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Abstract

By superlocalizing the positions of millions of single molecules over
many camera frames, a class of super-resolution fluorescence microscopy
methods known as single-molecule localization microscopy (SMLM) has
revolutionized how we understand subcellular structures over the past
decade. In this review, we highlight emerging studies that transcend
the outstanding structural (shape) information offered by SMLM to ex-
tract and map physicochemical parameters in living mammalian cells at
single-molecule and super-resolution levels. By encoding/decoding high-
dimensional information—such as emission and excitation spectra, motion,
polarization, fluorescence lifetime, and beyond—for every molecule, and
mass accumulating these measurements for millions of molecules, such mul-
tidimensional and multifunctional super-resolution approaches open new
windows into intracellular architectures and dynamics, as well as their
underlying biophysical rules, far beyond the diffraction limit.
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1. INTRODUCTION

Recent advances in super-resolution (fluorescence) microscopy (SRM) based on the massive ac-
cumulation of the superlocalized positions of single molecules that stochastically switch between
emitting and dark states over different camera frames, i.e., single-molecule localizationmicroscopy
(SMLM), have led to exciting scientific discoveries and technical developments (1–6).Many exist-
ing reviews on SMLM and SRM focus on the ever-increasing spatiotemporal resolutions, aiming
to elucidate subcellular structural (shape) information to the best possible extent.

In this review, we focus on emerging work that transcends the outstanding structural infor-
mation offered by SMLM to extract and map functional (7) physicochemical parameters in living
mammalian cells at single-molecule and super-resolution levels.While such experiments are often
enabled by encoding/decoding new dimensions of the single-molecule signal, they are also distinct
from earlier single-molecule spectroscopy (SMS) studies in which isolated events are recorded (8–
11). Instead, to achieve mapping at the nanoscale, SMSs of various forms are mass accumulated,
often for millions of individual molecules, to be integrated with the superlocalized positions of
the same molecules. Below we categorize our discussion by the different single-molecule signal
spaces being probed, including fluorescence intensity, spectra, motion, polarization, lifetime, and
nonfluorescence methods. Together, these rising multidimensional SRM approaches afford rich
spatial and functional information and hence exciting new insights into the dynamic processes and
behaviors of living cells.

2. SINGLE-MOLECULE FLUORESCENCE INTENSITY

The fluorescence intensity remains the most straightforward parameter to analyze in single-
molecule data. However, owing to the inherently large molecule-to-molecule variation in the
emission intensity in SMLM, small changes in intensity are difficult to discriminate. Fluores-
cence turn-on of initially dark probes offers a strategy to map physical parameters or chemical
activities by counting the locally activated molecules. Still, such approaches leave ambiguities be-
tween the local level of activation and concentration of probes, hence a blurred boundary between
functional and structural readouts. This issue may be overcome with fluorescence spectrum and
lifetime detections, which are discussed in Sections 3 and 6.

2.1. Fluorescence Turn-On Owing to Specific Local Environments
and Protein Conformations

A class of fluorogenic probes turn on when entering specific physical environments (12). For ex-
ample, the solvatochromic dyeNile red is nonfluorescent in aqueous solutions but becomes highly
emitting in hydrophobic environments. This effect provides a mechanism in which dynamic
single-molecule fluorescence on-off switching is maintained over long periods as probe molecules
stochastically enter and exit the hydrophobic phase (Figure 1a), hence enabling SMLM for in
vitro and cellular lipid membranes (Figure 1b) (13–16) and in vitro protein aggregates (15,
17–19). The fluorescence quantum yield of rotatable molecules can be strongly enhanced by
conformation locking. For functional SMLM, such effects have enabled the detection and SRM
imaging of specific protein conformations, e.g., β-sheet aggregates in amyloid fibrils (19–24).
Beyond the passive binding of fluorogenic probes, Liu et al. (25) devised biosensors in which,
upon protein conformation changes, a concealed small tag is exposed to bind with a fluorescent
reporter.They thus detected single active proteins and tracked their motion in the live-cell plasma
membrane.
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Figure 1

SMLM via fluorescence turn-on from specific local environments, reactions, and engineered biomolecular
interactions. (a) Fluorescence intensity time trace for a lipid vesicle, showing bursts due to the stochastic
entering of single Nile red molecules into the lipid phase from the aqueous medium. (b) SMLM image of a
supported lipid bilayer obtained by localizing 2,778 single Nile red molecules over 4,095 frames due to the
fluorescence turn-on process in panel a. (c) Schematic of a caged (initially dark) probe (i) that can be
photoactivated into a fluorescent state after removal of the acetyl group by carboxylesterases (ii). (d) SMLM
image of esterase activity based on subpanel i in panel c in a live mammalian cell. (e) Schematic of cellular
force SMLM based on force-activatable emitters in which the unzipping of a DNA/peptide nucleic acid
(PNA) hybrid leads to fluorescence dequenching and single-molecule emission. ( f ) Resultant integrin
molecular tension SMLM of a migrating keratocyte from 20 frames of recording. Abbreviation: SMLM,
single-molecule localization microscopy. Panels a and b adapted from Reference 13; copyright 2006 National
Academy of Sciences. Panels c and d adapted with permission from Reference 27; copyright 2017 American
Chemical Society. Panels e and f adapted with permission from Reference 32; copyright 2020 American
Chemical Society.

