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Abstract

High-throughput virome analyses with various fungi, from cultured or un-
cultured sources, have led to the discovery of diverse viruses with unique
genome structures and even neo-lifestyles. Examples in the former category
include splipalmiviruses and ambiviruses. Splipalmiviruses, related to yeast
narnaviruses, have multiple positive-sense (+) single-stranded (ss) RNA ge-
nomic segments that separately encode the RNA-dependent RNA poly-
merase motifs, the hallmark of RNA viruses (members of the kingdom
Orthornavirae). Ambiviruses appear to have an undivided ssRNA genome
of 3∼5 kb with two large open reading frames (ORFs) separated by in-
tergenic regions. Another narna-like virus group has two fully overlapping
ORFs on both strands of a genomic segment that span more than 90% of
the genome size. New virus lifestyles exhibited by mycoviruses include the
yado-kari/yado-nushi nature characterized by the partnership between the
(+)ssRNA yadokarivirus and an unrelated dsRNA virus (donor of the cap-
sid for the former) and the hadaka nature of capsidless 10–11 segmented
(+)ssRNA accessible by RNase in infected mycelial homogenates. Further-
more, dsRNA polymycoviruses with phylogenetic affinity to (+)ssRNA an-
imal caliciviruses have been shown to be infectious as dsRNA–protein com-
plexes or deproteinized naked dsRNA. Many previous phylogenetic gaps
have been filled by recently discovered fungal and other viruses, which have
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provided interesting evolutionary insights. Phylogenetic analyses and the discovery of natural and
experimental cross-kingdom infections suggest that horizontal virus transfer may have occurred
and continue to occur between fungi and other kingdoms.

INTRODUCTION

Viruses are as omnipresent in fungi as in other host organisms (172). Fungal viruses ormycoviruses
attract considerable attention from a few perspectives. First, studies on mycoviruses have revealed
the great diversity of viruses in terms of genome organization, lifestyles, and replication cycles.
Second, if mycoviruses infect pathogenic fungi and reduce virulence, they have the potential to be
used as virocontrol (biological control using viruses) agents. Next-generation sequencing (NGS)
technologies have brought about an explosion of virus discoveries, considerably expanded the
virosphere, and revolutionized our understanding of virus diversity and evolution (34, 140, 141).
This is particularly true for the fungal virome. A large number of mycoviruses or mycoviral-like
sequences have been reported since the late Professor S.A.Ghabrial and the corresponding author
of this article described mycoviruses in Volume 47 of the Annual Review of Phytopathology (51).
As shown via a PubMed (https://pubmed.ncbi.nlm.nih.gov) search using “mycovirus” as the
keyword, the number of mycovirus-related papers published in the past two decades has rapidly
and exponentially increased.

The fungal virosphere was believed to be heavily dominated by double-stranded (ds) RNA
viruses a few decades ago. This turned out to be inaccurate and is thought to have resulted from
a biased methodology (25). Many field-collected culturable fungal isolates were screened for the
presence of dsRNA molecules, a hallmark of RNA mycovirus infection, which could be genomic
RNA of dsRNA viruses or a replicative form dsRNA of single-stranded (ss) RNA viruses. This
approach generally entails enrichment of the viral dsRNA fraction by cellulose affinity column
chromatography with high cost-performance (97) and subsequent cDNA library construction
followed by Sanger sequencing. However, this approach overlooks RNA viruses with titers of
dsRNA below detection levels. It is also relevant that many negative-sense (−) ssRNA viruses and
some positive-sense (+) ssRNA viruses do not accumulate dsRNA to high levels (8, 25, 45, 128,
135). However, recent deep RNA sequencing (RNA-seq) approaches using small RNA (36, 100),
dsRNA, or ssRNA fractions (38, 92, 93) for cDNA library construction revealed a large number
of (+)ssRNA viruses present in the fungal world. In addition, many (−)ssRNA viruses with un-
divided and divided genomes have been discovered (37, 72, 84, 89, 92, 93, 98, 164, 170). Since
the discovery of the ssDNA virus in a phytopathogenic fungus (182), many similar ssDNA viruses
have been detected in diverse organisms or environmental samples (20, 79, 83, 99, 146, 163).NGS
of the total fungal ssRNA fraction, a possibly unbiased virus hunting method, has suggested that
the global fungal virome is dominated by (+)ssRNA and dsRNA viruses, with a more limited rep-
resentation of (−)ssRNA and ssDNA viruses. Neither pararetroviruses [reverse transcribing (RT)
dsDNA viruses] nor true dsDNA viruses have yet been reported in fungi.

It should be noted that what we know about the fungal virus world (the mycovirosphere) is
still based on sparse biased sampling of host fungi or related organisms (101). Examples of large-
scale virome studies have been performed with culturable phytopathogenic ascomycetes and ba-
sidiomycetes, such as Cryphonectria parasitica (58), Sclerotinia sclerotiorum (178),Heterobasidion spp.
(150, 160), Fusarium spp. (27, 82), Botrytis cinerea (55, 117, 131), Rosellinia necatrix (74), andMag-
naporthe oryzae (115). Most of their fungal sources have been from Europe, the United States, and
East Asia, after the reduction in the costs of NGS. Large-scale virus hunting studies with NGS
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have been expanded biologically to endophytic, saprophytic, and mycorrhizal fungi (105, 145, 149,
157), as well as edible mushrooms (29), in geographically diverse regions of the world, including
the Indian subcontinent (69), Africa (95), the SouthernHemisphere (99, 118), and the Arctic (133).
Even marine fungi and oomycetes were targeted (14, 15, 103, 104). These studies have led to a
better understanding of the great diversity and interesting evolution of fungal-related viruses.

In this review, we introduce the recently established taxonomy of mycoviruses, the diversity in
virus lifestyles and genome organizations, and, lastly, the evolutionary histories of mycoviruses.
To minimize the reiterations with previous review articles, the reader is encouraged to refer to
several excellent review articles on fungal viruses and/or general mycovirus biology (48, 50, 57,
77, 151, 152, 178).

TAXONOMY OF MYCOVIRUSES

Over the past few decades, the diversity of viruses has massively expanded thanks to the advent of
new technologies (34). This has led to a few major changes in virus taxonomy by the International
Committee on Taxonomy of Viruses (ICTV). Those changes include the approval of virus species
based solely on the entire coding sequences without their terminal noncoding sequences (168) that
are generally important for virus replication. The ICTV Meta Data Resources (VMR) (version
July 20, 2021; https://talk.ictvonline.org/taxonomy/vmr/m/vmr-file-repository/13175) now
includes many viruses whose biological properties, such as host organisms or infectivity, are un-
known. Since the proposal byWolf et al. (176) that all RNA viruses, now known as members of the
kingdomOrthornavirae, are divided into five branches corresponding to five phyla, the megataxon-
omy of the virus world by the ICTV has been established that includes the creation of higher taxa
such as realms, kingdoms, phyla, and classes (143). Unrelated to the explosion of virus discoveries,
the ICTV has adopted the binominal genus–species naming system for virus species, i.e., a genus
name + a species epithet, by the ICTV, which could be (a) genus + Latin or Latinized epithet,
(b) genus + alphanumeric epithet, or (c) genus + freeform (144). The descriptions of virus species
and viruses in this review conform to the ICTV rules of orthography (183).

