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Abstract

An evolving literature evaluates the inferential and behavioral implications
of measurement error (ME) in agricultural data. We synthesize findings on
the nature and sources of ME and potential remedies. We provide practical
guidance for choosing among alternative approaches for detecting, obvi-
ating, or correcting for alternative sources of ME, as these have different
behavioral and inferential implications. SomeME biases statistical inference
and thus may require econometric correction. Other types of ME may af-
fect (and shed light on) farmers’ decision-making processes even if farmers’
responses are objectively incorrect. Where feasible, collecting both self-
reported and objectively measured data for the same variable may enrich
understanding of policy-relevant agricultural and behavioral phenomena.
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1. INTRODUCTION

Agricultural data collected using a range of methods are important to the design and evaluation
of policies in low- and middle-income countries (LMICs), where agriculture remains a major em-
ployer and source of income. Unfortunately, these data are often characterized by measurement
error (ME) arising from a range of sources. ME can distort descriptive, inferential, predictive,
and prescriptive analysis, with significant consequences. For example, the often-observed in-
verse relationship between farm size and productivity has long motivated land reform and other
smallholder-oriented policies, but several recent studies suggest that such findings might arise
purely due to ME (e.g., Desiere & Jolliffe 2018, Abay et al. 2019, Gourlay et al. 2019). Similarly,
Gollin & Udry (2021) show that ME accounts for a substantial share of the observed productivity
dispersion in African agriculture, calling into question the wisdom of policies intended to reduce
seemingly high allocative inefficiency.

The last decade has seen important innovations to improve the measurement, collection, and
maintenance of agricultural data, as recently reviewed by Carletto et al. (2021) and De Weerdt
et al. (2020). Many such advances rely on new technologies, ranging from computer-assisted per-
sonal interviewing (CAPI) and global positioning system (GPS) devices to the more specialized
genotyping sequencers and soil spectrometers. These technologies not only advance data collec-
tion accuracy with known levels of precision, but they also provide an objective benchmark against
which self-reported survey data can be fruitfully compared.

Data collection innovations and objective benchmarks have sparked renewed research on, and
a deeper understanding of, ME in agricultural data. Recent studies find widespread ME in key
agricultural metrics, including land size (e.g., Carletto et al. 2013, 2015; Abay et al. 2019, 2021;
Dillon et al. 2019; Bevis & Barrett 2020; Burke et al. 2020); crop variety type (e.g., Kosmowski
et al. 2019; Wossen et al. 2019a,b; Wineman et al. 2020; Maredia & Bartle 2023); soil quality
(e.g., Berazneva et al. 2018, Gourlay et al. 2019); labor inputs (e.g., Dillon et al. 2012, Arthi et al.
2018, Gaddis et al. 2021); fertilizer, seed, pesticide, and herbicide quality (Bold et al. 2017, Ashour
et al. 2019, Michelson et al. 2021), and output (Desiere & Jolliffe 2018, Abay et al. 2019, Gourlay
et al. 2019, Lobell et al. 2019, Abay 2020; Kosmowski et al. 2021). Several of these studies advance
methods to improve data quality and statistical inferences based on ME-ridden survey data.

Yet objective measures may themselves suffer fromME. For example, measuring fertilizer and
seed quality in the laboratory can introduce new errors (Michelson et al. 2021); the multidimen-
sional criteria needed to define quality for these inputs can also make their evaluation contingent
and uncertain. Similarly, a sensor degradation can systematically bias satellite-based measures
( Jain 2020). Moreover, not all mismeasurements are amenable for correction, and incomplete
correction of errors can prove counterproductive, even increasing bias relative to not correcting
(Abay et al. 2019). And despite the significant progress in improved data collection methods (e.g.,
laboratory-based soil testing through spectral analysis, DNA fingerprinting of crop germplasm),
such innovations add (sometimes quite substantial) costs to surveys that necessarily limit actual
deployment of objective measures at scale (Carletto et al. 2021).