2.2. Reaction-Triggered Fluorescence Turn-On

Initially caged or quenched fluorophores may be turned on by chemical or enzymatic reactions
(26), thus opening a window into local activities. For SMLM, Halabi et al. (27) devised a fluo-
rogenic probe that was activated by carboxylesterases (Figure 1c), and thus reconstructed SRM
images of esterase activity in live cells (Figure 1d). Chai et al. (28) developed a β-galactosidase
(β-Gal)-responsive photochromic fluorescent probe, enabling SMLMmapping of the subcellular
distribution of β-Gal activity.
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The fluorophore intensity may also be modulated by ion binding/unbinding. Fluorescent in-
dicators have thus been employed to visualize local bursts of pH and Ca2+ signals in live cells.
Treating individual bursts—presumably owing to the collective responses of indicator molecules
to individual subdiffraction-limit events, e.g., synaptic vesicle activities, analogous to single-
molecule images in SMLM—thus allowed the super-resolution visualization of activity hot spots
(29–31).

2.3. Fluorescence Turn-On and Fluctuation via Interactions
Between Biomolecules

Fluorescence turn-on and fluctuation may also be engineered via interactions between
biomolecules. Based on the tension-induced unzipping of DNA structures, two recent studies
employed fluorescent probes that were activated by the piconewton traction forces between sin-
gle integrin proteins at the cell surface and the substrate, and so achieved SMLM force mapping
(e.g., Figure 1e,f ) (32, 33). With split fluorescent proteins (FPs), bimolecular fluorescence com-
plementation has been successfully integrated with SMLM to map protein-protein interactions in
live cells (34, 35).Meanwhile, fluorescence fluctuation increase by contact (FLINC) capitalizes on
the elevated fluctuations in the fluorescence intensity when two FPs are brought into proximity,
thus achieving SRM of enzyme activities in live cells (36, 37).

3. SINGLE-MOLECULE SPECTRAL RESPONSES

Spectral responses provide a robust way to encode functional information that is decoupled from
the fluorescence intensity and count of singlemolecules. Although it has been technically demand-
ing to extract the spectral characteristics of single molecules, recent years have seen the emergence
of new approaches that well suit the unique operational schemes of SMLM.

3.1. Wavelength-Split Detection

A facile method to detect single-molecule spectral responses is wavelength-split detection, in
which a dichroic mirror splits (wide-field) fluorescence into two views for the separate, parallel
recording of long- and short-wavelength components (Figure 2a). For SMLM, this approach en-
ables the identification of single molecules based on the ratio of the detected photon counts in
the two views (Figure 2b). With a single excitation laser, multicolor SMLM is thus concurrently
performed for two to four fluorophores of overlapping spectra (e.g.,Figure 2c) (38–40). For imag-
ing functional parameters, the local pH has been examined in gel and silica systems through the
two-wavelength ratiometric single-molecule detection of SNARF-1, a fluorescent pH indicator
that exhibits substantially different emission spectra in its protonated and deprotonated states, so
far limited to sparse molecules (41, 42).

Wavelength-split detection schemes have also been vital to Förster resonance energy transfer
(FRET) experiments in which the relative emission intensities of donor and acceptor fluorophores
serve as a molecular ruler for quantifying interactions and conformational dynamics at sub-10-nm
length scales (43, 44). Chemically synthesized and genetically encoded FRET-based biosensors
have elucidated vital functional parameters inside the living cell, including ion and small-molecule
concentrations, cellular microenvironments, and enzymatic activities (45, 46).

Single-molecule FRET (smFRET) offers powerful insights into parameters obscured in
ensemble averaging, e.g., multiple states and their interconversions, and so has become an in-
dispensable tool for studying biomolecular conformations and dynamics in vitro (44, 47, 48).
However, smFRET has seen limited applications in live cells (44, 49). The relatively low bright-
ness and large size of FPs make them unfavorable for smFRET; various approaches have thus been
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Figure 2

Wavelength-split detection for multicolor SMLM and smFRET in living cells. (a) Schematic of a DM
separating long- and short-wavelength components of single-molecule emission for simultaneous imaging
on two areas of a CCD. (b) Distribution of photon counts in the long- and short-wavelength channels for
single molecules detected in SMLM for four dyes with overlapping emission spectra (graph).
(c) Simultaneous four-color SMLM of a fixed cell performed by separating the single-molecule emission of
four dyes based on panel b. (d) SMLM images due to the binding/unbinding of a mixture of donor- and
acceptor-labeled EGF molecules to EGFR in the plasma membrane of a live mammalian cell, for the (left)
donor and (right) acceptor channels when exciting the donor. Insets show zoomed-in images of the boxed
regions. Single-molecule emission in the acceptor channel is attributed to smFRET between single donor-
and acceptor-labeled EGFs bound to an EGFR dimer. Abbreviations: CCD, charge-coupled device; DM,
dichroic mirror; EGF, epidermal growth factor; EGFR, epidermal growth factor receptor; FL, fluorescence;
smFRET, single-molecule Förster resonance energy transfer; SMLM, single-molecule localization
microscopy; T, transmission. Panels b and c adapted with permission from Reference 39; copyright 2010
Elsevier. Panel d adapted from Reference 57 (CC BY-NC-ND 3.0).

