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Abstract

The Born–Oppenheimer potential energy surface (PES) has come a long
way since its introduction in the 1920s, both conceptually and in predic-
tive power for practical applications. Nevertheless, nearly 100 years later—
despite astonishing advances in computational power—the state-of-the-art
first-principles prediction of observables related to spectroscopy and scatter-
ing dynamics is surprisingly limited. For example, the water dimer, (H2O)2,
with only six nuclei and 20 electrons, still presents a formidable challenge
for full-dimensional variational calculations of bound states and is consid-
ered out of reach for rigorous scattering calculations. The extremely poor
scaling of the most rigorous quantum methods is fundamental; however, re-
cent progress in development of approximate methodologies has opened the
door to fairly routine high-quality predictions, unthinkable 20 years ago.
In this review, in relation to the workflow of spectroscopy and/or scatter-
ing studies, we summarize progress and challenges in the component ar-
eas of electronic structure calculations, PES fitting, and quantum dynamical
calculations.

399

mailto:dawesr@mst.edu
https://doi.org/10.1146/annurev-physchem-090519-051837
https://www.annualreviews.org/doi/full/10.1146/annurev-physchem-090519-051837


PES: potential energy
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1. INTRODUCTION

Since its introduction in the 1920s, the Born–Oppenheimer approximation (1),which separates the
molecular Hamiltonian into electronic and nuclear parts, has provided a framework with which to
understand molecular systems on qualitative and quantitative levels. Qualitatively, the consequent
molecular potential energy surface (PES) serves as a model that to a familiar viewer illustrates the
structural isomers of a system, their relative energies, their flexibility or floppiness, and the feasi-
bility of interconversion (Figure 1). The key role of barriers and bottlenecks on the PES guided
the development of kinetic theories, such as the transition-state theories of the 1930s (2, 3).Quan-
titatively, the PES serves as a defining part of the Hamiltonian for the nuclei and can thus be used
in a wide variety of calculations, ranging from bound or resonance rovibrational states (providing
predictive insight into spectroscopic observables) to cross sections and rates of various collisional
processes (elastic, inelastic, and reactive) and even—though usually involving multiple PESs—to
simulations of the photophysics and photochemistry triggered by the absorption of energetic pho-
tons. Through the Born–Oppenheimer approximation, the electronic energy can be considered
for any given fixed geometry of the nuclei. The electronic wave function describing a molecular
system—and its energy—generally varies as a function of the relative positions of the nuclei;
therefore, the PES becomes the function describing the electronic energy of the system, evolving
as a function of its geometry. The various eigenstates of the electronic Hamiltonian correspond
to the set of electronic states of the system, each represented by a PES, one or more of which may
govern the states or dynamical processes of interest. A great deal of literature is available relating
to the history and development of the PES concept (4, 5), its physical and mathematical properties
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Figure 1

Two representations of a global potential energy surface (PES) describing O3–Ar interactions. The surface-
plot rendering provides a clear three-dimensional visualization of the general topography of the PES. The
contour plot (projected at the base of the figure) provides a less visceral but more precise communication of
the nature of the interactions, including the position of minima, transition states, and isomerization paths.
Above the plot, two Ar atoms (cyan) show the symmetric positions of the global minima, on opposite faces of
the O3 molecule (red).
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and constraints (such as symmetries and behavior at long range) (6), and its subtle and not so
subtle extensions, introducing so-called non-Born–Oppenheimer corrections or couplings (7).

In this review, we focus on the components of the workflow of a computational spectroscopy
or scattering study—that is, what electronic structure methods or model chemistries are suitable
for the production of electronic energies of sufficient accuracy, whether or how to fit them into a
usable PES or PESs, and how to employ them in calculations of the spectroscopic or dynamical
observables of interest. Note that it is always an option to bypass PES construction entirely and
simply compute all the necessary quantities, as needed, on the fly. This option may be enticing if
the fitting procedure for a given system is particularly challenging, but it is very costly if high-level
data are required and thus is best suited for applications where trajectories at a modest level of the-
ory are applicable. The nature of the system under study and the dynamical quantities of interest,
in turn, dictate the challenges and requirements relating to the preceding steps in the workflow.
For example, if one plans to study inelastic collisions (collisional energy transfer) between two
nonreactive closed-shell species, then the requirements for the coordinate and energy ranges of
the PES—as well as the underlying electronic structure approach—will all be very different than
for a study of reactive collisions, which may involve bonding rearrangements and drastic changes
in the electronic structure of the system. Similarly, a study of rovibrational states that are strongly
confined to the region of a single well permits different methodologies than those required to
study floppy, multiwelled systems, fraught with delocalization and tunneling.

The two dynamically very different example cases of (a) inelastic collisions between two nonre-
active closed-shell species and (b) rovibrational states that are strongly confined to the region of a
single well are likely to be similar in terms of the most suitable and affordable high-accuracy elec-
tronic structure approach. In the absence of exotic multiconfigurational electronic structures, and
depending on the number of electrons, both cases are typically amenable to a single-reference-
based [e.g., coupled-cluster (CC)] protocol. In contrast, from a PES construction and fitting stand-
point, those two cases could differ greatly in the type and range of relevant coordinates. Inelastic
scattering predictions can be very sensitive to subtleties of the long-range behavior of the PES,
while low-lying spectroscopic levels may be very sensitive to the precise shape of the PES only in
the region of a strongly confined well.

Similarly, the other two cases mentioned above—reactive collisions and the spectroscopy of
floppy,multiwelled systems—may share similarities in the necessary electronic structure approach,
perhaps requiring amultireferencemethod to handle the changes in electronic structure associated
with bonding rearrangements or exploration of large regions of the configuration space.Here, cor-
responding challenges may arise in PES construction and representation, since the effectiveness
and convenience of particular choices of coordinates and fitting functions may differ for wildly
different geometries or product channels. In the example of proposed scattering calculations for
the water dimer, (H2O)2, accurate electronic structure calculations are affordable, and accurate
representation of the 12-dimensional PES is also achievable (8); only the scattering calculations
are prohibitively expensive. In contrast, until recently the accuracy of scattering calculations for
the three-atom system O2 + O (9–11) was limited by challenges in the electronic structure calcu-
lations (12, 13), related to the important effects of strong (static) and dynamic electron correlation
and perturbations from excited electronic states (14).

