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Abstract

Big data and data science are transforming the world in ways that spawn new
concerns for social scientists, such as the impacts of the internet on citizens
and the media, the repercussions of smart cities, the possibilities of cyber-
warfare and cyber-terrorism, the implications of precision medicine, and
the consequences of artificial intelligence and automation. Along with these
changes in society, powerful new data science methods support research us-
ing administrative, internet, textual, and sensor-audio-video data. Burgeon-
ing data and innovative methods facilitate answering previously hard-to-
tackle questions about society by offering new ways to form concepts from
data, to do descriptive inference, to make causal inferences, and to gener-
ate predictions. They also pose challenges as social scientists must grasp the
meaning of concepts and predictions generated by convoluted algorithms,
weigh the relative value of prediction versus causal inference, and cope with
ethical challenges as their methods, such as algorithms for mobilizing voters
or determining bail, are adopted by policy makers.
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BIG DATA AND DATA SCIENCE

“Big data and data science are being used as buzzwords and are composites of many concepts,”
says the US National Institute of Standards and Technology (NIST) in a 2015 “framework” re-
port on “big data” (NIST 2015, p. 2). The phrase “big data” appears frequently in the press and
in academic journals, and “data science” programs have sprouted in academia over the last five
years. On March 29, 2012, theWhite House Office of Science and Technology Policy announced
the “Big Data Research and Development Initiative” (Kalil 2012) that builds upon federal ini-
tiatives “ranging from computer architecture and networking technologies to algorithms, data
management, artificial intelligence, machine learning, and development and deployment of ad-
vanced cyberinfrastructure” (NITRD 2016, p. 6). “Big data” appeared about 560 times per year in
JSTOR from 2014 through 2017 even though it wasmentioned less than once a year in the century
before 2000 and only an average of about eight times a year between 2001 and 2010. In the last
five years, at least 17 Data Science programs have started at major American research universities
(http://msdse.org/environments/), and the internet is replete with advertisements for data sci-
ence books and courses, often with the come-on of “Become a Data Scientist.” The phrases have
certainly caught on, but they mean different things to different people, and some even doubt that
they identify something very new or useful (e.g., boyd & Crawford 2012, Donoho 2017, Smith
2018).

Despite the imperfection of these terms and the hyperbole that often surrounds them, they
point to real changes that are important for political science. Big data, data science, and the re-
lated ideas of artificial intelligence, cyberinfrastructure, and machine learning contribute to the
following developments and trends discussed in this article:

� Societal and political change from big data and data science. The volume, velocity, variety, and
veracity of data being generated by and available to governments, armies, businesses, non-
profits, and people have combined with the enormous increases in computing power and
improvements in data science methods to change society in fundamental ways. Big data
and data science are creating new phenomena and raising basic questions about the control
and manipulation of people and populations, the future of privacy, the veracity of informa-
tion, the future of work, and many other topics that matter for political scientists.

� Increasing amounts of data available to all scientists, including political scientists. All the sciences
are being affected by these changes.TheThirtyMeter Telescope coming online in 2022 will
generate 90 terabytes every night; genomic data are doubling in quantity every nine months
and are currently being produced at approximately 10 terabytes per day; the Large Hadron
Collider at CERN generates 140 terabytes per day. The World Wide Web produces about
1,500,000 terabytes every day, and this flow of data offers social scientists a chance to study
the “sinews of society” (Weil 2012) and the “nerves of government” (Deutsch 1963) in a
way that could not be done in the past. Now political scientists can observe and analyze
(sometimes in real time) the information that people choose to consume, the information
produced by political actors, the environment in which they live, and many other aspects of
people’s lives.

� New ways political scientists organize their work.With this onslaught of data, political scientists
can rethink how they do political science by becoming conversant with new technologies
that facilitate accessing, managing, cleaning, analyzing, and archiving data.

� New kinds of questions asked by political scientists. Political scientists must ask what they are
trying to accomplish with concept formation, description, causal inference, prediction, and
projection into the future. In the process, newmethods and insights will be developed about
political behavior, and new designs will be put forth for political institutions.
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� Dealing with ethical issues regarding political science research. Finally, political scientists must
think about complicated ethical issues regarding access, use, and broadcasting of informa-
tion, and the possible misuse of their models and results.

Before considering these five changes and their implications for political science, I describe the
exponential growth in data and computing power that has led to the prominence of so-called big
data and data science, followed by definitions of these untidy phrases.

INCREASING VOLUME, VELOCITY, AND VARIETY OF BIG DATA

Social scientists must come to grips with the current dramatic transformations in the communi-
cation of information, which parallel the striking changes in transportation in the nineteenth cen-
tury. In 1816, using horse-driven stagecoaches, mule-driven canal boats, or sailing packets, a trip
between Philadelphia and Quebec took more than four days. By 1860, with the advent of steam-
driven trains and steamboats, the time and cost for travel dropped by over two-thirds, and the same
trip took just over one day (estimated from Taylor 1951, p. 141). These changes created new trad-
ing networks, new opportunities for migration, new kinds of cities with commuter suburbs, and
new understandings of the world, with enormous implications for politics, economics, and society.

Changes every 20 years in information technologies punctuated the history of the late
nineteenth, twentieth, and early twenty-first centuries: telephones (1870–1890s), phonographs
(1870–1890s), cinema (1890–1920s), radio (1900–1920s), television (1940–1950s), mainframe
computers (1940–1950s), personal computers (1970–1980s), the internet and World Wide Web
(1980–2000s), cell phones (1980–2000s), and smart phones (2000s–present). The most fundamen-
tal innovation came with the move from analog devices to digital ones, starting in the 1950s and
proceeding dramatically in the 1990s and thereafter. These changes brought (a) extensive digital
datafication, in which myriad events are now digitally recorded; (b) widespread connectedness, in
which events and people are identified so that they can be linked up with one another; (c) perva-
sive networking, such that people are embedded in a community of interacting users who become
nodes in larger networks; and (d) ubiquitous computer authoring, where computers create new
information that becomes part of the social system and its culture.

Political scientists led the way in studying these changes. Harold Lasswell and Karl Deutsch
were early students of communications and their impacts on societies. In 1983, MIT political sci-
entist Ithiel de sola Pool looked at the production of words in the American mass media (e.g.,
radio, television, records, movies, newspapers, books) and point-to-point media (telephone, first-
class mail, telegrams, facsimile, and data communication) from 1960 to 1977. Pool found that
words in these media doubled every eight years, growing at about 9% per year. He also found
that “print media are becoming increasingly expensive per word delivered while electronic media
are becoming cheaper,” so that “growth in both mass and point-to-point media has been greatest
in the electronic ones.” Furthermore, “although the largest flow of words in modern society is
through the mass media, the rate of growth is now fastest in media that provide information to in-
dividuals, that is, point-to-point media.” Finally, “the words actually attended to from those media
grew at just 2.9% per year” so that “each item of information produced faces a more competitive
market and a smaller audience on average” (Pool 1983, p. 609). Pool predicted much of what we
know about modern communications: They are growing fast, they are increasingly electronic and
point-to-point, and people experience information overload and fragmented information flows.
Perhaps most presciently, Pool (1983, p. 611) also said, “Computer networking is for the first time
bringing the costs of a point-to-point medium, data communication, down to the range of costs
characteristic of mass media.”
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Subsequent studies by political scientists and others (Lyman & Varian 2003, Bohn & Short
2012) focused on the volume or stocks of information (e.g., the number of books in a bookstore)
as well as on the flows or velocity (the daily sales of books) and the variety of information (sub-
jects of books). They also measured information in digital bytes instead of words so that the mea-
sures reflect the proliferation of images, which communicate many more bytes per second than do
words through text or speech (Bohn & Short 2012, p. 986). Hilbert & López (2011, p. 63, table 1)
found that the world’s storage capacity in bytes per capita doubled every 40 months between 1986
and 2007. The bulk of the world’s flow of communications was still in broadcast communications,
which grew at the rate of 6% per year per capita, but (point-to-point) telecommunications grew at
the rate of 28% and could conceivably exceed broadcast communications within 10–15 years. Fi-
nally, they computed a new quantity—the growth in the world’s computational power measured in
millions of instructions per second (MIPS)—and they found that human-guided general-purpose
computation grew at an impressive compound annual rate of 58% per capita between 1986 and
2007. Embedded applications-specific computation grew even faster, at 83%.

