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Abstract

A network is a natural structure with which to describe many aspects of a plant
pathosystem. The article seeks to set out in a nonmathematical way some of
the network concepts that promise to be useful in managing plant disease.
The field has been stimulated by developments designed to help understand
and manage animal and human disease, and by technical infrastructures,
such as the internet. It overlaps partly with landscape ecology. The study
of networks has helped identify likely ways to reduce the flow of disease in
traded plants, to find the best sites to monitor as warning sites for annually
reinvading diseases, and to understand the fundamentals of how a pathogen
spreads in different structures. A tension between the free flow of goods or
species down communication channels and free flow of pathogens down the
same pathways is highlighted.
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INTRODUCTION: WHY THE INTEREST?

Many new types of networks have developed in the built and social environment over the past few
decades. This has stimulated cross-fertilization between network-based approaches in a number of
specialized areas of science. In particular, the development of the internet and then of computer-
assisted social networking, the spread of HIV and other diseases, and the problems in biological
conservation have all stimulated new insights into the general characteristics of abstract networks.

There have been many recent phytopathogen invasions of public concern. Thinking about these
in terms of networks has been very valuable. The relevant networks may describe the interactions
between individuals, populations, or regions. Network theory has direct relevance to trade and
biosecurity, agricultural policy, and biological conservation, and also highlights some conflicts
between public policy goals, which we discuss below. Network ideas are also beginning to be useful
in managing established and endemic diseases. Previous reviews have summarized the application
of network ideas for some areas of application in plant epidemiology (12, 18, 27, 28, 39, 49). The
aim of this review is to explain more fully, although informally, some of the key ideas of network
theory, with examples of their application in a plant pathology context, and relate them to other
approaches. Where appropriate, we refer to examples from animal or human disease, but we have
tried to keep the focus on questions relevant to plant disease and omit all mathematical detail. An
excellent full introduction to network theory—although with little emphasis on plant disease—can
be found in Reference 44; a brief but thoughtful review of the ideas across many disciplines can
be found in Reference 36.

Network theory is also transformative in cell biology, where the connections are transforma-
tions or signals and the nodes are quantities or forms of substance. The relevance to molecular
plant pathology is clear. However, this topic is beyond the scope of the present review; interested
readers are referred to, for example, Chaiboonchoe et al. (9).

DEVELOPMENT OF NETWORK IDEAS

An abstract network consists of a collection of nodes (e.g., fields, plants, cells, individual people,
internet routers, power stations, and cities; any distinct entities) and connections between the
nodes (e.g., wind, tractors, aphids, chemical signals, conversation, optical fibers, electrical power
grids, railways, etc.) (see sidebar, Many Names, One Concept). The connections may be physical
flows between different locations, but they can also be abstract: eating or being eaten, infecting
or being infected, for example. Network thinking in the population biology of plant pathogens
has been implicit since the subject emerged. The changes over the past few decades have at least

MANY NAMES, ONE CONCEPT

Because the theory of networks has arisen in many fields, there are varying terms for the entities making up a
network. They may be described abstractly as nodes or vertices and according to the application may be individuals,
small populations, farm-holdings, areas of crop or forest, and so on; the connections may be called links, channels,
or edges. The vertex and edge descriptions arise from graph theory and visualize the network as a generalization
of a polyhedron, such as a cube or triangle. The node-link description is a natural way to think of the internet or a
road or trade network; channels, pathways, connections, or contacts may be clearer ways to describe edges or links
in population biology or epidemiology contexts.
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Figure 1
Networks equivalent to homogeneous mixing. (a) Every node connected to every other node. (b) Nodes are
connected at random to several other nodes chosen at random from the whole population. In a small
network, this may lead to more than one component (disconnected set of nodes) forming, as shown.

three aspects. First is an expansion of the ambition of ecology and subfields such as plant disease
management to much larger spatial and temporal scales (24, 25, 37, 57). Second is the realization
that networks may have counterintuitive properties that are not obvious from the properties of the
constituent nodes alone, and that seemingly minor aspects of the ways the nodes are connected
can have profound and unexpected consequences for the spread and severity of disease. Third is
the concern over the inability of quarantine measures to prevent increasing numbers of pathogen
invasions (4). These features are shared between plant and animal (including human) epidemiology
and have much in common with the ecology of other invasive species. Differences in emphasis
and language arise because practical priorities differ between systems and because of biological
differences in host-pathogen interactions.

