
PU37CH04-Banerjee ARI 22 February 2016 10:23

Spatial Data Analysis
Sudipto Banerjee
Department of Biostatistics, University of California, Los Angeles, California 90095;
email: sudipto@ucla.edu

Annu. Rev. Public Health 2016. 37:47–60

First published online as a Review in Advance on
January 20, 2016

The Annual Review of Public Health is online at
publhealth.annualreviews.org

This article’s doi:
10.1146/annurev-publhealth-032315-021711

Copyright c© 2016 by Annual Reviews.
All rights reserved

Keywords

Bayesian hierarchical modeling, conditional autoregressive (CAR) models,
cure rate models, disease mapping, multivariate CAR models, multivariate
disease mapping, spatial survival analysis

Abstract

With increasing accessibility to geographic information systems (GIS) soft-
ware, statisticians and data analysts routinely encounter scientific data sets
with geocoded locations. This has generated considerable interest in sta-
tistical modeling for location-referenced spatial data. In public health, spa-
tial data routinely arise as aggregates over regions, such as counts or rates
over counties, census tracts, or some other administrative delineation. Such
data are often referred to as areal data. This review article provides a brief
overview of statistical models that account for spatial dependence in areal
data. It does so in the context of two applications: disease mapping and spa-
tial survival analysis. Disease maps are used to highlight geographic areas
with high and low prevalence, incidence, or mortality rates of a specific dis-
ease and the variability of such rates over a spatial domain. They can also
be used to detect hot spots or spatial clusters that may arise owing to com-
mon environmental, demographic, or cultural effects shared by neighboring
regions. Spatial survival analysis refers to the modeling and analysis for geo-
graphically referenced time-to-event data, where a subject is followed up to
an event (e.g., death or onset of a disease) or is censored, whichever comes
first. Spatial survival analysis is used to analyze clustered survival data when
the clustering arises from geographical regions or strata. Illustrations are
provided in these application domains.
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INTRODUCTION

The emergence of highly efficient geographical information systems (GIS) databases and associ-
ated computational resources has transformed the way spatial or geographical data are collected,
stored, managed, and analyzed. Researchers in diverse disciplines within the physical, social, and
environmental sciences and in public health are increasingly faced with the task of analyzing data
that are geographically referenced and often presented as maps. Consequently, the past decade has
seen significant development in statistical modeling of complex spatial data; for a variety of meth-
ods and applications, see the texts by Cressie (16), Webster & Oliver (41), Cromley & McLafferty
(18), Møller (32), Schabenberger & Gotway (37), Waller & Gotway (40), Cressie & Wikle (17),
and Banerjee et al. (5), among others.

Following convention, spatial data are often classified into one of three basic types: point-
referenced data, point pattern data, and areal data. Point-referenced data sets consist of variables
(e.g., outcomes and predictors) that are linked to a specific point location, customarily referenced by
a coordinate system (e.g., longitude-latitude, easting-northing). Point-referenced data sets are not
uncommon in environmental monitoring for public health, where pollutants are often measured
at spatial fixed locations or monitoring stations. The spatial locations are considered fixed, and
investigators are usually interested in the spatial distribution of the measurements and in predicting
their levels at new spatial locations. Point pattern data refer to situations where the spatial locations
themselves correspond to random events. Examples include locations being reported as sites of the
occurrence of a particular disease. Areal data consist of variables that are aggregated over regions
as counts or rates. Areal data are more common in public health applications, where geospatial
referencing is not performed at very fine scales, such as GPS locations of households or small
neighborhoods, to protect the privacy of human subjects.

The Annual Review of Public Health has published two excellent reviews on spatial analytic
methods by Rushton (36) and Auchincloss et al. (1). This review differs from the previous ARPH
articles because of its emphasis on the advances made in formal statistical modeling and infer-
ence for spatial data. It is beyond the scope of a single article to review all such methods. The
aforementioned texts offer more comprehensive coverage. This review focuses primarily on areal
data analysis because areal data are most conspicuous in public health. In fact, point patterns
are often reported as areal aggregates, i.e., counts, rates of other summaries over well-delineated
spatial regions such as counties or census tracts or zip codes, and subsequently modeled as areal
data. Within this context, the review briefly discusses disease mapping for single diseases and for
multiple diseases that may be associated with each other, as well as modeling of areally referenced
survival data.