According to the latest ICTV taxonomy report and accepted list of all mycoviruses in the ICTV
Master Species List 2020.v1 (https://talk.ictvonline.org/), there are 23 families containing a to-
tal of 206 mycovirus species (Supplemental Table 1). The majority of them have RNA genomes
and are divided into nine families with (+)ssRNA genomes, two families with (−)ssRNA genomes,
seven families with dsRNA genomes, one family with ssDNA genomes, and one family with RT-
ssRNA genomes. In addition to these, the ICTV recently (March 2022) approved the creation of
the (+)ssRNA viral families Fusariviridae, Hadakaviridae, and Yadokariviridae. How mycoviruses
are currently classified into higher ranks of taxonomy, i.e., six phyla,Negarnaviricota,Duplornaviri-
cota,Kitrinoviricota, Pisuviricota, Lenarviricota, and Artverviricota, is shown in Figure 1. High levels
of similarities are detected in the genome architectures and organization betweenmany fungal and
plant RNA viruses. No bona fide dsDNA viruses, which are often found in animals and unicellu-
lar eukaryotes and prokaryotes, have yet been reported in fungi, as is the case with higher plants.
In this regard, Dolja et al. (35) hypothesized that the presence of cell walls and plasmodesmata
could serve as a barrier to infection by large dsDNA viruses. It should be noted that even small
dsDNA viruses with a resemblance to polyomaviruses and papillomaviruses have not been discov-
ered from plants. These small dsDNA viruses are detectable in vertebrates and are host specific
and tissue specific. The same authors speculated that there is no route for horizontal virus transfer
from vertebrates to plants (35), which would require an intimate ecological relationship.However,
intimate ecological interactions occur between fungi and animals, which may not be as frequent
as those between fungi and plants. There are septal pores for intercellular communication in the
case of multicellular filamentous fungi, which are large enough even for cellular organelles to pass
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Realm: Riboviria
Kingdom: Pararnavirae

Unassigned Riboviria

Realm: Riboviria
Kingdom: Orthornavirae 

Realm: Monodnaviria
Kingdom: Shotokuvirae

Order Genome typeFamily (or related information) Phylum

NegarnaviricotaMymonaviridae, Rhabdoviridae (Alpharhabdovirinae)

“Mycoaspiviridae”

Reoviridae (Spinareovirinae)

Chrysoviridae, Megabirnaviridae, Quadriviridae,
Totiviridae, (Botybirnavirus), “Fusagraviridae,” 
“Megaotiviridae,” (“Phlegivirus”), “Alternaviridae”

Viruses related to Potyviridae

Botourmiaviridae

Metaviridae, Pseudoviridae

Genomoviridae 

Ambiviruses

Narnaviridae, “Splipalmiviridae” 

Mitoviridae
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viruses related to Tymoviridae
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“Ambiguiviridae” or “Mycotombusviridae”

Partitiviridae, Amalgaviridae, “Fusariviridae,”
Curvulaviridae, (Unirnaviruses), Hypoviridae 2
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Kitrinoviricota
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Serpentovirales 
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ssDNA 
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Figure 1

Cladogram of mycoviruses of the kingdom Orthornavirae (realm Riboviria) together with mycoviruses of kingdoms Pararnavirae (realm
Riboviria) and Shotokuvirae (realmMonodnaviria). The proposed families (unassigned taxa) are shown in quotation marks. Genus or
proposed genus is shown in parentheses. The orders that accommodate mycoviruses are indicated in bold. The encircled numbers
( 1⃝– 6⃝) indicate different capsidless mycoviruses or other types of mycoviruses, except for polymycoviruses. “Alpha-like viruses,”
“Yan-/zhaoviruses,” “Weiviruses,” and “Nido-like viruses” in the Order column have yet to be classified officially. Descriptions in the
Major Capsid Nature column correspond to the Family column. Abbreviations: dsRNA, double-stranded RNA; PASrp, proline-,
alanine-, and serine-rich protein; (+), positive sense; (−), negative sense; RT-RNA, reverse transcribing RNA; ssDNA, single-stranded
DNA; ssRNA, single-stranded RNA.
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through. Thus, dsDNA viruses could establish systemic infection within a colony once they enter
fungal cells. There are many as-yet-unclassified mycoviruses, some of which are discussed below.

RECENTLY DISCOVERED MYCOVIRUSES WITH PECULIAR
GENOME ORGANIZATION

In the past few years, a vast number of unusual viruses have been discovered in fungi and pseudo-
fungi. These viruses appear to have peculiar genome architectures that were previously unknown.
Below are some examples of such mycoviruses.

Viviviruses and Related Viruses

Viviviruses have been found in several fungi, including Aspergillus spp., and have at least two-
segment (+)ssRNA genomes related to those of members of family Virgaviridae and other plant
alpha-like viruses (family Bromoviridae) (22, 25, 30) (Figure 2). Examples include Plasmopara viti-
cola lesion-associated viviviruses 1 to 4 (PvLaVVV1 to PvLaVVV4), Aspergillus flavus vivivirus 1
(AflVVV1), and Aspergillus fumigatus RNA virus 1 (AfuRV1).Vivivirus was proposed by an Italian
research group after virga-virga (vivi) to refer to two genomic segments of a vivivirus that are phy-
logenetically related to virgaviruses (22). Virga,meaning rod in Latin, was used in the family name
Virgaviridae, which includes plant rod-shaped viruses such as tobacco mosaic virus (TMV, a to-
bamovirus) (2). A spherical particle form has been suggested for viviviruses (T.Massimo, personal
communication). This group of viruses is generally reported to have two to three (+)ssRNA ge-
nomic segments but may have more segments depending on the viruses or viral strains (S. Honda,
H. Kondo, N. Suzuki, unpublished data). The 5′-terminal sequence is conserved between the ge-
nomic segments of a vivivirus. The 3′-terminal sequence features vary depending on the particular
vivivirus: Some viviviruses have a poly(A) tail, whereas others do not. A similar difference in the
3′-terminal sequence feature is observed among members of the family Yadokariviridae (7). The
3′-terminal sequences are conserved between the genomic segments of some viviviruses lacking a
poly(A) tail. Viviviruses are unique in that their putative RNA methyltransferase (MT) domains
are often encoded by two genomic segments separately (22, 25). A similar finding is that some
other mycoviruses such as a (+)ssRNA hypovirus from Rhizoctonia solani have been reported to
have two putative RNA helicase domains (1). The two putative MT domains (MT1 andMT2) are
phylogenetically distinct; vivivirus MT1 clusters with those of virga-like viruses and is phyloge-
netically related to members of the family Virgaviridae as occurring for vivivirus RNA-dependent
RNA polymerase (RdRP) domain regions, whereas MT2 is very distant from them and other re-
lated viruses (25).This suggests thatMT2 domains may have been acquired from distant unknown
viruses.Whether these twoMT domains are essential for vivivirus replication and are functionally
different remains elusive.

Ambiviruses and Other Mycoviruses with Ambisense Genome Nature

Another peculiar type of ssRNA viruses was first discovered in endomycorrhizal fungi (149). This
group of viruses termed ambiviruses have also been detected in diverse phytopathogenic fungi
such as C. parasitica (42), R. solani (42), Armillaria spp. (85), and H. parviporum (150). They have
an enigmatic nonsegmented RNA genome of 4.5–5.0 kb with an ambisense coding nature, which
possesses two open reading frames (ORFs) (A and B) on each strand, as shown in Figure 2. No
functional motif was found in the two hypothetical proteins by a protein domain motif search.
However, ORFA-encoded proteins contain the GDD motif (a hallmark of RdRP) and several
key residues of other submotifs conserved in many RNA viruses, and ORFA-encoded proteins
are thus assumed to be ambivirus RdRP (42, 149). ORFB-encoded proteins are homologous to
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Figure 2

Peculiar genome organizations of recently discovered RNA mycoviruses. Schematic representation of the RNA genome organization
with positive-strand or ambisense coding nature. Abbreviations: NC, nucleocapsid; ORF, open reading frame; RdRP, RNA-dependent
RNA polymerase.

some ORFans (nonhost RNAs with no significant similarity with known protein sequences) of
Agaricus bisporus (29). Interesting features of ambivirus are that (a), like members of Bunyavirales
(see below), the two ORFs (A and B) are nonoverlapping and are juxtaposed in a head-to-head or
tail-to-tail orientation and (b) the most abundant viral RNA form is a dimer ORFA-coding sense
strand (149) (Figure 2). How the hypothetical proteins are expressed is elusive.

The ambisense coding nature has also been observed in some (−)ssRNA mycoviruses, such
as members of the order Bunyavirales, including fungal phenuivirids (Figure 2; see also the
section titled Evolutionary Considerations for Mycoviruses). The established animal and plant
phenuivirids have multisegmented genomes, with one or more ambisense segments having two
nonoverlapping ORFs and their intergenic regions often predicted to form stable stem-loop
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structures. Transcripts are produced by the viral RdRP [large protein (L)] via a cap-snatch
mechanism in which the 5′-capped end of host-derived mRNAs is snatched and then serves as
a primer for synthesis of the subgenomic mRNAs from either the genome RNA or antigenome
RNA strand. The transcription ends within or at the end of the noncoding intergenic region (123,
125). It should be noted that the stable stem-loop structures within ambisense viral segments may
hamper sequencing analyses via NGS, leading to misassignment of a single ambisense segment as
two fragments, as in the case of a plant-infecting phenuivirus (genus Coguvirus) (84, 187). How-
ever, additional different ambisense coding profiles have been discovered in fungal (−)ssRNA
viruses. For example, some fungus-infecting putative members of the order Mononegavirales and
Bunyavirales have an additional ORF(s) on the antigenomic RNA strand that would encode tenta-
tive nucleocapsid (N or NC) protein [known as major structural proteins for (−)ssRNA viruses]
(22, 149) (Figure 2). Note that all plant and animal mononegaviruses and bunyaviruses encode
N or NC genes on the genomic RNA strand (mononegaviruses) or the L-encoding segment
(bunyaviruses). See below for other ambisense genomes discovered in (+)ssRNA narna-like
viruses possessing an undivided genome with two almost entirely overlapping ORFs that occupy
more than 90% of the genome length (22, 31, 33) (Figure 2).