To understand how using a network viewpoint develops our understanding of plant dis-
ease, it is helpful to map ideas about networks onto well-established existing ways of looking
at plant disease. The familiar introductory model is near-logistic growth in a single popula-
tion, which results from a number of models of infection between individual plants; if infected
units can recover or can be replaced by a newly planted susceptible, the model is known as SIS
(susceptible→infected→susceptible). A substantial disease outbreak, with the proportion of hosts
infected increasing, at least at first, takes place only if new infections occur faster than death or
recovery. No account is taken of space: It is assumed that each infected unit (plant, portion of
leaf, etc.) can infect any other with equal probability. The implicit network therefore has every
individual connected to every other (Figure 1a). This is sometimes referred to as homogeneous
mixing, and the model and its solution are at least a century old.

Homogeneous mixing is, of course, rarely realistic. In models in which each infected indi-
vidual is instead connected to a number of others chosen at random—a random network—all
individuals are equivalent, and each individual is equally likely to be connected to any other. An
SI (susceptible→infected; i.e., a susceptible plant may pass to the infected state but then stays in-
fectious), SIR (susceptible→infected→removed or resistant), or SIS epidemic in such a network
would cause the numbers of infected or removed plants to follow a logistic curve over time, and
the threshold infectiousness for the pathogen to spread indefinitely—the epidemic threshold—is
the same as in a fully connected network. If the total number of nodes is small, or the average
number of links per node is small, a random network may have subnetworks (components) that
are not connected together.

The practical need to develop this model to describe invasions and understand heterogeneous
arrangements of hosts has led to much interest in the spatial spread of disease, as either diffusive
or nondiffusive dispersal over a continuous landscape (56, 60, 61) or as dispersal from cell to cell
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over a grid (19, 42, 43). These are closely related and to some extent complementary approaches.
A grid with small enough cells approximates a continuous landscape and is frequently used in
simulations to study problems initially formulated as problems in a continuous space. A spatial
grid with equally weighted connections among all nearest neighbors (a lattice) is, of course, one
type of network. It is a rather exact description of some types of plantation but a less accurate
description of the interactions of pathogens and hosts in most real landscapes (17, 20). A two-
dimensional spatial grid is rarely an approximation of modern trade or travel networks, although it
probably was when land transport costs were very high—maybe more than two or three centuries
ago, before the development of canal and rail transport.

Real organisms exist at variable densities in different places. A fertile recent way to conceptualize
this has been metapopulation theory. The basic unit of a metapopulation is a group of individuals
that are homogeneously mixed. These base populations are then linked together by immigration
and emigration. The resulting structure is again a network, with properties distinct from but
related to the properties of the individual nodes (base populations) (e.g., see 47).

The theory of processes operating on networks developed in the branch of mathematics known
as graph theory and in several areas of theoretical physics, particularly percolation theory. Per-
colation theory was motivated by flows of fluids through a network of channels in a substrate; as
channels are enlarged and lengthened, a previously impervious object will allow percolation of the
fluid right through the substrate. This has found application in the study of soilborne disease: To
survive, a fungal mycelium or other pathogen must be able to move between soil particles to the
next host (46).

KEY CONCEPTS IN NETWORK THEORY

In a general network, the pattern, direction, and strength (weight) of links between nodes can be
specified as a matrix (the adjacency matrix) in which rows and columns both correspond to the
same list of the components of the network, and the entries indicate the existence or nonexistence,
direction, and strength of a link between the nodes. Mathematical methods for working with
matrices as single entities are well developed, and the representation can deal with completely
arbitrary patterns of connections between nodes, and therefore with connections estimated from
empirical data. Computational methods for dealing with matrices with a large proportion of zero
entries are also well developed. The challenge in plant pathology, as elsewhere (11), is to estimate
the actual network structure associated with a pathogen threat; omitting a type of linkage can lead
to serious mistakes.

A one-dimensional arrangement of individuals or subpopulations, such as along a section of
riverbank, would be represented by a matrix in which the central few diagonals were occupied but
all other connections were zero. If individuals are connected at random without regard to space,
the matrix will have a random pattern of entries. An arrangement in which there are occasional
long-distance connections but most connections are spatially close has discernible diagonals but
occasional nonzero entries scattered over the matrix (Figure 2). Such an arrangement, of course,
is not restricted to the same number of connections to and from all nodes.

A general network may be made up of a several sets of nodes that have no links between the
sets. This remains a useful concept because a single new link might merge two sets (Figure 1). A
set of connected nodes is described as a component of the network.