SPATIAL MODELS FOR DISEASE MAPPING

In the fields of medicine and public health, researchers often seek a better understanding of
regional patterns of disease. In the United States, publicly available data on precise locations
of disease cases are fairly uncommon owing to strict confidentiality regulations. Summaries of
disease at a regional level, however, are often relatively easy to obtain. Disease mapping is an
epidemiological technique used to highlight geographic areas with high and low incidence or
mortality rates of a specific disease and to map how such rates vary over the study region. Disease
maps are often used to detect spatial clusters, which may generate hypotheses regarding common
underlying environmental, demographical, or cultural factors shared by neighboring regions.

Although one could easily map the crude incidence and mortality rates, such maps can lead to
spurious conclusions when the population sizes for some of the areal regions are small. Sparse pop-
ulations usually result in large variability in the estimated rates and impair our ability to distinguish
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chance variability from genuine differences. Statistical models that allow a more accurate depiction
of true disease rates by borrowing information from neighboring regions will help mitigate the
effects of sparsely populated regions and deliver better inference.

Perhaps the most conspicuous manner of modeling spatial dependence is to introduce spatially
associated random effects within a Bayesian hierarchical setting [see, for example, Banerjee et al.
(5)]. The Bayesian modeling and inferential framework is flexible and extremely rich in its capa-
bilities to accommodate various scientific hypotheses and assumptions. In particular, it provides a
cohesive framework for combining complex data models and external knowledge or expert opin-
ion. This review discusses spatial modeling within a Bayesian context. The models and illustrations
that follow are produced using Markov chain Monte Carlo (MCMC) simulation methods. Again,
it is beyond the scope of this review to discuss MCMC algorithms. Details on established MCMC
and other computational algorithms for spatial data can be found in the books by Møller (32),
Gelman et al. (22), and Robert & Casella (35).

Spatial Modeling of a Single Disease: A Brief Review

A popular class of models for areal data come from Markov random fields (MRF). These models
are based on a Markov property, where the conditional distribution of the health outcome from a
region, given the observations from all the other regions, depends only on the observations in the
neighborhood. Here, we define the neighborhood by area adjacency, such that two regions are
neighbors if they share a common boundary (or perhaps even meet at a point). Other definitions
are sometimes used (e.g., regions with centroids within a given fixed distance).

Let Yi be the observed number of cases of a certain disease in region i, i = 1, . . . , n, and let Ei

be the expected number of cases in this same region. A popular likelihood for mapping a single
disease is

Yi
ind∼ Poisson(Ei eμi ), i = 1, . . . , n, 1.

where μi = x�
i β + φi represents the log-relative risk expressed in terms of departures of the

observed from expected counts, each xi is a vector of explanatory variables or covariates associated
with region i having parameter coefficient β, and φi s are spatially correlated random effects. We
place a form of Gaussian MRF model, commonly referred to as the conditionally autoregressive
(CAR) prior, on the random effects φ = (φ1, . . . , φn)�, i.e.,

φ ∼ Nn(0, [τ (D − αW )]−1), 2.

where Nn denotes the n-dimensional normal distribution, D is an n × n diagonal matrix with
diagonal elements mi that denote the number of neighbors of region i, and W is the adjacency
matrix of the map (i.e., Wii = 0, and Wii ′ = 1 if i′ is adjacent to i and 0 otherwise). In Equation 2,
τ−1 is the spatial dispersion parameter, and α is the spatial autocorrelation parameter. The CAR
prior corresponds to the following conditional distribution of φi:

φi |φ j , j �= i,∼ N

⎛
⎝ α

mi

∑
i∼ j

φ j ,
1
τmi

⎞
⎠ , i, j = 1, . . . , n, 3.

where i ∼ j denotes that region j is a neighbor of region i. The CAR structure (2) reduces to
the well-known intrinsic conditionally autoregressive (ICAR) model [described in Besag et al.
(10)] if α = 1 or an independence model if α = 0. The ICAR model induces local smoothing by
borrowing strength from the neighbors, whereas the independence model assumes independence
of spatial rates and induces global smoothing. The smoothing parameter α in the CAR prior (2)
controls the strength of spatial dependence among regions, though it has long been appreciated

www.annualreviews.org • Spatial Data Analysis 49



PU37CH04-Banerjee ARI 22 February 2016 10:23

that a fairly large α may be required to deliver significant spatial correlation [see Wall (39) for
details on this]. Other variants of CAR models have been developed and applied to public health
problems by Leroux et al. (30) and Dean et al. (19).