The goal of this review is to cover some of the available and emerging high-accuracy electronic
structure methods applicable to systems with up to roughly 12 nuclei and 100 electrons (those ac-
cessible to rigorous quantum dynamical treatment).We also cover methods and trends in the area
of PES construction and representation. Finally, we highlight a variety of traditional as well as new
avenues for computing spectroscopic and dynamical quantities. A theme connecting all of these
areas is that of automation and artificial intelligence (AI). Parallel high-performance computing
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Figure 2

The four lowest electronic states of NO2 are plotted as a function of pairs of normal-mode coordinates (S1 and S2 at left, and S1 and S3
at right). We computed the energies at the MRCI-F12 level. The two coupled states of A′′ symmetry (the B and C states) intersect in
the Franck–Condon region and are shown in a diabatic representation. Abbreviations: GS, ground state; MRCI, multireference
configuration interaction; S1, symmetric stretch; S2, bend; S3, asymmetric stretch.

and machine learning (ML) are transforming how we do science. Scripting of multicomponent
electronic structure protocols is becoming commonplace. Methods using AI to adapt and tailor
those procedures are emerging. Similarly, automated PES construction and the use of ML to pro-
vide PES models are a rapidly developing field. In the area of computational spectroscopy, not
only have there been breakthroughs in eigensolvers and linear algebra, but also automation is be-
ing applied for spectroscopic databases, where the generation and curation of lists of transitions
(sometimes billions of lines for a single species) are necessarily systematized.

2. THE CONSTRUCTION OF AB INITIO–BASED POTENTIAL ENERGY
SURFACES

Given the central role of the PES in determining the states and behavior of molecular systems,
many approaches to its construction—varying in sophistication—have been employed. Beginning
in the 1930s, empirical and semiempirical procedures were used to determine general features
of the PES (15) and constrain and parameterize simple functions (16), and in some cases, physi-
cal models constructed from plaster (17) or plywood (18) were made. Although the early models
were somewhat primitive, insightful analyses were already under way—such as Teller’s (19) re-
search on the crossing of PESs, which is still cited today. Asymptotic behavior (20) and analyses
such as symmetry adapted perturbation theory (SAPT) (21–23) are powerful tools, but in mod-
ern usage they are guided by decades of advances in electronic structure theory that, combined
with huge computing power, now permit us to benchmark the PES via accurate estimates of the
electronic energy at arbitrary locations. In systems where the Born–Oppenheimer approximation
either breaks down entirely or is not sufficiently accurate, it can be necessary to construct multi-
ple coupled PESs (Figure 2). Such PESs can be used to explore nonadiabatic dynamics, including
photodissociation (24), as well as to study states and processes in which perturbations, coupling
mechanisms, and geometric phase effects are relevant. Electronic structure calculations yield en-
ergies in the adiabatic representation and, thus, in the region of state intersections will exhibit
cusps (derivative discontinuities) that are problematic for fitting strategies.While this is an active
area of development, most approaches to nonadiabatic dynamics prefer a diabatic representation
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of the PESs, in which states tend to be smooth, with slowly varying character, retaining their iden-
tity as they cross one another. Coupled to one another in this representation, the PESs become a
potential energy matrix, with each off-diagonal term representing a geometry-dependent surface
of the coupling between the states connected by that element (7, 25). These areas are the frontier
of small-molecule quantum dynamics. For small-enough systems, arbitrarily accurate results can
be produced within the Born–Oppenheimer approximation. For larger systems, high accuracy is
still a challenge, and affordable methods such as density functional theory are very actively un-
der development. For the largest systems, such as proteins, parameterized models (force fields)
are still the most common approach. Here, we focus on wave-function-based ab initio methods,
which, although limited by steep cost scaling, provide a systematically improvable framework with
which to obtain highly accurate PES data.

2.1. Ab Initio Calculations

Ab initio electronic structure calculations are used to produce accurate values of the PES at partic-
ularmolecular geometries.Due to the relatively high cost of each such calculation in high-accuracy
applications, ab initio energies are rarely used directly in dynamics calculations, which can require
up to millions or even billions of PES evaluations. Rather, the number of ab initio data points is
usually limited to the minimum needed for accurate representation of the global PES through a
fitting approach.Thus, typically a few thousand ab initio data points are fitted into an analytic PES
that can be efficiently evaluated as needed. The electronic structure calculations themselves are
certainly the most accessible part of the overall workflow, as many packages—both commercial
and academic—are available (26–32). Wave-function-based ab initio quantum chemistry meth-
ods solve the electronic Schrödinger equation given only the total number of electrons and the
positions of the nuclei in the system, with (for nonrelativistic calculations) no other hypotheses
than the following: (a) Coulomb forces are the only ones defining the interactions between all
electrons and nuclei, and (b) the electrons obey Fermi statistics and the Pauli exclusion principle,
that is, without appealing to experiments, beyond invoking the numerical values of fundamental
physical constants.

In traditional nonrelativistic wave-function-based theory, there are essentially two classes of
approximations to be considered. The first approximation is related to the (one-electron) basis
functions to be used in the molecular orbital (MO) representation. The second concerns the ex-
pansion of the electronic wave function. Inmost cases,Gaussian basis functions are used to approx-
imate theMOs—since computing the required integrals can be accomplished efficiently using this
basis—while the many-electron wave function is typically represented as antisymmetrized prod-
ucts (Slater determinants) of theMOs.The two are related, since larger basis sets permit construc-
tion of additional orbitals, which can potentially be included in a more complete wave-function
expansion. In the simple example of a single Hartree–Fock (HF) determinant, the additional basis
functions serve only to increase the flexibility of the one-electronMOdescription, tending asymp-
totically toward an infinite (complete) set of functions, known as the complete basis set (CBS) limit,
and in this case the HF limit. In post-HF calculations, various means are employed to increase the
flexibility and accuracy of the wave-function expansion. Ideally, in a full configuration interaction
(FCI) calculation, every possible Slater determinant is used (i.e., all physically allowable electronic
configurations are included in the calculation), which provides the most accurate result possible
for the given one-electron basis set employed.