The most mathematically tractable networks are those in which all links are of equal importance
(unweighted), allowing flows in both directions (undirected). This means that the matrix describing
the network has only ones and zeroes and is symmetrical around the diagonal line that shows the
connections of nodes to themselves. For many epidemiological purposes, flows are very different in
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Figure 2
A network and its matrix representation. Node 4 is not connected or linked to any other in the selection
shown: All entries in its row and column are zero. Node 3 has an out-link to node 100, and in the third row
the column for node 100 contains the corresponding in-link. Nodes 2 and 100 have a heavily weighted
symmetrical link, despite their physical separation, and there are corresponding entries in row 2, column 100
and row 100, column 2. In the application that we imagine the network to be used in, it is not meaningful to
have a connection from a node to itself, so all the diagonal entries are zero.

opposite directions, e.g., the Netherlands exports very large numbers of flower bulbs but does not
import very many. This means that matrices describing the networks relevant to plant pathology
should usually be both directed (i.e., asymmetric) and weighted, with entries proportional to the
flow between the nodes. Not all general analytical results apply to such asymmetric weighted
networks, although many do. In any real application, the weights given to links need careful
consideration: Ellis et al. (14) and Meentemeyer et al. (37)—considering, especially, Phytophthora
ramorum—stress the need to incorporate all obstacles and routes of movement when considering
the weight to be given to links between nodes representing populations, given that 200 meters
over a mountain may allow much less movement than 20 kilometers down a river.

DESCRIBING NETWORKS

Much effort has gone into finding ways to describe large and complicated networks that allow
common features to be extracted and seemingly diverse structures to be compared with a man-
ageable amount of information. The degree distribution of a network is the complete frequency
distribution of the number of connections per node (Figure 3), i.e., the table detailing the propor-
tion of nodes having particular numbers of connections. For example, a two-dimensional spatial
grid (lattice) usually has 4 connections per node except at the edges, so the frequency of nodes with
degree 0, 1, or >5 (i.e., zero, one, or five or more connections) is zero; only nodes at the edges have
degree 3 (three connections), and only the four corner nodes have degree 2. General networks can
have nodes with degrees that vary widely. The degree distribution can be summarized by statistics
such as the mean degree (number of connections per node) and variance in degree between nodes.
For an asymmetric network—e.g., anything in which the pathogen vector is a trade flow—there
are two degree distributions: one describing flows into a node, the other describing flows out of a
node.

A degree distribution is, of course, far from a complete characterization of a network, and
many other descriptors have been developed. An important feature in the flow of disease through
a network is the extent of clustering. In a highly clustered network, nodes connected via a neighbor
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0 1 2 3 4 5 6 7 8

Number of nodes 1 4 10 17 4 0 0 0 1

Frequency (%) 3 11 27 46 11 0 0 0 3
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Figure 3
Network descriptors. A small, three-component network is shown along with its degree distribution. Node
shading indicates degree, from lightest (degree 0) to darkest (degree 8). Dotted arrows indicate typical nodes
with particular degrees. The node with degree 8 links together much of the network. Nodes A and B are not
clustered; nodes C and D are.

also have a direct connection—my friends’ friends are my friends too. This feature can be char-
acterized by various types of clustering coefficients; it is important because infected individuals’
contacts tend to already be infected, so the pathogen has a lower effective rate of reproduc-
tion. Also important is the mean and variance of the (weighted) distance between randomly se-
lected nodes, which, in part, captures the notion of how far the network is from a fully mixed
population.

In a conservation perspective, the total area accessible to a threatened population is important,
and the parameters needed to describe a habitat network may differ from those most used in other
areas of study. Baranyi et al. (3) compare a large set of proposed indices that provide weights for
different landscape elements and also provide software to calculate these indices on the basis of
pixel-based maps. What appears to be an unsolved problem is the optimization of a landscape
so that individual host plant or animal populations are least susceptible to extinction because of
demographic stochasticity or inbreeding while simultaneously being least vulnerable to invasions
of novel diseases whose characteristics do not allow an endemic persistence.

A number of features relevant to epidemiology can be derived directly from the adjacency
matrix or its representation in terms of eigenvalues and eigenvectors. The eigenvectors represent
particular distributions of whatever the network exchanges over the nodes, which are so arranged
that flows over the network do not change the relative amounts at each node—what has flowed out
is balanced by what flows in, except for a general increase or decrease over the entire network. The
eigenvalues are the overall multipliers applicable to the particular eigenvector. It is fairly natural
from this description that—at least in some models—the value of the largest eigenvalue can
determine whether a pathogen can increase in a particular network (see sidebar, Can an Epidemic
Develop Within a Network of Hosts). The eigenvector associated with the largest eigenvalue can
also be used as an indicator of how much network flow travels via each node, i.e., its centrality.
Several other measures of centrality are available, but the key idea is that the importance of nodes
to the behavior of the network can be characterized and ranked.
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CAN AN EPIDEMIC DEVELOP WITHIN A NETWORK OF HOSTS?