Spatial Modeling of Multiple Diseases

Turning to multiple diseases, let Yij be the observed number of cases of disease j in region i,
i = 1, . . . , n, j = 1, . . . , p , and let Eij be the expected number of cases for the same disease in
this same region. As in the previous section above, the Yijs are thought of as random variables,
whereas the Eijs are thought of as fixed and known. For the first level of the hierarchical model,
conditional on the random effects φij, we assume the Yijs are independent of each other such that

Yi j
ind∼ Poisson(Ei j e

x�
i j β j +φi j ), i = 1, . . . , n, j = 1, . . . , p, 4.

where each xij is a vector of region-specific explanatory variables for disease j having (possibly
region-specific) parameter coefficients β j. The key problem here is to specify rich and flexible
spatial distributions for the φijs.

Carlin & Banerjee (11) and Gelfand & Vounatsou (21) generalized the univariate CAR (2)
to a joint model for the random effects φij, which permits modeling of correlation among the
p diseases while maintaining spatial dependence for each of the diseases. These models were
subsequently subsumed by more general, and flexible, Bayesian hierarchical frameworks developed
and implemented by Jin et al. (27, 28).

The idea in Jin et al. (28) is best expounded with p = 2 diseases. Let φ1 be the n × 1 vector of
spatial random effects for the first disease, and let φ2 be the same for the second disease. Jin et al.
(28) specify a joint spatial model for φ1 and φ2 by specifying a conditional distribution of φ1 given
φ2 and a marginal distribution for φ2. To achieve spatial smoothing, we assume that both these
distributions are CARs. More precisely, we write the joint density as

p(φ1, φ2) = N (φ2|0, [τ2(D − α2W )]−1)×N (φ1|(η0 I + η1W )φ2, [τ1(D − α1W )]−1), 5.

where η0 and η1 are the bridging parameters associating the spatial effect for disease 1 in region
i with disease 2 in region i. With disease 2 in a neighboring region, ρ1 and ρ2 are smoothing
parameters associated with the conditional distribution of φ1|φ2 and the marginal distribution of
φ2 respectively, and τ 1 and τ 2 scale the precision of φ1|φ2 and φ2, respectively. The model in
Equation 5 yields a legitimate probability density as long as the two CAR distributions on the
right-hand side are valid, which means that the two dispersion matrices for φ1|φ2 and φ2 must be
positive definite. Jin et al. (28) provide conditions for these matrices to be positive definite.

Models where the spatial random effects are shown as in Equation 5 are known as generalized
multivariate conditionally autoregressive (GMCAR) models. The specification in Equation 5 sub-
sumes several special cases in the multivariate disease mapping literature. Setting ρ1 = ρ2 = ρ and
η1 = 0 produces a model showing that the association between the two diseases remains the same
across the regions. If we assume ρ1 �= ρ2 and η0 = η1 = 0, then we ignore dependence between
the multivariate components, and the model turns out to be equivalent to fitting two separate
univariate CAR models. Finally, if we assume ρ1 = ρ2 = 0, η0 �= 0, and η1 = 0, then the model
becomes a simple bivariate normal model with no spatial association.

The above approach is appealing for two diseases, or perhaps at most for three diseases, but using
it to model several diseases at once has its limitations. An inherent problem with these methods
is that their conditional specification imposes a potentially arbitrary order on the variables being
modeled, as they lead to different marginal distributions depending on the conditioning sequence
[i.e., whether to model p(φ1|φ2) and then p(φ2), or p(φ2|φ1) and then p(φ1)]. This problem is
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somewhat mitigated in certain (e.g., medical and environmental) contexts where a natural order
is reasonable, but in many disease mapping contexts this is not the case.