devised to introduce organic dye-based smFRET probes into mammalian and bacterial cells, in-
cluding microinjection (50–52), heat shock (53), and electroporation (54), or by combining FPs
with self-labeling tags and fluorogenic membrane-permeable dyes (55). Separately, dye tagging
can be more readily achieved for targets at the cell surface (56–58).

With the labeling issues addressed, live-cell smFRET is so far still limited in its spatial mapping
capabilities. For example, the formation of SNARE protein complexes in live cells has been exam-
ined with wide-field smFRET, but only for ∼100 sparsely distributed molecules (51). With con-
focal smFRET, König et al. (52) monitored the compaction of the intrinsically disordered protein
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ProTα in live cells but only demonstrated limited spatial information by distinguishing molecules
located in the nucleus, cytosol, and outside the cell. For studying the dimerization of G protein–
coupled receptors at the cell surface, Asher et al. (58) recorded long time traces to monitor dimer
conformations and intramembrane diffusion, but under either low expression levels or after pho-
tobleaching to ensure sparse singlemolecules.Utilizing the dynamic binding/unbinding of epider-
mal growth factor (EGF) labeled by donor or acceptor dyes to EGF receptors (EGFRs) at the cell
surface, Winckler et al. (57) recorded high-density smFRET in the wide field over ∼104 frames,
and so obtained SMLMmaps of EGFR dimers, showing preferential localization to the cell edge
(Figure 2d). However, quantification of such smFRET data is difficult as the stochastic labeling
leads to only a small proportion of the dimers containing both the donor and acceptor dyes.

3.2. Spectrally Resolved Single-Molecule Localization Microscopy

Although wavelength-split detection is simple in implementation, it achieves limited spectral sen-
sitivity. The ratiometric readouts calculated from the two split views depend on the spectral
characteristics of the dichroic mirror used, and so the results are difficult to compare between
studies and are vulnerable to operational conditions, including backgrounds.

To resolve the actual emission spectra of single molecules, typical approaches spatially confine
the illumination and/or detection (e.g., to a single spot in a confocal setting) to ensure that fluo-
rescence is spectrally dispersed from only one single molecule at a time (9, 59). Scanning across
the sample then maps out the spectra of different molecules. Although good spectra are recorded,
such single-spot detection schemes afford low throughput and limit samples to sparse molecules
that are resolvable with diffraction-limited optics.

These limitations are overcome by a new detection scheme in which single-molecule fluores-
cence is dispersed in the wide field (60, 61). For molecules sparsely distributed in each frame, as
encountered in SMLM, it is noted that their images are self-confined into individual emission
spots. Concurrent spectral dispersion of these point sources in the wide field thus enables the par-
allel recording of tens of single-molecule spectra with an ∼10-ms camera snapshot (Figure 3a,b).
Next, utilizing single-molecule fluorescence on-off switching to visit differentmolecules over con-
secutive camera frames, a key strategy of SMLM, the spectra of millions of single molecules are
thus acquired in minutes, hence affording ultrahigh-throughput SMS.

The massively accumulated single-molecule spectra, alongside the concurrently superlocalized
positions of the same molecules, are synthesized into spectrally resolved SMLM (SR-SMLM)
data affording local emission spectra at nanoscale spatial resolution (15, 60–63).When applied to
multiplexed imaging (60, 62–64), such approaches achieved cross talk–free 3D SRM for four flu-
orophores with heavily overlapping spectra (60) and the simultaneous tracking of different single
molecules and quantum dots (64, 65).

Integration with fluorescent probes that exhibit spectral changes in response to local physico-
chemical parameters next enabled super-resolution functional mapping.With the solvatochromic
dye Nile red, SR-SMLM thus resolved nanoscale heterogeneities in the membranes of live mam-
malian cells, showing the intracellular organelle membranes as chemically more polar than the
plasm membrane owing to less ordered lipid packing (Figure 3c,d), and noting the formation
of low-polarity, raft-like nanodomains in the plasma membrane upon cholesterol addition or
cholera-toxin treatment (16). For in vitro systems, Nile red–based SR-SMLM has similarly re-
solved chemical polarities for model lipid bilayer membranes and vesicles (15, 16, 66), protein
aggregates (Figure 3e,f ) (15, 17, 19), surface adlayers (67), and polymeric nanoparticles (68). A
tailor-made Nile red derivative further enabled the specific probing of the live-cell plasma mem-
brane, unveiling nanoscopic protrusions and invaginations of reduced lipid order (Figure 3g) (69).
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Figure 3