Splipalmiviruses and Related Viruses

The fungal (+)ssRNA virus groups within the phylum Lenarviricota have been consider-
ably expanded by the discoveries of splipalmiviruses and other related viruses, including
mitoviruses and botourmiaviruses (Figures 2 and 3). Narnaviruses were historically coined
for Saccharomyces cerevisiae 20S and 23S narnaviruses (ScNV20S and ScNV23S) that have a
nonsegmented (+)ssRNA genome encoding only RdRP. Narna and narna-like viruses are phy-
logenetically divided into two groups tentatively termed alphanarnavirus and betanarnavirus (33)
(Figure 3). The alphanarnavirus group accommodates authentic yeast narnaviruses (ScNV20S
and ScNV23S), whereas the betanarnavirus group includes many other mycoviruses, among
which are splipalmiviruses from the endomycorrhizal fungi (149) S. sclerotiorum (63), B. cinerea
(131), H. parviporum (150), and A. fumigatus (25). The name splipalmivirus was recently given
to a group of mycoviruses with the separate RdRP palm domains and phylogenetic affinity to
narna and narna-like viruses by Turina and colleagues (149) (Figure 2). Polynarnavirus (63) and
binarnavirus (131) were also proposed by different research groups. For the reasons mentioned
by Sato et al. (135), the splipalmivirus was adopted as the appropriate name in this article. The
most prominent characteristic of this group is that the divided RdRP domains, the hallmark of
RNA viruses within the kingdomOrthornavirae, are separately encoded by two genomic segments
(split RdRP domains with motifs F, A, and B and motifs C and D, respectively) (Figure 2).
There are many multisegmented RNA viruses, but these viruses possess all the RdRP motifs in
single proteins. No other members of the kingdom Orthornavirae have such a split RdRP except
for a different type of narna-like virus, Aspergillus tennesseensis narnavirus 1 (AtenNV1) (26)
(Figure 3). The genomic segment of splipalmiviruses, which encodes motifs C (GDD triad) and
D, was identified earlier as representing narna-like viruses from leaves associated with grapevine
powdery mildew and grapevine trunk pathogens (e.g., 22, 91). However, the other segments
encoding RdRPmotifs F, A, and B were not detected as genomic segments by these studies. Given
that the presence of a narna-like virus (AtenNV1) was discovered with another type of divided
RdRP (motifs F and A and motifs B, C, and D, respectively), the divided RdRP nature of these
viruses might be distributed in viruses other than splipalmiviruses in the fungi.

There are a few important unanswered questions about splipalmiviruses. The two proteins
encoded by the largest two segments are assumed to make up the functional RdRP complex.
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Figure 3

Phylogenetic relationships of viruses belonging to the phylum Lenarviricota. A multiple amino acid sequence alignment based on the
RNA-dependent RNA polymerase (RdRP) sequences of selected viruses, including members of familiesMitoviridae,Narnaviridae, and
Botourmiaviridae and the proposed family Splipalmiviridae as well as other related unassigned taxa, was generated by MAFFT online
version 7 (https://mafft.cbrc.jp/alignment/server/) (65). The resulting alignment was subjected to trimming of poorly aligned regions
using trimAl version 1.3 (http://phylemon.bioinfo.cipf.es) (19) and then used to generate a maximum likelihood tree using PhyML
3.0 (http://www.atgc-montpellier.fr/phyml/) (53) with the best-fit model RtREV+G+I+F. The selected prokaryotic viruses of
orders Norzivirales and Timlovirales were also included in this analysis and displayed in a collapsed state. The tree topology was obtained
by the midpoint rooting method. Numbers at the nodes indicate bootstrap values of >70%. Abbreviation: ORF, open reading frame.

Homology-based modeling supports this idea (25). However, it is needed to show the physical
interaction between the two split proteins and biochemical RdRP activity of the complex purified
from infected mycelia or a reconstituted RdRP complex. Currently, there are no such RNA
viruses with split RdRP motifs other than splipalmiviruses and AtenNV1. It is an open question
as to whether there are other types of split RdRP RNA viruses or how splipalmiviruses exist
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in infected cells. Concerning the second question, splipalmiviruses are probably capsidless like
authentic yeast narnaviruses, which have been reported to exist as a ribonucleoprotein (viral
RNA/RdRP) complex.

The other peculiar group includes narna-like viruses largely from insects and fungi that have
an ambisense nature (22, 33). One strand encodes RdRP, whereas the other strand encodes a hy-
pothetical protein showing no homology to known proteins except for counterparts of this group
of viruses. Unlike the (−)ssRNA viruses or ambiviruses discussed above, the two ORFs of the
viruses of this group overlap fully and correspond to approximately 90% of their entire genome
size with the short terminal untranslated regions (Figure 2). This group of mycoviruses was des-
ignated as mycoambinarnavirus (22). The ambisense nature of some narnaviruses was previously
noted by DeRisi et al. (31), who detected an additional large ORF, which spans nearly the full
length of the reverse complement sequence of the virus genome. Independently, two new groups,
Alphanarnavirus and Betanarnavirus, were proposed in the family Narnaviridae (33). The former
includes nonsegmented narna-like viruses, including both the authentic (such as SsNV20S and
SsNV23S) and ambisense types of the genomes, and the Betanarnavirus accommodates only non-
ambisense narna-like viruses, including splipalmiviruses, with both nonsegmented and segmented
genomes.

Multisegmented narna-like viruses with no ambisense nature, including splipalmiviruses, have
also been reported from various organisms such as ascomycetes (63), arthropods (141), and proto-
zoa (21) (Figure 3).Together with the above-discussed narna-like viruses, these add great diversity
to the phylum Lenarviricota.

Other RNA Mycoviruses

In addition to the viruses listed above, there are many other groups of mycoviruses that have
not yet been classified. For example, the family Ambiguiviridae (52) or Mycotombusviridae (189)
was proposed to include Diaporthe RNA virus (DRV) (120) and other related viruses such as
Magnaporthe oryzae RNA virus and soybean leaf-associated ssRNA virus 1 and 2 (18, 52, 88, 92,
93). As noted by Gilbert et al. (52), these viruses are phylogenetically related to tombusviruses
(plant flavi-like viruses, phylum Kitrinoviricota, order Tolivirales) and commonly have a (+)ssRNA
genome of approximately 3.0–4.0 kb with two ORFs encoding a hypothetical protein of unknown
function and RdRP (Figure 2). The RdRP is assumed to be expressed as a fusion product with the
5′-proximal protein via readthrough of the amber termination codon UAG of the upstream ORF.
Other features common to this group of viruses include the RdRP catalytic triplet GDN in place
of GDD,which is possessed by most (+)ssRNA and dsRNA viruses, including tombusviruses. It is
noteworthy that in vitro synthesized transcripts from the full-length cDNA of DRV were shown
to be infectious to a fungal host Diaporthe perjuncta (96).

Reconstruction of Mycoviruses from Metagenomic Data

Sclerotinia sclerotiorum debilitation-associated DNA virus 1 (SsHADV1; phylum Cressdnaviri-
cota, family Genomoviridae), also known as Sclerotinia gemycircular virus, is the first ssDNA my-
covirus discovered to have a monopartite circular genome (182). The virus is transmitted by a
mycophagous insect and can replicate in the vector (90) (see below). Recently, a tripartite fungal
genomovirid from F. graminearum was also characterized (83). Most genomovirids were identi-
fied as metagenomes from a variety of environmental samples associated with animals, plants,
and others and revealed largely monopartite ssDNA genomes (163). Among them, soybean leaf-
associated gemycirculavirus 1 (SlaGemV1), which was discovered by leaf metagenomic analyses
without known hosts, was reconstructed as an infectious entity (40, 92). SlaGemV1 can replicate
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in not only filamentous ascomycetous fungi (S. sclerotiorum, B. cinerea, andMonilinia fructicola) but
also insect (Spodoptera frugiperda)-cultured cells. This is reminiscent of an ssDNA virus (caribou
feces–associated gemycirculavirus 1) from caribou feces metagenomic data whose reconstructed
ssDNAgenomewas shown to infect an experimental plant hostNicotiana benthamiana (108).These
studies are a milestone in that metagenomes are reconstructed as infectious entities and character-
ized biologically. To date, no such RNA mycovirus in metagenome analysis without known hosts
has been reconstructed as an infectious unit.