To obviate the ordering issue, Jin et al. (27) developed an order-free, joint framework for
multivariate areal modeling that allows versatile spatial structures, yet is computationally feasible
for many outcomes. These are called coregionalized MCAR models, named after linear models
of coregionalization in multivariate geostatistics [see, e.g., Wackernagel (38)]. The underlying
idea here is to develop richer spatial association models using linear transformations of much
simpler spatial distributions. The objective is to allow explicit smoothing of cross-covariances
without being hampered by conditional ordering. In particular, suppose we assume a common
proximity specification for each component of the random effects vector, φ. Then, we could
write φ = Aψ , where ψ j , the jth component of ψ , is a univariate intrinsic CAR with precision
parameter τ 2

j and each of the component CAR models are independent. The matrix A represents
the linear transformation that maps independent CAR effects for each disease to correlated CAR
(or multivariate CAR) effects for the diseases.

MCAR models are not the only available option for analyzing multivariate areal data.
Zhang et al. (43) have developed an arguably simpler approach by adapting smoothed ANOVA
(SANOVA) models (24) for areal data. The underlying idea is to extend SANOVA to cases in
which one factor is a spatial map, which is smoothed using a CAR model, and a second factor is,
for example, a type of disease. Data sets routinely lack enough information to identify the addi-
tional structure of MCAR. SANOVA offers a simpler and more intelligible structure than MCAR
while performing equally well. Nevertheless, the MCAR and more general CAR-based models
offer a rich inferential framework for capturing complex spatial associations. We focus on MCAR
models and their variants within the disease mapping context in the remainder of this article.

Illustration

We illustrate with a brief example from Jin et al. (28), who modeled the numbers of deaths due to
cancers of the lung and esophagus between 1991 and 1998 across the 87 counties in Minnesota.
The county-level maps of the raw standardized mortality ratios (i.e., SMRi j = Yi j/Ei j ) shown in
Figure 1 exhibit evidence of correlation both across space and between cancers, motivating use
of our proposed GMCAR models. The bottom row shows the smoothed maps obtained from the
GMCAR model specified using a CAR prior for the conditional distribution [lung|esophagus] and
another CAR for the marginal distribution [esophagus].

We fit the model Banerjee & Carlin (4) to this data set. To determine Eij, we account for
each county’s age distribution by calculating the expected age-adjusted number of deaths due
to cancer j in county i as Ei j = ∑m

k=1 ω j k N ik for i = 1, . . . , 87 and j = 1, 2, where ω j k =
(
∑87

i=1 Di jk)/(
∑87

i=1 N ik) is the age-specific death rate for cancer j and age group k over all Min-
nesota counties, Dijk is the number of deaths in age group k for county i and cancer j, and Nik is the
total population at risk in age group k for county i. Jin et al. (28) conducted exploratory analysis on
the basis of least-squares estimation as well as formal Bayesian model comparison methods to show
that a GMCAR model specified using CAR distributions for [lung|esophagus] and [esophagus]
was preferable to modeling [esophagus|lung]. The GMCAR models are easily implemented in the
Bayesian modeling language BUGS (see http://www.biostat.umn.edu/∼brad/software.html
for the code and the data). Figure 2 presents maps of the smoothed standardized mortality
ratios (SMRs) for lung and esophagus cancer in Minnesota from the GMCAR.

Jin et al. (28) also reported that the estimate of the parameter η1 was statistically significant
for the GMCAR with [lung|esophagus] and not significant in the reverse order. We also saw
that the posterior distribution of the linking parameters η0 and η1 had mostly positive support,
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Lung cancer
0.6296–0.7932
0.7932–0.8665
0.8665–0.9599
0.9599–1.0731
1.0731–1.3333

Esophagus cancer
0–0.7932
0.7932–0.8665
0.8665–0.9599
0.9599–1.0731
1.0731–2

Figure 1
Maps of raw standard mortality ratios (SMRs) of lung and esophagus cancer in Minnesota between 1991 and
1998.

meaning that the two cancers had positive spatial correlation. This is also evident from the maps
of the posterior means of the SMRs for the two cancers under the full model shown in Figure 2.
Incidence of the two cancers is clearly strongly correlated, with higher fitted ratios extending
from the Twin Cities metro area (eastern side, about one-third of the way up) to the mining-
and tourism-oriented north and northeast, regions where conventional wisdom suggests that
cigarette smoking may be more common.