This research identifies four notable trends, briefly mentioned above, that have produced the
big-data revolution: extensive digital datafication, widespread connectedness, networking, and
computer authoring. First, there is a tsunami of data about societal events, and digital communi-
cations are overtaking analog. This extensive digital datafication (Cukier & Mayer-Schoenberger
2013, p. 29) creates data in a format that can be readily stored and processed by computers.
“Recording” or “digitalization” might be used instead of the ugly neologism “datafication,” but
it seems too passive for processes that are transmogrifying human interactions into data. Even
though some of these data are relatively unstructured (text, audio, networks, or images), data sci-
entists are figuring out ways to analyze them. Second, there is widespread connectedness because
point-to-point telecommunications can be, in principle, more easily tracked than broadcasting.
For example, whereas broadcasters traditionally required elaborate survey operations (such as
Nielson’s media-use diaries) to track their audience, Netflix has immediate data on the down-
load of its movies. More generally, we can now record and connect data on individual postings,
purchases, police encounters, and even perambulations.Datafication and connectedness mean that
once-ephemeral events can now be identified and studied.

A third feature of the changing information environment, networking, is especially important
for social scientists. Whereas once communications were classified as either person-to-person
(e.g., conversation, letters, or telephone) or mass communications from one source to many peo-
ple (e.g., books, newspapers, cinema, radio, or television), modern communications involve me-
diated social networks that combine features of both modes (Neumann 2016, Schroeder 2018).
Twitter involves individual communications sent to many followers using hashtags that define
self-mediated areas of concern. Facebook involves individuals with customized profiles who have
networks of “friends” and who have affiliations with common-interest user groups that share infor-
mation. Google involves a query by an individual who is provided with a list of relevant websites.
Amazon involves a search for a particular product that results in suggestions about other relevant
products that can be bought online. In all these media, knowledge about people’s characteristics
and their search behaviors is used to suggest and sometimes impose particular actions or relation-
ships. The implications of these new modes of communication are not clear, but they probably
operate differently in the three important spheres of politics, markets, and culture (Schroeder
2018). They may also have important impacts such as increasing the chance for political polariza-
tion through the creation of networks that are closed to dissenting opinions (Neumann 2016).

Finally, whereas the communication of information traditionally involved sending messages in
the most verisimilar fashion possible even when the message was transformed along the way (e.g.,
from voice into electrical signals in a telephone), an increasing fraction of information is partly, if
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not entirely, computer authored. Computers use programs to produce new outputs that combine
inputs in novel ways: A Google search takes a request and delivers plausible “answers” to that
search; a computer game produces a fantasy virtual environment for entertainment; a Computer
Automated Design program produces a design that meets certain specifications; and so forth. Na-
ture and humans no longer have a monopoly on authoring.We now live in an era when computers
can author, publish, and supply new forms of information. Another job of social science is to im-
prove and understand these processes.

DEFINITIONS OF BIG DATA AND DATA SCIENCE

The growth of data and the creation of large databases in business, government, daily life, and sci-
entific research launchedmany efforts to understand and utilize data.Data mining, knowledge dis-
covery (Maimon&Roach 2005), and business intelligence and analytics (Chen et al. 2012) became
popular terms in business describing statistical and logical rule-based efforts to extract knowledge
from large databases. Within engineering, a 70-year tradition continues of building computers
and robots with artificial intelligence (Russell & Norvig 2009) that can perform human-like tasks
such as playing chess or driving cars. Some of the methods developed by artificial intelligence re-
searchers have been combined with traditional methods of statistics to produce methods for pat-
tern recognition (Ripley 1995), machine learning (Bishop 2011), and statistical learning (Hastie
et al. 2016). During the first decade of the twenty-first century, the need for better ways to pro-
cess and use data, especially in the sciences, was discussed under the rubric of cyberinfrastructure
(Atkins et al. 2003, Berman & Brady 2005), but more recently big data and data science have
become popular phrases.

Big Data

For those of us who remember when computer memories were measured in kilobytes instead of
terabytes (a factor of a billion more), “big data” seems like a moving target, but the term has arisen
despite the advances in computer power because data seem to be growing faster than our ability
to process them. The total volume in bytes, the variety (text, images, audio, video, sensor, social
media, and other forms), and the daily velocity (Laney 2001) of data are growing even faster than
computing power. The large volume leads to problems of storing and managing data. The growth
in variety adds the difficulties of translating data from one form to another, and the growth in
velocity leads to the need to edit data on the run and to choose what is important. More recently
a fourth concern, the veracity of data, adds another layer of complexity on top of volume, variety,
and velocity.

Size, complexity, and technological challenges provide one definition of big data (National Re-
search Council 2013, Ward & Barker 2013), but they do not seem a sufficient basis for heralding
a sea-change in our data environment, since the race between data set size and computer capabil-
ities goes back to the advent of computing. The National Institute of Standards and Technology
has more usefully proposed that “fundamentally, the Big Data paradigm is a shift in data sys-
tem architectures from monolithic systems with vertical scaling (i.e., adding more power, such as
faster processors or disks, to existing machines) into a parallelized, ‘horizontally scaled’, system
(i.e., adding more machines to the available collection in order to deal with volume, variety, and
velocity) that uses a loosely coupled set of resources in parallel” (NIST 2015, p. 5). But the statisti-
cian David Donoho (2017, p. 747) objects that “the new skills attracting so much media attention
are not skills for better solving the real problems of inference from data; they are coping skills
for dealing with organizational artifacts of large-scale cluster computing.” We also do not know
whether this new architecture is permanent or transient.
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Beyond the sheer amount of data, the truly distinguishing features of the big-data revolution
are the new technologies for recording, connecting, networking, and creating information.Human
interactions through phone calls, email, texts, tweets, social media posts, and other technological
methods are now digitally recorded, time- and location-stamped, and attributable to nodes in net-
works in ways that go far beyond themuchmore ephemeral media of the past.Many business, gov-
ernmental, social, and scientific tasks now have digital trails, such as Fed-Ex tracking services,Web
searches and purchases, parking meter payments, automobile trips, tax payments, photographs of
social gatherings, weather and environmental measurements, digital images frommicroscopes and
telescopes, and much more.When these are combined with the facts that theWorldWideWeb is
an excellent site for social networks and accessing information and that computers can now author
information and interact with us—perhaps even producing artificial intelligence and autonomous
robot-like entities and virtual realities—the impression is not merely of big data but of immersive
data that surround us in our daily lives. The “decentralization of data” identified by NIST may
also be more than just a set of techniques for dealing with large computing problems, but the
future shape of computing and the internet is still not clear. Consequently, the real impact of the
big-data revolution is not so much the amount of data as a change in our cognitive environment
(Lugmayr et al. 2016,Neumann 2016, Schroeder 2018) that requires new perspectives to deal with
datafication, connectedness, networking, and computer authoring. These phenomena stem from
the invention of new technologies including innovative methods in data science.

Data Science

Big data’s companion idea, data science, relies less on the scale of the data than on a definition of a
way to discover new knowledge in an age when data have proliferated and cry out for analysis. In
2001, the statisticianWilliam S.Cleveland put forth a plan to “enlarge the major areas of technical
work in the field of statistics” by providing more resources for “computing with data” (Cleveland
2001, pp. 21, 22) and to call the new field “data science.” In an address to the Computer Science
and Telecommunications Board of the National Research Council in 2007, computer scientist Jim
Gray advocated for “data-driven science” as a new scientific paradigm that uses large collections
of data to make scientific discoveries. Gray (2009, p. xxv) proposed that there was a “need for tools
to help scientists capture their data, curate it, and then visualize it,” and that the goal was to “unify
all the scientific data with all the literature to create a world in which the data and the literature
interoperate with each other.”

Starting from these ideas, NIST (2015, p. 7) describes data science as “the extraction of ac-
tionable knowledge directly from data through a process of discovery, or hypothesis formulation
and hypothesis testing.” One well-known Venn diagram (Conway 2013) places data science at
the intersection of three areas: computer programming skills, mathematics and statistics knowl-
edge, and substantive expertise in a field of research. The diagram includes machine learning as
an important aspect of data science because machine learning deals directly with data and dis-
covers patterns within it. No doubt the surprising success of machine learning (especially deep
learning) in making predictions is one reason for the popularity of data science, but we do not
know why deep learning works so well (Knight 2017). This raises a question confronted later in
this article: How much do we have to understand about the model’s underlying predictions to
feel comfortable with a method? The question reflects long-standing concerns with causality ver-
sus correlation, experimental versus observational data, structural equation models versus reduced
forms, and explanation versus prediction.