2.1.1. Single-reference and multireference methods. Conventional ab initio approaches
are often classified into two main groups: single-reference and multireference methods. This
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designation (single-reference versus multireference) simply indicates whether or not the elec-
tronic wave function is being represented (expanded from) by a single dominant configuration
(Slater determinant).We have recently discussed the many considerations that go into planning a
PES construction project in terms of selecting an appropriate single- or multireference method or
protocol (33). Construction of a global PES can be much more demanding of the electronic struc-
ture methods than analysis of only a few critical points such as minima and asymptotes. Not only
does one seek a balance in terms of the highest possible (or necessary) accuracy with manageable
computational costs, but also, if a high-fidelity fit is desired, one requires a consistent and robustly
converged data set across the entire coordinate space relevant to the application. Determining
an accurate and well-behaved protocol is perhaps the most challenging and important step in the
overall process, since fitting methods—especially interpolative ones—are typically not designed
to accommodate irregularities, and even minor spurious topographies could affect the results. As
discussed in Reference 33, the applicable methods depend strongly on the nature and dynamics
of the system of interest. Whenever possible, for small to medium-sized systems, the method of
choice for PES construction is the size-consistent and size-extensive CC method, specifically, the
gold-standard CCSD(T) method. It is fair to say that when CCSD(T) is not used, it is usually be-
cause it is not applicable [e.g., because of related issues such as the state of interest being an excited
state of the given symmetry and spin, strong multireference character, convergence problems in
CCSD(T) itself or in the HF reference] or, rarely, not sufficiently accurate. The ultimate goal is
to capture the strong (static) and dynamic electron correlation as accurately and cost-efficiently as
possible.Common implementations of CCSD(T) are known to scale in cost as n7 with the number
of electrons, and costs rise steeply through the correlation treatment hierarchy, reaching n10 at
CCSDTQ.Going beyond CCSD(T) in systems that are well described by a single determinant is
rather uncommon but is sometimes observed in high-accuracy applications (34–36). At present,
high-order CC implementations are not as robust as those up to CCSD(T), nor are they as
widely available. There is, however, considerable development effort devoted to CC theory. Some
efforts address the cost/accuracy issues either through new algorithms or representations (37–39)
or by introducing various types of approximations (40, 41). When CC fails to either converge or
accurately describe the system, one often turns to multireference methods such as multireference
configuration interaction (MRCI). MRCI is the most common approach for systems with strong
multireference character such as ozone, as well as for excited states, or multistate PESs (42).
MRCI is neither size consistent nor size extensive, and it often requires considerable experience
to specify crucial details such as the choice of active space. MRCI is also very expensive even
at the standard level of single and double excitations, and no affordable rigorous treatments of
high-order correlation are available. Often, a posteriori corrections related to those proposed by
Davidson & Silver (43) are added, aiming to improve size consistency and extensivity, and thus
to implicitly account for some of the missing high-order correlation. These corrections often
improve accuracy but can introduce nonphysical behavior and numerical issues that impair the
process of fitting a PES (33). Aside from all that, it’s fantastic! A realistic perspective is that it is not
so much that MRCI suffers so many drawbacks, but rather that the cases for which it is warranted
are extremely challenging. Furthermore, many of the cases where a multireference approach
might be indicated, such as a reactive PES describing fragmentation of a molecule and large
changes in the electronic structure, will also involve multiple electronic states (either becoming
degenerate in some region or asymptote or exhibiting dynamically relevant crossings or avoided
crossings). When constructing a PES, it can be necessary to consider a balanced multistate elec-
tronic structure treatment simply to obtain the correct behavior for a single state of interest (33).

Considerable effort in electronic structure method development continues to be expended on
the strong correlation problem and on recovering the desirable properties of the CC approach in
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these applications. Various multireference extensions and modifications of CC have been or are
being tested (41, 44–47), along with other approaches, such as Monte Carlo–based methods (48,
49), the density matrix renormalization group (50, 51), Green’s function methods (52, 53), and
so forth. For excited states, various equation-of-motion CC methods have been introduced (48,
54, 55). So far, however, in the construction of PESs based on multireference ab initio data, the
use of methods other than MRCI (or lower-level methods such as CASSCF or CASPT2) is quite
rare. This is mainly because construction of a PES typically involves generating thousands of
data points, which favors mature robust methods that are implemented in available software pack-
ages. Ideally, for automated PES construction, data can be reliably generated and extracted via
scripts.

2.1.2. Compound methods or protocols. Given the steep cost scaling of converging elec-
tronic structure calculations (in both directions, basis set completeness and correlation treatment)
toward the FCI/CBS limit, a practical approach is to adopt a composite scheme. Various schemes
have been introduced. Generally, the idea is to converge as well as possible the total energy while
limiting costs by splitting the calculation into several independent contributions, balancing the
effort applied to each term on the basis of its significance and cost scaling. For example, in a
single-reference CC-based application, one might separate the correlation treatment hierarchy
by order, and thus attempt to converge the CCSD contribution using very large (or extrapolated)
basis sets, and then estimate as many of the higher-order contributions—(T), T, (Q), Q, and so
on—as are deemed necessary, using sequentially smaller basis sets to balance the rapidly exploding
costs with the hopefully rapidly decreasing significance of each term. Using explicitly correlated
methods [e.g., CCSD(T)-F12, or MRCI-F12] is a popular way to accelerate basis set convergence
at a given correlation treatment level (56), although doing so involves introducing approximations
and numerical machinery that some researchers prefer to avoid, relying instead on standard ex-
trapolation toward what should in principle be the same CBS limit (57, 58). Most high-accuracy
schemes take a holistic view of the contributions and might separately evaluate valence and core
electron correlation, high-order correlation, relativistic corrections (including spin-orbit effects),
and perhaps non-Born-Oppenheimer corrections (e.g., the diagonal correction) (59, 60).