Necessary Confirmation of Infectious Entity and Expression Strategy
of Unusual Mycoviruses

Many metagenomic or metatranscriptomic virogenomic studies provide a platform for further
virus characterization. The peculiar mycoviral genomes discussed above should be identified bi-
ologically as representing virus genomes. It is of great interest to investigate how many segments
make up their genomes in a minimal form. To address these questions, the development of their
reverse genetics will be helpful, as in the case of other well-studied mycoviruses. Furthermore, the
segment number of reported viruses throughmetatranscriptomic analysesmay have been underes-
timated, as NGS approaches are not so helpful in this regard. For segment number determination,
in particular, the fragmented and primer-ligated dsRNA sequencing (FLDS) method (159) may be
helpful, as demonstrated formany uncultured viruses based on the terminal sequence conservation
among their segments (25, 158).

The unusual ambisense genome organization was observed in at least two groups: designated
here as ambinarnaviruses and ambiviruses. The former group of viruses belongs to the phylum
Lenarviricota, and the latter group of viruses is taxonomically distinct. Both groups are officially
unclassified by the ICTV (see above). Both groups share common features in that one strand en-
codes the hallmark RdRP and the other strand encodes a protein of unknown function showing
no homology to known proteins. An insect-infecting member of the first group, Culex narnavirus
1 (from Culex tarsalis CT cells), was shown, using reverse genetics, to require both proteins (126).
The authentic yeast narnaviruses ScNV20S and ScNV23S are among the smallest and simplest
viruses with a capsidless nature that encode only RdRP in their (+)ssRNA genome. These capsid-
less RNA viruses have been well-studied with biochemical and reverse genetics tools. The yeast
narnaviruses and probably most narna-like viruses do not encode a capsid protein and exist as ri-
bonucleoprotein complexes with the RdRP in the host cell cytoplasm.The yeast narnavirus RdRP
binds the genomic RNA at a 1:1 stoichiometric molar ratio through interactions with both the 5′

and 3′ ends, which may help protect the viral RNA from degradation by host exonucleases (43, 44,
147, 175). This ribonucleoprotein complex form, along with the terminal structure, may protect
the genomic RNA from degradation systems, including the 5′→3′ exonuclease (a proposed antivi-
ral system with SKI1/XRN1 in the XRN family) (39). Little is known about the 5′ end structure
of the narnaviral positive and negative strands that are important for their translation.

The RNA accumulation ratio of the two strands of an ambisense segment is an interesting
area of investigation to gain insight into the expression level of two ambisense coding ORFs. The
majority of ScNV20S viral RNA in the cell is (+)ssRNA molecules (45, 128). However, little is
known regarding ambinarnaviruses. First, the ratio of the positive- versus negative-strand viral
RNA accumulation in infected host cells must be determined. Turina’s group suggested that the
RNA accumulation ratio of the two strands varied among ambiviruses (149).How the reverseORF
on the negative-sense strand of ambiviruses or ambinarnaviruses is expressed is an open question.
These unresolved problems are also relevant to the unique (−)ssRNA mycoviruses with ORFs on
their positive-sense RNA, as exemplified above.
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DIVERSITY IN MYCOVIRUS LIFESTYLE

The recent characterization of many peculiar mycoviruses has revealed considerable virus
diversity and unusual genome structures, as discussed above, but also novel virus replication
mechanisms and lifestyles. Yeast narnaviruses, along with prototype (+)ssRNA hypoviruses,
were shown in the 1980s to present in a capsidless or naked form in the cytoplasm of infected
cells. Recent research revealed several additional unique virus lifestyles of mycoviruses. There
appear to be six different types of capsidless mycoviruses that have (+)ssRNA genomes, excepting
polymycoviruses (family Polymycoviridae), which are classified as dsRNA viruses (Figure 1; see
below). The first type (Figure 1, l1 ) includes the aforementioned authentic narnaviruses, which
are one of the simplest types of viruses (147, 175). Other mycoviruses in the phylum Lenarviricota
such as fungal botourmiaviruses, may have a virus nature similar to that of yeast narnaviruses.
The second type (Figure 1, l2 ) comprises hypoviruses (picornavirus-like supergroup; phylum
Pisuviricota) encapsulated in Golgi-derived vesicles, whose production is induced upon infection
in filamentous fungi (153).This group includes (+)ssRNA endornaviruses (alpha-like supergroup;
phylum Kitrinoviricota) whose replicative dsRNA form appears to be encased in host-derived
cytoplasmic membranous vesicles (162). The third type (Figure 1, l3 ) includes yadokariviruses
(picornavirus-like supergroup; phylum Pisuviricota), which do not encode capsids but highjack
the capsids of partner toti-like dsRNA viruses (phylum Duplornaviricota) (28, 59, 186). The
fourth type (Figure 1, l4 ) is dsRNA polymycoviruses (picornavirus-like supergroup; phylum
Pisuviricota). They encode proline-, alanine-, and serine-rich protein (PASrp), but not capsid
protein, and their genomic dsRNA is associated with their PASrp to form the ribonucleoprotein
complex (64, 78). Recently discovered multisegmented (+)ssRNA viruses termed hadakaviruses
(picornavirus-like supergroup) belong to the fifth type (Figure 1, l5 ) and are phylogenetically
related to polymycoviruses. Hadakaviruses likely exist as a naked form accessible by RNase
A at least in mycelial homogenates (136). The last (sixth) type (Figure 1, l6 ) accommodates
mitochondrially replicating (+)ssRNA viruses (mitoviruses; phylum Lenarviricota). Their genome
structure is similar to that of yeast narnaviruses, which encode only RdRP. Both their genomic
RNA and replicative form dsRNA copurify with mitochondria (119, 177), and they use the
mitochondrial genetic code and are thus assumed to be translated in mitochondria. However,
little is known about how and where inside the mitochondria the mitovirus replicates and how
its viral RdRP and RNA are associated. Below, we elaborate on the recently discovered neo-virus
lifestyles of capsidless mycoviruses belonging to abovementioned groups l3 –l5 .

Yado-Kari/Yado-Nushi Nature

The first such lifestyle was detected during a virus hunting study of many Japanese isolates of
white root rot fungus R. necatrix (74, 179) and exhibited by a (+)ssRNA virus termed yado-kari
virus 1 (YkV1) that is hosted or hetero-encapsidated by an unrelated dsRNA virus called yado-
nushi virus 1 (YnV1) (Figure 4). YkV1 depends on YnV1 for viability; YnV1 as a full-fledged
dsRNA virus can establish infection on its own. As described above, YkV1 is a member of the fam-
ily Yadokariviridae in the phylum Pisuviricota and possesses a monosegmented (+)ssRNA genome
encoding only a single polyprotein. The YkV1 polyprotein undergoes processing by the 2A-like
peptide, which produces the N-terminal RdRP and the C-terminal protein of unknown function.
Three strains of YnV1, which may be classified into a new family in the order Ghabrivirales (phy-
lum Duplornaviricota), were detectable in the original R. necatrix strain W1032. Thus far, a related
virus has been reported only from a Bangladeshi isolate of the phytopathogenic basidiomycete
Sclerotium rolfsii (59). A series of studies have shown that YkV1 replicative form dsRNA is en-
capsidated by the capsid protein of YnV1 encoded by the 5′-proximal ORF of its two-ORF-type
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A model for a neo-virus lifestyle with the yado-kari/yado-nushi nature. Yado-kari virus 1 [YkV1, a calici-like
(+)ssRNA virus] is hosted by the yado-nushi virus 1 (YnV1, a toti-like dsRNA virus) capsid. YkV1
replication and transcription likely occur in the heterocapsids as if YkV1 were a dsRNA virus, whereas YnV1
replication is enhanced by coinfecting YkV1 (186). Abbreviations: CP, capsid protein; RdRP, RNA-
dependent RNA polymerase.

genome. The YnV1 capsid protein also encases YkV1 RdRP cleaved by the 2A-like peptide. Mu-
tational analyses have clearly indicated that YkV1 RdRP liberated from the polyprotein and likely
the C-terminal protein is also essential for YkV1 replication (28). Importantly, a portion of virus
particles package only YkV1 RNA and RdRP, implying that the replication and transcription of
YkV1 occur in heterocapsids; thus, YkV1 behaves as if it were a dsRNA virus (Figure 4). Inter-
estingly, there are mutualistic interactions between YkV1 and YnV1: YkV1 highjacks the YnV1
capsid, whereas YnV1 replication is enhanced by coinfecting YkV1 (186).