The GMCAR delivered point and 95% equal-tail interval estimates of 0.602 and (0.0267,
0.979) for ρ1, and 0.699 and (0.0802, 0.973) for ρ2. These are spatial parameters, but while their
values are between 0 and 1 they are not “correlations” in the usual sense; the moderate point
estimates and wide confidence intervals suggest a relatively modest degree of spatial association in
the random effects. Note also that in this setup, ρ2 measures spatial association in the esophagus
random effects φ1, whereas ρ1 measures spatial association in the lung random effects φ1 given the
esophagus random effects φ2. Turning to τ 1 and τ 2, under the GMCAR we obtained 32.65 (16.98,
66.71) and 13.73 (4.73, 38.05) as our point and interval estimates, respectively. Because these
parameters measure spatial precision for each disease, they suggest slightly more variability in the
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Lung cancer
0.7212–0.7932
0.7932–0.8665
0.8665–0.9599
0.9599–1.0731
1.0731–1.2237

Esophagus cancer
0.7446–0.7932
0.7932–0.8665
0.8665–0.9599
0.9599–1.0731
1.0731–1.1668

Figure 2
Maps of posterior means of standardized mortality ratios (SMRs) of lung and esophagus cancer in Minnesota
between 1991 and 1998 from the generalized multivariate conditionally autoregressive (GMCAR) model
with conditioning order [lung|esophagus].

esophagus random effects, although again comparison is difficult here because τ 2 is a marginal
precision for φ2 whereas τ 1 is a conditional precision for φ1 given φ2.

SPATIAL SURVIVAL ANALYSIS

Survival models, such as in Cox & Oakes (15), are widely used in biostatistics and epidemiology
for analyzing time-to-event data, where a subject is followed up to an event (e.g., death or onset of
a disease) or is “censored,” whichever comes first. Right censoring refers to situations where the
event does not occur for a subject during the period of the study and the subject’s time to event
is censored at the study end point. Certain study designs can produce left-censored or interval-
censored data, defined analogously. As opposed to modeling disease incidence and mortality,
survival models focus on how many are expected to survive after a certain period of time and the
rate of failure, as well as to ascertain which underlying factors (e.g., gender, race, age, type of
cancer, treatment obtained, and access to health care facilities) generate shortened or prolonged
survival.
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The past decade has seen much demand for the analysis of spatially referenced survival data.
When each subject can be referenced with respect to a clinical site or geographical region, we
might suspect that random effects corresponding to proximate regions will be similar in magni-
tude. Models for spatially arranged survival data customarily introduce spatial frailties, such as in
Banerjee et al. (7). How these spatial frailties are introduced in survival models depends on the
specific model. We briefly discuss a few alternate spatial survival models. Apart from the spatial
distribution for the frailties, one needs to model a spatial hazard function with the understanding
that expected survival times (or hazard rates) will be more similar in neighboring regions, owing
to underlying factors (access to care, willingness of the population to seek care, etc.) that vary
spatially. This expectation is in contrast to the similarity observed among survival times from
subjects in proximate regions, which is not necessarily implied by spatially associated frailties.

Survival Models with Spatial Frailties

Let T be the waiting time for a subject to experience an event (e.g., disease onset, relapse, death).
The subject’s survival function is defined as S(t) = P (T ≥ t) and the hazard function as h(t) =
f (t)/S(t), where f (t)is the probability density function of T. Let (i, j) index the j-th subject in
region i and let {(ti j , δi j ) : i = 1, 2, . . . , I ; j = 1, 2, . . . , ni } be observations from n subjects in a
study, where tij indicates the time at which either subject (i, j) experienced the event or the subject
was censored. Associated with each tij is an event indicator, δij, where δi j = 1 if the event occurred
before the termination of the study and δi j = 0 if the subject was censored. For right-censored
data, we have the likelihood

ni∏
j=1

f (ti j )δi j S(ti j )1−δi j =
ni∏

j=1

h(ti j )δi j S(ti j ). 6.