But these characterizations of data science are not entirely new either. In a famous article in
1962, the statistician John Tukey averred that perhaps he was not a statistician because “I have
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Table 1 The seven activities of data sciencea

Activities Examples
Data gathering, preparation, and
exploration

Survey data, experimental data, genomic data, textual data, administrative data, image data,
web data, and sensor data

Data cleaning and exploratory data analysis methods for checking on outliers and data
quality

Data representation and
transformation

Relational and nonrelational databases
Networks and graphs
Other mathematical structures for data

Computing with data R and Python
Programming packages, text manipulation languages
Cluster and cloud computing
Reproducible workflows

Data modeling Determining or hypothesizing data generating probability functions, structural and
predictive modeling

Data visualization and presentation Types of visualizations and graphs
Rules for labeling and presenting data
Psychological impacts of various displays

Data archiving, indexing, and
search and data governance

Standards for open data and reproducibility
Determining rules for access and privacy protection where necessary

Science about data science How people do data science
Impacts of data science and big data on society

aThe activities are quoted from Donoho (2017, p. 755) except for “Data archiving, indexing, and search and data governance,” which is my addition. The
examples are my own.

come to feel that my central interest is in data analysis,which I take to include, among other things:
procedures for analyzing data, techniques for interpreting the results of such procedures, ways of
planning the gathering of data to make its analysis easier, more precise or more accurate, and all
the machinery and results of (mathematical) statistics which apply to analyzing data” (Tukey 1962,
p. 2). Tukey’s impact on statistics has been immense (Statistical Science 2003), and his concept of
data analysis covers much of the same ground as data science.

Statistician David Donoho (2017, p. 748) argues that “today’s popular media tropes about data
science do not withstand even basic scrutiny,” but building upon Tukey’s work “there is a solid
case for some entity called ‘data science’ to be created….” Donoho (2017, p. 755) proposes that
data science should encompass six activities to which I’ve added one more in Table 1, where I
have also added examples.

Judging from Table 1, data science borrows methods and techniques that go beyond the tra-
ditional core of statistics, which is largely encompassed in item 4, “data modeling.” Techniques of
data gathering and preparation are typically taught in subject matter disciplines even though statis-
tics started as an endeavor to collect data on the state and its people through censuses and surveys.
Computer science and other academic departments deal with data representation and transforma-
tion and with computation. Data visualization and presentation often involve media laboratories
and psychology departments. Data archiving, indexing, and availability form the core of work in
schools of library science and their modern incarnations as schools of information. In one subject
matter area, bioinformatics,more than 100 colleges and universities now offer programs that focus
on these tasks, and there are a few digital humanities, social sciences, and environmental science
programs. But at the moment it seems that the most popular way to move forward in this area is
to create “data science” programs, including computer science, information, and statistics, which
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allow for relationships with subject matter disciplines. The unsolved problem is how the applied
data science being done in these disciplines can be incorporated into data science programs. For
example, in addition to benefiting from using data science and big data, the social sciences can pro-
vide fundamental help in understanding the social construction and meaning of data, the causal
impact of new information technologies, the ethical issues of privacy and data ownership, and the
best ways for social institutions to use cyberinfrastructure (Berman & Brady 2005). Data science
must encompass these issues.

However universities organize themselves to deal with these seven tasks, the following seems
clear to me. The explosion in the number of methods and techniques for undertaking the tasks
means that universities need to bring together the people working on them to learn from one
another and to teach the next generation of students and scholars how to use them. There must
also be some way to help scholars, either through collaboration with other scholars or by having
specialists akin to collections specialists in libraries or museums, to use the many kinds of data,
software, and techniques that are now available. Gone are the days when someone could learn, as
I did, about a few kinds of data collection (e.g., surveys, content analysis, and administrative data),
some FORTRAN and subroutine libraries such as NAG and IMSL, a bit about dBase and SQL,
some statistics through econometrics and psychometrics, some statistics packages such as BMDP-
SPSS-SAS-STATA-GAUSS, a computational program such as MATLAB, and a few other things
and be at the forefront of data science in their discipline. There is just too much to be learned.

Real Phenomena, Inadequate Language

Many of the developments related to big data and data science are not new, but they have achieved
a scale and level of impact that require new ways of describing them. The right language is hard
to find.

The nineteenth century’s transportation revolution was not just about the steam engine—it
also involved the discovery of new forms of energy (oil and electricity); the invention of new kinds
of motors (internal combustion and electrical); the creation of networks composed of rails, roads,
and rivers; and even the development of new social norms such as standard time zones. Similarly,
the information revolution is more than just computers or any other single thing. It also involves
sensors, databases, programming languages, artificial intelligence, telecommunications, machine
learning, social media, the internet, and many other inventions. Neither “big data” nor “data sci-
ence” nor any other labels encompass all these innovations. The term cyberinfrastructure might
have been useful, but it has not caught on. One leading data science scholar ( Jordan 2018) argues
for the use of the term “intelligent infrastructure,” which is broader than “artificial intelligence,”
but it also has its limitations. We are left with real phenomena but inadequate language.

SOCIETAL AND POLITICAL CHANGE FROM BIG DATA
AND DATA SCIENCE

Many authors have provided overviews of areas affected by big data (Chen et al. 2012, Cukier &
Mayer-Schoenberger 2013, Mayer-Schönberger & Cukier 2014, Mosco 2014, Evans 2018). This
article cannot provide an exhaustive review of the possible societal impacts of big data and data
science, but I list a few prominent examples to show that they deserve more scrutiny by political
scientists. I have chosen cyberwarfare and homeland security, smart cities, medicine, the media,
and robotics.

Several recent books propose that cyberwarfare exists and that it threatens international secu-
rity (e.g., Clarke & Knake 2011, Kaplan 2017), but skeptics (Rid 2012, Libicki 2014) argue that
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while cyber disruptionsmay be a problem, they do not constitute classical warfare like the Japanese
attack on Pearl Harbor, which involved a purposeful and publicly claimed act of violence for polit-
ical advantage. Some leading examples of cyberwarfare—such as the Stuxnet virus’s introduction
into Iranian centrifuges, which destroyed an essential part of Iran’s nuclear fuels enrichment pro-
gram, or the massive denial-of-service attack (presumably by Russian hackers) on Estonia in April
2007—were almost surely purposeful, but at most they caused lost productivity and perhaps prop-
erty damage. Most importantly, no state claimed responsibility in order to achieve direct political
advantage. Although the case for cyberwarfare may be weak, the Web has certainly been used for
“sabotage, espionage, and subversion” (Rid 2012, p. 5), as recent events involving Russia and the
2016 American election make clear (Sanger 2018, Jamieson 2018). Moreover, the American mil-
itary is collecting and processing a flood of sensor and digital information (Porche et al. 2014),
which could change the face of conflict (Dunlap 2014). Obviously, these developments get at the
heart of political science studies of international relations and security.

“Smart Cities” is a popular book title with subtitles such as “Big Data, Civic Hackers, and the
Quest for a New Utopia,” “A Spatialised Intelligence” and “The Internet of Things, People, and
Systems” (Townsend 2013, Picon 2015,Dustdar et al. 2017).Three streams of big-data work come
together in this area. First, there are large, digitized administrative data sets on people and their
relationship to schools, social welfare agencies (Brady et al. 2001), medical care, and police, and
there are similar data sets on physical structures and their relationship to streets, services, land use,
and zoning. Second, the reduced costs of sensors, wireless networks, and video cameras, combined
with the ability to connect them with an “internet of things,” make it possible to monitor and
sometimes remotely control air pollution, traffic, parking, usage of electricity and water, utilities,
safety, police and firefighter deployments, andmany other aspects of a modern city.Third, internet
data such as Google Street View,Zillow,Airbnb, or Yelp can provide information about businesses,
real estate, and the physical condition of the city (Glaeser et al. 2018). These data can be linked by
geo-coding the location of each person’s house (or place of work), each structure or business, and
each sensor. Increasingly, we can go farther and link data through recognition of vehicles, faces, or
radio frequency identification tags, which makes it possible to track movements throughout the
city (Hashem et al. 2016).