Both Wang et al. (62) and Moslonka-Lefebvre et al. (40) present proof that the minimum infectivity required for an
SIS epidemic to develop in an unweighted network is simply related to the largest eigenvalue of the association matrix
of the network. Wang et al. assume a symmetric network structure; Moslonka-Lefebvre et al. allow asymmetry.
In fact, both proofs carry through in essence with a weighted network structure, provided the weights have been
normalized to represent their effect on the average rate at which an infected node infects a susceptible node. Thus,
the effect of altering a network structure can be characterized by the effect the change has on the largest eigenvalue
of the association matrix.

NETWORK STRUCTURES

Naturally arising networks can have surprising properties. Informally, the property that has drawn
most attention is the small-world phenomenon, where in a huge population—even up to billions—
it is possible to find a path that links node to node that is only a few steps long. This insight is
usually made concrete by the phrase “six degrees of separation:” It is said that only approximately
six acquaintanceships separate any two people, anywhere in the world. The implications of this
for disease spread in a trade network are profound, given that modern trade and travel networks
have the small-world property (35).

The feature of a network leading to the small-world phenomenon is the presence of a proportion
of nodes with connections into spatially or topologically distant parts of the rest of the network.
If infected, these nodes can spread this infection to parts of the network that would otherwise be
safe from infection; from these areas, the pathogen may in turn reach other parts of the network.
For plant pathogens spreading mostly to nearby hosts, the means by which long-distance links
are generated include human or bird transport of spores or wind transmission (with or without an
insect vector) (7, 26).

A further focus of interest has been the idea of a scale-free network. These are networks that
have degree distributions in which the frequency of nodes of greater and greater degree declines
in inverse proportion to a small power of the degree. For example, nodes of degree 2 might be
four times as common as nodes of degree 4 and nodes of degree 20 four times as common as
nodes of degree 40. This means that there is a very small—but nonzero—proportion of nodes
with very, very large numbers of connections. In an infinite network like this, there would be a
tiny proportion of nodes connected to any number, however large, of other nodes. Real networks
are finite and cannot be strictly scale free, but the model has been proposed as useful in a number
of contexts.

INVASION AND PERCOLATION THRESHOLDS

The literature on epidemiology using networks is dominated by considerations of the pattern and
possibility of invasions of newly emerging diseases. This is clearly very important, but it might also
be useful to set more routine disease management in a network context. For example, questions
about the relationship between the design of plantations or crop landscapes and (endemic) dis-
ease susceptibility (e.g., see 59) might find useful answers if looked at from a network viewpoint.
Even in a regular lattice network, such as an array of plants growing on a grid, Handford et al.
(22) showed that heterogeneity in real root systems, and competition leading to negative correla-
tions in the root extent of neighbors, made it (slightly) harder for a root pathogen to invade the
planting.
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The notion of a giant connected component in a network is of considerable heuristic use in
understanding invasion and spread in a network. A giant component is one that grows in size in
proportion to the total network size. The meaning is most easily visualized by imagining a network
developing among many previously unconnected nodes. For example, as seed of a previously local
or garden crop is swapped or sold more widely, new links are set up between previously isolated
host populations. To begin with, small groups of nodes form; as new nodes are added, new small
groups form, and some of the existing groups enlarge. As the number of nodes (gardens) in the
network increases, the size of the groups increases moderately, with new groups forming to absorb
the growth. At some (precisely defined, although depending on the detail) average number of links,
a giant component starts to form. At the threshold number of links, this is not particularly large.
However, if the number of links per node is increased further, more and more of the small groups
get joined to the giant component, so it becomes more and more distinct from the other groups,
beginning to deserve the name giant. The likelihood of having a giant component composed of a
large proportion of the nodes increases with the average connectance level of the network.

The giant component is not of abstract interest only. If a pathogen enters a highly connected
network with a giant component composed of a large proportion of the nodes, it is likely to enter
the giant component. If it does so, most of the giant component, which is most of the network,
becomes infected. The issue is further complicated in a directed network, such as a trade network,
because linkages out do not coincide with linkages in, and therefore a network component may
have portions linked only as recipients (for example, private gardens for an exotic), portions linked
only as donors, and portions linked both ways (strongly linked).

Initial theoretical work on small-world networks formed from lattices with a random fraction
of long-distance connections gave the shortcuts an equal probability of starting anywhere and
ending anywhere on the lattice. Newman et al. (45) studied a SIR disease model where susceptible
plants become infected and are then removed (without being replaced). Using ideas from statistical
physics, they showed that a spreading epidemic could form in conditions where it would otherwise
not be possible. This happened when the combined probability of spreading to a neighbor and
connecting to a distant site exceeded the average number of nodes infected by a single outside
infection that eventually died out. That is, if an infection that infects a few others but dies out has
a sufficient probability of jumping across the lattice, it may spread to a large proportion of the
nodes.