SR-SMLM and super-resolution mapping of chemical polarity for live-cell membranes and in vitro protein aggregates. (a) Schematic of
fluorescence dispersed in the wide field, so the emission spectra of many single molecules are concurrently captured in a camera frame.
Single-molecule fluorescence on-off switching next enables the sampling of different molecules over consecutive frames. (b) Example
spectra of single Alexa Fluor 647 molecules recorded in a 9-ms camera frame. (c) SR-SMLM image of Nile red–highlighted
lipid-membrane system in a live mammalian cell. The color presents the single-molecule spectral mean, and longer emission
wavelengths correspond to higher local chemical polarities. (d) Averaged single-molecule spectra at the plasma membrane versus the
internal nanoscale organelle membranes, compared to that at SLBs with and without the packing-order promoter Chol. (e) SR-SMLM
images of Nile red at the surfaces of in vitro amyloid-β oligomers (top) and fibrils (bottom). ( f ) Frequency histogram of fluorescence
emission peaks for individual Nile red molecules at amyloid-β oligomers and fibrils. (g) SR-SMLM image for the plasma membrane of
a live mammalian cell labeled by NR4A, a Nile red derivative. Arrows point to higher local chemical polarities at endocytic sites due to
reduced lipid order. Abbreviations: BS, beam splitter; Chol, cholesterol; DOPC, 1,2-dioleoyl-sn-glycero-3-phosphocholine; M, mirror;
SLB, supported lipid bilayer; SR-SMLM, spectrally resolved single-molecule localization microscopy. Panel b adapted from
Reference 60. Panels c and d adapted with permission from Reference 16; copyright 2017 American Chemical Society. Panels e and f
adapted from Reference 15 (CC BY 4.0). Panel g adapted with permission from Reference 69.

Future SR-SMLM developments may harness the genetic targeting of Nile red (70, 71) to probe
specific subcellular targets.

3.3. Excitation-Based Spectral Imaging

Although spectral fluorescence microscopy methods (72, 73), including SR-SMLM, provide pow-
erful paths toward multiplexed and functional imaging, typical approaches of dispersing the local
emission are difficult to implement and limit the time resolution.
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Excitation-based spectral microscopy and application to SMLM. (a) Schematic of the setup for varying the excitation wavelength in
consecutive frames through the frame-synchronized modulation of the AOTF. (b) Eight-wavelength excitation spectrum recorded with
the setup in panel a, for pHRed FP expressed in a mammalian cell that was equilibrated to pH = 8.0 (black solid line), and its linear
unmixing into the deprotonated (A−) and protonated (HA) components (dashed lines). (c) Color-coded absolute pH map series for
pHRed expressed in the mitochondrial matrix in a living mammalian cell, as obtained through the linear unmixing of the excitation
spectrum as in panel b, showing concurrent fast changes in both the mitochondrial shape and matrix pH at 0.8-s time resolution.
(d) Schematic for excitation-resolved SMLM. A resonant mirror fast-switches the wide-field image back and forth between three
recording positions with synchronized excitation of three lasers of different wavelengths. (e) Scatter plot of the photon counts for
individual Alexa Fluor 647 molecules when excited by three lasers. ( f ) Tetra-color SMLM by separating the excitation characteristics of
four dyes based on their three-excitation-wavelength single-molecule photon counts as shown in panel e. (g) Separated channels for the
box in panel f, showing minimal cross talk. Abbreviations: AOTF, acousto-optic tunable filter; DM, dichroic mirror; F, bandpass filter;
FP, fluorescent protein; L, lens; P, polarizer; RF, radio frequency; RM, reflective mirror; SMLM, single-molecule localization
microscopy. Panels a–c adapted from Reference 76 (CC BY 4.0). Panels d–g adapted from Reference 78 (CC BY 4.0).

Recent work highlights the power of excitation-based spectral microscopy (74–76). By collect-
ing fluorescence with a fixed emission band but scanning the excitation wavelength for the entire
imaging field, such schemes remove the need to disperse the emission signal over many detector
pixels (as required in typical emission-based spectral microscopy) yet achieve comparable spectral
unmixing capabilities. Thus, with camera frame–synchronized fast scanning of the excitation
wavelength (Figure 4a), six subcellular targets, labeled by fluorophores substantially overlapping
in spectrum, were simultaneously imaged in the wide field using a single filter cube at low cross
talk and high speeds (76). Combining different filter cubes enabled multiplexing with more
fluorophores (77). The ability to quantify the abundances of different species via the excitation
spectra (Figure 4b) further enabled the fast, quantitative imaging of intracellular physicochemical
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parameters, such as pH (Figure 4c) and macromolecular crowding, with bi-state and FRET-based
biosensors (76).