In fact, ME can itself provide important information.While much of the econometrics litera-
ture treats ME as misreporting by survey respondents or technical mismeasurement as merely a
statistical challenge to be overcome, several recent studies underscore that some ME may reveal
survey respondents’ mistaken beliefs—often termed misperceptions—with real consequence for
statistical inference as well as respondents’ actual decision-making processes and understanding
these decisions. For example, Abay et al. (2021) show that a large share of ME in plot sizes re-
ported by farmers in four African countries (Ethiopia, Malawi, Tanzania, and Uganda) appears to
reflect farmers reporting mistaken beliefs rather than misreporting of accurate beliefs. Similarly,

64 Abay et al.



Wossen et al. (2022) demonstrate that much of the misclassification in crop variety identifica-
tion arises from farmer misperceptions. Other studies provide similar evidence of misperception
in soil quality (Berazneva et al. 2018, Abay et al. 2022a), chemical fertilizer quality (Michelson
et al. 2021), and crop variety (Wineman et al. 2020, Maredia & Bartle 2023). ME in agricultural
data might therefore matter to farmers’ decision-making processes. Indeed, some studies argue
that mistaken beliefs regarding the quality, type, and nature of agricultural inputs limits farmers’
purchase and use (Bold et al. 2017, Ashour et al. 2019, Michelson et al. 2021, Abay et al. 2022b).
Knowing when, whether, and how to correct for ME is thus an increasingly important skill for
applied economists. This review synthesizes recent findings on ME in agricultural data and of-
fers practical guidance to improve the production and use of agricultural and household data.We
present a systematic approach to identify alternative sources ofME and to assess whether or not to
correct for rather than directly study the ME. Specifically, we provide important insights regard-
ing (a) what sources generate ME in agricultural data, (b) how to identify alternative sources of
ME, (c) what the implications of ME are for data collection and econometric inference, (d) when
and how to use (accurate) objective versus (erroneous) self-reported measures, and (e) whether
farmer misperceptions can be easily corrected. Two recent reviews provide comprehensive dis-
cussions of improvements in survey designs and agricultural data measurement (De Weerdt et al.
2020, Carletto et al. 2021), so we focus on the inferential and behavioral implications of ME as
well as potential remedies to improve statistical inferences and address behavioral anomalies driv-
ing potential mismeasurement in survey data. Although these issues apply globally, we focus on
lessons learned from studies of African agriculture, where most of these studies took place. Our
synthesis is relevant to practitioners and researchers working to improve the measurement and
use of agricultural data in LMICs. We summarize our key insights in a decision tree for applied
researchers to navigate these issues (Figure 1).

2. TYPOLOGY AND PROPERTIES OF MEASUREMENT ERROR
IN AGRICULTURAL DATA

We begin with a review of ME typologies and properties. The inferential and behavioral impli-
cations of ME in agricultural data depend on (a) whether ME is classical or nonclassical (i.e.,
randomly or systematically distributed), (b) whether the (mis)measured variable of interest is con-
tinuous or discrete, (c) the role of the (mis)measured variable in inference and behavioral analysis,
in particular whether it is an outcome or explanatory variable, (d) ME origins (misperception,mis-
reporting, or both), and (e) correlation structure among ME across potential variables of interest
(correlated or uncorrelated mismeasurements).

We start with the following measurement system in the context of a linear model:

Y ∗ = α + βX ∗ + ε 1.

X = X ∗ + μ 2.

Y = Y ∗ + ω, 3.

where X ∗ is the true but unobserved explanatory variable of interest (e.g., true land size or variety
type), Y ∗ is the true unobserved outcome of interest (e.g., production or yield), and ε is a mean-
zero error term. In the above measurement system, we only observe X and Y, noisy measures of
X ∗ and Y ∗, respectively, which are contaminated by MEs (μ andω).We assume that X ∗ is strictly
exogenous [i.e., E(εX ∗ ) = 0]. The specification in Equation 1 assumes that ME in survey data
enters additively, although the model can accommodate multiplicative ME through the use of a
log linear specification.

www.annualreviews.org • Measurement Error in Agricultural Data 65



Self-reported/
subjective only

Look carefully for
possible sources of

error in the data

Data quality check
≠

ME checks per se

What type of data is needed for analysis/research?