The abovementioned viral neo-lifestyles pose intriguing questions that should be addressed
in the future. The yado-kari/yado-nushi nature has been unambiguously demonstrated for the
YkV1/YnV1 combination harbored in a Japanese strain of R. necatrix. There are ten ICTV-
approved yadokarivirus species that are classified into two genera in the family Yadokariviridae
and order Yadokarivirales. The partner dsRNA viruses of these exemplar yadokariviruses remain
unidentified. However, we recently identified diverse dsRNA viruses within the order Ghabrivi-
rales, which partner with other yadokariviruses, yado-kari virus 3 and 4 (YkV3 and YkV4), in the
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Spanish strain of R. necatrix (Y. Sato, S.Hisano,C. J. López-Herrera,H.Kondo,N. Suzuki, unpub-
lished results). From the previously reported coinfections of filamentous fungi by yadokariviruses
and members of the order Ghabrivirales, their partnership is highly anticipated (59). Members of
the order Ghabrivirales are considerably diverse, although their genomic organization is similar to
only a few ORFs. This order currently has only four families approved by the ICTV (Totiviridae,
Chrysoviridae,Quadriviridae, andMegabirnaviridae) but is expected to expand to more than 10 fam-
ilies (Y. Sato & N. Suzuki, unpublished results). The interfamily RdRP sequence identity is gen-
erally less than 30%. Each yadokarivirus appears to establish a species-specific partnership with a
partner dsRNA virus, whereas yadokariviruses are collectively supported by diverse Ghabrivirales
members. Additionally, a similar neo-virus lifestyle occurs in a plant that involves a (+)ssRNA
tombus-like virus termed papaya meleira virus 2 (PMeV2, phylum Kitrinoviricota) and a mem-
ber (papaya meleira virus) of the proposed family Fusagraviridae in the order Ghabrivirales (132).
Interestingly, coinfection by PMeV2 with a yado-kari-like nature is implicated in the induction
of the meleira disease in papaya characterized by severe sticky latex exudation. Thus, the yado-
kari/yado-nushi nature may be prevalent in eukaryotic host organisms other than those found
in the kingdom Fungi (59). How the partnership between yadokariviruses and partner dsRNA
viruses is determined is of great interest.

As mentioned above, coinfection of R. necatrix by YkV1 enhances YnV1 accumulation. How-
ever, the impact of yadokarivirus coinfection on partner dsRNA viruses varies depending on their
combination (Y. Sato & N. Suzuki, unpublished results).

Infectious Entities of Polymycoviruses with Colloidal Ribonucleoprotein
or Naked dsRNA

The second peculiar virus neo-lifestyle was discovered inA. fumigatus infected by a tetrasegmented
RNA virus. The virus was designated as Aspergillus fumigatus tetramycovirus 1 (AfuPmV1) and
classified as a unique dsRNA virus in the family Polymycoviridae (64). Relatively large amounts
of genomic RNA are detectable in infected mycelia associated with one of the virally encoded
proteins, PASrp, of approximately 25 kDa. AfuPmV1 does not form typical rigid particles but
rather exists as an RNA–protein complex in colloidal form. RdRP-based phylogenetic analyses
show AfuPmV1 to be distantly related to animal caliciviruses (order Picornavirales) with (+)ssRNA
viruses. PASrp can bind RNA and DNA in a sequence-nonspecific manner (134). AfuPmV1 pu-
tative RdRP has the presumed catalytic amino acid sequence GDNQ often found in RdRPs of
(−)ssRNA viruses. Importantly the PASrp–dsRNA complex is infectious to protoplasts of the host
fungus.This feature has been confirmed in other polymycoviruses.More surprisingly,AfuPmV1 is
infectious as a purified naked dsRNA prepared by S1 nuclease and proteinase K treatment. Based
on these attributes, AfuPmV1 is hypothesized to be an intermediate virus between (+)ssRNA
and (−)ssRNA viruses and between capsidless and encapsidated RNA viruses. The polymycovirus
infectious entities allowed the ICTV to classify them as dsRNA viruses.

There are other reported polymycoviruses from filamentous ascomycetes (e.g., 62, 78, 184).
One of them was Colletotrichum camelliae filamentous virus 1 (CcFV1), which has been shown
to form filamentous particles with a wide range of lengths (62). The filamentous particle was dec-
orated by an antiserum against the viral protein PASrp, suggesting that this protein is a capsid
protein. CcFV1 is infectious as a filamentous particle and as naked genomic dsRNA.CcFV1 is the
only filamentous dsRNA virus reported thus far. Two distinct virus forms are reported for the two
related polymycoviruses, CcFV1 and AfuPmV1. It is conceivable to anticipate that two homolo-
gous PASrps should lead to a similar virus morphology. Further morphological characterization
of polymycoviruses is needed.
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Hadaka Nature

Hadaka virus 1 (HadV1) strain 1NL was the first hadakavirus discovered in a phytopathogenic
fungus, Fusarium oxysporum, from Pakistan (136). Subsequently, the second HadV1 strain 7n was
isolated from another Pakistani Fusarium nygamai isolate (68).HadV1 1NL and 7n have 11 and 10
(+)ssRNA genomic segments, respectively, the largest segment number among (+)ssRNA viruses.
Another hadakavirus was detected in an Ethiopian isolate of Fusarium spp. (S. Chiba, personal
communication).Hadaka virus 1 was coined because of its capsidless nature, as Hadaka in Japanese
means naked (136). These hadakaviruses show high phylogenetic affinity to polymycoviruses and
encode three proteins homologous to the counterparts of polymycoviruses that include puta-
tive RdRP, putative MT, and hypothetical protein P2 (encoded by polymycovirus dsRNA2). The
shared properties include the GDNQ catalytic motif in the RdRP core domain. However, no-
tably, the hadakaviruses lack PASrp, a hallmark of polymycoviruses relatively tightly associated
with their genomic dsRNA segments or a structural protein encoded by typical dsRNA viruses.
The most interesting property associated with hadakaviruses is the hadaka nature.HadV1 replica-
tive form dsRNA has been shown to be susceptible to RNase A in mycelial homogenates, which
is distinct from the case of polymycoviruses and encapsidated dsRNA viruses (both are tolerant
to RNase A in the homogenates). In this sense, capsidless (+)ssRNA hypoviruses are also differ-
ent from hadakaviruses. The hypovirus replicative form dsRNA becomes susceptible to RNase
in mycelial homogenates only after treatment with the nonionic detergent Triton X (Y. Sato,
S. Hisano, N. Suzuki, unpublished data). This is reasonable considering that hypoviruses repli-
cate in Golgi-derived membranous vesicles (54, 153). These observations allowed Sato et al. (136)
to hypothesize that hadakavirus dsRNA exists in an RNase-accessible form, at least in mycelial
homogenates.

To explore how hadakaviruses replicate and survive harsh host cellular environments is a future
challenge. As noted above, the hadakaviruses are distinct from polymycoviruses or the capsidless
hypoviruses. Along with the different RNase A susceptibility patterns, hadakaviruses show sedi-
mentation profiles different from polymycovirus and hypoviruses. Hadakavirus replicative form
dsRNAs are unable to be pelleted by ultracentrifugation and are accessible to nucleases without
detergent treatment (136). In contrast, polymycoviruses and hypoviruses formRNA–protein com-
plexes (colloidal forms) (64) or filamentous particles (62) and membranous vesicles, respectively,
and both types of viruses are pelleted by ultracentrifugation. Polymycoviral PASrps are likely to
bind nucleic acids in a sequence-nonspecific manner (134).