Using these data, the city and its operations can be described, managed, and evaluated. Maps
of traffic, air pollution, or poverty can provide useful descriptions for those trying to understand
where to live, where to travel, or what to do. Conditions can be managed and improved in real
time by involving citizens in constant feedback on services, changing the timing of traffic lights,
deploying police to areas with disturbances, asking industries to “spare the air” by reducing some
activities, and so forth. Finally, evaluation results can indicate what is working and what is not so
that processes can be improved.

Because the decisions about what data are collected, how they are processed, and how they are
used all involve choices, often influenced by who has power and who does not, these systems are
inherently political.They can easily become technocratic, overly influenced by corporate interests,
and perhaps most alarmingly, the basis for the “panoptic” city—the urban counterpart of Jeremy
Bentham’s circular Panopticon, a prison in which all inmates were constantly visible to a centrally
located guard station (Kitchin 2014).

Precision medicine, according to a 2011 report by the National Research Council of the Na-
tional Academy of Sciences, is “the tailoring of medical treatment to the individual characteristics
of each patient” (National Research Council 2011, p. 125). To practice precision medicine, a
physician would combine information about the individual with medical knowledge about how
people vary in their response to illnesses and treatments (Dzau & Ginsburg 2016). Individual
information would come from electronic medical records and genomic data. The 2011 report
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suggested creating a new taxonomy of human disease based onmolecular biology that would serve
as the basis for classifying diseases and people’s reactions to them. To do this, an “information
commons” would be created that linked molecular data, medical histories, and health outcomes
(Beachy et al. 2015), and these data would be used to explore clinical associations (Hanauer
et al. 2009, Miller 2012). These data could be a great boon to medical researchers, but they raise
significant questions about privacy, ownership of data, and their relationship to issues such as race
in America (Hochschild & Sen 2015) that could become high-profile political issues.

Changes in the media from the rise of the internet are now manifestly important for politics,
but political scientists have lagged in their awareness of them. In 2002, in the first examination
of the mass media in the Annual Review of Political Science, Schudson (2002, p. 249) quite properly
takes political science to task because it “has never extended to the news media the lovingly de-
tailed attention it has lavished on legislatures, parties, presidents, and primeministers.” Yet he does
not even mention the internet or World Wide Web. He focuses on the relative merits of state-
versus commercial-controlled media, journalism as “the story of the interaction of reporters and
government officials” (Schudson 2002, p. 255), and the cultural norms that shape coverage of top-
ics such as homosexuality and crime. He concludes, “The news media have always been a more
important forum for communication among elites (and some elites more than others) than with
the general population” (Schudson 2002, p. 263), with never a hint of the anarchy of uncontrolled
news sources and direct leader–follower communications now bedeviling a world with Facebook,
Google, and Twitter.

Ten years later, Farrell’s (2012) Annual Review of Political Science article recognizes the potential
importance of the internet for exacerbating political polarization or facilitating the Arab Spring,
and he argues that the internet could sort citizens into homogeneous groups seeking information
to confirm their ideological biases, discourage preference falsification in authoritarian regimes by
making available a broader array of opinions, and overcome the costs of collective action by allow-
ing like-minded and politically intense people to find one another. Although Prior still concludes,
in his 2013 Annual Review of Political Science article titled “Media and Political Polarization,” that
“[i]nternet use shows few signs of ideological segregation” (Prior 2013, p. 122), he takes the in-
ternet seriously. And communications theorists such as Bennett & Segerberg (2012), Neumann
(2016), and Schroeder (2018) argue for developing new models to understand the new media on
the internet. Among other things, these theories must explain how people seek out and obtain
information, since this is such a big part of what people have been enabled to do on the internet.

These four examples illustrate the kinds of questions that political scientists might ask about
the impacts of big data and data science. In Seeing Like a State, Scott (1999) chronicled how states
have misused census and other information. What will it mean when societies, businesses, and
governments have access to large data sets about their populations that go far beyond a census?
Who will own these data?Who will define what data get collected and used?What happens when
news and information (e.g., blogs, cellphone videos) can be authored and disseminated without the
editing power of peer reviews, journalistic norms, and a concern for their context and veracity?
What new problems are created when information can be hacked and digital systems are vulnera-
ble to viruses? When medical diagnoses or city operations depend on algorithms that sometimes
fail? What biases will be baked into the algorithms? How can people be brought into the systems
at the right places to ensure their participation, their rights, and their welfare?

One final example is worth exploring, although it seems the work of science fiction. As robots
get better at sensing the world, as they learn the rudiments of pattern recognition if not full
cognition, as they become adept at speech recognition and talking, as they can communicate with
each other and with us through wireless networks and the cloud, and as they become embodied in
autonomous machines with their own lightweight power sources, to what degree do they acquire
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rights and responsibilities (Pratt 2015)? If robots replace people at their jobs, what is left for
people to do? And if a great deal of wealth is embodied in robots, who owns the robots and who
gets the return to their effort (Albus 1984)? Already some authors are proposing universal basic
incomes (Manjoo 2016) and guaranteed jobs (Tankersley 2018) to deal with the possibility of job
loss due to robots. What kinds of political problems does this raise, or was a 1962 article right to
conclude, “Artificial intelligence is neither a myth nor a threat to man” (Samuel 1962)?

INCREASING AMOUNTS OF DATA AVAILABLE TO ALL SCIENTISTS,
INCLUDING POLITICAL SCIENTISTS

In a 2015 report,NIST surveyed 51 cases of uses of big data involving government and commercial
operations, defense, health care and life sciences, social media, astronomy and physics, earth and
environmental science, and energy. Every area involved producing or analyzing many terabytes of
data and about one-third of them involved petabytes of data (NIST 2015, pp. 6–45, Appendix B)—
sometimes petabytes per year. Scientists are now generating data at a prodigious rate in research
involving every physical scale from the subatomic to the cosmic: analyzing the subatomic struc-
ture of matter in CERN’s Large Hadron Collider, investigating the atomic and chemical structure
of materials through intense X-ray and other light sources and through mathematical simulations
that start from basic physical principles, sequencing DNA and mapping proteins rapidly and com-
pletely, using real-time three-dimensional microscopy of cells at many different wavelengths to
understand their operations, scanning animal and human brains and bodies using functional mag-
netic resonance imaging (fMRI), monitoring the environmental conditions of cities and regions
using multiple methods (fixed sensors, radar, and satellite imaging), and undertaking telescopic
surveys of the solar system and the universe at multiple wavelengths and in real time. Some of
these data sets could be useful to political scientists, such as fMRI data for those studying political
psychology (Theodoridis & Nelson 2012) or satellite sensor data for those studying the impacts
of climate change on politics (Hsiang et al. 2013).

Social scientists have benefited from many new data sources as well. As of roughly 1980, po-
litical scientists had available a limited number of data sets, mostly about the United States but
also about other countries: Historical election statistics, usually by county but in a few cases by
precinct; surveys from the 1930s onwards; census data; Federal Election Commission (FEC) data
on political contributions; roll-call data from legislatures and the United Nations; data from the
Correlates of War Project, the World Handbook of Political and Social Indicators, and a few other
sources. In the past 30 years, the volume and variety of data have increased enormously beyond
these areas, especially thanks to administrative data, internet data, textual data, and sensor-audio-
video data.

Administrative Data

Before surveys, political scientists interested in voting used turnout and voting data aggregated
by precincts, counties, and states. Recently there has been a return to this kind of data, but often
disaggregated in the form of voter registration lists from administrative data. These lists do not
report election choices, but they are the official record of turnout and in some states they include
political party registration. Brady & McNulty (2011) geo-code the addresses and precinct loca-
tions of millions of registered voters in Los Angeles to take advantage of a natural experiment in
2003 where the number of precincts was reduced by two-thirds for the state-wide recall election.
They show that changes in polling place location alone had a significant impact on turnout (a few
percentage points) and that increased distance to polling place further decreased voting. Using
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voting records over time (from 1998 to 2012) and data on the residential addresses of 9/11 vic-
tims, Hersh (2013) shows that the families and neighbors of these victims voted at significantly
higher rates (a few percentage points) after the event than carefully constructed control groups,
and they changed their party identification toward the Republican party. Using voter registration
files for the city of Chicago, Enos (2016) examines the impact of perceived racial threat on voter
turnout by using a natural experiment in which public housing buildings with over 25,000 African
American residents were demolished. He categorizes each voter’s race using a Bayesian classifier
based on the voter’s name, location, and related census data. He finds that white voters’ turnout
decreased by 10 percentage points after the exit of their African American neighbors presumably
reduced their perceived sense of threat. Ansolabehere & Hersh (2012) use 50-state voter registra-
tion records from a commercial firm, Catalist, LLC, to match individuals interviewed in the 2008
Cooperative Congressional Election Survey to their voting records to determine the correlates of
vote misreporting. They describe methods for ensuring the quality of matches and the quality of
registration lists, and they find that the correlation between basic socioeconomic characteristics
and voting is lower for validated voters than for self-reported voters.

