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Abstract

The discovery of four genes responsible for pseudohypoaldosteronism
type II, or familial hyperkalemic hypertension, which features arterial
hypertension with hyperkalemia and metabolic acidosis, unmasked a
complex multiprotein system that regulates electrolyte transport in the
distal nephron. Two of these genes encode the serine-threonine kinases
WNK1 and WNK4. The other two genes [kelch-like 3 (KLHL3) and cullin
3 (CUL3)] form a RING-type E3-ubiquitin ligase complex that modulates
WNK1 and WNK4 abundance. WNKs regulate the activity of the Na+:Cl−

cotransporter (NCC), the epithelial sodium channel (ENaC), the renal outer
medullary potassium channel (ROMK), and other transport pathways. Inter-
estingly, the modulation of NCC occurs via the phosphorylation by WNKs
of other serine-threonine kinases known as SPAK-OSR1. In contrast, the
process of regulating the channels is independent of SPAK-OSR1. We
present a review of the remarkable advances in this area in the past 10 years.
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With no lysine (K)
kinases (WNK
kinases or WNKs):
these kinases owe their
name to the absence of
catalytic lysine in
serine-threonine
kinases in
subdomain II

INTRODUCTION

Arterial hypertension is the number one risk factor for death worldwide (1), with a prevalence of
between 30% and 40% in the adult population. Hypertension is a complex disease, resulting from
the combination of an inherited susceptibility and the exposure to environmental factors, such as
excessive salt intake and obesity. A combination of physiological, genetic, and clinical studies has
suggested that a key component in the development of hypertension is a failure of the kidney at nor-
mal blood pressure to properly excrete the salt ingested in a typical Westernized diet. Supporting
this, all monogenic diseases associated with increased or decreased arterial blood pressure are due
to mutations in genes encoding renal ion transporters or their regulators. One such disease is famil-
ial hyperkalemic hypertension (FHHt), or pseudohypoaldosteronism type II, an autosomal domi-
nant or recessive disease featuring arterial hypertension, hyperkalemia, hyperchloremic metabolic
acidosis, and hypercalciuria. Strikingly, both the hypertension and the metabolic disorders are
corrected by a low dose of thiazide-type diuretics (2). In addition, FHHt is the mirror image of
Gitelman’s syndrome, which is characterized by hypotension, hypokalemic metabolic alkalosis, hy-
pomagnesemia, and hypocalciuria. In the vast majority of cases, this syndrome is due to inactivating
mutations of the renal thiazide-sensitive Na+:Cl− cotransporter, NCC. Taken together, these data
have suggested that FHHt is mainly due to an increase in the activity of NCC. However, in FHHt
patients, no genetic association or mutation has been found in the SCL12A3 locus, encoding NCC.

The identification of the genes causing FHHt triggered a remarkable amount of work aimed at
understanding how the product of these genes modulates ion transport in the distal nephron and,
thus, blood pressure. There are four FHHt genes (Table 1). Two of them, WNK1 and WNK4,
encode serine-threonine kinases of the with no lysine (K) (WNK) family. The other two, KLHL3
(kelch-like 3) and CUL3 (cullin 3), form a RING-type E3-ubiquitin ligase complex. Mutations in
KLHL3 produce a dominant or recessive form of FHHt (3, 4), and mutations in CUL3 cause a
severe form of FHHt (3). This complex recruits the WNK kinases for ubiquitination to promote
their proteasomal degradation. Mutations in KLHL3 disrupt the interaction with the substrates
or cullin 3, thus preventing the degradation of WNKs. Mutations in CUL3 also abrogate WNK
ubiquitination (WNK1, WNK4, and probably WNK3), but the effect is indirect, via increased

Table 1 Proposed effects of familial hyperkalemic hypertension (FHHt) mutations on the affected genes

Gene Mechanism Consequence Putative effecta Reference(s)
WNK1 Deletion of intron 1 Increased expression of WNK1 ↑L-WNK1 34
WNK4 Missense mutations in the

acidic domain
Increased expression of WNK4
due to disruption of the kelch 3
recognition site

↑WNK4 3, 5, 34, 118,
119

WNK4 R1185C mutations in the
carboxyl-terminal domain

Unknown; potential effect on
calmodulin binding site and
SGK1 phosphorylation site

Unknown 7, 120

KLHL3 Missense mutations in the
BTB or BACK domain

Disruption of the
CUL3-KLHL3 interaction

↑WNK1, ↑WNK4
↑WNK3

3–5, 118, 121

KLHL3 Missense mutation in the
kelch propeller blades

Disruption of the substrate
binding site

↑WNK1 ↑WNK4
↑WNK3

3–5, 118, 121

CUL3 Skipping of exon 9 Increased KLHL3
ubiquitylation and degradation

↓KLHL3
↑WNK1 ↑WNK4
↑WNK3

3, 5, 6

a↑ indicates increase; ↓ indicates decrease.
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Sterile20-related
proline-alanine-rich
kinase and oxidative
stress response-1
(SPAK and OSR1):
serine-threonine
kinases of the Sterile
(Ste)-20 superfamily

Cation-coupled
chloride
cotransporters:
Na+:K+:2Cl−
cotransporters
NKCC1 and NKCC2,
Na+:Cl−
cotransporter NCC,
and K+:Cl− KCC1 to
KCC4 of the SLC12
family

ubiquitination and degradation of KLHL3 (5, 6). The mutations in WNK1 and WNK4 also lead
to increased expression of the corresponding protein. The only reported mutations in WNK1
are large deletions of the first intron that result in increased expression of an otherwise normal
WNK1 protein (7, 8). In the case of WNK4, several missense mutations have been identified,
and all except one are located in a small motif called the acidic domain, which is highly conserved
among WNKs. This domain is required for the recruitment of WNKs by KLHL3 (5), which is
precluded by the FHHt missense mutations, thereby increasing WNK4 protein abundance.

The FHHt phenotype results from increased expression of WNKs that leads to increased
salt reabsorption and hypertension, and decreased potassium secretion with hyperkalemia
and metabolic acidosis, due to the altered effects of WNKs in distal nephron ion-transport
mechanisms. Thus, we review the current understanding of how WNKs regulate ion-transport
pathways in the distal nephron.