2.2. Fitting Methods

Many PES-fitting methodologies have been proposed or are in active development. Traditionally,
the push was toward new strategies to fit the calculated energies more efficiently, with higher ac-
curacy and more systematic control over fitting errors. At present, more effort is being directed
toward developing black-box (e.g.,ML-based) models that are less system specific and lend them-
selves to automation. Most PES-fitting strategies can be broadly categorized—although the bor-
ders of the classifications are sometimes blurry—according to two different criteria: (a) whether a
physical or a more mathematical representation is employed and (b) whether the fit is interpolative
or not. One may further distinguish between methods that use linear versus nonlinear algebra to
determine model parameters.

With regard to the set of functions employed in the fit, thesemodels can be classified as physical
or mathematical methods; the physical approaches are typically more intuitive (less black-box)
and are based on fitting using a physically motivated set of functions.With physical methods, the
functional form is usually derived by taking into account as much information about the system
as possible (such as symmetry and asymptotic behavior); if the functions are chosen appropriately,
the PES representation can be accurate, require a minimal quantity of fitting data (especially in
the long range), be compact (with a minimal number of fitting parameters), and be efficient to
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evaluate. The main drawback is that the procedural details are very system specific. An example
of such fitting approaches is the Morse/long-range method by LeRoy and colleagues (20, 61–
63), which builds the precise long-range behavior of the specific system into the fitting functions.
The representation of the long-range interaction between molecules or fragments (very relevant
for low-temperature scattering studies) is well described as a function of multipole expansions.
Within this formulation, the necessary parameters defining the interaction potential correspond
directly to physical properties of the interacting fragments (such as multipole coefficients and
polarizabilities). The multipole formalism has been developed over decades (64), and there are
still some efforts to develop related approaches, such as distributed multipoles (65). At sufficiently
long range, it is hard to beat the multipole expression for describing the PES. Indeed, in our tests,
high-level ab initio calculations performed in the long range can often be reproduced to within
0.001 cm−1 by only a few simple terms.

SAPT is another sophisticated physically based framework for computing noncovalent inter-
actions that also enables analysis in terms of decomposition of the energy into contributions such
as electrostatic, exchange, induction, and dispersion (21–23). Based on perturbation theory, vari-
ous levels of SAPT are designated by order of truncation of the expansion. Current development
efforts in SAPT aim to improve accuracy, as well as to treat open-shell systems, degeneracies, and
excited electronic states (66, 67). However, in terms of global PESs, these methods are simply
not applicable at short distances (LeRoy and colleagues’ consideration of the nuclear coalescence
extreme notwithstanding); therefore, a common strategy is to switch from using some other ap-
proach at short distances to using a physical analytic description of the system’s interactions at
long range (13).

In contrast, in a more mathematical approach, the chosen functional form typically does not
strongly enforce assumptions concerning the physical nature of interactions in the system but
rather depends more on its efficiency and flexibility. Many different types of functions have been
used, including (but not limited to) polynomials, sigmoid-like functions, splines, Gaussians, and
Morse functions. The aim of a mathematical approach is to fit—as accurately as possible—a set of
data points to an analytic expression constructed with a combination of extremely flexible func-
tions (usually without any direct physical meaning). Some examples of mathematical methods in-
clude spline methods (68), interpolating moving least squares (IMLS) (69–71), modified Shepard
interpolation (72), reproducing kernel Hilbert space (73), Gaussian process (GP) regression (74–
76), neural networks (NNs) (77–79), genetic algorithms (80), and the permutationally invariant
polynomial (PIP) method (81). Hybrid approaches such as PIP-NN (82), fundamental invari-
ant NN (83), and PIP-IMLS (84, 85) illustrate that elegant features of one method—such as the
treatment of symmetry in the PIP approach—can be introduced into the framework of another
methodology.Within the realm of mathematical methods, there can still be important differences
in terms of how far removed the method is from a clearly understood physical model. For exam-
ple, if one fits a data set using a fixed basis of Morse (or other similar) functions, and uses linear
algebra to obtain a set of model coefficients, then it is still quite intuitive what is going on, and
such a well-defined approach will (repeatably) lead to a particular set of fitting coefficients. Indeed,
functions such as Morse are chosen because they retain some physical aspects, such as becoming
slowly varying at long range. In this context, one could adjust the number (or weighting) of data
points in a given region, and—within the flexibility of the fitting basis—expect corresponding
changes to the fit in that region.ML-based approaches (86) such as NNs are rapidly gaining pop-
ularity but are much more obscure, usually employing activation functions with no resemblance
to PESs. Furthermore, such nonlinear approaches are not deterministic in the same way as those
based on linear algebra, and different solutions are obtained each time the fitting procedure is
executed. NN methods can be guided by data density and placement, as well as by choices such
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as the number of neurons and hidden layers, but can still be difficult to systematically control to-
ward a specific (especially high) accuracy target. Proponents of ML methods see great potential
in removing human intuition from the procedure and letting AI identify hidden correlations to
improve the model representation (87). Of course, it is still advantageous and even necessary to
correctly account for things like permutation symmetry and translational invariance, and these
properties have recently been successfully enforced in some ML models (86). There is no doubt
that ML methods are an exciting area of research and development that hold great promise to
broadly redefine computational chemistry, and thus can be expected to become ever more pop-
ular. Done carefully, a mathematical approach to fitting can result in a PES that is numerically
accurate and computationally efficient. An advantage of this kind of less-constrained fitting is that
an accurate PES can be constructed even for cases with unusual topographies, although special
care must be taken during the construction process to ensure an asymptotically and globally cor-
rect physical shape, avoiding the presence of holes or other spurious behaviors due to the use of
nonphysically motivated—or excessively flexible—functional forms. A highly successful approach
to describing water–water interactions ranging from the dimer to the bulk, and recently including
solvated ions, is the MB-pol approach of Paesani and colleagues (8). MB-pol can be described as
a hybrid of many of the abovementioned strategies. It is based on high-level ab initio calculations
and in the short range employs ML methods to determine flexible model parameters while also
incorporating a physically motivated form for the long range; thus, overall it relies on switching
and damping, with both linear and nonlinear parameters (8).