The role of ideology and money in politics has been a long-standing concern of political sci-
entists. Bonica (2013) starts with the classic FEC political-contributions data for the 1980–2010
congressional election cycles and develops a generalized item-response theory count model to es-
timate an ideal point model of the ideology of candidates and Political Action Committees that
contribute money. In order to obtain usable results, he restricts the sample “to candidates who
received money from 30 or more unique contributors and contributors that give to 30 or more
unique candidates” (Bonica 2013, p. 298). The technique provides estimates for first-time candi-
dates who have no roll-call records from which to estimate their political positions, and the author
shows that using his ideological estimates for candidates provides only “a negligible reduction in
predictive power of legislative voting behavior” (Bonica 2013, p. 308) compared to roll-call votes.
In other papers he connects these data with contributions by doctors (Bonica et al. 2014) and
lawyers (Bonica et al. 2016) by linking the contributions data set to listings of these professionals.
He describes a massive database that uses candidate names as a key to combine campaign con-
tribution data, legislative voting and bill sponsorship data, election data, and text “from bills and
amendments, floor debates, candidate websites, and social media” (Bonica 2016, p. 14). This in-
formation is combined to get candidate ideology scores, and it can be used to study the impact of
money in politics. In addition, Bonica (2016, p. 18) develops a three-stage process “for measuring
preferences and expressed priorities across issue dimensions that combines topic modeling, ideal
point estimation, and machine learning methods.” The topic model organizes the text into issue
categories by using automated statistical methods described in more detail below.

Using lobbying reports available under the LobbyingDisclosure Act of 1995,Kim (2017) iden-
tifies firms that lobby on trade policy, and he links this information, using the names of firms, with
databases such as Compustat and Orbis on the characteristics of firms. He adds to this all bills
in Congress that had been lobbied, and information about tariffs and trade (Kim 2017, p. 10). By
focusing on firms instead of industries, Kim shows that lobbying is firm-specific. In a related pa-
per, lobbying data are combined with sponsorship data on congressional bills to show that, unlike
electoral politics networks structured according to ideology, there are distinct “political communi-
ties in the lobbying network, which is organized according to industry interests and jurisdictional
committee memberships” (Kim & Kunisky 2018).

Recent controversies over police behavior have led to major efforts to collect data on police
stops (Pierson et al. 2017) and police use of force (Goff et al. 2016). Each study involves substantial
linking across jurisdictions with idiosyncratic formats and definitions of variables. Both conclude
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that there are substantial racial disparities even after controlling for many relevant features of
police encounters.

These examples illustrate several important features of studies using administrative data.
Large-scale administrative data sets on voting, lobbying, campaign contributions, trade, tax, wel-
fare, police reports, 311 calls, and many other areas often provide the (legally) definitive data on
these activities, but the data sets can contain errors (Luks & Brady 2003). Moreover, in order to
get a data set that represents different areas and that has enough cases for analysis, studies often
require extensive linking of more people, organizations, or events across jurisdictions. Extensive
linking often requires dealing with the problems of combining data with different formats and
variables.

These administrative data studies also benefit from intensive linking, in which more data about
individual people, organizations, or events are added, as in the work by Bonica and Kim. Brady
et al. (2001, p. 226) show how state governments have greatly increased the value of their social
program databases by linking across eight programmatic areas including Medicaid, foster care,
food stamps, welfare, and other areas. Even with this linking, however, these data often lack use-
ful ancillary information—unlike surveys, they do not automatically collect lists of socioeconomic
characteristics such as education, income, age, and so forth on people or financial and historical in-
formation on firms or organizations.Moreover, even when this information is collected, it may be
of low quality unless it is an essential part of the business purpose of the program (e.g., for welfare
programs, income data are reliable because they are part of the application process, but education
data are not). Intensive linking to other data sets can often expand their utility tremendously, but
these matches are often precarious given the complexity of names, places, and other identifying
information. Linkages using probabilistic matching techniques or geo-coding can help facilitate
this process, but they still involve elements of uncertainty and incompleteness.

Administrative databases are also often better at providing samples of people who do or en-
counter things than at portraying the complete universe of those who might have done things.
For example, data on police traffic stops tell us who was stopped but not who should have been
stopped. Campaign contribution data tell us who gave money, but we know only the value of the
numerator in the ratio of those who gave to those who could have given. One approach is to link
these data to population data, such as census data or motor vehicle license data, but these linkages
can present legal and practical problems (Brady et al. 2001), and they also may not give the best
denominator data; for example, in the police-stops example, we want the number of people in
each group who should have been stopped given their behavior, not the number of people in each
group who drive.

Internet Data

Using proprietary data on over six million Facebook users who had two or more “likes” for 1,223
official political pages representing political candidates, Bond & Messing (2015) estimate can-
didate and individual ideologies. Because the average number of likes is slightly over three, the
matrix of candidates by people is very sparse except for some rows (e.g., Barack Obama’s and Mitt
Romney’s), necessitating steps to adjust for different base frequencies for liking candidates. For
those candidates for whom there is an independent measure of ideology from Congress’s roll-call
data, the correlation between the two measures of ideology was 0.47 for Democrats and 0.42 for
Republicans (Bond & Messing 2015, p. 68). Similarly, with a data set of Twitter users from six
countries, Barberá (2015) identifies Twitter followers of three or more political actors and uses
ideal-point estimation methods to recover the ideologies of the politicians and the Twitter users.
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Employing various sources of baseline data for each group, he finds evidence that validates these
measures. He also finds evidence for political polarization among these Twitter users.

The Web makes it possible to follow events through time. Tinati et al. (2014) develop a tool
for following Twitter information flows and network formation over time, and they apply it to a
protest of university tuition fees in England in November 2011. They show how networks grow
through retweets and that a small number of people are key players. Gomez-Rodriguez et al.
(2012) show how information diffuses in 170 million blogs and news articles over a one-year
period by developing an algorithm to infer networks of influence and diffusion. They show that
the algorithm recovers the structure of simulated data, and it appears to work well with real data.
News topics and memes can also be tracked on the Web to characterize a news cycle. By tracking
1.6 million media sites with 90 million articles over three months in 2008 (August–October),
Leskovec et al. (2009) find that phrases come and go over 24 hours and that blogs pick up phrases
with an average lag of 2.5 hours. Two mechanisms explain much of the up-and-down dynamics:
imitation, in which memes persist because sources imitate other sources, and recency, in which
older memes are extinguished because new phrases are preferred.

Using Facebook data, Bond et al. (2012) study whether social networks can affect behavior.
They randomly assigned encouragements to vote and information about the person’s polling place
to millions of people on the day of the 2010 midterm election. The “social message group” of
60 million people were also shown up to six faces of their friends who had reported on Facebook
that they had voted that day. The “informational message group” of over 600,000 people received
only the encouragement to vote and information about their polling place. The “control group”
did not receive any message. Those in the social message group were two percentage points more
likely to say that they had voted than those in the informational message group, and other signif-
icant effects were found.

King et al. (2013) study the motivation of Chinese internet censorship by following the fate
of blog posts over time. By comparing the content of those that were censored versus those that
were not, they conclude that “the censorship program is aimed at curtailing collective action by
silencing comments that represent, reinforce, or spur social mobilization, regardless of content”
and that “posts with negative, even vitriolic, criticism of the state, its leaders, and its policies are
not more likely to be censored” (King et al. 2013, p. 326). The study is notable for its real-time
effort to locate blogs before they were censored (which typically occurred within one day) and its
use of automated content analysis methods to analyze the blogs.