THE WNK/SPAK COMPLEX OF SERINE-THREONINE KINASES

SPAK and OSR1 Interact with and Phosphorylate
the Cation-Chloride Cotransporters

The Sterile20-related proline-alanine-rich kinase (SPAK) and oxidative stress response kinase 1
(OSR1) were identified through the search for the kinase responsible for coordinated phosphory-
lation of the K+:Cl− cotransporters and Na+:K+:2Cl− cotransporters (9). It is well known that the
influx of Cl− is mediated by the Na+:K+:2Cl− cotransporter NKCC1, and the K+:Cl− cotrans-
porter KCC (KCC1–4) is responsible for Cl− efflux in many epithelial cells (10). Cell shrinkage or
a decrease in intracellular chloride concentration ([Cl−])i, or both, triggers the phosphorylation
of NKCC1 and KCCs, promoting, respectively, their activation and inactivation. Conversely, cell
swelling or an increase in [Cl−]i, or both, promotes the net dephosphorylation of both branches
of the family, thereby inhibiting NKCC and activating KCC. These observations suggested that
a common Cl−-sensitive kinase is involved in these processes. In order to identify this kinase, a
yeast two-hybrid screening was performed. It identified SPAK and OSR1 as proteins that interact
with the K+:Cl− cotransporter KCC3 (9). It was then shown that they also interact with NKCC1
and NKCC2, but not with KCC1 and KCC4 (9).

SPAK and OSR1 belong to the germinal center kinase group VI of the Ste20-related
kinases superfamily. The degree of homology between these two kinases is approximately 67%
and increases to 89% when only the kinase domain is considered (11). One major difference
between SPAK and OSR1 is the presence of a proline- and alanine-rich region (PAPA box) in
the N-terminal domain of SPAK, upstream of the catalytic domain (12). SPAK was originally
identified as a new kinase that specifically activates the p38 pathway in pancreatic β cells,
suggesting that it may act as a novel mediator of stress-activated signals (13). OSR1 was originally
identified through a search for genes involved in tumor suppression (14).

The STK39 gene, which encodes SPAK, gives rise to three isoforms. The first one is the full-
length isoform (FL-SPAK), which is expressed ubiquitously, with higher expression in the brain,
heart, and testis (15, 16). The second, SPAK2, is also expressed ubiquitously (15–17), but lacks the
N-terminal PAPA box and part of the kinase domain. The third one, also devoid of kinase activity,
is expressed predominantly in the kidney, hence its name KS-SPAK (kidney-specific SPAK). In
the kidney, the expression of SPAK (or FL-SPAK) is lower than that of the two other isoforms
(17). FL-SPAK is expressed only in the thick ascending limb of Henle’s loop (TAL) and the distal
convoluted tubule (DCT) (16, 17). Its expression in the DCT is higher than in TAL. Conversely,
SPAK2 and KS-SPAK are more abundant in TAL than in the DCT (17). Interestingly, SPAK is
mostly apical in TAL, whereas it is concentrated in dense puncta in the DCT, with only a weak
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WNK1 variants:
in the kidney 70% of
WNK1 copies
represent the �11
variant, 20% the
�11,12 variant, and
10% the full
L-WNK1 protein

expression at the apical membrane (18). No SPAK isoforms have been detected in the other
nephron segments (16, 17). Shorter forms of SPAK are also generated by proteolytic cleavage by
the aspartyl aminopeptidase Dnpep at sites located within the PAPA box and the catalytic domain
(19).

Like SPAK, OSR1 is expressed ubiquitously (9, 20). In the kidney, OSR1 is found at the apical
membrane of TAL and DCT cells (18, 21). OSR1 is not present in the SPAK-containing puncta
in the DCT of wild-type animals. However, such a distribution has been observed in the DCT of
SPAK−/− animals (18, 21). Two isoforms have been detected by Western blot, but they have not
been characterized in detail. The short isoform could be generated by the use of an alternative
translational start site (9, 15). No proteolytic cleavage has been observed for OSR1 (19).

After the discovery of SPAK and OSR1 as partners of NKCCs and KCCs, several groups studied
the regulation of the cotransporters by kinases. Surprisingly, in in vitro models, the overexpression
of SPAK alone is not sufficient to activate NKCC1, suggesting that SPAK requires an upstream
regulator (9–15).

WNK Kinases Lie Upstream of SPAK-OSR1

A yeast two-hybrid screen identified WNK1 and WNK4 as partners of SPAK (9, 15, 22). Biochem-
ical studies then demonstrated that WNKs are the upstream kinases that activate SPAK-OSR1
(22–24). WNKs phosphorylate SPAK and OSR1, respectively, on residues Thr243 and Thr185
of the T-loop, and Ser373 and Ser325 of the S-motif (25). However, only the phosphorylation of
the T-loop is absolutely required to activate SPAK and OSR1.

The WNK family comprises four members, WNK1 to WNK4 (26). Their name derives from
the fact that WNKs lack the invariant catalytic lysine in subdomain II of protein kinases that is
crucial for binding to ATP (adenosine triphosphate). This lysine is displaced in the first subdomain
(27). Despite these changes, WNKs exert kinase activity. WNK1 was originally identified through
the search for new members of the mitogen-activated protein (MAP)–extracellular signal-regulated
protein kinase (ERK) (MEK) family in the rat brain (27), and was later found to be differentially
expressed in various colorectal cell lines (26). Therefore, similar to SPAK, there was no evidence
that WNK1 had a role in regulating renal ion transport and blood pressure prior to the discovery
of WNK1 and WNK4 mutations in FHHt patients. A short amino-terminal domain and a long
carboxyl-terminal domain flank the kinase domain of WNKs. In addition to the aforementioned
acidic domain, the carboxyl terminal domain contains the well-described autoinhibitory domain
of kinase activity and two coiled-coil domains. It also contains the so-called HQ domain near the
end of the protein, required for WNK–WNK interaction and, thus, activity (28, 29).

WNK1, WNK3, and WNK4, but not WNK2, are expressed in the kidney. The WNK1 gene is
a complex gene giving rise to two isoforms and several variants (26, 30–32). A proximal promoter,
located upstream of the first exon, drives the expression of L-WNK1 (long-WNK1), containing
the entire kinase domain, and expressed ubiquitously. A second promoter, located in intron 4,
allows for the expression of a shorter isoform called KS-WNK1 (kidney-specific WNK1), which
is expressed only in the distal nephron and is devoid of kinase activity. In addition, the alternative
splicing of 6 exons (8b, HSN2, 11, 12, 26a, and 26b) generates several WNK1 variants expressed
in a tissue-specific manner. In particular, the variant containing HSN2 is expressed only in the
peripheral nervous system. Mutations located in the HSN2 exon are responsible for another
inherited disease, known as hereditary sensory neuropathy type 2 (33). There is little information
about the WNK1 protein. Wilson and collaborators (34) reported that the WNK1 protein is
found only in the cytoplasm of cells in the DCT and the cortical collecting duct (CCD).