If δi j = 1, then subject j contributes f (ti j ) = h(ti j )S(ti j ) to the likelihood, whereas if δi j = 0, then
it contributes S(ti j ) to the likelihood. Cox & Oakes (15) provide the corresponding expressions
for left-censored and interval-censored data.

Let xij be a p×1 vector of observed explanatory variables associated with subject (i, j). To account
for heterogeneity in the population, most survival models will introduce these explanatory variables
in Equation 6 in the hazard function. For example, the proportional hazards model stipulates that

h(ti j ; xi j ) = h0(ti j ) exp(x�
i jβ), 7.

where h0(t) is a baseline hazard function affected only multiplicatively by the exponential term
involving the explanatory variables. Another option is a “proportional odds” model (9), which
requires the survival function for subject (i, j) to satisfy

S(t|xi j )
1 − S(t|xi j )

= S0(t)
1 − S0(t)

exp(x�
i jβ). 8.

Yet another alternative is the accelerated failure time model. Here, the survival function for
subject (i, j) is S(t) = S0(t/γi j ), where S0(t) is any parametric survival function and γi j = exp{x�

i jβ}.
The corresponding hazard function for subject (i, j) is h(t) = h0(t/γi j )/γi j , where h0(t) is the
hazard derived from S0(t). In each of the above situations, the hazard function can be modeled
using parametric or nonparametric statistical methods. The data-analytic settings where the above
specifications are appropriate, or not, have been comprehensively explored and documented in the
survival analysis literature. For example, the proportional odds model posits that the hazard ratio
approaches unity over time, i.e., the covariate effects on the hazards disappear over time, which
is clearly distinct from the proportional hazards model. The interpretation of the regression
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component significantly differs. The term exp{x�β} in the proportional odds model reflects the
change in the odds of survival (or failure, depending on the parameterization) given the observed
covariates or risk factors.

Li & Ryan (31) provided the basis for legitimate likelihood-based inference from semipara-
metric spatial survival models. They proposed modeling the hazard function nonparametrically
and the spatially correlated frailties using different spatial covariance functions. These models
were applied to the East Boston Asthma Study to detect prognostic factors leading to childhood
asthma. Henderson et al. (23) proposed using multivariate Gamma distributions to investigate
spatial association and variation in the survival of acute myeloid leukemia patients in northern
England. Banerjee et al. (7) proposed a Bayesian hierarchical framework to introduce spatially
correlated frailties and compared performances between frailties modeled using Markov random
field and geostatistical covariance functions. Data from a large infant mortality study in the state
of Minnesota were analyzed. Subsequent papers explored Bayesian semiparametric modeling (2),
spatiotemporal modeling (3, 8), semiparametric proportional odds models with spatial frailties (6),
joint survival and longitudinal modeling with frailties (44), and parametric accelerated failure time
models (42). Finally, we refer the reader to Lawson et al. (29) for spatial survival models that do
not deploy spatial frailties.

Spatial Cure Rate Models

In light of significant progress in medical and health sciences, scientists and health professionals
increasingly encounter data sets in which patients are expected to be cured. Models accounting
for cure are important for understanding prognosis in potentially terminal diseases. Traditional
parametric survival models such as Weibull or Gamma [see, e.g., Cox & Oakes (15)] do not account
for cure, assuming instead that individuals who do not experience the event are censored. The
subtle distinction between censoring and cure is worth noting: A subject who does not fail within
the time window of the experiment is considered censored, whereas a subject is cured if he will
never relapse. The latter is clearly a more abstract concept because we are never able to observe
a cure, yet there is interest in estimating the probability of such an outcome, especially in various
disease-relapse settings.

Cure models, such as survival models, also enjoy a rich literature too vast to be comprehensively
reviewed here. The reader should see Ibrahim et al. (26) for a methodological introduction,
whereas Othus et al. (34) offer a more recent review and practical introduction. Cooner et al. (14)
build on their previously proposed flexible framework [13; also see Hurtado Rúa & Dey (25)] to
introduce spatial frailties in cure models for geographically referenced data. Banerjee & Carlin
(4) propose a spatial extension of earlier work by Chen et al. (12), which assumes that some latent
biological process is generating the observed data. Suppose that subject (i, j) has Nij potential latent
(unobserved) risk factors, the presence of any of which (i.e., N i j ≥ 1) will ultimately manifest the
event. Chen et al. (12) consider the case of multiple latent factors, assuming that the Nij are
distributed as independent Poisson random variables with mean θ ij, i.e., p(N i j |θi j ) is Poi(θi j ). For
example, in cancer settings, these factors may correspond to metastasis-competent tumor cells
within the individual. Subjects who do not experience the event during the observation period are
considered censored. Thus, if Ui jk, k=1, 2, . . . , N i j is the time to an event arising from the k-th
latent factor for subject (i, j), the observed time to event for an uncensored individual is generated
by Ti j = min{Ui jk, k = 1, 2, . . . , N i j }.