A more startling discovery was that in networks with a scale-free degree distribution, there is
no threshold infectivity for a disease to invade a connected portion of the network (31, 48). More
generally, high variance between hosts in the number of contacts they have tends to increase the
likelihood of epidemics (e.g., see 63). This arises for the following reason. If an infection reaches a
very highly connected node in an approximately scale-free network, it is likely to infect many other
nodes. For example, suppose that on average an infected host infected 0.005 of the hosts connected
to it. If each individual is on average connected to 5 others, an infected host leads on average to
only 0.025 further infections, and the pathogen quickly becomes extinct. But if in a scale-free
network the pathogen starts at or reaches a node connected to 1,000 others, it leaves 5 descendent
infections; and if it starts at or reaches a node (perhaps a hundred times rarer but—because of the
scale-free property—not nonexistent) with 10,000 connections, it leaves 50 descendants. Many
of these are on highly connected nodes because those are the ones to which any node (including
highly connected ones) is likely to be connected.

From the point of view of disease, this is a very unfortunate network structure because a rather
weakly infectious pathogen can become a serious problem; but from the point of view of an airline,
an airline passenger, or an internet search it is ideal: The whole world can be reached in a few
steps. Notice that for a trade network in which transport costs are very low, an approximately
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Figure 4
Simplified versions of network fragments to illustrate the difference between (a) scale-free and (b) small-world properties. In panel a,
there are two components, within which there are hubs; but the components might remain separate if geographically or economically
(e.g., different corporations) separate. In panel b, the most connected nodes (darkest shading) are not necessarily connected over long
distances, but a proportion of links from some nodes, not necessarily very highly connected, cover long distances or connect otherwise
disconnected components.

scale-free network is also small-world; but it is, in principle, possible that a scale-free network
on an underlying geographic surface could encompass a number of disconnected components.
Small-world and scale-free are not synonymous (Figure 4) (28).

The deduction that there was no threshold infectiousness for disease to spread and persist in
a scale-free network has been used to argue that the spread of some human pathogens, such as
HIV, cannot realistically be prevented. However, real networks are finite. Furthermore, if degree
distributions of contacts among humans are correctly estimated, the actual distributions are not
scale-free and thresholds for invasion of sexually transmitted pathogens exist (29).

The situation is further complicated for the finite-sized asymmetric networks typical of trade
in plants. Consider two networks with the same average connectivity but one of which has an
approximately scale-free degree distribution. The threshold infectivity that allows a pathogen to
invade is lower in the scale-free network, but only if it also has a positive correlation between
the numbers of incoming and outgoing links to each node (41). This result could have practical
implications. A network with a positive correlation between incoming and outgoing links could be
made more resistant to pathogen invasion by altering the structure so as to make the correlation
negative. For example, the number of sources from which plant material is obtained by retailers
with many customers could be reduced. Clearly, this has other implications and effects, but it does
show how the use of network theory can clarify our understanding of complex situations.

The aim of many human networks—banking, the internet, air traffic, scientific publication—is,
first, to move information or goods quickly and, second, to continue to function as a whole despite
accidents or attacks that destroy links or nodes. Information flow, of course, includes information
about how to manage plant disease (18, 52). Likewise, conservation aims to maintain as much
biodiversity as possible in the face of destruction and isolation of habitats. The aim of disease
management is, with rare exceptions, the precise opposite. We want problems to propagate slowly
around the network, and we want cheap targeted interventions that restrict disease outbreaks to
as little of the network as possible. From the previous paragraph, we want to identify nodes with
very large numbers of connections (both incoming and outgoing) or with distant connections,
and to the greatest extent possible weaken the number, remoteness, and capacity of the links they
have. Unfortunately, commercial pressures and the need to ensure reliable flows of food and other
goods require the reverse. In a resilient economy, goods (including food) should be able to reach
any part of the world in a predictable and uninterruptible way. The same contradiction arises in
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conservation biology: If the landscape is managed so that desirable host species are able to move
freely between patches of habitat (8, 54, 55), diseases and pests are also likely to move freely.
Similarly, assisted migration to help plant populations cope with rapid climate warming (21) also
makes more likely the translocation of their pests and pathogens. The challenge of designing
networks that simultaneously make some things available everywhere regardless of any damage to
the network but that maintain local features safe from destructive forces arising elsewhere, is one
that arises in both economics and ecology (36).