WNK3 encodes a 1,800-residue protein and gives rise to alternatively spliced isoforms due
to the presence or absence of exons 18a, 18b, and 22, with specific tissue expression (35).
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WNK3 is extensively expressed in the central nervous system and the kidney (36). In the latter,
reverse transcriptase–polymerase chain reaction (RT-PCR) showed that WNK3 is expressed in all
nephron segments, but the relative expression level in each segment has not been measured (37).

WNK4 encodes a 1,243-residue protein expressed in several tissues, including the distal
nephron. WNK4 transcripts have been detected by in situ hybridization in TAL (including in
the macula densa), the DCT, and the CCD and outer-medullary collecting duct (OMCD) (38).
Expression is the highest in the DCT. This pattern differs somewhat at the protein level (39).
Immunofluorescence microscopy has confirmed expression in the cortical TAL, DCT, connect-
ing tubule (CNT) and CCD (principal and intercalated cells), and OMCD. It also revealed that
WNK4 is present in podocytes and the inner medullary collecting ducts (39). There was no signal
in the medullary TAL.

REGULATION OF NCC BY THE WNK/SPAK COMPLEX

As discussed in the Introduction, FHHt is probably the consequence of activation of the Na+:Cl−

cotransporter NCC, which is the target of thiazides. In addition, a common pathway in FHHt
pathophysiology seems to be the increased expression of WNK1 or WNK4, or both, in the distal
nephron, regardless of the mutated gene. Thus, a remarkable amount of effort has been dedicated
to trying to understand the role of WNKs and SPAK-OSR1 in the modulation of the expression
and activity of NCC. Although the essential role of SPAK in the phosphorylation and, thus, activity
of NCC was quickly established, both in vitro and in vivo, the regulation of NCC by WNK1 and
WNK4 has been a matter of controversy for many years.

SPAK Is Essential for the Phosphorylation and Activity of NCC

The minimum SPAK binding motif, defined as RFx(V/I) by alanine screening (9), is present in
the N-terminal tail of NCC. SPAK and OSR1 phosphorylate NCC on three residues: Thr46,
Thr55, and Thr60 (40). NCC can also be phosphorylated on one additional site during Cl−

depletion (Ser91) by a yet unidentified kinase (40). Although SPAK and OSR1 are equally able
to phosphorylate NCC in vitro, SPAK is essential for NCC phosphorylation and activity in vivo.
Two mouse models have been generated to study SPAK function (Table 2). The first one is a
global knockout, inactivating both the full-length and truncated isoforms (17, 21, 41). The second
one (SPAKT243A) consists of the introduction of an inactivating missense mutation in the T-loop of
SPAK, which precludes WNKs from activating SPAK (16). In both models, NCC phosphorylation
is reduced dramatically. Consequently, the length and area of the early part of the DCT (DCT1)
is decreased (21) and is compensated for by an increase in the length and activity of the CNT (42),
as observed in NCC knock-out mice (43). NCC inhibition in SPAKT243A mice is associated with
all the features of Gitelman’s syndrome.

The genetic inactivation of OSR1 results in embryonic lethality due to defects in angiogenesis
and cardiovascular development (Table 2) (16, 44, 45). The targeted inactivation of OSR1 in the
distal nephron results in a Bartter-like syndrome, with mild volume depletion and hypokalemia,
caused by reduced expression, phosphorylation, and activity of NKCC2 (44). NCC expression is
increased in these mice, probably to compensate for the decreased activity of NKCC2 (44). The
expression and phosphorylation of NKCC2 are reduced in the SPAKT243A model, but they are
increased in total SPAK knockout mice. This difference is due to the inhibitory effect exerted
by shorter isoforms of SPAK on NKCC2 (17, 19), which are still present in SPAKT243A mice
but not in the knockout mice. Thus, SPAK is an activator of NCC and its absence cannot be
fully compensated for by OSR1. This could be due to the displacement of OSR1 from the apical
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Table 2 Mouse models in which WNK or SPAK-OSR1 kinases have been genetically altered (ordered by manipulated gene
and chronology)

Gene Modification Blood pressure
NCC expression

and activitya Phenotype Reference
Wnk1 Wnk1+/− Decreased Normal None 49, 128

Wnk1−/− NA NA Embryonic lethal
(cardiovascular
development defects)

48, 49

Wnk1+/FHHt ↑ ↑↑ FHHt 8
KS-Wnk1 KS-Wnk1−/− Normal ↑↑ Decreased aldosterone

secretion
91

KS-Wnk1−/− ↑ ↑↑ Salt-sensitive
hypertension

122

Transgenic mice
overexpressing fragment
1–253 of KS-Wnk1

↓ ↓ Decreased abundance of
NKCC2

122

Wnk4 Overexpression of Wnk4 ↓ ↓ Gitelman-like syndrome 76

Overexpression of
Wnk4-Q562E

↑ ↑↑ FHHt 76

Knock-in of FHHt D561A
mutation Wnk4D561A/+

↑ ↑↑ FHHt 102

Wnk4 hypomorphic mice
(deletion of exons 7–8)

↓ ↓ Impaired ability to
conserve Na during Na
depletion

123

Bacterial artificial
chromosome Wnk4TG

Low copy

↑ ↑ FHHt 118

Bacterial artificial
chromosome Wnk4TG

High copy

↑ ↑↑ FHHt

Wnk4−/− Normal ↓↓↓ Hypokalemia and
metabolic alkalosis

58, 124

Wnk3 Wnk3−/− Normal Normal Hypotension during Na
depletion

37

Wnk3−/− Normal Normal Upregulation of WNK1
mRNA

54

SPAK SPAKT243A/T243A ↓ ↓↓ Gitelman’s syndrome 16

SPAK−/− ↓ ↓↓ Gitelman’s syndrome 21, 41

SPAK+/− ↓ ↓ 41

SPAK−/− ↓ when fed a
Na+-depleted diet

↓↓ Hypokalemia when fed a
K+-depleted diet

17

SPAK−/− ND ↓↓ Vasopressin-induced
phosphorylation of
NCC, but not NKCC2,
is blunted