DIVERSITY IN THE IMPACT OF MYCOVIRUS INFECTIONS ON THEIR
FUNGAL HOST AND MULTILAYER ECOSYSTEMS

Viruses Altering Host Fungal Lifestyles

It has long been known that most mycoviruses are associated with asymptomatic infections. This
observation likely relies on the unbiased assay, i.e., dsRNA-based virus detection, and differs
from pathogenic nature-centered plant and animal virus detection. Some fungal viruses convert
the host fungus lifestyle from a virulent to a hypovirulent state. Examples include the prototype
hypovirus, Cryphonectria hypovirus 1 (CHV1; Hypoviridae) (110, 127), SsHADV1 (a ssDNA
genomovirus) (182), Rosellinia necatrix megabirnavirus 1 (a dsRNA virus; Megabirnaviridae)
(24), Fusarium graminearum virus 1 (a hypo-like ssRNA virus; proposed family Fusariviridae),
Heterobasidion partitivirus 13 (a dsRNA virus, Alphapartitivirus) (161), and many others, thus
spanning a variety of virus groups infecting diverse fungi. In contrast, a limited number of
mycoviruses are known to enhance virulence in their host fungi, such as an unidentified RNA
virus infecting Nectria radicicola (3), polymycoviruses infecting the entomopathogenic fungus
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Beauveria bassiana (78) and the human pathogenic fungus Aspergillus fumigatus (116), a quadrivirus
(a toti-like quadripartite dsRNA virus; Quadriviridae) of Leptosphaeria biglobosa (139), and a
chrysovirus (a multipartite dsRNA virus; Chrysoviridae) of Alternaria alternata (113). Readers are
referred to recent reviews describing virus-induced hypovirulence and hypervirulence (e.g., 166),
and virus-converting fungal lifestyles exemplified by SsHAD1-involved alterations (122, 185).

Cross-Kingdom Infections by Diverse Viruses with Potential Impacts
on Multilayer Ecosystems

Plants, fungi, and animals, belonging to the three major eukaryotic kingdoms of multicellular
organisms, Plantae, Fungi, and Animalia, have their own histories of evolution with different cel-
lular environments and immune systems. Thus, it is assumed that there are barriers that prevent
cross-kingdom infection and spread of single viruses.However, diverse eukaryotic viruses are pre-
dicted based largely on phylogeny to have been horizontally transferred among organisms across
these three kingdoms (34, 176). Historically, rice dwarf virus (a dsRNA reovirus, phylum Duplor-
naviricota) was the first virus that has demonstrated the ability to infect both plants and insect
vectors (46). Some other groups of viruses (such as plant-infecting rhabdoviruses, tospoviruses,
and tenuiviruses, which cause serious diseases in important crops) are now known to replicate in
and be transmitted by vector insects (such as hemipterans), shuttling between plants and animals
(148). Recently, natural or experimental cross-kingdom infections by single viruses were reported
between fungi and insects and, independently, between plants and fungi (6, 12, 40, 90, 106, 173)
(Figure 5). These viruses crossing kingdoms are expected to be crucial players in ecosystem
balance.

The first natural mycoviral cross-kingdom infection was demonstrated for the ssDNA virus
SsHADV1,which can infect not only the fungal host S. sclerotiorum but also the vector fly Lycoriella
ingenua (90) (Figure 5). Both naturally SsHADV1-infected fungal isolates and flies were readily
detectable in stem rot–infested fields. L. ingenua can acquire SsHADV1 from infected mycelia on
rapeseed leaves and transmit it vertically to offspring through eggs but also horizontally to unin-
fected fungal hosts. Interestingly, the virus appears to manipulate the host fungus to attract the
vector insect via fungal secondary metabolites (volatiles), which serve as attractants to L. ingenua.
This may not be so surprising because SsHADV1-like viruses (other genomovirids) are detectable
from many insect-associated samples (80, 163). The second example of natural cross-kingdom in-
fection is the infection of the notorious phytopathogenic basidiomycete, Rhizoctonia solani, by one
of the best-studied plant viruses, cucumber mosaic virus (CMV; an alpha-like virus; phylum Kitri-
noviricota) in the InnerMongolia Province of China (6) (Figure 5). CMV strain Rs of fungal origin
can be laterally transmitted under laboratory conditions from infected R. solani to plants and vice
versa.CMVRs shows slightly induced virulence inR. solani,whereas the well-exploredCMV strain
Fny of plant origin is symptomless in the fungus but induces mosaic in experimentally inoculated
N. benthamiana by mechanical inoculation. The newly discovered CMV strain is different in ge-
nomic sequence (<2% divergence) from known reported subgroup Ia strains infecting plants but
shares the tripartite genomic organization. R. solani can serve as a plant virus vector and acquire
the virus from infected plants and transmit it to healthy ones. These two examples clearly show
that mycoviruses could be transmissible by other host organisms serving as vectors from kingdoms
other than Fungi.

The systemic replication of two well-studied plant viruses in fungi was shown in a compelling
way by a few research groups. The first example is an alpha-like virus, tobacco mosaic virus
(TMV; phylum Kitrinoviricota), which has been shown experimentally to be able to establish sta-
ble, i.e., for twomonths, infection of the phytopathogenic fungusColletotrichum acutatum (94).The
inoculation was carried out by mixing mycelia and purified TMV particles in liquid fungal culture.
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Trans-kingdom infections involving mycoviruses and fungal hosts. The figure illustrates natural cross-kingdom infections.
Abbreviations: CMV, cucumber mosaic virus; SsHADV-1, Sclerotinia sclerotiorum debilitation-associated DNA virus 1.

How TMV enters the fungal cell remains largely unknown, as in the case of an ssDNAmycovirus
(SsHADV1). TMV vector-based foreign protein expression and mediated virus-induced gene
silencing was also confirmed in the fungus. RNA silencing (RNA interference) or quelling is
well established in fungi whose genetic dissection was first pursued in a filamentous ascomycete
Neurospora crassa (see 60). TMV is also able to infect F. graminearum by protoplast transfections
as well, and its replication is augmented in RNA silencing–deficient mutants or by coinfecting
a mycovirus (CHV1) that can suppress antiviral silencing activity (12). Another example of
cross-kingdom infection is the bona fide fungal virus CHV1, the best-studied virus of filamentous
fungi. CHV1 was shown to systemically infect a model plant, Nicotiana tabacum, only when the
cell-to-cell movement protein (MP) of a plant virus origin is supplied transgenically or from
replicating plant viruses such as TMV (12). Without plant viral MP, CHV1 replication can only
be detectable in inoculated leaves. The tested plant viral MPs support the systemic spread of this
capsidless mycovirus (CHV1), which is replicated in host-derived vesicles in fungi (153). In the
presence of TMV, CHV1 can infect plants systemically and enhance the possibility of horizontal
transfer of CHV1 to other fungi, including vegetatively incompatible ones through plants.

Viroids are the smallest infectious entity with noncoding circular RNAs that are pathogenic
to plants. Recently, Liying Sun’s group has shown experimentally that some viroids as the
monomeric form of in vitro synthesized RNA replicate in a few tested filamentous fungi (173).
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The tested viroids include hop stunt viroid (HSVd) and iresine 1 viroid (members of the family
Pospiviroidae) and avocado sunblotch viroid (ASBVd; family Avsunviroidae), which replicate in the
nucleus (pospiviroids) and chloroplast (avsunviroids) of their natural plant hosts, respectively.
The above three viroids can establish stable infections in a few phytopathogenic fungi such as
C. parasitica, Valsa mali, and F. graminearum. Interestingly, HSVd induces severe growth defects
in V. mali but not in the other two fungi. HSVd and ASBVd underwent substitution mutation
during successive subcultures of the infected RNA silencing–deficient mutants of C. parasitica
and F. graminearum, respectively (174). Furthermore, HSVd can be horizontally bidirectionally
transferred between F. graminearum and plants during infection, indicating the potential of fungi
as a vector for plant-to-plant transmission of viroids and vice versa. This provides evidence that
at least some viroids can be replicated in fungi. It is noteworthy that viroid-like small circular
RNA has possibly been detected in fungi (41).

TMV, CHV1, and viroids, experimentally shown to cross host kingdoms, have yet to naturally
infect plants, plants, and fungi, respectively. These cross-kingdom infections provide a surge in
research interest and several intriguing questions. Examples include how single viruses adapt to
the host environments of different host environments, how their replication site and host fac-
tors are different between the two kingdoms, how different kingdoms of host organisms incite
defenses against single viruses, and how single viruses exert counter-defenses against different
host defense responses. The cellular environments are different between fungi and members of
the other kingdoms able to host the virus of interest. The abovementioned examples of cross-
kingdom infections involve both encapsidated (CMV, TMV, SsHADV1) and capsidless ssRNA
viruses (a hypovirus and CHV1) under certain conditions. CMV, TMV, and CHV1, particularly
the former two, are well-studied in terms of replication. It is generally accepted that unnecessary
genes in one of the alternate hosts are deleted or mutated via successive passage or maintenance
in the one host, often leading to the revelation of functional roles of mutated genes. For example,
maintaining rice dwarf virus (a plant dsRNA reovirus) exclusively in rice plants results in the gen-
eration of dysfunctional genomes, i.e., mutation of the S2 segment encoding the P2 outer capsid
protein needed for receptor-mediated virus entry into insect host cells (121). A similar finding is
in the genes for the G1 and G2 proteins of tomato spotted wilt virus [a plant (−)ssRNA bun-
yavirus], which undergo spontaneous mutation after long-term maintenance of the virus in host
plants (reviewed in 49). Similar approaches should be helpful for elucidating the functional roles
of viral genes in alternate hosts. In this regard, whether CMV and TMV retain the capsid protein
and MP genes, which are essential for most plant viruses, is an interesting question, given the fact
that many (+)ssRNA mycoviruses are capsidless and lack MP.