To estimate how racial animus affected the vote for Barack Obama in 2008, Stephens-
Davidowitz (2014) calculates for media markets the fraction of Google searches that use a well-
known derogatory term for African Americans. He finds that racial animus cost Obama roughly
4%of the national popular vote.His paper provides numerous checks on the validity and reliability
of his measures.

In addition to sharing many of the same problems as administrative data, internet data are typ-
ically highly selective in terms of socioeconomic characteristics (especially by having more young
people, although older people are catching up), and they often depend on people’s involvement
with platforms such as Facebook, Twitter, or Google. Moreover, this involvement is enmeshed
with constant efforts by the companies running these platforms to encourage participation, which
can lead to subtle selection effects that may mislead the researcher (Lazer et al. 2014). Absence
of data is also a problem, as in the studies estimating ideology using Facebook and Twitter data.
The compensating merits are that internet data often provide fascinating network data that would
otherwise be unavailable; events can be studied as they unfold in real time; and hidden informa-
tion on behaviors (such as searches about culturally disapproved themes) can be revealed. Nagler
& Tucker (2015) discuss what can be learned from Twitter.
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Textual Data

Those of us who have put together teams of students to do content analysis of texts know how time
consuming and error prone the process can be. Automated methods promise greater efficiency,
increased replicability, and perhaps less error-prone coding.Textual data provides an element often
missing in our analysis of politics: the words of citizens and politicians. For example, political
scientists study the personal vote, in which citizens support politicians in exchange for government
money spent in their districts. But how do citizens know about these expenditures? Grimmer et al.
(2012) identify the missing ingredient, which is legislators’ statements to their constituents. By
analyzing all 170,000 US House of Representatives press releases issued between 2005 and 2010
and coding them into five categories that measure two kinds of credit-claiming and three kinds of
non-credit-claiming behavior, they find that constituents are more responsive to the total number
of messages they receive than the amount of in-district expenditure claimed. To analyze this large
corpus of material, they used a supervised learning algorithm (Hopkins &King 2010) that requires
a set of hand-coded documents that can be used to “train” the method.

Wilkerson & Casas (2017) and Grimmer & Stewart (2013) provide excellent overviews of the
profusion of content analysis methods developed in the last 15 years. Two other articles explore
how these methods can be used to study culture (Bail 2014) and to improve the practice of qualita-
tive research (Wiedemann 2013). The methods include the search for particular words or phrases
(e.g., Stephens-Davidowitz 2014, Leskovec et al. 2009); the determination of what fractions of
text fit into predetermined categories (e.g., King et al. 2013, Grimmer et al. 2012); the classifi-
cation of each text into predetermined categories using supervised learning; the classification of
text into unknown categories using unsupervised clustering methods; and the ideological scaling
of political texts such as party platforms (Laver et al. 2003).

These methods require careful use. Grimmer & Stewart (2013) advise, “all quantitative mod-
els of language are wrong—but some are useful” (p. 269), and “quantitative methods augment hu-
mans, not replace them” (p. 270), so “validate, validate, validate” (p. 271). In addition, the more the
methods are automated or unsupervised, the more they typically use complex statistical methods:
mixture models with many local minima, in which one cannot guarantee a globally correct solu-
tion; lasso or ridge regression, which strive for simplicity that might underfit the data; and models
with many parameters that often try to estimate values for each document with small amounts
of data. To perform these tasks, they often use estimation methods such as the expectation maxi-
mization (EM) algorithm or Bayesian Markov chain Monte Carlo (MCMC) that take a long time
to converge and can be tricky to use (see Roberts et al. 2014). Despite all these complexities, the
methods can accomplish tasks that could not be done with typical budgets and research teams.
Text reduction and analysis have progressed to a point where quantifying large bodies of text is
possible. Arguably, these methods improve on human coding if suitable precautions are taken to
check the results with human coders and to recognize the limitations of the analysis.

Sensor, Audio, Video, and Other Data

Hsiang et al. (2011) connect sensor data (from gauges and satellite observations) on temperature
and rainfall with information on conflict from the “Onset andDuration of Intrastate Conflict” data
set to study the impact of weather on civil conflicts. They use the El Niño/Southern Oscillation
(ENSO) in weather to identify their model, and they find that the probability of new civil conflicts
doubles during El Niño years. The supplementary materials describe the complexities of linking
geo-coded sensor data to the boundaries of individual countries over time.
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Jennifer Eberhardt and her colleagues use body camera data from stops by police officers in
Oakland, California, to uncover racial disparities in officer respect. Starting from human tran-
scriptions and coding of the audio portion of these data, they develop machine learning methods
for studying the degree of respect exhibited in the text of police utterances toward people they
have stopped. They note: “Future research could expand body camera analysis beyond text to in-
clude information from the audio such as speech intonation and emotional prosody, and video,
such as the citizen’s facial expressions and body movement, offering even more insight into how
interactions progress and can sometimes go awry” (Voigt et al. 2017, p. 6525).

These examples demonstrate the power of linking sensor, audio, video, and other kinds of data
to events, but they also reveal the substantial processing that must be done to use them correctly.
Moreover, they suggest that we still need to improve our ability to transform these data into usable
forms for our research given, for example, the complexities of facial expressions or body language
in a video and the modifiable areal unit problem in geography, which stems from the difficulty of
matching geo-coded point-based measures from sensors to different geographic entities such as
cities, counties, states, or nations.

NEW WAYS POLITICAL SCIENTISTS ORGANIZE THEIR WORK

New Courses

Political science professors must develop new courses and become conversant with the new tech-
nologies developed by data scientists.New courses should go in two directions.One course should
deal with the societal challenges of big data and what they mean for politics. Mergel (2016) has
developed a curriculum for schools of public affairs which contains some pertinent elements, in-
cluding sections on big data in politics, government, public health, and smart cities, but it does
not have a section on the media, and it does not directly focus on the political issues such as data
ownership and use, privacy, and loss of jobs that stem from big data.

A second course must teach students data science methods. A check of methods courses taught
in political science departments at major universities suggests that this is well under way. These
courses include programming in R or Python, an emphasis on resampling approaches to under-
standing statistics, an overview of the data sources described above, and careful discussions of
methods for making predictions and those for inferring causality. Moreover, at least one edited
book (Alvarez 2016) summarizes a good selection of relevant topics.

Neither of these courses deals with deeper theoretical issues such as how our epistemologi-
cal and ontological presuppositions might be affected by new methods, the new forms of con-
nectedness in society, and the rise of artificial intelligence. One should be properly skeptical of
such grand possibilities, but Rogers (2013), Mayer-Schönberger & Cukier (2014), Mosco (2014),
Boullier (2015), and Salganik (2017) provide some food for thought about what will happen when
we make “the world self-aware and self-describing” (Evans 2018, p. 141).

New Research Management Methods

A few political scientists working with Google, Facebook, or very large data sets might have to
learn about big-data architecture and the new decentralized methods of processing large sets of
data such as Hadoop, Hive, NoSQL, and Spark (Varian 2014, Oussous et al. 2018), but for most
it would be a waste of time. Instead, political scientists might better focus on new software for
data cleaning, data management, reproducible science, life-cycle management of data, and data
visualization. Here I briefly discuss data cleaning and reproducible science.
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A tweet (@BigDataBorat) parodies the common belief that data cleaning takes up most of the
time in research by saying “In Data Science, 80% of time spent prepare data, 20% of time spent
complain about need for prepare data.” Certainly data preparation is tedious and time-consuming
(Kandel et al. 2012).DataWrangler (Kandel et al. 2011) displays data in an interactive interface like
a spreadsheet and allows the researcher tomake changes to one line of the data that are reproduced
in all other lines of data based on the program’s inferences about the general transformations
that are desired. As the user interacts with the system, it improves its inferences and even makes
suggestions so that it helps the researcher make improvements. The system keeps track of what
has been done to the data so that the researcher canmake sure it has been successful. A free version
of it is available as Trifacta Wrangler. Another approach to cleaning data is the Tidyverse, which
is a free collection of R programs that can be used to create a tidy dataset (Wickham 2014).

Reproducible science aims to make it possible for a second investigator to “recreate the final
reported results of the project, including key quantitative findings, tables, and figures, given only
a set of files and written instructions” (Kitzes et al. 2017, p. 13). Kitzes et al. (2017) exemplify
reproducibility through 31 case studies in different scientific areas, including social science, with
a focus on data acquisition, data processing, and data analysis. Most of the studies use tools from
either Python (17 studies) or R (13) to create a reproducible workflow. Because these tools make it
easier to obtain and to recreate research results, because journals are increasingly requiring repro-
ducibility, and because the federal government has been moving toward requiring it for grantees,
learning these methods is very worthwhile.