PES-fitting methods can also be classified as interpolative or noninterpolative. An interpola-
tive fit passes exactly—or arbitrarily nearly so—through each data point, making the fitting error
negligible near data points. In contrast, noninterpolative fits may or may not pass through any
of the individual data points, but rather accommodate all of them in a balanced (often a least-
squares) way. In general, modern interpolative fitting strategies can in principle satisfy any accu-
racy target (precision of the PES) and, if necessary or desired, can be further improved or opti-
mized in any particular region of the PES by simply adding more ab initio data points. However,
early implementations of interpolative methods, such as cubic splines, suffer from serious limi-
tations, remnants of which are still relevant to more modern methods. Cubic splines, although
very straightforward to implement, generally require a dense regular product grid of data, making
them among the least efficient PES representations in terms of the number of required electronic
structure calculations (68). They are also notorious for exhibiting spurious oscillations in regions
where the density (though presumably already quite high) is still not sufficient. For cubic splines,
due to the regular product structure of the data grid, improving the fit in even a small region may
require adding a considerable quantity of data globally, or redefining the grid altogether. Modern
interpolative methods can handle arbitrarily irregular data sets with greatly varying density. This
means that the fit can be adjusted in a particular region by the addition of only a single data point.
Remarkably, given the very poor efficiency of the cubic splines method, the newest methods are
perhaps the most efficient in terms of reaching high fitting accuracy with limited ab initio data (75,
88). Nevertheless, a concern even for modern interpolative methods is that of possible oscillations
in regions with insufficient data coverage, or wild divergencies where data coverage is lacking en-
tirely. These behaviors are possible with any mathematical approach but can be exacerbated in
interpolative methods because of the common use of highly peaked weight functions that make
the fit less constrained by global behavior. In our research into interpolative fitting methods, we
find that these undesirable behaviors can be largely avoided by using physically motivated func-
tions to perform the interpolation, as well as by linear algebra techniques such as limiting poor
conditioning of the design matrix through a procedure that we refer to as dynamic condition-
ing. This procedure has been described elsewhere (88) and uses the singular value decomposition
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method to identify and employ only the best-determined linear combinations of the fitting basis,
and since individual fits are quite localized, the basis is effectively dynamically tuned across the
varying topography of the global PES.

There are relatively few direct comparisons between fitting methods, but a recent compara-
tive test found that PIP, NN, and Gaussian approximation potentials performed similarly in fit-
ting two-body MB-pol energies [root-mean-squared error (RMSE) of ∼0.05 kcal mol−1] (76). In
a comparison between NN and GP regression, where both methods employed identical fitting
points to fit a PES for formaldehyde and then tested for statistical accuracy as well as performance
in vibrational calculations, both methods achieved similar sub-wave-number fitting error using
2,500 data points, but GP was significantly more accurate (especially in the computed spectrum)
when smaller data sets were used (89).Generally, each method has its own performance character-
istics in terms of implementation and use. Some factors that one might consider when selecting a
method for a given application are (a) ease of use; (b) limiting accuracy and/or efficiency in terms
of the quantity of data required to reach the desired accuracy target; (c) ability to precisely cap-
ture symmetry and/or key features of the topography such as the shape of wells, barriers, or the
long range; and (d) efficient output in the formmost useful to the spectroscopy/dynamics method.
With these considerations in mind, the preferred method for a quasi-classical trajectories study
of the isomerization of a large molecule, for example, would likely be different than that for a
low-temperature quantum scattering calculation. Studies of spectroscopy and scattering dynam-
ics place stringent demands on the PES. The results can be very sensitive to the fitting accuracy,
the precise form of the long-range behavior, and a precise reflection of symmetry. For a variational
calculation of rovibrational levels, one might place higher priority on fitting accuracy over the ef-
ficiency of PES evaluations, since the grid would likely be computed only once, at the beginning of
a large set of calculations, and it is desirable to be able to interpret the results as a direct reflection
of the underlying electronic structure method.

A method that we have employed and that lends itself to high-accuracy applications is IMLS.
IMLS-based approaches are interpolative fitting methods, and thus exhibit high fidelity to the ab
initio data set used in the fit and are systematically improvable by adding more data points. The
efficiency of IMLS-based methods for constructing PESs with sub-wave-number fitting errors
has been demonstrated (90–92), and general descriptions of its methodology—as well as various
avenues of its development—are available in the literature (69, 70, 88).

Although high-degree IMLS fits are much less computationally expensive than high-level elec-
tronic structure calculations, their computational cost can still be high—relative to other fitting
methods—since by default a weighted least-squares fit needs to be performed each time the PES is
evaluated.The so-called local IMLS approach (L-IMLS) (71, 91) is a version of the IMLSmethod
that stores local approximants to overcome this problem, retaining the features of an IMLS fit yet
being much more efficient to evaluate. Roughly speaking, by using a single processor one might
expect to make two to three thousand calls per second from an L-IMLS fit to a few thousand data
points. This is two to three orders of magnitude faster than the parent IMLS method, for which
one must set up and solve the design matrix during each evaluation. Note, however, that even the
L-IMLS method is at least an order of magnitude slower to evaluate than, for example, a sim-
ple single-polynomial expansion. Of course, any fitting method is expected to be many orders of
magnitude faster than direct computation of high-level electronic structure data, which can take
between minutes and days per point. The main idea behind the L-IMLSmethodology is that local
approximants—each fitting a small neighborhood of ab initio data—are computed and stored, and
then the interpolated energy is obtained as a weighted sum of the local approximants. More gen-
erally, a local approximant (or local fit) of the PES, for a given geometry R in the neighborhood
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of the data point Rk, can be defined as

vk(R) =
m∑
j=1

a j,k(Rk )Bj (R), 1.

where m is the total number of basis functions {Bj (R)} and the coefficients {aj, k} are determined
using a standard IMLS fit. Then, given N local approximants vk(R), where k = 1, 2, . . . , N, the
L-IMLS potential at any given nuclear configuration (geometry) is defined as the normalized
weighted sum of the local fits:

Vfit(R) =
N∑
k=1

wk(R) vk(R)
/ N∑

k=1

wk(R), 2.

where wk(R) is the interpolating weight function. This way, a maximum of N weighted least-
squares fits need to be done—only once—and a PES evaluation involves only a summation over
the previously determined coefficients. Since the local fits for vk(R) are constructed and stored in
advance, the method is muchmore efficient than the traditional IMLS implementation.Note that,
although the total potential is globally accurate, each of the local expansions vk(R) is constrained
only close to Rk. This contributes to the accuracy of the method, since the full flexibility of the
basis can be applied to only a small region, and each neighboring expansion can have different
coefficients. A spectroscopic application to the (NNO)2 van der Waals (vdW) system (91) found
that, by use of local expansions of the angular basis, each truncated at sixth order, it was possible
to match an equivalent single expansion of forty-first order (composed of more than 300,000
functions).