In fungi, as in insects and plants, RNA silencing is the primary antiviral defense in which host
fungi perceive viruses and induce the RNA silencing pathway (111); there are noticeable differ-
ences in the RNA silencing pathway between the kingdoms. In C. parasitica, Dicer (Dicer-like
protein) plays dual functional roles in not only post-transcriptional RNA silencing as the dsRNA-
specific dicing enzyme but also transcriptional upregulation of several host genes together with
the SAGA (Spt-Ada-Gcn5 acetyltransferase) complex (4, 5, 138). Regulated host genes include
RNA silencing of key genes such as dicer-like (dcl) and argonaute-like (agl; a putative slicer), as
well as many other genes likely involved in the mitigation of symptom induction, thus forming
a positive feedback loop. Whether such a regulation mechanism operates in other filamentous
fungi needs to be explored. As counter-defense mechanisms, fungal viruses, like plant and animal
viruses, encode RNA silencing suppressors (9, 137, 181) that appear to inhibit the upregulation
of RNA silencing genes. No other modes of action of fungal virus suppressors of RNA silencing
have yet been reported. RNA silencing in members of different kingdoms is under different reg-
ulation with different sets of key components, although small RNAs (typically 19–25 nucleotides
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long) cross kingdoms using extracellular vesicles and work in both fungi and plants (17, 56). In this
sense, short RNAs with a peak at 16 nucleotides derived from a plant mitovirus (a relative of fun-
gal mitoviruses) are produced in the infected plant (107). This may suggest mitochondria-specific
antiviral defense in plants.

EVOLUTIONARY CONSIDERATIONS FOR MYCOVIRUSES

Evolutional Aspects of dsRNA and (+)ssRNA Mycoviruses

Recent metagenomic and metatranscriptomic analyses have expanded our understanding of the
virosphere in fungi (see above for details). These approaches allow us to understand the genetic
divergence of mycoviruses and provide their evolutionary snapshots. Thus, some remarkable in-
sights into mycoviral evolution are exemplified in this section [for dsRNA and (+)ssRNA viruses]
and the following sections [for (−)ssRNA viruses].

Viral genome segmentation may have played an important role in genetics and evolutionary
biology for RNA viruses (11, 112). The segmentation of a monopartite (+)ssRNA mycovirus
(a deltaflexivirus in the family Deltaflexiviridae) has recently been proposed in Sclerotinia scle-
rotiorum deltaflexivirus 3 (SsDFV3) (98). A similar event could also be speculated for another
(+)ssRNAmycovirus, a botrexvirus [Botryosphaeria dothidea botrexvirus 1 (BdBV1)], in the fam-
ily Alphaflexiviridae (180). The genome segmentation of these two mycoviruses (SsDFV3 and
BdBV1), both belonging to the same order, Tymovirales (the phylum Kitrinoviricota, also known
as the alphavirus-like supergroup), possibly occurred independently from ancestral unsegmented
flexiviruses during the course of evolution. Furthermore, botrexviruses (mycoviruses) show close
sequence similarity to plant allexiviruses and likely have originated from ancestral plant viruses
(148). However, no close relatives of deltaflexiviruses or gammaflexiviruses (members of a related
mycoviral taxon) have been reported from plants. The benefits of genome segmentation are still
poorly understood.However, these events will possibly provide genomic diversity through the ex-
change of the segments (reassortment) between related viruses, as previously described for animal
and plant RNA viruses (73, 142).

Horizontal gene transfer (HGT) between virus and host or virus to virus has been recognized
as an important driving force in the viral evolution (13, 81). In vertebrates and invertebrates,
numerous endogenous nonretroviral RNA viral- or related viral-like elements [so-called EVEs
(endogenous viral elements)] have been reported (61, 66). Similar viral-related footprints have
also been discovered in the genomes of numerous plants and fungi (16, 23, 71, 72, 86). Some
nonretroviral EVEs are widespread among the host genomes in particular kingdoms, such as
bornaviruses in vertebrates (67), rhabdoviruses and nege-like viruses in invertebrates (insects)
(70, 156), and partitiviruses and varicosaviruses (bipartite plant rhabdoviruses) in plants (23).
However, the knowledge of the distribution and diversity of nonretroviral EVEs is still limited
in fungal genomes. As a different direction of HGT, i.e., from virus to virus, the HGT events
of cross-viral families have been proposed among diverse mycoviral-related dsRNA viral taxa
with the S7 domain homologs (87). Similarly, the duplicated domains (putative viral helicase
and MT) may have occurred in the genomes of SsDFV3, Aspergillus fumigatus RNA virus 1 (a
vivivirus), and Rhizoctonia solani hypovirus 2 via HGT between (+)ssRNA viruses (1, 25, 98).
Even HGT has also been predicted from a (+)ssRNA hypovirus to a dsRNA megabirnavirus
(order Ghabrivirales) that has acquired a p29 papain-like protease domain (171).

The relatives of dsRNA and (+)ssRNA mycoviruses such as partitiviruses, totiviruses, chryso-
viruses, and endornaviruses infect many plant species (129, 154). These plant RNA viruses are
classified within the same genera (Alphapartitivirus,Betapartitivirus,Totivirus,Alphachrysovirus, and
Alphaendornavirus), where related mycoviruses belong, and have persistent lifestyles in their host
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plants: They lack the cell-to-cell MP and do not have an extracellular stage, and thus most likely
transmit through the cell division (129). Based on the phylogenetic relationships, the abovemen-
tioned plant and fungal RNA viruses could be horizontally transferred between plants and fungi
historically and probably currently (148). Among them, partitiviruses have left potential fossil
records as mentioned above, and some integration events in members of the family Brassicaceae
were roughly estimated at around 10–24 million years ago (23). This and some other examples
have suggested the long-term coevolution between the partitiviruses and the host plants, whereas
a similar coevolution between partitiviruses and fungal hosts has still not been uncovered. Under
an experimental inoculation condition, two mycoviruses related to totiviruses and partitiviruses
could replicate in plant cells (106). Thus, whether plant partitivirids could also infect fungal cells
is still an open and interesting question.

Mycoviruses related to other plant alpha-like viruses in the family Benyviridae (order Hepelivi-
rales, phylum Kitrinoviricota) and other RNA viruses in the Potyviridae (phylum Pisuviricota) have
also been reported (169).Members of Benyviridae or bymoviruses in Potyviridae are transmitted by
the zoospores of the plasmodiophorid protist (155).The ancestor of these viruses may have under-
gone trans-kingdom horizontal transfer between plants and protists on evolutionally timescales
(35). The orderMartellivirales (Kitrinoviricota) includes several important groups of plant viruses,
such as families Bromoviridae, Closteroviridae, and Virgaviridae. Recent metagenomic studies have
also demonstrated the presence of fungal-specific viruses (including viviviruses) related to virga-
or other plant alpha-like viruses, which should form new virus taxa (families), respectively (22,
169). Interestingly, experimental inoculation approaches have demonstrated the infection of fungi
by plant alpha-like viruses (CMV and TMV) (6, 94, 173). Inversely, a fungal RNA virus (CHV1)
can replicate in plants, and TMV enables the systemic spread of this mycovirus in plants (12).
Increasing evidence of cross-kingdom virus infections with many kinds of RNA viruses may al-
low us to understand the deeper evolutionary insights into the origin of RNA viruses (see also
below).