The application of excitation-based spectral microscopy to SMLM, however, is nontrivial. As
the excitation spectrum is collected by monitoring the emission intensity when the excitation
wavelength is scanned, the frequent on-off switching of single-molecule emission in SMLMmakes
it unreliable, if not impossible, to determine how the emission intensity responds to excitation
wavelengths scanned over consecutive camera frames.Wu et al. (78) provided an elegant solution
in which a resonant mirror rapidly switched the wide-field image back and forth between three
recording positions for many rounds within each camera frame (Figure 4d). With three syn-
chronized excitation lasers, they thus well discriminated four spectrally overlapped fluorophores
for the tetra-color SMLM of fixed cells (Figure 4e–g). The potential application of related ap-
proaches to living cells and to the functional readouts of fluorescent biosensors presents exciting
perspectives.

4. SINGLE-MOLECULE MOTIONS

Motions provide yet another great window into molecular behaviors and interactions. Resolving
the intracellular movement of biomolecules may enable the spatial mapping of biophysical pa-
rameters, including diffusion modes and constants, viscosity, binding kinetics, and conformational
states (79–86).

4.1. Fluorescence Correlation Spectroscopy

Fluorescence correlation spectroscopy (FCS) measures fluorescence fluctuations as single
molecules transiently enter and leave the detection spot, e.g., in a confocal setting. By time cor-
relating the detected fluctuations, FCS provides valuable insights into intracellular diffusions,
concentrations, and intermolecular interactions (80, 87, 88). Recent integration with stimulated
emission depletion (STED) SRM has further pushed FCS beyond the diffraction limit (89).How-
ever, single-molecule events are not isolated, and FCS generally achieves limited spatial mapping
capabilities (88, 90).

4.2. Single-Particle Tracking

To access motions at the true single-molecule level, single-particle tracking (SPT) has found wide
use in living cells and been the subject of many reviews (79, 81, 82, 91). Superlocalizing sin-
gle molecules enables motion quantification at the nanoscale. Recent advances in MINFLUX, a
method that modulates the illumination pattern to achieve photon-efficient localization of single
molecules with exceptional spatiotemporal resolutions (92), have permitted the direct observation
of a dye-tagged motor protein stepping on intracellular microtubules with <5-nm spatial reso-
lution at few-millisecond temporal resolutions (93). Monitoring the motion of a single molecule
over long trajectories further allows the observation of asynchronous dynamics, e.g., transient in-
termolecular interactions, and the extraction of diverse biophysical parameters such as binding
kinetics, non-Brownian diffusion modes, and directional transport (81, 84).

While SPT is traditionally applied to sparse molecules to avoid trajectory overlapping, recent
developments integrating SMLM-inspired photoactivation and fluorophore-exchange schemes
have permitted the high-density tracking of single-molecule trajectories (57, 91, 94–97).However,
the focus is often on obtaining long trajectories to assign a diffusion coefficient value to each
molecule, thus yielding limited spatial mapping and restricting applications to slow diffusion in
membranes, where the bound molecules stay in focus over many frames.
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4.3. Single-Molecule Displacement/Diffusivity Mapping

To overcome SPT’s limited spatial mapping capabilities and access the fast diffusion of unbound
molecules, an emerging approach, single-molecule displacement/diffusivitymapping (SMdM) (98,
99), forgoes trajectories and focuses on transient displacements. Thus, rather than following how
each molecule behaves as it randomly visits different, potentially heterogeneous locations, SMdM
flips the question to survey, for each fixed location, how different (yet identical) single molecules
move locally. This location-centered strategy is naturally powerful for spatial mapping.Moreover,
by focusing on transient displacements, each molecule only needs to be localized twice within a
short time window. For fast-diffusing molecules, a tandem excitation scheme is thus devised to ap-
ply a pair of closely timed stroboscopic pulses across two camera frames to capture single-molecule
images over time separations substantially shorter than the camera frame time, from which single-
molecule displacements are extracted (Figure 5a,b) (98). This tandem excitation scheme further
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Figure 5 (Figure appears on preceding page)