18

SPAK−/− ND ND NKCC2-mediated Na+

reabsorption is
decreased in these mice

126

(Continued )
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Table 2 (Continued )

Gene Modification Blood pressure
NCC expression

and activitya Phenotype Reference
OSR1 Kidney-specific

inactivation
(KSP-OSR1−/−)

Normal ↑↑ Bartter’s syndrome 44

OSR1+/− ↓ ↑↑ Bartter’s syndrome 44

OSR1−/− NA NA Embryonically lethal 45

OSR1−/−

hOSR1ca (transgenic
expression of a
constitutively active
OSR1)

ND ND Rescues embryonic
lethality

WNK1−/−

hOSR1ca
ND ND Rescues embryonic

lethality
Wnk4
SPAK-
OSR1

Wnk4D561A/+

SPAKT243A/+
Partial correction ↑ Partial correction 127

Wnk4+/+

OSR1T185A/+
Partial correction ND Partial correction

Wnk4+/+

SPAKT243A/+

OSR1T185A/+

Normal Normal Correction of FHHt
phenotype

Wnk4D561A/+

OSR1T185A/+

SPAKT243A/T243A

↓ ↓↓ Hypokalemia

Wnk1
Wnk4

Wnk1+/− Normal Normal 128

Wnk4D561A/+ Wnk1+/+ ↑ ↑↑ FHHt

WNK4D561A/+ WNK1+/− ↑ ↑↑ FHHt

WNK1+/FHHt

WNK4−/−
↑ ↑↑ FHHt 28

Wnk4
SPAK
OSR1

Wnk4D561/+

KSP-OSR1−/−
↑ ↑↑ FHHt 129

Wnk4D561/+ SPAK−/− Normal Normal None

a↑ indicates increase; ↓ indicates decrease. The number of up or down arrows denotes the relative magnitude of increase or decrease.
Abbreviations: FHHt, familial hyperkalemic hypertension; NA, not applicable; ND, not determined.

membrane to the dense punctate, which has been observed within the cytoplasm of the DCT
in SPAK knockout animals and which would prevent the interaction of OSR1 with NCC (21).
Conversely, OSR1 is required for NKCC2 phosphorylation and activity.

WNKs Act Upstream of SPAK to Activate NCC

Two pathways were initially proposed for the regulation of NCC by WNK1. A first group
of studies showed that the overexpression of L-WNK1 in Xenopus oocytes or cell lines did
not affect NCC expression or activity, or both, directly but precluded WNK4 from inhibiting
NCC (see below) (46, 47). However, and as mentioned above, L-WNK1 can activate SPAK by
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phosphorylation, suggesting that L-WNK1 could activate NCC in a SPAK-dependent manner
(22, 40). It is impossible to test the in vivo relevance of these pathways using a simple L-WNK1
knockout model because it results in developmental defects in the cardiovascular system, similar to
those observed in OSR1-deficient embryos (Table 2) (45, 48, 49). Therefore, we took advantage
of a mouse model of FHHt caused by WNK1 mutations (8). These mutations are large deletions
of the first intron of the gene (34). The deletion of the whole first intron in mice fully recapitulates
the FHHt phenotype (Table 2) (8). WNK1+/FHHt mice exhibit only an increased expression of L-
WNK1, specifically in the DCT and CNT; the expression of KS-WNK1 is not modified. In agree-
ment with the initial hypothesis, NCC expression and phosphorylation are increased. In addition to
an increased level of SPAK phosphorylation on the T-loop and the S-motif in the DCT of WNK1-
FHHt mice, we also observed that SPAK is more abundant at the apical membrane of the DCT
in mutant mice compared with wild-type mice. Finally, the FHHt phenotype is maintained even
when WNK4 is absent (Table 2) (28). Taken together, these studies favor the L-WNK1/SPAK
pathway for NCC activation. Because SPAK is expressed in Xenopus oocytes, it was difficult to
understand why the overexpression of L-WNK1 did not stimulate NCC activity in this system.

In the kidney, the predominant variant of WNK1 is L-WNK1-�11, lacking exon 11 (32).
The variant used in the Xenopus studies was a rat L-WNK1-�11–12 cDNA (complementary
DNA), which represents approximately 20% of L-WNK1 in the nephron but is predominant
in the brain, from which it has been cloned (27). We tested the activity of the kidney variant in
oocytes (28). In this system and in HEK293 cells, the coexpression of the human L-WNK1-�11
with NCC results in a significant threefold activation of NCC (28). The effect of L-WNK1-�11
requires kinase activity and depends on interaction with SPAK (28). It also requires WNK–WNK
interaction because missense mutations in the C-terminal HQ domain preclude L-WNK1 from
activating NCC. Surprisingly, human L-WNK1-�11–12 also stimulates NCC, although with
less potency. We identified a mutation in the C-terminal tail of the rat L-WNK1-�11–12 cDNA
(p.Gly2120Ser). Corrected rat cDNA is then able to activate NCC, similarly to human cDNA.
Thus, L-WNK1 is a powerful activator of NCC (Figure 1). When reviewing the literature, it is
important to keep in mind that a significant number of studies of L-WNK1 or KS-WNK1 used
the mutated WNK1-�11–12 construct.

Similar to L-WNK1, WNK3 is a potent activator of NCC by a kinase- and SPAK- dependent
mechanism (50, 51) (Figure 1). In the absence of kinase activity, WNK3 no longer activates NCC.
In contrast, the kinase-dead WNK3 mutant becomes a powerful inhibitor of the cotransporter,
showing that in the absence of activation, WNKs can promote the opposite effect on their target
protein (51–53). WNK3 knockout mice show a very mild phenotype, with only a slight decrease in
blood pressure during NaCl depletion (Table 2) (37, 54). In these models, L-WNK1 expression
is increased in the kidney, where it probably compensates for the absence of WNK3, thereby
allowing the maintenance of NCC phosphorylation.