A real power-law or small-world network still conforms to the intuition that a pathogen needs
a certain level of infectiveness before it can spread. Lack of such threshold infectivity could only
be completely realized in an infinitely large network. Given that no real network is infinite, the
theoretical lack of a threshold is instead a prediction that networks with degree distributions
that include very highly connected nodes are vulnerable to weakly pathogenic organisms. In
particular, vegetatively reproduced crops distributed from improvement centers can have a node
(the improvement center) connected to almost every other node. The value of the abstraction
is that it points to the need to consider the actual network, and the nodes exposed to risk of
infection, rather than just the pathogen, when dealing with a disease management problem; it also
emphasizes that there is often more to disease management than seeking a threshold for pathogen
increase. For example, bottom-up localized plant breeding programs are less likely to result in
hubs with many long-distance connections. It is usually the case that a successful pathogen is
endemic where conditions are suitable for it. Because elimination is rarely possible with realistic
levels of effort, the aim of management is to keep the effects of a pathogen primarily predictable
and secondarily as low as possible.

APPLICATIONS IN PLANT DISEASE EPIDEMIOLOGY
AND MANAGEMENT

The use of networks in plant disease epidemiology can be seen as developing in two directions.
First, there is an interest in re-examining the general rules and ideas developed from analytically
soluble or numerically tractable models in the light of network theory, and in examining the
commonalities between animal disease models, conservation models, and problems in plant disease
management. Second, there is greatly increased effort to characterize the structure of real networks
through which pathogen infection can flow. This has two primary aspects. We can seek to design
real landscapes so as to be less permeable to disease. Alternatively, we can seek to discover where
to place effort in a trade network so as to reduce disease flow in a more effective and efficient way.

Hubs, or highly connected nodes, with distant connections are responsible for the scale-free
phenomenon, and an obvious strategy for disease management is to remove them from the network
or limit their geographic connectedness to try to alter the structure so as to slow and limit pathogen
spread. Unfortunately, the countervailing economic forces often make this option unavailable. In
this case, the obvious strategy appears to be to concentrate resources on managing disease in hubs
and monitoring their links to prevent disease spread. However, this is not necessarily the most
efficient way to minimize the impact of disease. In conservation biology, Chadès et al. (8) show
that with limited resources, it is better to work on the easier problem of controlling disease (or
an invasive species) in less connected nodes because the pressure of infection on them is lower.
Once more isolated nodes are free of the undesirable species—for example, a pathogen—then the
problem of managing highly connected nodes becomes easier because their high connectedness
does not lead to continual reinfection; similarly, in a simplified two-patch model with limited
management resource (53), it is more efficient to control the less-infected patch first, because it
does not act as a source for the more-infected patch.
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Margosian et al. (34) sought to understand the network of connections within the crop growing
areas of the continental United States. US agricultural data are gathered at the scale of counties—
units of approximately 1,000–10,000 km2—of which there are around 3,000, and Margosian et al.
(34) used these as nodes in a representation of the continental United States as the network of crop
hosts seen from the viewpoint of a host-specific pathogen. They used the proportion of land sown
to the crop, together with the distances between county centers, to measure the ease with which
pathogens can move between nodes, describing this as the relative permeability of the landscape to
the pathogen. For cotton and maize, there were large contiguous areas that split into disconnected
components if the pathogen was assumed to need a higher and higher density of crop in order
to move between counties. For wheat, there were three major areas, apparently because of low
levels of connection afforded by occasional crops. The soybean network was subsequently used
in an elegant study to reduce sampling effort during the year to guide protective spraying against
soybean rust, Phakopsora pachyrhizi. Sutrave et al. (58) showed that by restricting monitoring of
unsprayed sentinel plots to plots that were both highly connected and, based on previous seasons’
infection, at high risk, very large reductions in monitoring effort could be achieved with minimal
loss of effectiveness.

Two possible general policy options can also be envisaged from Margosian et al.’s analysis. First,
it might be possible to discourage growth of certain crops in marginal areas that afford little profit
but much opportunity for disease flow so as to make key production areas more independent. This
involves a degree of central regulation or joint agreed action by geographically distant farmers,
which could be difficult in some countries or among different countries. However, a policy similar
to this has been effective in reducing the impact of Puccinia striiformis, yellow rust of wheat, in some
regions of China (32) and has been suggested as a way to slow or halt the advance of the invasive
and damaging cane toad (Rhinella marina) in northern Australia [by fencing water troughs fed from
tube wells (16)]. Second, in the event of invasion of a large region by a new disease, it might be
possible to concentrate management resources not on the major growing areas but instead on areas
that function as connections between more important production zones. This is, of course, only
possible where the pathogen does not have long-distance dispersal mechanisms or where long-
distance dispersal mechanisms occur very occasionally. If it does, Minor & Gardner (38) suggest the
best balance of resources is to concentrate on the largest patches. Again, large-scale cooperative
decision-making methods are needed. Network theory can be instrumental in improving the
dissemination of these innovative approaches to large-scale crop disease management.