SMdM provides super-resolution mapping of fast intracellular diffusion. (a) Schematic showing a pair of closely timed stroboscopic
excitation pulses, which are applied across two tandem camera frames so that the two recorded images correspond to the short time
separation 1t between the paired pulses. This paired excitation scheme is repeated ∼104 times to enable statistics. (b) Example
single-molecule images of sulforhodamine 101 molecules diffusing in a living rat astrocyte, recorded in four consecutive frames with
the tandem excitation scheme shown in panel a. Here, each pulse lasted 200 µs, the center-to-center separation between paired pulses
was 1t = 500 µs, and the camera frame time was 9.15 ms. (Insets) Comparison of the localized single-molecule positions across the
tandem frames, from which single-molecule displacements are extracted. (c,d) Distributions of displacements in 1t = 1 ms for single
mEos3.2 FP molecules in a living mammalian cell for two adjacent 300 × 300–nm2 areas marked with orange and red boxes in panel e.
Blue curves show fits to a diffusion model, with resultant D values labeled. (e) Color-coded SMdM D map for the intracellular diffusion
of mEos3.2, obtained by spatially binning the accumulated single-molecule displacements onto 100 × 100–nm2 grids for local fitting as
in panels c and d. ( f ) Color map presenting the SMdM-determined local principal direction of diffusion for BDP-TMR-alkyne in
cellular membranes, showing anisotropic diffusion along the endoplasmic reticulum tubules. (g) SMdM D map for mEos3.2 FP in the
nuclear region of a living mammalian cell (left) versus SMLM of the same region with a DNA stain (right), showing reduced D in the
nucleolus (asterisk) and fast and slow diffusion regions correlating to low and high local DNA densities (red and orange arrows).
(h) SMdM-determined mean D values for mEos3.2 FPs of different net charges in different subcellular environments. (i) SMdM D map
of Cy3B dye in a living mammalian cell, obtained with 1t = 400 µs. Abbreviations: FP, fluorescent protein; SMdM, single-molecule
displacement/diffusivity mapping. Panel b adapted with permission from Reference 100; copyright 2023 American Chemical Society.
Panels c–e adapted from Reference 98. Panel f adapted with permission from Reference 99; copyright 2020 American Chemical Society.
Panels g and h adapted from Reference 98. Panel i adapted with permission from Reference 100; copyright 2023 American Chemical
Society.

leaves ample time between the antipaired pulses (Figure 5a,b) to allow efficient probe exchanges
through diffusion, thus enabling SMdM for nonphotoswitchable fluorophores (98, 100). Repeat-
ing the above scheme ∼104 times accumulates millions of single-molecule displacements to be
spatially binned for individual fitting to assess the local diffusion coefficient D (Figure 5c,d) and
generate its super-resolved map (Figure 5e) (98). Local displacement direction analysis is further
developed to elucidate diffusion anisotropy (Figure 5f ) (99, 101).

With ∼30-kDa FPs, SMdM thus uncovered nanoscale diffusion heterogeneities in the mam-
malian cytoplasm (Figure 5e), nucleus (Figure 5g), and organelles, and identified the protein
net charge as a key determinant of intracellular diffusion (Figure 5h) (98, 101). By squeezing
the tandem-pulse time separation to 400 µs and incorporating graphene-based electroporation
for probe delivery (102), SMdM further quantified the very fast diffusion of small (<1 kDa) so-
lutes, unveiling their unhindered diffusion in the mammalian cell (Figure 5i) (100). For cellular
membranes, integration of SMdM with Nile red–based SR-SMLM resolved diffusion hetero-
geneities of different origins (99). For in vitro FUS condensates formed through liquid-liquid
phase separation, SMdMunveiled substantial diffusion slowdowns at surface nanoaggregates (19).

The massively accumulated single-molecule displacements in SMdM further enable D-value
determination to ±1% precisions (103), which has been utilized to establish a universal depen-
dency of D on molecular weight for proteins and small molecules (102, 103), show no changes
in D in enzyme reactions (103), and determine how D scales with meshwork sizes in expandable
hydrogels (104).

While SMdM of FPs in mammalian cells has so far focused on elucidating nonspecific charge
interactions, tagging FPs to specific intracellular proteins could employ SMdM to map intracel-
lular protein conformation, oligomerization, and interactions; recent SMdMwork on bacteria has
pointed to such directions (105, 106). The compatibility of SMdM with nonphotoswitchable flu-
orophores (98, 100) and the demonstrated successful intracellular probe delivery for SMdM (100)
further imply the possible integration of SMdMwith the above-discussed dye-based smFRET for
functional readouts. Meanwhile, while SMdM has unveiled rich diffusion heterogeneity by just
analyzing single-step displacements between tandem frames, future developments may expand
on this concept to enable the detection of few-step short tracks, from which one may garner
information on nonlinear diffusion and dynamic transition between states.
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5. SINGLE-MOLECULE FLUORESCENCE POLARIZATION
AND ANISOTROPY

Fluorescence polarization and anisotropy offer valuable information about molecular orientations
and dynamics (107, 108). Splitting the fluorescence emission into orthogonal polarizations and/or
modulating the polarization orientation of the excitation laser enables the encoding/decoding of
single-molecule polarization and anisotropy in SMLM (109–112).

Biological filaments are often assembled from oriented subunits. For in vitro samples, the fixed
binding orientations of fluorogenic probes to filaments have thus mapped molecular orientations
for DNA strands (111–113) and amyloid fibrils (18, 21) in polarization-resolved SMLM data. For
imaging in the mammalian cell, early studies examined fluorescence anisotropy in the SMLM
data of FP-tagged actin to detect local heterogeneity in rotational mobility (109, 110). Valades
Cruz et al. (112) compared polarization-resolved SMLM data for differently labeled microtubule
and actin cytoskeletons in fixed cells and identified Alexa Fluor 488 phalloidin as a good probe to
resolve the orientation of the latter. By delivering the same probe into live mammalian cells at low
concentrations,Mehta et al. (114) resolved actin filament orientations in SPT to compare with the
retrograde flow direction at the leading edge. Rimoli et al. (115) recently developed strategies to
determine single molecules’ orientation in two dimensions and infer their 3D orientations, which
they applied to the SMLM of Alexa Fluor 488 phalloidin–labeled dense actin structures in fixed
cells (Figure 6a–d).