WNK4 has been the most difficult kinase to understand. There is evidence in vitro, as well as
in vivo, that WNK4 can behave as an inhibitor or an activator of NCC (55). Almost all in vitro
studies have suggested that WNK4 inhibits NCC activity by preventing the effect of WNK1 or
WNK3 on NCC (56) (Figure 1). Apparently, in certain circumstances, inactive WNK4 is able
to interact with WNK1 or WNK3, or both, thus precluding the effect of these kinases on the
SPAK/NCC complex. This effect is prevented by angiotensin II (angII) (57). However, WNK4
can phosphorylate SPAK in vitro (24). Moreover, evidence in vivo has shown that WNK4 is
required in mice for basal NCC phosphorylation and activity through its interaction with SPAK
(Table 2). The inactivation of WNK4 (58) results in a significant reduction in NCC expression
and activity that is associated with hypokalemia and hypochloremic metabolic alkalosis. Inter-
estingly, the absence of WNK4 precludes angII from stimulating the phosphorylation of SPAK
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Figure 1
(a) Effect of WNKs on SPAK and NCC phosphorylation and activity observed using in vitro systems.
WNK1 and WNK3 activate NCC by a SPAK-dependent mechanism (28, 50). SPAK is phosphorylated by
these kinases and, in turn, phosphorylates NCC. Interaction between WNKs through the HQ motif is
required (28, 29). WNK4 remains inactive toward SPAK and NCC in most cells tested. Through the HQ
domain, inactive WNK4 is capable of interacting with WNK1 or WNK3, or both, thus decreasing the
availability of these kinases to activate SPAK and NCC. (b) When angiotensin II interacts with its membrane
receptor, it abrogates the inhibitory effect of WNK4 on NCC (57). One potential mechanism of this action
may be that angiotensin II prevents WNK4 from interacting with WNK1 or WNK3, thus liberating these
kinases to activate SPAK and NCC. Another possibility is that angiotensin II promotes the activation of free
inactive WNK4, which, in turn, can activate the SPAK/NCC complex. Abbreviations: AT1 receptor,
angiotensin II receptor type 1; DCT, distal convoluted tubule. Adapted from Reference 55.

and NCC (58). Additionally, the effect of the aldosterone-serum/glucocorticoid kinase-1 (SGK1)
pathway seems to be translated, at least in part, by SGK1-induced WNK4 phosphorylation (59).

REGULATION OF THE WNK/SPAK CASCADE BY EXTRA-
AND INTRACELLULAR OSMOLARITY

The Activity of WNK Kinases Is Modulated by Intracellular
Chloride Concentration

Several lines of evidence support the theory that the activity of WNKs could be modulated
by the extra- and intracellular environment, in particular [Cl−]i. First, wild-type WNKs induce
the activation of NKCC1, NKCC2, and NCC. In contrast, mutant, inactive WNKs (caused by
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elimination of the catalytic activity or the WNK–WNK interaction) are powerful inhibitors of
these cotransporters (28, 36, 51, 60–63). Second, NKCC1, NKCC2, and NCC are clearly activated
or inhibited by, respectively, a decrease or increase of [Cl−]i, and the activation is associated with
increased phosphorylation of N-terminal key residues by SPAK and OSR1 (50, 60, 64–66). Thus,
the effect of [Cl−]i on these transporters is translated through SPAK but sensed by an upstream,
intracellular, soluble kinase. It is known that WNKs lie upstream of SPAK (24, 67), which makes
WNKs good candidates for acting as the chloride sensor of the cell (68).

Indeed, recent studies have shown that [Cl−]i modulates the kinase activity and autophos-
phorylation and activation of WNK1 and WNK4. Piala et al. (69) demonstrated that WNK1
has a chloride-binding pocket formed by Leu369 and Leu371 in the DLG motif. The binding
of chloride precludes the autophosphorylation of WNK1. Thus, the higher the chloride con-
centration is, the lower the autophosphorylation and activity of WNK1. Similarly, as shown in
Figure 2, the effect of WNK4 on NCC is modulated by [Cl−]i. In Xenopus oocytes, the effect
of WNK4 on NCC is switched from inhibitory in control conditions to activating when cells
are exposed to low-chloride hypotonic stress, which promotes chloride efflux from the cell and
decreases [Cl−]i (62). The activation of NCC by WNK4 requires SPAK. The phosphorylation of
WNK4 is undetectable in control conditions and is stimulated by low-chloride hypotonic stress.
Finally, the elimination of chloride binding to WNK4 by mutating Leu322 (which corresponds
to Leu369 in L-WNK1) results in the constitutive phosphorylation and activation of WNK4 and,
thus, stimulation of NCC by WNK4 in control conditions (62). Thus, the inhibitory effect versus
the activating effect of WNKs on NCC is modulated by [Cl−]i. Although the chloride-binding
pocket is conserved in all WNKs, WNK4 is the WNK kinase with the highest sensitivity for
[Cl−]i (Figure 2) (70).

The Effect of Extracellular Potassium on NCC Activity Is Translated
by the Chloride-Sensitive WNK/SPAK Pathway

The sensitivity of the WNK/SPAK pathway to [Cl−]i could explain how NCC is regulated by
potassium intake. NCC expression is indeed increased during potassium depletion and decreased
during potassium load (71–73). During the latter, the reduction of NCC activity in the DCT results
in increased delivery of NaCl to the CNT and CCD. This in turn promotes Na+/K+ exchange
via the ENaC [epithelial sodium (Na) channel] and ROMK (renal outer medullary potassium)
channels; thus, sodium reabsorption switches from predominantly electroneutral (NCC) to pre-
dominantly electrogenic (ENaC and ROMK), favoring potassium secretion. Aldosterone secretion
is also stimulated by potassium intake, thereby promoting potassium secretion rather than sodium
reabsorption, probably because aldosterone has little effect on NCC. In addition, acute potassium
intake does not increase aldosterone production but promotes potassium secretion by inhibiting
NCC activity (73, 74). In contrast, when angII and aldosterone are both increased, as occurs during
Na+ depletion or hypovolemia, NCC is activated by angII, and electroneutral salt reabsorption
increases in the DCT. This is called the aldosterone paradox (75). Thus, NCC activation seems
to have a critical role when potassium secretion must be minimized. Accordingly, potassium re-
tention in FHHt is largely the consequence of NCC activation. In fact, crossing WNK4-FHHt
mice with NCC null mice completely corrects the hyperkalemia (76).