2.3. Automated Construction of Potential Energy Surfaces

All of the preceding discussion focuses on—for a given application—the importance of se-
lecting an appropriate electronic structure method and a PES fitting strategy that will
be used to provide an accurate and efficient representation. However, a crucial aspect of
the process is the selection of the set of geometries at which to compute data (the total number
of points and their locations). Some primitive methods such as cubic splines demand a product
grid, discretizing and combining the maximum ranges of each coordinate into a vast hypercube.
This process is very inefficient because it places data at dynamically inaccessible locations. In fact,
even in six dimensions, corresponding to the PES of a four-atom system, the dynamically rele-
vant region becomes a small fraction of the total product of coordinate ranges. This has been well
known for a long time, and most efforts to construct PESs employ some strategy to select point
locations more efficiently, confining them to relevant accessible locations. Running trajectories
is a popular approach, although one may have to be generous with the energy in order to allow
for tunneling and also ensure that disconnected regions are found. It can also be problematic for
the fitting representation if the fitting data are carefully restricted but then the functions used to
perform, for example, a vibrational calculation, perhaps less well confined, find holes in the PES.
Efficient means to locate and patch holes have been developed for this reason (93).

Various data-placement strategies, including random, low-discrepancy sequences such as
Sobol, regular grids, distributions along reaction paths, or any combination thereof (perhaps bi-
ased by energy or other importance determinations), have been implemented. What is less clear
in the pursuit of efficient PES representation—that is, achieving accuracy targets while using the
fewest possible points—is whether there is an optimal distribution of points for a given number of
points and a given fitting method. Indeed, in the comparison between NN and GP fitting for the
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spectroscopic application mentioned above (89), it is not obvious that the shared data sets were
optimal for both fitting methods. Some methods provide a local measure of fitting uncertainty
and thus lend themselves to systematic refinement (74, 75, 88). This can be done automatically
and can not only target the fitting accuracy but also directly target the convergence of dynamical
quantities computed with the PES. Note that targeting a global fitting accuracy measure might
not be themost efficient way to refine a PES for a given application. For example, in a vdW system,
reaching 1 cm−1 RMSE in the region of a well or wells might sufficiently converge calculations of
rovibrational bound states. In contrast, for a low-temperature scattering study, sensitivity to the
long-range part of the PES will typically demand much better than 1 cm−1 accuracy (a huge rela-
tive error) in that region but will be less sensitive to the accuracy in the close-interaction region.
Automated PES construction, including the generation and fitting of data as well as subsequent
refinement toward user-specified targets, is certainly the way of the future and, to an already im-
pressive degree, the way of the present (87, 94–96).

In our own research,we have developed a family of software codes namedAUTOSURF (94) that
make efficient use of large-scale parallelization and completely automate the PES construction
process, generating and fitting ab initio data, by interfacing to popular electronic structure codes.
Tailored to high-accuracy applications in spectroscopy and scattering dynamics, AUTOSURF is
tuned to reach an RMSE of ∼1 cm−1 or lower. The fitting algorithms implemented in the code
are based on the L-IMLS methodology and have been under development for several years; L-
IMLS potentials based on this approach have been constructed for numerous systems (13, 42,
85, 91, 92, 97–101). PES construction begins with a sparse distribution of ab initio data placed
either randomly or according to a Sobol sampling sequence; then a local error-estimation scheme
determines where new data are required and, in a series of iterations, computes new ab initio
data and updates the fitted PES until a specified accuracy is reached. The ultimate goal is to
represent the ab initio data with such high fidelity that, when used in theoretical dynamics and/or
spectroscopic studies, the results directly reflect the underlying level of the electronic structure
method.

3. SPECTROSCOPY STUDIES

Computation has solidified its role as a full partner to experiments in describing the many types
of light–matter interactions needed to predict, and interpret, the wide variety of spectroscopic
techniques that have been developed over more than a century. The complete simulation of an
absorption spectroscopy experiment, for example, requires not only computing the relevant initial
and final states but also obtaining the intensities of the radiative transitions between such states as
governed by dipole or other mechanisms; therefore, one also requires the corresponding property
surface(s), which can similarly be constructed by fitting ab initio data. Additional calculations or
models might be applied to estimate line widths and shapes. Understanding radiative processes in
the Earth’s atmosphere (as well as others) helps us appreciate the effects of trace gases on our en-
vironment and climate. Studies in interstellar and circumstellar space have provided great insight
into the history and evolution of the Universe. Confirming the presence and role of different
species throughout space informs our models and strongly influences our understanding of the
mechanisms of chemical networks and rates of star formation, as well as the composition, age,
and origin of particular regions and structures. Radiative and detailed state-to-state collisional
processes are key aspects of energy flow in low-density gases, where the collision frequency is low
and local thermodynamic equilibrium is not observed.Molecular spectroscopic databases—such as
HITRAN (105)—compile high-resolution lists of the transitions (sometimes billions) associated
with each of hundreds of species, in addition to documenting intensities, line-shape parameters,
and even collision-induced absorption data sets.
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Figure 3

Comparison of a synthetic absorption spectrum for NH3 [computed using CoYuTe, a comprehensive list of NH3 spectroscopic
transitions constructed as part of the ExoMol project (108)] with measurements by Barton et al. (102–104) at a temperature of 1,300 K.
Figure adapted from Reference 108 with permission under a Creative Commons Attribution License (CC BY 4.0).