The phylum Lenarviricota is composed of four classes, Amabiliviricetes, Howeltoviricetes, Le-
viviricetes, and Miaviricetes, and is rapidly expanding. The first and fourth classes accommodate
mycoviruses in the families Narnaviridae, Mitoviridae, and Botourmiaviridae, and the other two
classes include bacterial phages in the families Atkinsviridae, Duinviridae, Fiersviridae, Solspiviri-
dae, Bluneviridae, and Steizviridae. Only this phylum and the phylum Duplornaviricota include
prokaryote- and eukaryote-infecting members. The number of bacterial RNA viruses appears to
be underestimated and the two phyla will be probably expanded. A vast number of members in
the phylum Lenarviricota have been reported from eukaryotes, particularly fungi. The progenitors
of narna-like fungal viruses are diverse and assumed to have originated from a bacterial phage
(ancestral levivirus) because RdRP-based phylogenetic trees place levivirids at the base (107). The
ancestral levivirus may have been brought with the α-proteobacterial progenitor of mitochondria
during eukaryogenesis and then lost the capsid protein gene to evolve into a capsidless mitovirus.
Mitochondrially replicating mitoviruses then might have moved their replication site into the
cytosol to birth narna- and narna-like viruses, including botourmiaviruses (75, 176). During the
coevolution of eukaryotes and narna-like viruses,mitoviruses have adjusted to their mitochondrial
environments by including the mitochondrial genetic code such as the UGA encoding Trp in
fungal mitochondria, whereas others (narnaviruses, botourmiaviruses, and many other relatives)
seem to have adjusted to the cytoplasmic replication style. These viruses have also been isolated
from or associated with plants and invertebrates in addition to fungi (107, 109, 141). Plant
ourmiaviruses [a tri-segmented (+)ssRNA genome with nonenveloped bacilliform virions; family
Botourmiaviridae] are assumed to have originated from fungal botourmiaviruses by acquiring the
capsid protein and MP genes to adjust to the plant host environments (124). For other narna-like
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viruses, as discussed in previous reviews (16, 165), horizontal transfer from both fungi to plants
and plants to fungi could be possible during the course of evolution (109).

Evolutional Aspects of (−)ssRNA Mycoviruses

Recent studies have indicated that nonretroviral EVEs have been discovered in the genomes of
fungi and provided evidence for the presence of extant (−)ssRNA viruses in filamentous fungi
(71, 72). Subsequently, several studies have uncovered the presence of diverse mycoviruses with
(−)ssRNA genomes, including mymonaviruses (order Mononegavirales) (89, 93, 170), phenui-like
viruses, and bunya-like viruses (order Bunyavirales) (14, 15, 37, 93, 114). The metagenomic ap-
proach has also expanded the diversity of (−)ssRNA mycoviruses, including novel mycoviruses
related to yueviruses (order Goujianvirales) and aspiviruses (order Serpentovirales), together with
relatives of the abovementioned viruses with some enigmatic genomic structures (22, 63, 149, 169).

Many (−)ssRNA viruses encode glycoprotein gene(s), allowing virus cell entry into animal
hosts, including vector insects for the case of plant viruses (32). In contrast, known (−)ssRNAmy-
coviruses do not have such genes, and thus they appear to lack a potential alternate host animal or
an extracellular route for their infection of fungal hosts, similar to other mycoviruses except for
the ssDNA virus SsHADV1. Interestingly, a mycovirus [Sclerotinia sclerotiorum rhabdovirus 1
(SsRhV1)] closely related to animal rhabdoviruses was reported first in fungi (98). SsRhV1 shares
the genomic structure with the members of the subfamily Alpharhabdovirinae, including a puta-
tive glycoprotein, and likely forms a typical bullet-shaped virion. Viruses of Alpharhabdovirinae
infect animals (vertebrates and/or invertebrates) but not plants (167). Therefore, the SsRhV1 in-
fection may also occur through the extracellular route via unknown vectors, potentially including
invertebrates.

Phenuiviruses and bunyaviruses infecting animals and plants are known to have bipartite, tri-
partite, or multipartite (−)ssRNA genomes (76), and recent studies have provided the first evi-
dence for fungal phenuiviruses, i.e., Lentinula edodes negative-strand RNA virus 2 (LeNSRV2)
and Entoleuca phenui-like virus 1 (EnPLV1), which have a segmented genome with a typical
ambisense coding strategy (84, 164). These two mycoviruses share their genome structures with
those of plant-infecting phenuiviruses (genus Coguvirus) (10, 102). Importantly, LeNSRV2 and
EnPLV1 and their plant virus relatives (coguviruses and trisegment ruboviruses) encode the pu-
tative proteins similar to MPs (30KMP superfamily) (102, 130), suggesting the potential of trans-
kingdom virus infection between plant and fungi as in the case of a plant RNA virus in the field (6).
Aspi-like mycoviruses are related to ophioviruses (members Aspiviridae), which are known as plant
pathogens, and some are transmitted by the zoospores of Olpidium spp. (47). Similar to the afore-
mentioned scenario for beny-like and poty-like mycoviruses, evolutionary trans-kingdom virus
infection may have occurred in the past (35).

This article does not touch on the evolution of fungal ssDNA genomoviruses, which still con-
stitute a minor portion of the fungal virome. The reader is encouraged to refer to other elegant
reviews on this issue (35, 188).

SUMMARY POINTS

1. Recent virus hunting studies with various groups of fungi, cultured or uncultured, led to
the discoveries of many peculiar mycoviruses with unusual genome organizations and/or
even with neo-lifestyles. It is readily anticipated that novel mycoviruses with unseen
genome organizations will be discovered by searching fungi as-yet-unexplored as virus
hosts.
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2. Peculiar mycoviruses are exemplified by splipalmiviruses, ambiviruses, and ambinarna-
viruses. Splipalmiviruses are narna-like viruses with a multisegmented (+)ssRNA
genome that, unprecedently, encodes RNA-dependent RNA polymerase (RdRP)
domains on separate segments. Ambiviruses have an undivided single-stranded RNA
(ssRNA) genome with two open reading frames (ORFs) on both strands in a head-
to-head or tail-to-tail orientation. Ambinarnaviruses encode RdRP with phylogenetic
affinity to narnaviruses on the (+)ssRNA and would also encode a hypothetical protein
on the other strand.Unlike those of ambiviruses, the twoORFs of ambinarnaviruses fully
overlap.

3. Examples of the mycovirus neo-lifestyles include the yado-kari/yado-nushi nature,
hadaka nature, and the lifestyle exhibited by polymycoviruses.Capsidless yadokariviruses
divert the capsid of unrelated dsRNA viruses to trans-encapsidate their RNA and RdRP
and, likely, use the same replication site. Hadakaviruses with a 10- or 11-segmented
(+)ssRNA genome also have a capsidless nature that is distinct in RNase susceptibil-
ity and sedimentation profile from well-established capsidless hypoviruses or polymy-
coviruses. Polymycoviruses are phylogenetically close to hadakaviruses but encode
proline-, alanine-, and serine-rich protein (PASrp) that binds their genomic double-
stranded (dsRNA) and form complexes or filamentous particles. Polymycovirus genomic
dsRNA, whether naked or associated with PASrp, is infectious.

4. The discovery of a great number of mycoviruses as well as other viruses has filled
phylogenetic gaps and provided evolutionary insights. Horizontal virus transfer appears
to (have) occur(ed) between different kingdoms of organisms, which is inferred from and
suggested by phylogenetical analyses and the substantiation of cross-kingdom infections.

FUTURE ISSUES

1. Metagenomic and metatranscriptomic analyses revealed the genome structure of many
mycoviruses. Are they biologically infectious as virus entities? If yes, what are the host
range and the impacts on their host fungi?

2. It is difficult to determine the segment number of multipartite viruses that include newly
detected mycoviruses through RNAseq approaches. How is fragmented and primer-
ligated dsRNA sequencing (FLDS) or a similar method useful for this purpose?

3. Diverse mycoviruses with unique ambisense genomic segments have been discovered.
How are the ORFs on each strand expressed? What are the terminal structures of the
ambisense segments that may facilitate translation and replication? What is the ratio of
the two strands of one genomic segment with ambisense nature?

4. How broadly do neo-lifestyles exhibited by some groups of mycoviruses prevail in other
kingdoms of organisms? How do those with a capsidless or PASrp-associated nature
(hadakaviruses and polymycoviruses) exist in infected fungal cells? How do these viruses
evade fungal antiviral defense?

5. How is the yadokarivirus/dsRNA virus partnership determined? How is the accumula-
tion ratio of yadokarivirus versus partner dsRNA virus determined?
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6. How much does horizontal gene transfer between fungal viruses and viruses infecting
organisms of other kingdoms and horizontal virus transfer contribute to shaping the
fungal virome?
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