Several studies have shown that NCC expression and activity in rodents are increased or
decreased when they are fed a diet that is, respectively, low or high in KCl (71, 72, 77–79).
Interestingly, however, when rats are fed a high–K acetate diet, NCC expression and activity
are increased (71). In both cases, the secretion of aldosterone is increased. This suggests that
chloride is essential for potassium modulation of NCC. This was demonstrated in recent work
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Figure 2
The activity of WNK1 and WNK4 toward SPAK/NCC is modulated by [Cl−]i. In an environment with
high [Cl−]i, WNK4 remains unphosphorylated and, thus, cannot activate SPAK/NCC. In these
circumstances, WNK4 interacts with WNK1 and WNK3, precluding their effects on NCC, thus behaving
as an inhibitor. The absence of the critical leucine for chloride binding in the mutant WNK4-L322F allows
WNK4 to activate SPAK and NCC (62). WNK1 sensitivity to chloride is lower than WNK4 sensitivity
because WNK1 can partially activate SPAK-NCC at high [Cl−]i. In contrast, WNK3 seems to be less
sensitive to chloride because it can fully activate SPAK-NCC at high [Cl−]i (55). When [Cl−]i is reduced,
WNK4 becomes phosphorylated and, thus, active toward SPAK, promoting NCC activity (62). WNK4 is
the most sensitive WNK kinase for [Cl−]i, making it a key regulator of NCC in the distal convoluted tubule
(70). Adapted from Reference 55.

by Terker et al. (78). They showed that the regulation of NCC by extracellular concentrations of
potassium is due to a potassium-dependent modulation of the membrane voltage in DCT cells,
which in turn modulates [Cl−]i (Figure 3). A decrease in extracellular potassium results in DCT
hyperpolarization with a consequent chloride efflux, decreasing the [Cl−]i and activating NCC in a
WNK-dependent manner. These results are supported by the characterization of the mechanisms
by which inactivating mutations in the basolateral K+ channel, KCNJ10 (Kir4.1), result in NCC
inhibition (80). The inactivation of KCNJ10 increases [Cl−]i because it prevents the generation of
the driving force for chloride secretion by the CLCKb chloride channel. This would then inhibit
the WNK1–4/SPAK pathway. Accordingly, SPAK expression and phosphorylation are decreased
in KCNJ10−/− mice (81).
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Figure 3
Proposed mechanism for the modulation of NCC activity by extracellular potassium. The basal [Cl−]i in
distal convoluted tubule cells when extracellular potassium is at normal-to-high concentrations is about
20 mM (130, 131). In this environment, WNK4 is inhibited mostly by chloride, and WNK1 is partially
active due to chloride binding to the kinase, which precludes autophosphorylation. In addition, inactive
WNK4 is able to interact with WNK1, thus preventing its activity. A decrease in extracellular potassium
depolarizes the cell and also stimulates chloride efflux from the cell, thus decreasing [Cl−]i (70).
Consequently, WNK4 and WNK1 are no longer inhibited by chloride, and become phosphorylated and
active, thus activating more SPAK units, which results in increased phosphorylation and activation of NCC.

REGULATION OF ION TRANSPORT BY WNK1 AND WNK4
INDEPENDENTLY OF SPAK OR OSR1

Within the distal nephron, WNK1 and WNK4 are expressed not only in the cortical TAL and
DCT but also in the CNT and CCD, where they regulate several transporters and channels.
However, the expression of SPAK and OSR1 is barely detectable in these two segments, suggesting
that WNKs act independently of their downstream kinases.

Regulation of Potassium Secretion in the Connecting Tubule and Cortical
Collecting Duct by WNK1 and WNK4

Two potassium channels are mainly responsible for K+ excretion in the CNT and CCD. In
principal cells, the ROMK channel acts in concert with the ENaC channel to secrete potassium.
The second potassium channel is the large-conductance calcium-activated potassium channel
BKCa, also known as BK, which is responsible for the flow-induced K+ secretion in the CNT and
CCD. WNK1 and WNK4 are both expressed in the principal cells and intercalated cells of the
CNT and CCD (39). Several studies, mostly in vitro, have shown that WNK1 and WNK4 may
inhibit these channels.

In contrast to the phosphorylation-dependent regulation of NCC, all studies have shown
that the kinase activity of WNK1 is not required for the regulation of ROMK. The N-terminal
proline-rich domain seems to be crucial for this process (82, 83). L-WNK1 inhibits membrane
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expression of ROMK by stimulating its clathrin-mediated endocytosis in transfected HEK293 or
COS cells and Xenopus oocytes (82, 84). The N-terminal 1–491 fragment of L-WNK1, containing
both the first proline-rich region and the kinase domain, is sufficient to inhibit ROMK surface
expression (8, 83, 85). The same fragment bearing three mutated proline residues at positions 94,
103, and 114 fails to inhibit ROMK (86). The regulation of ROMK by L-WNK1 is not direct, and
two potential partners have been identified. The first one is the multimodular endocytic scaffold
protein intersectin (84), which is required for L-WNK1 to inhibit ROMK. Mutation of the proline
residues of the N-terminal proline-rich domain disrupts this interaction (84). The second one is
ARH (autosomal recessive hypercholesterolemia), a clathrin adaptor molecule that recruits ROMK
to clathrin-coated pits for endocytosis (85). ARH is coexpressed with ROMK predominantly in the
DCT, CNT, and CCD, and to a lesser extent in TAL. Moreover, its expression is downregulated
in the mouse kidney cortex by a potassium load (85). Overexpression of L-WNK1 enhances
ARH-mediated endocytosis in COS cells by phosphorylating ARH and inhibiting its proteasomal
degradation (87). This last result contradicts the aforementioned studies, which showed that the
kinase activity of L-WNK1 is not required to inhibit ROMK. Therefore, two pathways may
coexist for the regulation of ROMK by L-WNK1: a kinase-independent regulation of ROMK by
intersectin and a kinase-dependent regulation of ROMK by ARH. The characterization of their
respective physiological relevance using an in vivo integrated model is required to understand when
and where they regulate ROMK. Interestingly, we observed a decreased abundance of ROMK
at the apical membrane, as well as diffuse cytoplasmic ROMK staining in the late DCT (DCT2)
and CNT of WNK1+/FHHt mice, suggesting that ROMK endocytosis is increased (8). Of note,
these modifications are observed only in the DCT2 and CNT, where L-WNK1 expression is
increased, and not in the CCD, where L-WNK1 expression is not modified. The decreased apical
abundance of ROMK could contribute to the hyperkalemia observed in WNK1+/FHHt mice, but
this remains to be formally demonstrated. If regulation of ROMK by L-WNK1 is observed in
this pathological situation, there is so far no evidence for a role of L-WNK1 in the regulation of
ROMK expression in physiological conditions. The level of expression of L-WNK1 messenger
RNA is indeed not modified by K+ load or depletion (38, 88; J. Hadchouel et al., unpublished
data). Because the inactivation of L-WNK1 results in embryonic death (49), the consequences of
the absence of L-WNK1 on potassium balance in adult mice have not been characterized.