Trade in plants and plant products across the world and within countries has grown enor-
mously in the past few decades. A full description of what is occurring is difficult to obtain because
commercial confidentiality limits the statistics that can be collected and published. Furthermore,
the administrative regions in which data are collected are frequently inappropriate from an epi-
demiological point of view—a province in some jurisdictions may be larger than an entire country
in others. However, aggregated statistics are widely available and provide useful information
(Figure 5) (15). In plant biosecurity, the concept of pathway analysis (10) has now become part
of the mainstream, thereby enabling the identification of high-risk commodities (e.g., firewood,
plants for planting, seed) common to many different pests and pathogens.

Recently, Brockmann & Helbing (5) introduced a powerful representation of the airline pas-
senger network as an ordinary continuous space with distances between nodes set inversely by a
carefully chosen measure of passenger numbers. Human disease epidemics then spread on this
equivalent space as a simple wave of advance; by mapping a developing outbreak onto maps of this
space centered on different origins, they were able to identify the origin of several epidemics from
single time data on prevalence. The method is elegant and could be applied to trade networks if
trade is the dominant method of dispersal of a pathogen; it is less obvious how it could be applied
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Figure 5
Partial representation of 2012 trade flows in potted plants to ( yellow) and from ( green) the European Union,
in thousands of metric tons (15). As is typical of trade flows in particular products, the in-links and out-links
are almost entirely different; this provides particularly effective shortcutting for pathogen movement in some
directions but slows spread in others.

where long-distance transport is stochastic, as in the case of wind-blown pathogens (7). On much
longer time-scales and whether flow is predictable or sporadic and stochastic, the historical pattern
of spread of organisms over a host network can now often be inferred from phylogenetic data (1);
in this case, it is not obvious that a distance mapping turning the spread into a regular wave could
be found that was independent of the actual spread pattern.

A generalized network analysis (12, 27, 39) suggests, broadly, that it would be sensible to place
quarantine efforts on hubs or on connections between major hubs. However, wherever effort
is placed, a disproportionate increase in quarantine effort is needed to keep the rate of flow of
pathogens across trade links constant as the trade through links increases. For example, suppose
we are currently able to control the flow of pathogens so that one incursion per year occurs by
an inspection regime that detects 80% of contaminated shipments, and 100 shipments are made
annually; that is, one in 20 contaminated shipments causes an incursion of disease. If trade increases
by a factor of 10, we need to detect 98% of contaminated shipments to keep the incursion rate
constant. In the face of a tenfold increase in volume, it is likely to be hard to achieve such an
increase in inspection efficiency. Switching from a random sampling strategy, where this is used,
to a strategy focusing on links to and from hubs would increase efficiency, but there remains a
daunting practical problem that does not seem to be of high political priority.

Use of a network may improve our ability to describe patterns of spread of disease, but substan-
tial idealizations remain necessary. This is both because data are not perfect and rarely designed
for the purpose, and because computer power remains limited. As with landscape descriptions of
pathogen spread, problems of scale are severe. Do we attempt to simulate every plant? If not, how
big should a population be to be counted, and how should it be defined? If a grid of occupied cells
is used, how big should they be? It would help if there was a single structure, but real landscapes,
although not fractal (similar regardless of the scale at which they are examined), are structured on
many scales, and it can be awkward and specific to a particular problem to keep detail in the right
places. Brooks (6) showed a hierarchical pattern in the Silene-Microbotryum pathosystem, but the
range of scales investigated (1–1,000 m) was quite narrow. Harwood et al. (23) used a dual structure
to model P. ramorum spread in both the natural landscape and the horticultural nursery trade,
with an explicit network connecting geographically located trading centers of various kinds, and a
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geographic grid with distance-based connections between grid cells implicit in the grid structure
rather than listed in an explicit network. Feedback between the two components was important,
and occasional long-distance dispersal within the natural landscape by wind, soil, etc. was respon-
sible for epidemic development if horticultural control was effective. This parallels the result of
Balcan et al. (2) who showed, reasonably enough, that air travel was largely responsible for global
spread of influenza but that local commuting patterns controlled local intensification; removing
local commuting had little effect on spread over the globe by transport of infection to the vicinity of
new airports. The problem of working on multiple scales occurs throughout the literature on epi-
demiology of networks. Machens et al. (33) studied infection patterns in an extremely detailed set
of data on contacts in a hospital and regrained the data without much loss by working with classes
of individuals rather than the raw data. Although this is an interesting study, it does not really
tackle the problems posed in systems containing millions of data cells and geographic scales span-
ning three to five orders of magnitude that are relevant to the spread of plant disease. However, it
does seem that the computer power to deal with the problem is no longer an insuperable obstacle.