Polarization-based functional SMLM has also shed new light on the structure of lipid mem-
branes. Integrating polarized beam splitting and a spatial light modulator, Lu et al. (116) encoded
3D orientation and wobbling into the single-molecule point spread function and thus ana-
lyzed the ordering and packing effects of cholesterol in supported lipid bilayers and resolved
nanoscale domains with different ordering parameters. A recent study constructed a radially
and azimuthally polarized multiview reflector to image single-molecule fluorescence across eight
polarization channels to simultaneously determine molecular location and orientation in three
dimensions each, and the resultant 6D SMLM resolved dye orientations in fixed-cell membranes
(Figure 6e–f ) (117).

6. SINGLE-MOLECULE FLUORESCENCE LIFETIME

By detecting the exponential decay rate of emission at the nanosecond timescale, fluorescence
lifetime imaging microscopy provides a powerful, probe concentration-insensitive handle for the
functional imaging of biological samples (118–120), with diverse probes developed for chemical
polarity, viscosity, temperature, and different analytes.

Fluorescence lifetime-resolved SMLM (FL-SMLM) has been achieved with both confocal and
wide-field experimental setups (Figure 7a–d), utilizing a single-element single-photon avalanche
diode detector and an array detector based on a microchannel-plate photomultiplier tube, re-
spectively (121, 122).Whereas confocal setups can only image a relatively small field of view with
reasonable imaging speeds, the currently available array detectors suffer from low (∼5%) quantum
efficiencies. Lifetime estimations can also be made for the wide field with conventional high-
sensitivity cameras by time gating the signal electro-optically with a Pockels cell (Figure 7e,f )
(123), but with limitations on sensitivity.

Thus far, the application of FL-SMLM has been limited to in vitro samples and fixed cells,
with an initial focus on separating labels for multiplexed imaging (Figure 7b,c,f ) (121, 122, 124).
Recent work detected FRET (125) and metal/graphene-induced energy transfer (122, 126, 127),
the latter further enabling 3D SMLM by providing an interesting way to determine the fluo-
rophore’s distance to the substrate (Figure 7d). Possible future FL-SMLM applications to live

174 Steves • He • Xu



PC75_Art08_Xu ARjats.cls June 12, 2024 12:57

x
y

z

Sample plane

Objective

BS

4 µm

2 µm

4 µm

PBS

PBSHWP

M

D

D 0°

90°

45°

135°
F-actin
axis

0 90 180

a eb

c
f

d

ϕ

y

x

z

y
500 nm

η

ξ

ρ δ

δ3D

ρ (°)
40 100 180

δ (°)

0 180
θ (°)

180° 0°

135° 45°
90°

Figure 6

Polarization-resolved SMLM and its applications to the cytoskeleton and membrane in fixed cells.
(a) Schematic of the fluorescence polarization behavior of Alexa Fluor 488 phalloidin labeling an actin
filament. (b) Schematic of the extraction of single-molecule fluorescence polarization orientation and
wobbling by reducing the detection numerical aperture with D and combining an HWP and two PBSs.
(c,d) Resultant SMLM images resolving the mean orientation (c) and wobbling angle (d) of Alexa Fluor 488
phalloidin labeling the actin cytoskeleton in a fixed cell. (e,f ) 6D (3D spatial and 3D orientational) SMLM
imaging of merocyanine 540 molecules bound to the membrane of a fixed cell: (e) In plane (x-y) view, colored
by the single-molecule azimuthal angle ϕ, and ( f ) vertical (y-z) view of the boxed region, colored by the
single-molecule polar angle θ . Abbreviations: BS, beam splitter; D, diaphragm; HWP, half-wave plate;
M, mirror; PBS, polarizing beam splitter; SMLM, single-molecule localization microscopy. Panels a–d
adapted from Reference 115 (CC BY 4.0). Panels e and f adapted with permission from Reference 117.

cells and to the super-resolution mapping of local environments and intermolecular interactions
hold great potential.

7. NONFLUORESCENCE METHODS

The above success of SMLM for functional SRM imaging raises the question of whether related
approaches could be applied to nonfluorescence methods, which may overcome the limited num-
ber of photons that can be extracted from individual fluorophores, enable label-free imaging, or
access new spectroscopy insights for decoding physicochemical parameters (128–130).

Microspheres and nanoparticles have long served as unbleachable probes for live-cell SPT (91,
131). Recent advances in photothermal microscopy (91, 128, 132) and interferometric scattering
microscopy (133–136) have further enabled the SPT of small gold nanoparticles in live cells, as
well as the room-temperature detection and analysis of single molecules in vitro. It, however,
remains a challenge to resolve single molecules in the crowded cell or to detect many molecules
within the diffraction limit.