The kidney-specific isoform of WNK1, KS-WNK1, precludes L-WNK1 from inhibiting
ROMK in HEK293 cells and Xenopus oocytes. Thus, KS-WNK1 should favor K+ secretion.
This is consistent with expression studies, which have shown that the level of expression of KS-
WNK1 increases during K+ load and decreases during K+ depletion (38, 83, 88). A first set of
in vivo studies confirmed the in vitro data. Overexpression of the N-terminal 1–253 fragment of
KS-WNK1 in the distal nephron of transgenic mice decreased plasma K+ and increased ROMK
apical abundance (89). Conversely, the inactivation of KS-WNK1 in mice reduced K+ secretion
by ROMK but not flow-induced K+ secretion by BKCa in the CCD (90). However, we obtained
contradictory results. Indeed, we reported that the apical abundance of ROMK and the expression
of BKCa are increased in the DCT2 and CNT of mice bearing an inactivation of KS-WNK1 (91),
suggesting that ROMK expression could be inhibited rather than stimulated by KS-WNK1 in
vivo. The reasons for this discrepancy have not been determined.

Similarly to L-WNK1, WNK4 inhibits ROMK by stimulating the clathrin-dependent endo-
cytosis of the channel in a kinase-independent manner (92). The inhibition of ROMK by WNK4
is reversed by SGK1, which phosphorylates WNK4 on the residues Ser1169 and Ser1196 (59, 93).
It has been postulated that this mechanism could contribute to the increased apical abundance of
ROMK in the distal nephron of animals fed a high potassium diet, which stimulates aldosterone
secretion and, thus, SGK1 activity. Conversely, the protein tyrosine kinase c-Src could be involved
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in preserving the correct K+ balance during Na+ depletion, during which aldosterone secretion
and SGK1 activity are also stimulated. In vitro, c-Src prevents the phosphorylation of WNK4
by SGK1 (94) through the phosphorylation of residues Tyr1092, Tyr1094, and Tyr1143 (95).
The protein tyrosine kinase c-Src may act downstream of angII, whose production is increased
by Na+ depletion and which has been shown to inhibit ROMK activity. AngII increases c-Src
phosphorylation, and the inhibition of protein tyrosine kinase in perfused rat CCDs blocks the
effect of angII on ROMK (94). Taken together, these data suggest that the angII/c-Src pathway
prevents an increase in ROMK apical abundance and, thus, K+ secretion triggered by increased
SGK1 during Na+ depletion.

However, it is important to note that the stimulation of ROMK endocytosis by WNK4 has
not been reported in vivo. Additionally, an opposite effect has been observed in mice in which
WNK4 is overexpressed. These mice exhibit a significant twofold increase in the level of ROMK
transcripts and slightly increased ROMK apical abundance in the distal nephron (76). The same
authors reported that ROMK expression is not modified in their FHHt model. More surprisingly,
O’Reilly and collaborators (38) showed that a K+ load increases the level of WNK4 transcripts in
the kidney.

WNK1 and WNK4 may also regulate K+ balance by modulating the expression and activity
of BKCa, but in this case by acting in opposite ways. One study recently showed that L-WNK1
activates BKCa via the inhibition of ERK1 and ERK2 (96). Conversely, WNK4 inhibits the
membrane expression of BKCa (97–99). Two mechanisms have been described. The first involves
activation of the ERK1–ERK2 and p38 pathways with enhanced lysosomal degradation (97, 99).
The second relies on the ubiquitination and subsequent degradation of the channel (98).

Regulation of ENaC by WNKs

Several studies aimed to define the potential part played by WNK1 and WNK4 in regulating
the expression and activity of ENaC (Figure 4). This channel is expressed in a wide range of
tissues (such as the kidney, lung, colon, heart, and arteries). In the kidney, it is expressed in the
principal cells of the DCT2, the CNT, and the CCD, where it is responsible for electrogenic
Na+ reabsorption, providing the driving force for K+ secretion by ROMK. A functional ENaC
channel is composed of three subunits (in the kidney, α, β, and γ). The importance of ENaC
in maintaining the correct Na+ balance is highlighted by the fact that mutations in the genes
encoding its subunits result in salt-losing or hypertensive diseases. Loss-of-function mutations
in any of the three subunits lead to pseudohypoaldosteronism type I, an autosomal recessive
syndrome associated with salt-wasting and hyperkalemia. Conversely, gain-of-function mutations
in the genes encoding the β and γ subunits are responsible for Liddle’s syndrome, an autosomal
dominant disease characterized by early-onset hypertension and hypokalemia.

WNK4 inhibits ENaC in Xenopus oocytes (100). As for ROMK, the kinase activity of WNK4
is not required to regulate ENaC. The same authors showed that the C-terminal domain of
ENaC is necessary because WNK4 cannot inhibit channels containing a truncated β or γ subunit.
In patients with Liddle’s syndrome, this domain is either mutated or deleted. It contains a PY
motif that binds to the ubiquitin ligase Nedd4-2. The interaction between ENaC and Nedd4-
2 results in ubiquitination, internalization, and proteasomal degradation of the channel. The
requirement of the C-terminal domain for WNK4-mediated regulation of ENaC suggests that
WNK4 may be involved in the interaction between Nedd4-2 and ENaC or in the modulation of
this interaction. Accordingly, overexpression of WNK4 in the A6 distal nephron cell line decreases
both the apical and total abundances of all three subunits of ENaC, without affecting open-channel
probability (101). This is not caused by inhibiting the trafficking of the channel to the membrane,
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Figure 4
Two different pathways for the regulation of ENaC by WNKs. Two different pathways have been identified
by in vitro studies. (a) Some in vitro studies have identified a pathway showing that WNK4 inhibits ENaC
(93, 100). The phosphorylation of WNK4 by SGK1 precludes the kinase from inhibiting ENaC. (b) Other
studies have shown that WNK4, and also L-WNK1, can phosphorylate SGK1, thus contributing to the
increased apical expression of ENaC (103, 104).

but rather by increasing its internalization and retrograde trafficking (101). However, WNK4 can
still decrease the expression of an ENaC β subunit containing one of the mutations causing Liddle’s
syndrome (101), suggesting that WNK4 regulates the level of expression of ENaC independently
of Nedd4-2-mediated ubiquitination. The precise mechanisms by which this is achieved remain
to be identified.