NEW KINDS OF QUESTIONS ASKED BY POLITICAL SCIENTISTS

Where Does Data Science Come From?

Data sciencemethods primarily come from computer science, statistics, and library or information
sciences with some roots in the efforts of biologists tomodel the connections among neurons in the
human brain and the work of cognitive scientists (such as polymathic political scientist Herbert Si-
mon) to develop artificial intelligence. The blending of these streams produces confusion because
similar methods (e.g., neural nets and logistic regression) have been called by different names in
these disciplinary areas, and the use of names such as artificial intelligence or neural nets can lead
to the mistaken belief that these methods actually mimic the way the human brain works. In fact,
most of the methods can be straightforwardly translated into the language of statistics (Sarle 1994,
Warner & Misra 1996), and the connection with human intelligence is more metaphorical than
exact. Some of this confusion also comes from the fact that until recently computer scientists were
trying to solve pattern recognition problems and to advance predictive machine learning with the
fewest errors without much knowledge of or concern with statistical models, while statisticians
(especially econometricians and political methodologists) focused on unbiased or consistent esti-
mators of models and hypothesis testing for causal impacts with little concern for prediction or
learning. Information scientists were also trying to produce quick and efficient ways to index and
access documents and knowledge with an emphasis on prediction and little concern for statistical
methods or models.

Because of their emphasis on pattern recognition, computer scientists typically speak of as-
signing cases to classes based on their features (e.g., predicting whether someone could be classed
as a diabetic based on body mass, age, serum insulin), whereas statisticians talk about predicting
the value of a dependent variable based on independent variables or predictors, even though they
are often dealing with the same problems. Computer scientists talk about activation functions,
training sets, and learning, whereas statisticians talk about functional forms, samples, and estima-
tion. In addition, computer scientists talk about supervised and unsupervised learning problems;
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the former refers to problems where there is information on the relevant classes (e.g., specimens
already classified into separate species) and the latter refers to problems without this information.
Supervised learning uses methods with a dependent variable such as discriminant analysis or logis-
tic regression, whereas unsupervised learning uses clustering, factor analysis, or multidimensional
scaling. Once the newcomer to the field of data science recognizes these differences in nomencla-
ture, books on pattern recognition (Ripley 1995), artificial intelligence (Russell & Norvig 2009),
machine learning (Bishop 2011), and statistical learning (Hastie et al. 2016) seem less arcane and
more approachable. Newcomers can also benefit from articles that bridge the gaps (Nickerson &
Rogers 2014, Varian 2014, Mullainathan & Spiess 2017, Yarkoni & Westfall 2017, Athey 2018).

Increased computing power has also accelerated the development of five innovations. First, the
Bayesian paradigm is no longer an outcast in American statistics since the realization that many
intractable classical models can be considered Bayesian models with vague priors and that these
models can be estimated effectively and efficiently using MCMC and other methods. Second,
smoothing or regularizing approaches that require the estimation of nonlinear ridge or lasso re-
gressions or the repeated application of complicated kernel estimation methods have become fea-
sible, providing greater flexibility in model specification. Third, resampling and averaging meth-
ods that improve predictions, such as the bootstrap, bagging, boosting, Bayesian model averaging,
and random forests, have become commonplace because of computing power that allows repeated
estimation using slightly different models or samples. Fourth, the Akaike, Bayesian, and Schwartz
information criteria (AIC, BIC, SIC) and methods such as cross-validation are now commonly
used to select a parsimonious model. Fifth, computational methods have been developed (e.g., EM
and genetic algorithms,MCMCmethods, back-propagation) to estimatemodels with complicated
density mixtures, large numbers of parameters, multiple local maxima, and knotty nonlinearities
and constraints. These innovations have greatly increased the flexibility and predictive power of
statistical models.

One reason data science has become so popular is that one variant of machine learning, called
deep learning, has succeeded at difficult pattern recognition tasks such as speech and image recog-
nition, natural language processing, and bioinformatics (LeCun et al. 2015). Deep learning is a
variant of the canonical feed-forward neural network, which involves multilayer classifiers that
use stacks of logistic or similar regressions (Sarle 1994, Schmidhuber 2015) where the inputs are
features of the items that are to be classified. For example, for animals being classified as either
dogs or cats, the features might be large or not-large, bark or no-bark, meow or no-meow, docile
or not docile, white or not-white, and tail or no-tail. These features are coded with a one if present
and a minus one if not present. Some of these features are more useful for distinguishing between
dogs and cats than others. For each animal for which we have data, M weighted linear combi-
nations of these L features are calculated where the weights reflect the diagnostic value of the
features. After each of these combinations is transformed by a sigmoid activation function such as
a logistic, it constitutes a hidden-layer variable, also called a neuron. The first hidden layer con-
tainsM of these hidden-layer variables employing different weighted linear combinations of the
input variables. The results of these hidden-layer variables in this first hidden level are then either
combined into another weighted linear combination and transformed according to the sigmoid
function to decide whether the animal is a dog or a cat (with, for example, values near one indicat-
ing a dog and values near zero indicating a cat), or a second hidden level of N variables is created
that takes weighted linear combinations of theM hidden-layer variables in the first hidden layer.
This process can continue with more and more hidden layers until the final sigmoid function is
reached that predicts whether the animal is a dog or cat. The model is evaluated on whether it
gets the right answer most of the time.
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The model is successful when it has the right weights so that it correctly separates the dogs
from the cats. For example, a large, docile creature that barks is almost certainly not a cat, so
the weights on those characteristics should be large and positive to produce a value near one
(indicating a dog) in the sigmoid function, but the weights on having a tail or being white should
be near zero since they are not very diagnostic features. The weight on having a meow should be
negative. To make the models work, there must be enough hidden layers and hidden variables to
provide the flexibility needed to fit all possible permutations of dog and cat features, and there
must be efficient learning algorithms to identify the right weights so that the difficult cases are
correctly classified. Shallowmachine learning models have just a few hidden layers, and those with
no hidden layers are called perceptrons. Deep machine learning models have many hidden layers.
The overall complexity of the model depends on the number of hidden layers and the number of
hidden variables or neurons.

We have known for over 25 years that systems with at least one hidden layer are universal ap-
proximators (White 1992) that can, with relatively arbitrary activation functions, approximate to
any degree nonlinear continuous functions as long as there are enough neurons (hidden indepen-
dent variables) in the model. Once it is clear that machine learning is simply a novel method for
fitting (complicated) curves, it becomes less magical, but some mysteries remain. Why does deep
learning work with a total number of weights and variables that seems far short of what would
be necessary to approximate all of the possible curves? Why do models with many hidden layers
sometimes do so much better than those with just one, especially since only one layer is needed
for a universal approximator? How can we interpret the complex pattern of weights yielded by
deep learning models? These questions have led to speculations that deep learning works because
its layers can match the kinds of physical constraints that exist in the real world (Lin et al. 2017),
and this speculation evokes a famous paper by the physicist Eugene Wigner (1960) titled “The
Unreasonable Effectiveness of Mathematics in the Natural Sciences.”Whatever the reason, deep
learning methods seem to work remarkably well for pattern recognition problems, but their inter-
pretation is often difficult given their arcane complexity. They are better at yielding predictions
than explanatory insights.

What Kinds of Problems Can Data Science Solve?

There is so much hyperbole about big data and data science that one might think that we have
either solved or obviated four of the most basic problems of empirical research: (a) forming con-
cepts and providing measures of them; (b) providing reliable descriptive inferences; (c) making
causal inferences from past experience; and (d) making predictions about the future. Data science
has, in fact, made some contributions to solving each of them, especially forming concepts and
making predictions about the future, but they continue to be fundamental and difficult problems
(Smith 2018). Let us consider each in turn.