Given Nij, the Uijks are independent with survival function S(t|i j ) and corresponding density
function f (t|i j ). The parameter i j is a collection of all the parameters (including possible
regression parameters) that may be involved in a parametric specification for the survival function S.
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In this section, we work with a two-parameter Weibull distribution specification for the density
function f (t|i j ), where we allow the Weibull scale parameter ρ to vary across the regions, and η,
which may serve as a link to covariates in a regression setup, to vary across individuals. Therefore,
f (t|ρi , ηi j ) = ρi tρi −1 exp(ηi j − tρi exp(ηi j )).

Banerjee & Carlin (4) analyze smoking cessation data using interval-censored spatial cure rate
models. The outcome of interest is the time for a subject to relapse into smoking. Here, we observe
only a time interval (ti j L, ti jU ) within which the event (smoking relapse) is known to have occurred.
For patients who did not resume smoking prior to the end of the study, we have ti jU =∞, yielding
the case of right-censoring at time point ti j L. Thus we now set νi j = 1 if subject ij is interval-
censored (i.e., the subject has experienced the event) and νi j = 0 if the subject is right-censored.

Following Finkelstein (20), the general interval-censored cure rate likelihood is given by

I∏
i=1

ni∏
j=1

[S(ti j L|ρi , ηi j )]N i j −νi j {N i j [S(ti j L|ρi , ηi j ) − S(ti jU |ρi , ηi j )]}νi j

=
I∏

i=1

ni∏
j=1

[S(ti j L|ρi , ηi j )]N i j

{
N i j

(
1 − S(ti jU |ρi , ηi j )

S(ti j L|ρi , ηi j )

)}νi j

.

If N i j
iid∼ Ber(θi j ), then the marginal likelihood obtained by summing over the Nijs is

L({(ti j L, ti jU )}|{ρi }, {θi j }, {ηi j }, {νi j }) and can be written as

I∏
i=1

ni∏
j=1

S∗(ti j L|θi j , ρi , ηi j )
{

1 − S∗(ti jU |θi j , ρi , ηi j )
S∗(ti j L|θi j , ρi , ηi j )

}νi j

. 9.

As with the covariates, we introduce the frailties φi through the Weibull link as intercept terms in
the log-relative risk; that is, we set ηi j = x�

i jβ + φi . Here we allow the φi to be spatially correlated
across the regions; similarly we would like to permit the Weibull baseline hazard parameters, ρ i, to
be spatially correlated. A natural approach in both cases is to use a univariate CAR prior. Although
one may certainly employ separate, independent CAR priors on φ ≡ {φi } and ζ ≡ {log ρi }, another
option is to use a bivariate CAR model for the δi = {φi , ζi } = {φi , log ρi }. For further details, see
Banerjee & Carlin (4).

Illustration

We present part of a more elaborate data analysis as part of a smoking cessation study reported
by Murray et al. (33), which is of particular relevance to studies of lung health and primary
cancer control. For our illustration here, we restrict attention to 223 subjects from 54 zip codes
in southeastern Minnesota. These subjects were all smokers at study entry and were randomized
into either a smoking intervention (SI) group or a usual care (UC) group, which received no
antismoking intervention. On the basis of a consecutive five-year monitoring period between
1994 and 1998, each of these subjects were known to have quit smoking at least once during these
five years. The event of interest is whether they relapse into smoking (resume smoking). The
raw data revealed that 29.7% resumed smoking, producing an empirical cure fraction of 0.703.
Additional information available for each subject includes sex, years as a smoker, and the average
number of cigarettes smoked per day prior to the quit attempt.