In a more general model of the horticultural industry, Pautasso et al. (51) found that structural
changes directly linking producers and retailers, thereby reducing the numbers of wholesalers,
would render the system more resistant to spread of disease. This is an interesting observation given
that the internet renders it more practical to directly connect producers and retailers, although it
also provides unprecedented opportunities for hubs such as Amazon and Wal-Mart. Trade and
travel networks tend to be more efficient as hubs emerge, as does the movement of pathogens.
Because epidemic final size in a directed trade network is well correlated with the number of
outgoing links of the node first infected, producers selling to many wholesalers can also represent
a high risk (50). This allows a prioritization of biosecurity effort toward the riskiest areas.

The introduction of economics explicitly into management strategies highlights differences
between animal and plant systems. Kleczkowski et al. (30), following Dybiec et al. (13), analyzed
three strategies for managing individuals in a human, animal, or plant epidemic that spread on a
spatial lattice or a lattice with some long-distance links added so as to give it small-world proper-
ties; they explicitly treated the bacterial disease citrus canker (caused by Xanthomonas axonopodis).
Epidemiological details specific to certain diseases determine whether it is economically more
effective to eradicate infected individuals and those individuals most likely to be cryptically in-
fected in the local area to allow the epidemic to run to equilibrium, or to apply some treatment
to all individuals. A small-world structure only rendered local treatment ineffective if the density
of long-distance links was high; otherwise, it was simply necessary to undertake more rigorous
eradication of latently infected hosts.

OVERVIEW

Possibly the greatest impact of network thinking on plant disease epidemiology lies in focusing
attention on the whole range of scales at which management action might be taken and on bringing
trade and long-distance movement inside system boundaries. It is also clear that understanding
and managing the consequences of long-distance trade and travel are crucial to future plant health,
and this can only be done by merging a network-based approach with established plant epidemic
models. With airborne pathogens, long-distance movement by wind already made traditional
descriptions in terms of waves of advance a very partial description of pathogen populations; for
soilborne pathogens, the addition of human trade pathways creates an unprecedented situation.
Much work has focused on calculating invasion thresholds, but in many systems exclusion of
disease is an unrealistic goal. Policy and practical advice leading to the lowest and most stable
levels of endemicity are needed.
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SUMMARY POINTS

1. Models of plant pathosystems as networks are very flexible and make it easy to include
epidemiological features within the model that would otherwise be outside the system
boundary.

2. The nature of pathogen invasion and persistence depends profoundly on the network
structure within which hosts are linked.

3. Plant trade and human travel networks have properties that allow rapid global invasion
of plant populations by pathogens and the persistence of less-infective pathogens than
would otherwise be the case.

4. Effective biosecurity and quarantine should be adapted to the pathways present in the
trade network being regulated.

5. We lack good data on many aspects of network structure for most pathosystems.

6. In many systems, exclusion of disease is an unrealistic goal. Properties of networks that
minimize damage due to persistent pathogens deserve attention.

FUTURE ISSUES

1. Climate change will alter host susceptibility and distribution, environmental suitability
for diverse pathogens, and network contact structures. Can network theory offer guidance
as to how to prepare for these changes?

2. What insights can be gained by explicitly modeling changes, for example, in commercial
trade patterns or agricultural structure, in the linkage pattern of a network over time?

3. Most trade flow and disease incidence data are collected according to political bound-
aries, which correspond to jurisdictions but not to natural biological units. How can we
reconcile the need for biologically relevant data with arbitrarily sized and boundaried
political units?

4. Vaccination or isolation and cure are effective ways to eliminate some human diseases
but are often inappropriate for plant disease. A focus on threshold infectivity is therefore
not always suitable. What can network theory say about the best ways to limit endemic
disease levels and minimize fluctuations in disease levels?

5. How can we organize and lobby for politically acceptable changes in agricultural land-
scape linkages and trade?

6. What practical interventions best reach a balance between avoiding host fragmentation
and permitting pathogen flow in a fragmented landscape?

7. Real pathosystem networks may have millions of nodes and more connections. Modern
computing power can probably handle this, but how do we best organize research in
pathology to fund, build, and study these models?

8. Is there a reliable way to know when we have identified the links between host individuals
or populations so that we are working with a correctly identified network?
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