Although the contribution of computational spectroscopy to such databases is rapidly increas-
ing, complete first-principles predictions of the positions, intensities, and line shapes of high-
resolution spectra are rare. This is because the precision of predicted rovibrational spectra in
terms of the line positions—even for small molecules—is limited to, at best, ∼0.01 cm−1, more
commonly 1–5 cm−1, and not uncommonly up to 40 cm−1 (106), depending on the system; in con-
trast, experimental data are often obtained with a precision of 0.001 cm−1 or better (107). More-
over, calculated (absolute) intensities are often accurate to within only 10% or so, and certainly
reaching 1% accuracy is a major challenge for any theoretical study. Nevertheless, computation
is still a powerful tool in this context, since it makes it possible to understand states and their
energy patterns. For this reason, semiempirical refinements can greatly aid in assigning and esti-
mating positions of dark states (Figure 3) (108–110). More generally, outside of high-resolution
spectroscopy, the number and character of bound states—and their density—can strongly influ-
ence the properties and dynamics of the system, as well as its thermochemistry. For these reasons,
there has long been great interest in computing rovibrational states without necessarily consider-
ing radiative transitions or, at least, not their intensities or line shapes. Here, we focus mainly on
calculations of rovibrational states and transitions using fitted ab initio PESs.

Local PES expansions such as a Hessian (second order) can be used to estimate the vibrational
level structure of a molecule, assuming that the states are confined to the region of a single well.
This type of so-called normal mode analysis makes severe approximations, so more sophisticated
methods are required even for the estimation of thermochemical partition functions, which are
not overly sensitive to line positions but rather to state densities. Higher-order extensions and
various other approximations have been proposed, but here we discuss methods to numerically
solve the rovibrational Hamiltonian as accurately as possible, with few or no approximations. A
variational solution to the rovibrational Hamiltonian employing a numerically exact kinetic op-
erator and a global PES permits one to compute—within the Born–Oppenheimer approximation
and the accuracy of the PES—the complete set of bound states (42, 111). The most common
approach is to construct and diagonalize a matrix representation of the nuclear Hamiltonian in
a given basis set. Many such procedures have been introduced, most of which employ discrete-
variable or finite basis representations. The challenge, and what typically distinguishes different
approaches, is how to deal with the extremely poor scaling of the most straightforward direct-
product-basis approach. If between 10 and 100 functions are needed to describe each coordi-
nate, then—even without considering rotation—the basis for a four-atom vibrational problem (six
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dimensions of displacement) constructed in direct-product form would be between 106 and 1012

in size (which implies up to 8,000 GB of computer memory). The state of the art, for systems that
are not special cases with high symmetry and/or rigidity, is approximately six atoms (112–114).
In addition to employing large-scale computing and advanced linear algebra techniques, most
strategies focus on greatly reducing the basis size, which includes finding a more compact and
efficient set of functions (requiring fewer per dimension) and/or various pruning or contraction
schemes. The goal is generally to retain the convergence of the full basis set as closely as possible,
while rendering the computational effort manageable. In a recent article on methods to compute
rovibrational spectra for molecules with more than four atoms, Carrington (115) points out three
limiting issues: (a) basis size, (b) solving large eigenvalue/vector problems, and (c) computing ma-
trix elements of the potential operator. Some methods that overcome these challenges—to some
extent—and show promise for extending the range of system size that can be accurately studied
have been reported. These include imposing a convenient sum-of-product form on the Hamilto-
nian, Smolyak grid approaches, and collocation methods (116–119). Of course, computing a long
list of energies is rarely useful; therefore, considerable effort has gone into developing methods
to organize and analyze states, helping to make assignments and interpret spectra (110, 120–122).
Interfacing a variational code based on a parallel, symmetry-adapted, Lanczos iterative solver with
our automated PES construction approach (AUTOSURF) has enabled us to compute spectra for a
wide variety of vdW systems—including (OCS)2 (97), (CO)2 (100), (CO2)2 (98), CO2–CO (123),
CO2–CS2 (92), CO–N2 (124), (NNO)2 (91), CO2–HCCH (99), C6H−–H2 and C6H−–He (101),
C6H–He (125), O2–CO (126), O3–Ar (127), and CS–Ar and SiS–Ar (128)—enabling exploration
of the impact of factors such as different well depths, fragment mass combinations, floppy coor-
dinates, multiple minima, tunneling paths, symmetry, and vibrationally excited monomers.

4. SCATTERING STUDIES

Quantum scattering calculations provide the framework to predict and interpret the most funda-
mental chemical event: the outcome of a single collision,whether elastic, inelastic, or reactive.The
study of chemical kinetics, since the introduction of the Arrhenius equation in 1889, has yielded
deeper and deeper insights into reaction mechanisms, as postulated mechanisms and their impli-
cations for measurable rates were tested, refined or discarded, further tested, and so forth, which in
some cases required invoking complex cycles of intermediates that were difficult or impossible to
confirm. In the past several decades, we have gone past looking only at averaged rates and into the
realm of detailed dynamics. The development of crossed molecular beam scattering experiments
with precise initial-state selection has led to experiments with exquisite control and previously
unimaginable insights into reaction dynamics, including the sometimes counterintuitive role of
mode-selective chemistry. As a simple example, as Levine (129) points out, it has been confirmed
that single collisions between Br2 and Cl2 are not reactive, but rather that the second-order reac-
tion to produceClBr proceeds via a cycle of intermediates.On the theory side, calculations provide
access where experiments prove difficult or impossible, yielding insight in terms of properties of
the molecules or fragments, features of the relevant PESs, and in some cases the role of resonances
or couplings. Detailed experimental results—including cross sections, rates, and vector correla-
tions (130)—provide stringent tests of PESs and dynamical approximations due to their sensitivity.
Well-determined experimental data permit benchmarking of high-level electronic structure cal-
culations and PES construction methods, as well as dynamical theories. It is important to note
that some experiments, especially those at low temperature, are difficult to perform and can in-
clude unforeseen sources of error. Theory has, in turn, provided sanity checks and motivated new
measurements or analyses.

412 Quintas-Sánchez • Dawes



a   Experimental b   Theoretical

p-H2p-H2

F(2P3/2)F(2P3/2)

HF(v = 3)HF(v = 3)

HF(v = 1)HF(v = 1)

HF(v = 2)HF(v = 2)

Figure 4

(a) Experimental and (b) theoretical three-dimensional contour plots for the HF product translational energy
and angular distributions of the F + H2 ( j = 0) reaction. Different rings represent different HF rovibrational
states. Figure adapted from Reference 135 with permission; copyright 2006 the American Association for the
Advancement of Science.