As is not unusual in spatial data sets, the 54 zip codes that contributed the data were not
contiguous, which made it difficult to fit neighborhood-based models. Banerjee & Carlin (4)
considered 81 contiguous zip codes shown in Figure 3, which included the 54 dark-shaded regions
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Figure 3
Map showing a missingness pattern for the smoking cessation data between 1994 and 1998 from 54 zip codes
in southeastern Minnesota: Lightly shaded regions are those having no responses.

that had patients in the data set; the 27 regions that did not contribute patients were treated as if
the data were missing.

Table 1 presents estimated posterior quantiles for the fixed effects β, cure fraction θ , and
hyperparameters. Smoking intervention, expectedly, produces a significant decrease in the log
relative risk of relapse. Women seem to be more likely to relapse than men. This result is often
attributed to the (real or perceived) risk of weight gain following smoking cessation. The number
of cigarettes smoked per day seems to be less significant; however, what is perhaps somewhat
counterintuitive is that shorter-term smokers relapse sooner, perhaps attributable to subjects
being better able to quit smoking as they age.

CONCLUDING REMARKS

This article has provided a glimpse of the different types of statistical spatial models available
for analyzing regionally aggregated data (or areal data) and the type of statistical inference that
is obtained from such models. Although the illustrations provided here aggregated the data over
a number of years and did not attempt to model associations across time, such associations can
also be modeled by allowing the spatial random effects to vary across time. Also, this review has
restricted attention to the CAR models, which are especially congruous with Bayesian statistical

Table 1 Posterior quantiles, full model, interval-censored case

Parameter Median (2.5%, 97.5%)
Intercept −2.720 (−4.803, −0.648)
Sex (male = 0) 0.291 (−0.173, 0.754)
Duration as smoker −0.025 (−0.059, 0.009)
SI/UC (usual care = 0) −0.355 (−0.856, 0.146)
Cigarettes smoked per day 0.010 (−0.010, 0.030)
θ (cure fraction) 0.694 (0.602, 0.782)
ρφ 0.912 (0.869, 0.988)
ρζ 0.927 (0.906, 0.982)
Spatial variance component for φi 0.005 (0.001, 0.029)
Spatial variance component for ζi 0.007 (0.002, 0.043)

Abbreviations: SI, smoking intervention; UC, usual care.
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inference. Other types of spatial dependence structures, such as simultaneous autoregressive (SAR)
models, are very popular, and perhaps better suited, for maximum-likelihood-based inference.
Comparisons between these models can be found in Wall (39). Several other variants of such
models, including spatiotemporal extensions, can be found in Banerjee et al. (5) and references
therein.

SUMMARY POINTS

1. Statistical modeling and scientific inference using spatially referenced data sets are be-
coming increasingly common in public health research. Examples include disease map-
ping and spatial survival analysis.

2. Researchers are formulating more complex spatially oriented hypotheses that require
formal model-based testing and inference.

3. Statistical models for spatial data introduce dependence on the basis of whether the data
are point referenced or areally referenced. The latter, which are usually presented as
aggregates or summaries over regions, are more common in public health research and
practice because they protect patients’ privacy.

4. Much of the statistical research over the past decade has focused on stochastic mod-
els for spatial dependence and how they can be introduced as random effects within
Bayesian hierarchical models. These models are estimated using computationally inten-
sive MCMC methods and have been applied to diverse data-analytic settings, including
multiple disease mapping and spatial survival analysis.

FUTURE ISSUES

1. As the accessibility to GIS and related computational resources continues to expand,
spatial statisticians are encountering increasingly complex data sets with more demanding
research questions. The scope for spatial modeling and analysis within public health will
continue to expand, ushering in new domains of application.

2. A large part of methodological research will be devoted to the development of probability
models, estimation methods, and computational algorithms for analyzing such data sets.

3. Statistical methods for analyzing spatially referenced data sets are computationally ex-
pensive and become unfeasible for large data sets. As spatial data sets become larger,
statisticians start encountering the so-called “big data” problems in geostatistics. This
area has started to garner much attention over the past five years or so and is seeing
increasing research activity with regard to statistical models, methods, and algorithms
for massive spatial data sets.
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