19 cm−1 and 16 cm−1 for three- and four-quanta states, respectively.

The deviations between experiment and anharmonic fundamental calculations employing both
PESs are visualized in Figure 10b. The comparisons include fundamentals of all deuterated iso-
topologs. The E(6) results for trans-HCOOH compare favorably with ICPH (132) and MCTDH
(144) reference data on their respective surfaces; eigenvalues agree to within 2 cm−1. Comparison
for cis-HCOOH indicates that the ICPH eigenvalues are not fully converged. In addition, the E(6)
result with PES-TM yields a cis-O–H stretch fundamental transition energy that is 16 cm−1 wave
numbers greater than experiment. Nejad & Sibert (149) argue that this disparity results from a
shortcoming of the surface, based on the size of E(6) − E(4).

The three methods described above are sufficiently accurate and detailed to aid in spectral as-
signments.Using the results of these calculationsNejad& Sibert (149) assigned 11 new vibrational
band centers to the trans-HCOOH database and 53 for its three deuterated isotopologs. Profit-
ing from the synergy between accurate calculations and symmetry information from depolarized
Raman spectra, they reassigned eight literature IR bands up to 4,000 cm−1 above the ZPE.

As the results of Figure 10 show, the weakest link between theory and experiment remains
the quality of the PES. Many of the deviations are systematic, and one can take these deviations
into consideration as one maps out the coupling pathways and experimentally observed mode
mixing in order to study vibrations at the level of eigenstate resolution. Nejad et al. (130) discuss

236 Sibert



the couplings as they relate to the C–H and O–H stretches of formic acid. Both these vibrations
show evidence of state mixing. As an example, for the trans-O–H stretch the sixth-order CVPT
calculation predicts transitions at 3,576 cm−1 and 3,568 cm−1 for the PES-TM and PES-RC
surfaces, respectively. These values are within 1 cm−1 of the corresponding ICPH (132) and
MCTDH (144) calculations. The experimental results, in contrast, indicate three closely spaced
lines, with the most intense band at 3,570.5 cm−1. The detailed discussion of the possible
background states involved in this triad (149) illustrates how the increasing densities of states lead
to many possible candidates that, in turn, complicate the analysis of this band. The assignments
of states quickly become insurmountable as the densities of states increase and mode mixing
becomes more universal. As this occurs, one must begin to consider lower-resolution spectra
and their intensity patterns as a way of highlighting short-term energy flow processes and the
couplings that induce them. Although it has not been stated, these were the approaches being
employed for the larger systems that were previously discussed in this review.

Before concluding, we note that the major advantages of the VCI (132) and MCTDH ap-
proaches (144) are that they can be used to investigate the large-amplitude motion. The CVPT
results require separate calculations for each of the isomers and, as currently formulated, fail in
the description of highly excited torsional states, especially states with more than six quanta of
torsional excitation (see Figure 9) in the trans conformer.

7. SUMMARY

In this article, we have described a range of theoretical research that supports the synergistic col-
laboration between theoreticians and experimentalists working to interpret and utilize the wealth
of structural and dynamical information encoded in the vibrational spectra of molecules. This is
a broad and rapidly advancing field, and we have chosen to cover a select yet wide variety of tech-
niques for calculating spectra. Both our choice and our discussion highlight the many common
underlying strategies that are used as well as draw attention to how specific approaches can be
optimized for the challenges that specific coupling scenarios present.
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