Nonlinear optical methods such as nonlinear Raman, harmonic generation, multiphoton flu-
orescence, and transient absorption offer intriguing prospects for functional SRM for their

www.annualreviews.org • SMS and SRM Mapping in Living Cells 175

https://creativecommons.org/licenses/by/4.0/legalcode


PC75_Art08_Xu ARjats.cls June 12, 2024 12:57

5 µm

2 µm

τ (ns)

τ (ns)

2

Wide �eld

Confocal

Alexa 647

Atto 643

Atto 550

Atto 550
Cy3B

Alexa 488

Cy3B

3.66 ± 0.23 ns
Atto 550

2.88 ± 0.28 ns
Cy3B

1 43

2

1

4

3

3.0

3.5

2.5

Wide-�eld lifetime (ns)

Co
nf

oc
al

 li
fe

ti
m

e 
(n

s)

50 15

39 MHz

Pockels cell Lifetime

Intensity ratio

10 nm
20 nm
30 nm
40 nm
50 nm
Glass

10 20

10–5

10–4

10–3

10–2

Time (ns)

Co
un

ts
 (n

or
m

al
iz

ed
)

2.0 4.0 5.03.0
Lifetime (ns)

Fr
eq

ue
nc

y

ba

f

e

c

d

100 nm

3 4 5

1 µm

Figure 7

Fluorescence lifetime-resolved SMLM. (a) Comparison of the fluorescence lifetime of single molecules of five dyes measured with
confocal and wide-field SMLM setups. (b, top) Wide-field lifetime-resolved SMLM image of a fixed cell double labeled with Cy3B
against peroxisomes and Atto 550 against mitochondria, with the colors presenting the measured lifetime. (b, bottom) Close-up of the
boxed region and separation of the two dyes based on the lifetime. (c) Lifetime histograms corresponding to panel b. (d) Fluorescence
lifetime curves for AF647-DNA molecules on glass and on gold substrates with 10–50-nm-thick SiO2 spacers measured with confocal
lifetime imaging, demonstrating distance-dependent decreases in the fluorescence lifetime owing to metal-induced energy transfer.
(e) Schematic of time-gated electro-optic imaging for wide-field lifetime-resolved SMLM using a resonantly driven Pockels cell and a
polarizing beam splitter. ( f ) Resultant lifetime-resolved SMLM image of DNA origamis labeled with Cy3B and Atto 565.
Abbreviation: SMLM, single-molecule localization microscopy. Panels a–c adapted from Reference 122 (CC BY-NC-ND 4.0). Panel d
adapted from Reference 126 (CC BY-NC 4.0). Panels e and f adapted with permission from Reference 123; copyright 2021 American
Chemical Society.

outstanding chemical and structural contrasts (130, 137–139). Super-resolution nonlinear optical
microscopy has been achieved with expansion microscopy (140, 141), STED-based imaging (142),
and interferometric excitation (143), among other approaches (129, 130). Application to SMLM
is limited by the relatively low probability of nonlinear optical processes and the need for a scal-
able approach to signal modulation for the isolation of single molecules. Plasmonic amplification
of light-matter interactions (144) provides a viable path; surface-enhanced Raman spectroscopy
has achieved single-molecule sensitivity (145, 146), and its local blinking has enabled SMLM-
type imaging of dried samples (147, 148). However, the patterned plasmonic substrates distort the
resultant image, and their required proximity to the sample limits applicability.

8. CONCLUSION

In conclusion, while the outstanding spatial resolution of SMLM has attracted wide attention, in
this review we showcased how, by extending mass-accumulated single-molecule measurements to
higher dimensions, including emission and excitation spectra, motion, polarization, and fluores-
cence lifetime, the resultant multidimensional SRM approaches provide fascinating new insights
into physicochemical parameters in the living cell.
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Future developments call for a synergy of continued innovations in optics on both the exci-
tation and detection fronts, fluorescent probe design, synthesis, and delivery methods, as well as
algorithm and analysis tools. The need to detect single molecules and invoke fluorescence on-off
switching poses significant challenges: Optimal results thus demand bright probes with high flu-
orescence quantum yields, while on-off mechanisms such as photoswitching or reversible binding
often need to be built in. Yet, the uniqueness of sparse molecules across the camera frame, as of-
ten achieved in SMLM, offers new possibilities, so that single-molecule images may be directly
stretched/dispersed in the wide field for high-throughput recording, and the recorded signal from
each molecule is guaranteed a single identity, removing the need for unmixing. New illumination
sequences further enable SMLM/SMdM for constantly bright fluorophores via diffusion-based
probe exchange. Integrations between different SMLMmodules, as well as correlative approaches
with other microscopy and spectroscopy techniques (149), provide additional opportunities.
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105. Śmigiel WM, Mantovanelli L, Linnik DS, Punter M, Silberberg J, et al. 2022. Protein diffusion in
Escherichia coli cytoplasm scales with the mass of the complexes and is location dependent. Sci. Adv.
8:eabo5387
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