One of the WNK4 mutants expressed in FHHt patients (WNK4-Q562E) loses the ability to
inhibit ENaC (100). This has been confirmed in vivo in a mouse model overexpressing this mutant
WNK4 (76) by measuring the Na+ flux in the colon in the presence or absence of amiloride, an
ENaC-blocker. Amiloride-sensitive Na+ flux is increased in the colon of these mice compared with
wild-type littermates (100). However, the same authors have also reported that ENaC expression
is not modified in the kidneys of mice overexpressing the wild-type or mutant WNK4 (76).
This contradicts observations from the other WNK4-FHHt model generated by mutation of
the endogenous WNK4 gene. In this model, the level of expression and proteolytic cleavage
of the α subunit of the channel is increased. The level of expression of the β subunit is also
increased, but only the proteolytic processing of the γ subunit is enhanced (102). In addition,
the transepithelial voltage is lower in the isolated, perfused CCD of mutant mice compared with
wild-type littermates, and this difference is corrected by the addition of amiloride to the perfusate,
suggesting that ENaC is stimulated by the mutation of WNK4. However, it is important to note
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that, although this difference is significant, it is very small. In WNK4 knockout mice, amiloride-
sensitive Na+ reabsorption in isolated, perfused CCDs and the natriuretic response to amiloride
are greatly enhanced (71). However, this is not due to the direct effect of the inactivation of WNK4
on ENaC, but rather to a compensatory mechanism for the strong decrease in NCC expression
and, thus, Na+ reabsorption by the DCT.

As described above, in vitro studies have shown that SGK1 can phosphorylate WNK4 and,
thus, regulate its activity toward ROMK. The same is true for ENaC (Figure 4). When the
phosphorylation of WNK4 by SGK1 is inhibited, WNK4 can no longer inhibit ENaC in Xenopus
oocytes (93). However, a few studies have found evidence that WNK1 and WNK4 can activate
SGK1. The overexpression of WNK1 in HEK293 cells activates the kinase activity of SGK1,
notably the phosphorylation of Nedd4-2, and, thus, increases amiloride-sensitive sodium currents
in an SGK1- and Nedd4-2-dependent fashion (103). Interestingly, the kinase activity of WNK1
is not required, but WNK1 needs to be phosphorylated by an Akt/PI3-kinase-related pathway to
activate SGK1 (103). The same results have been found when WNK4 is overexpressed in HEK293
cells (104). The contradiction with the aforementioned studies could be due to differences in the
experimental systems, notably the extracellular and intracellular ion concentrations that influence
the phosphorylation of WNKs. The activation of SGK1 has never been measured in the different
FHHt or WNK4 knockout models.

Regulation of Cl− Transport by WNKs

In addition to NCC, the WNK kinases may regulate several molecules involved in Cl− transport,
such as CFTR (105) and CFEX (106). A few studies have also focused on the regulation of claudins
by WNK1 and WNK4. The overexpression of WNK1 in MDCK cells increases Cl− permeability
and claudin-4 phosphorylation (107). Similar results were obtained with WNK4, which is found
at the tight junctions of transfected MDCK cells (108). The overexpression of the FHHt-mutant
WNK4-D564A significantly increases Cl− permeability in MDCK cells; the effect of wild-type
WNK4 follows the same trend but is not significant. In vitro kinase assays have shown that both
proteins phosphorylate claudins 1 to 4, as well as claudin-7 (109), but not occludin (108).

Regulation of Ca2+ Reabsorption by WNKs

An additional feature of FHHt is hypercalciuria. The study of a large family with a mutation in
WNK4 showed that this is associated with low bone mineral density (2). Hypercalciuria could be the
consequence of increased NCC activity because the pharmacological or genetic inhibition of NCC
induces the reverse phenotype—that is, hypocalciuria. It could also be caused by a decrease in the
activity of NKCC2, which would reduce the paracellular reabsorption of calcium in Henle’s loop.
Indeed, the natriuretic response to furosemide is blunted in the knock-in mouse model of FHHt
(WNK4+/D564A) (110). However, it cannot be excluded that the diminished Na+ excretion observed
after furosemide injection in these mice is not due to increased downstream Na+ reabsorption by
NCC.

A few studies have shown that WNK4 may regulate calcium reabsorption directly but, as is often
the case with the WNKs, the results are contradictory. WNK4 has indeed been found to increase
(111, 112) or decrease (113) the membrane expression and, thus, the activity of the epithelial
calcium channel known as transient receptor potential vanilloid-5 (TRPV5). In vivo studies support
the idea of stimulation of TRPV5 by WNK4. In mice, fibroblast growth factor-23 (FGF23) is a
positive regulator of apical abundance of TRPV5 (114). The infusion of FGF23 in wild-type mice
increases WNK4 phosphorylation by SGK1 and induces a subcellular redistribution of the kinase
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from the cytoplasm to the subapical compartment, thereby allowing interaction between WNK4
and TRPV5. This interaction is decreased in mice in which FGF23 is inactivated.

CONCLUSIONS

The discovery that WNK kinases are responsible for an inherited form of salt-sensitive hyperten-
sion in humans triggered the interest of many groups of researchers. The remarkable amount of
work that has been completed during the past decade is beginning to unravel some of the mecha-
nisms involved in the fine-tuning of ion transport in the distal nephron. WNK kinases modulate
the activity of NCC in the DCT through a SPAK-dependent mechanism and ion-transport chan-
nels in the DCT2, CNT, and CD by a SPAK-independent mechanism. Thus, the WNK and
SPAK protein complex is a potential area for targeting the development of new drugs that could
have potent antihypertensive effects (115–117).

The activity of the WNK kinases toward SPAK/NCC is modulated by [Cl−]i, making WNKs
good candidates for acting as the chloride sensor of the cell. Additionally, the stability of WNK
kinases is modulated by a RING-type E3-ubiquitin ligase complex formed by KLHL3 and CUL3
proteins, which are also mutated in inherited cases of FHHt. Although our understanding of
the effects of WNKs on ion-transport proteins has improved during the past few years, there
are several unanswered questions that will require the input and cooperation of many groups of
researchers before they are resolved.
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