Artificial intelligence researchers have used unsupervised machine learning methods so that
computers learn concepts in much the same way as political scientists have historically used fac-
tor or cluster analysis to identify concepts, as in the study of texts described above. One of the
most informative studies of concept formation (Thagard 1992) used artificial intelligence models
to understand “conceptual revolutions” in science. Machine learning excels at finding patterns, so
it can be helpful in concept formation, but the basic problems of the interplay between defining
concepts inductively or deductively, phenomenologically or ontologically, and pragmatically or
theoretically remain. We do have some better tools to deal with them, such as model-based clus-
tering techniques (e.g., Ahlquist & Breunig 2012) that allow for the evaluation of uncertainty in
typologies, but concepts such as an atom, species, democracy, or topic are still very deep ideas based
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on a complicated interplay between theory and data that goes beyond mere pattern detection—
and that is why conceptual revolutions in science (e.g., quantum theory, plate tectonics, evolution,
relativity theory, or topic analysis) are such a big deal. They reflect a gestalt change in the way we
see the world. It is also why users of these methods must proceed carefully, as pointed out in the
discussion about analyzing texts and topics.

Data science methods can help us to explore and describe data, to find interesting patterns
in them, and to display them effectively. The use of big data helps us with descriptive infer-
ences because it often provides a complete list of arrests, registered voters, food stamps recipients,
etc., but the problem of defining the proper universe remains, since we may care about crimes,
potential voters, or those eligible for food stamps, respectively. Moreover, internet samples are
especially problematic because it is hard to define what universe they represent and how they
were sampled from that universe. Having a lot of data does not ensure that they represent in a
statistically reliable way (e.g., a random sample) an interesting and definable universe.

Perhaps most interesting, and perhaps worrisome, is the degree to which some advocates of
data science have ignored or even rejected the need for causal inferences and fastened upon a
narrow notion of statistical prediction. There are three sources of this inclination. The first is the
idea that the availability of lots of data (either many cases or many variables) automatically solves
the inference problem, which is, of course, false. Inference requires that we choose cases in the
right way (e.g., a random sample) and that available variables include the actual cause and allow
us to control for the right things to avoid spurious correlations (see Lazer et al. 2014, Titiunik
2015). The second source is the idea that machine learning, perhaps especially deep learning,
yields insights that would otherwise be buried. That idea founders on questions about whether
deep learning is actually providing insights or just fitting curves. Cukier & Mayer-Schoenberger
(2013, pp. 32, 39) seem to capture both of these naïve ideas when they say that “[a] worldview built
on the importance of causation is being challenged by a preponderance of correlations” and “[w]e
can learn from a large body of information things we could not comprehend when we used only
smaller amounts.” The third and more defensible notion is that making reliable causal inferences
is so hard that we should focus on prediction. This idea led to vector autoregression methods in
macroeconomics (Sims 1980,Christiano 2012) 40 years ago, and it is at the core of many textbooks
on machine learning. Breiman (2001) presents an elegant, early argument for this approach; Berk
(2008) provides a thoughtful book-length treatment; and Shmueli (2010) discusses the trade-offs.

There are certainly practical and technical problems for which achieving a good prediction us-
ing machine or statistical learning is a satisfactory, and perhaps optimal, solution. Kleinberg et al.
(2015) give an example involving decisions about hip or knee surgery where the surgeries only
make sense if the patients live long enough to get through their typically lengthy rehabilitation
periods. Yarkoni & Westfall (2017) provide examples from psychology, such as inferring the “big
five” personality traits from the “likes” on Facebook pages and inferring the accuracy of people’s
memories about faces from fMRI data. Nickerson & Rogers (2014) show how predictive scores
regarding campaign contributions or voting turnout can be used to increase the efficiency of cam-
paigns. In research problems, good predictive methods can assure acceptable covariate balance
in matching methods, high-quality classification of documents according to some characteristic,
accurate imputation for missing values, good fits for curves in regression discontinuity designs,
powerful instruments for instrumental variables estimation, and so forth.

These methods rely on situations where, in the language of econometrics, reduced form equa-
tions solve a problem either because there are no (or only small) structural changes in the mech-
anism producing outcomes or because the best fit is really the ultimate goal. But social scien-
tists have known at least since the classic work on supply and demand that getting at causal
mechanisms requires that statistical methods take into account the identification of structural or
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behavioral models. The positive correlations between police presence and crime, between higher
quantities of a good and higher prices, and between greater education and higher income do not
necessarily mean that more police cause more crime, greater quantities of a good create higher
prices, or even that more education produces more income.The current emphasis on experiments
and quasi-experiments attempts to ensure better identification of these causal effects, and Athey
(2018, pp. 21, 22), in a paper that predicts many ways in which machine learning can help im-
prove causal estimation in economics, unequivocally predicts “no fundamental changes to theory
of identification of causal effects” and “no obvious benefit from ML in terms [of] thinking about
identification issues.” That is the conclusion of a political science symposium on big data (Clark
& Golder 2015), and I concur based on my understanding of causality (Brady 2009).

At the same time, political scientists need to think harder about how to combine information
about causal mechanisms from strongly identified research designs (such as experiments or quasi-
experiments) with sophisticated prediction methods and formal modeling to improve our ability
to make projections about the future. These projections should take into account behavioral re-
sponses, heterogeneity in causal impacts, and general equilibrium effects that occur when policies
are scaled up from a small experiment. This requires combining models, causal estimates, and
predictions in ways envisioned by the Empirical Implications of Theoretical Models movement
(Granato & Scioli 2004) and in ways undertaken by economists who joined vector autoregressions
with concerns about causal mechanisms and macroeconomic models (Christiano 2012). Athey
(2018) discusses some ways to do this, and perhaps her most important claim is that data science
methods make it possible to develop better systematic model selection methods based on the data
instead of specification searches that often involve multiple estimations and repetitive parsing of
models until one model is presented, somewhat disingenuously, as “the model.” Data scientists
and statisticians are also considering trading off model complexity versus parsimony as both the
sample size and the number of available variables increase (Powell 2017). Data science methods
now make possible data-driven model selection using cross-validation and other approaches, es-
timation and averaging over many models, and accounting for model uncertainty as well as data
uncertainty.

Data science currently provides many useful tools for political scientists, but their primary
contribution is to provide for automated pattern recognition and better methods for prediction.
Much more work has to be done before we can confidently use models to project into the future.

DEALING WITH ETHICAL ISSUES REGARDING POLITICAL
SCIENCE RESEARCH

A separate article could be written about the ethical issues related to big data and data science.One
contentious issue is the possibility of algorithmic injustice (Noble 2018), especially in the field of
criminal justice. A number of writers (Harcourt 2007, Mbadiwe 2018, Williams et al. 2018) have
worried that algorithms used to assign bail, decide on sentences, or place prisoners in various
levels of detention rely on predictions that are not causal, that reproduce stereotypes, and that
exacerbate racial biases. The result will be the reinforcement of existing forms of discrimination.
But the problem is not easy, and “there is tension between improving public safety and satisfying
the prevailing notions of algorithmic fairness” (Corbett-Davies et al. 2017, p. 797).To take another
area, political campaign algorithms try to mobilize those voters who can be brought to the polls
at least cost per vote, but this typically means that underrepresented voters become even more
underrepresented because it costs more to mobilize them (Brady et al. 1999).

Athey (2018) notes that predictive algorithms can not only be unfair but may also be manipu-
lable. For example, if someone knows that credit scores are improved when people shop at certain
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stores, they may shop at those stores to increase their scores. The political and normative impli-
cations of these ethical issues must be studied by political scientists and taken into account when
designing algorithms.

CONCLUSIONS

Big data and data science provide extraordinary new sources of data and methods for doing re-
search. They are also changing the world in ways that spawn new kinds of political issues. They
broaden the kind of quantitative work that can be done, and they bring political scientists into
the middle of societal events in new ways through work on political campaigns, on the impacts of
the media, on the operation of cities, on terrorism and cyberwarfare, on the design of voting and
political systems, and many other areas. As this happens, political scientists will certainly do more
and better research, but they will also have to think about the intellectual and practical value of
their role as system designers when they find themselves or their work used to create new policies
or social mechanisms. Just as engineers, lawyers, and increasingly economists use their knowl-
edge about society to design social institutions, political scientists are now developing the tools to
redesign political systems.How will this role be valued in the academy?What ethical and intellec-
tual issues does it raise? From my perspective, becoming involved in developing new policies and
social mechanisms would be a useful turn back toward the “policy sciences” advocated by Harold
Lasswell (1951; see also Turnbull 2008), but political scientists will undoubtedly find themselves
taking on new roles that will require debate and discussion within the profession.
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