Throughout their development, quantum scattering calculations have had a history of inves-
tigating astrophysically relevant systems. Much of the early research in this area was devoted to
H + H2 because of its relevance and relative simplicity, leading not only to methodologies that
could be implemented numerically but also to a better understanding of issues relating to sym-
metry, as well as constraints for bosons and fermions (131). In fact, we are still learning the finer
details of the H3 system today (132). Reactive collisions between F + H2, relevant to chemistry in
the interstellar medium,have been extensively studied both experimentally and theoretically (133).
As investigators sought to obtain higher accuracy and detailed features of the experiments on F +
H2, the system posed challenges for electronic structure calculations as well as for scattering the-
ory. The HF reaction products, and their angular distributions, are governed by tunneling and are
quite sensitive to the PES topology. The most precise low-temperature calculations demand an
accurate treatment of nonadiabatic effects and the different spin-orbit levels of the F atom (134).
The remarkable agreement between experiment and theory for this system (Figure 4) can be
considered a triumph (135).

Currently, the feasibility of reactive scattering studies is limited by the poor scaling of rig-
orous fully quantum traditional methods. The most common traditional methods are based on
time-dependent wave packets. A 2017 review (136) highlights impressive results for complicated
reactions in systems with three or four heavy atoms, as well as more limited results for systems
containing up to six atoms (but composed of mostly H atoms). Five- and six-atom systems are
often treated in reduced dimensionality or through various approximations. At present, any such
study—whether a comprehensive study of a three- or four-atom system or a more limited study
of a five- or six-atom system—is a major computational effort that can take months, even using
hundreds of computer cores, and assumes the availability of a prerequisite, suitably accurate PES
(or PESs). PES construction for reactive systems is still a major challenge, since it can represent
the toughest case possible for both the electronic structure method and the fitting approach.
Bond breaking and formation often require the use of less black-box multireference methods,
and frequently multiple (and different numbers of ) electronic states will become degenerate at
different product channel asymptotes, in addition to possible interactions and crossings of states
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throughout the coordinate range of the PES. Constructing global PESs for multiple coupled
electronic states requires special procedures such as diabatization and is at the frontier of both
electronic structure theory and PES construction. Even a simplified description of the reaction
of O(3P) + H2 involves at least four coupled PESs (137).

Nonreactive inelastic scattering is a much more approachable problem (138) in terms of both
constructing a high-quality PES and treating the dynamics. Astrophysical applications are com-
mon, since in low-density regions—where local thermodynamic equilibrium is not observed and
populations differ significantly from a Boltzmann distribution—detailed state-to-state calcula-
tions are needed to guide the theoretical models. The lack of reaction simplifies not only the
electronic structure calculation but also the choice of coordinates, with no need to describe dif-
ferent initial and final states. The traditional rigorous approach to inelastic scattering dynamics is
the time-independent close-coupling method, especially for low collision energies, although the
use of time-dependent methods such as multiconfigurational time-dependentHartree (MCTDH)
is gaining popularity (139–141). Mixed quantum–classical methods have recently been improved
and can drastically increase efficiency and thus the complexity of systems that are accessible (al-
though with limitations due to classical approximations) (142). Historically, PES construction has
been closely tied to the basis functions used in the dynamics. Large angular quadrature grids are
computed at a series of radial separations (center-of-mass distances,R) of the fragments, then inter-
polated along R. This process is fairly demanding, since the strongly anisotropic close-interaction
region could require a fairly high-order angular basis and, therefore, many ab initio data points.
The L-IMLS method is particularly efficient at describing strongly anisotropic vdW interactions
and has been successfully used inmany applications (143–145). Automated PES construction facil-
itates studies of the differences between isomers or members of chemical families, where a series
of PESs is needed. New experiments, and the corresponding calculations, are targeting the ex-
tremely cold regime, where low collision velocities can exaggerate quantum effects and place ever
more stringent demands on PES accuracy. This is a signature area of the Nijmegen group; van de
Meerakker and colleagues (146) have implemented various techniques used to slow (cool), control,
and state-select different types of colliding molecules. Figure 5 shows the remarkable agreement
between measured and simulated scattering interference fringes.

5. OUTLOOK AND CONCLUDING REMARKS

It is an exciting time for both theoretical spectroscopy and dynamics, and the outlook for the
near future is bright. Although the fundamental scaling of the most rigorous electronic structure
and quantum dynamics methods remains prohibitively poor, through innovations in algorithms
and the widespread use of high-performance computing, ML, and automation, we are entering a
period of routine high-accuracy prediction, confirmation, and analysis/interpretation of experi-
mental observables. The workflow of a computational spectroscopy or scattering project begins
with selecting a suitably accurate electronic structure method, and then generating a data set
that is sufficient to accurately determine a PES describing interactions in the relevant ranges of
coordinate and energy. These steps have historically been huge bottlenecks, not only because of
the amount of computing time required but also in terms of human time and expertise. Various
high-accuracy electronic structure protocols are now available and can be reliably applied to
different types of systems. Emerging electronic structure protocols will be self-tuning through AI,
optimizing both accuracy and cost. The fundamental step of constructing a PES has historically
been a tedious process conducted in system-specific ways by a few specialists. We are now seeing
the release of more broadly usable PES-fitting methods that are largely automated, including
the specification and generation of ab initio data sets. Finally, we are seeing breakthroughs in
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Figure 5

(a) Experimental images for the scattering processes NO(X2�3/2, jNO = 3/2, e + f ) + Ne → NO(X2�3/2, j′NO, e) + Ne. (b) The
experimental and simulated angular distributions. Figure adapted from Reference 146 with permission from AIP Publishing.

the capabilities and usability of variational spectroscopy and quantum dynamics codes. Efforts to
benchmark and standardize rovibrational methods are under way, and interfaces to PES-fitting
representations are enabling robust data management. In the area of quantum dynamics, better-
scaling methods such as MCTDH are extending the range of systems that can be rigorously
treated, and mixed quantum–classical approaches are extending them even further, albeit with
some approximations.We are also seeing encouraging trends toward making codes—and research
products such as PESs—freely available, as well as increasing participation through training both
users and developers at workshops.
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