Survey data Nonsurvey data (e.g., remote sensing , administrative) Look carefully for possible
sources of error in the data

Are the survey data already collected?

Are there benchmark/objective
measures along with self-reported data?

Is there a clear benchmark objective
measure that exists for variable of interest?

Objective data
can be collected

Develop the best question
possible (anticipating potential for
misreporting and misperception)

Check for classical versus non-classical ME
(implications for statistical inference)

Diagnose misreporting or misperception
(implications for behavior)

Is there a need to correct ME (identification and inference in the presence of ME)?

(correct ME)
If primary interest
is understanding

biophysical phenomenon

If primary interest is
understanding

human behavior

Address ME arising from misperception
by providing objective information

(experimentally to understand the learning process)

YES NO

NONO YES YES

NOYES

Figure 1

Decision tree: identifying, testing, and correcting measurement error (ME).

2.1. Classical Versus Nonclassical Measurement Error

In Equations 1–3, classical measurement error (CME) arises when μ and ω are uncorrelated with
both X ∗ andY ∗ as well as between themselves. For example, in land size or production surveys,
CME arises when farmers misreport their true land size or harvest in a nonsystematic way. CME
in dependent variables is innocuous and only attenuates estimated standard errors; but CME in
explanatory variables biases the estimated slope coefficient (β ) toward zero, known as attenuation
bias. Nonclassical measurement error (NCME) arises when μ or ω is correlated with X ∗ orY ∗.
For example, in land size and production surveys, NCME in self-reported land size and har-
vest arise when farmers with larger (smaller) plots (harvests) systematically under (over) report
their land area (harvest). NCME patterns appear commonplace in self-reported plot size and har-
vest data (Carletto et al. 2013; Desiere & Jolliffe 2018; Abay et al. 2019, 2021; Gourlay et al.
2019; Bevis & Barrett 2020).When the dependent or independent variables in Equations 1–3 are
contaminated by NCME, the estimated slope coefficient can be biased upward or downward.
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2.2. Measurement Error in Continuous Versus Discrete Variables

When X ∗ is continuous (i.e., has no support restrictions), ME can be classical or nonclassical.
When X ∗ is discrete, however, ME (commonly referred to as misclassification) is inherently non-
classical, as the latent true value and its measurement share the same discrete support (Mahajan
2006, Lewbel 2007, Hu 2008, Meyer & Mittag 2017). For example, in the context of agricul-
tural technology adoption surveys, any error in binary adoption status indicators must always be
nonclassical (Wossen et al. 2019a, 2022).1

2.3. Correlated Versus Uncorrelated Measurement Errors

Multiple agricultural metrics may suffer from various forms of ME, and these errors can be cor-
related or uncorrelated among each other. Correlated MEs occur when the ME in the dependent
variable in Equation 3 (ω) is correlated with the ME in the explanatory variable from Equation 2
(μ). Such correlation may arise due to common behavioral phenomenon, such as focal point
rounding or heaping (discussed below), that independently contaminate multiple series, creating
spurious correlation in ME. The ME in other variables may have structural origins, as in the case
of Berkson-typeME (discussed below).Multiple examples exist of agricultural metrics that exhibit
correlated ME. For example, MEs in land size and production appear strongly correlated (Abay
et al. 2019). Correlated ME can complicate identification of the inferential biases associated with
mismeasurement in agricultural data and impede corrections based on incompletely improved
data sources. Abay et al. (2019) show that when MEs in the dependent and independent variables
are positively correlated, correcting only one erroneous variable with an accurate, objective mea-
sure may aggravate the bias in estimated regression coefficients relative to estimation using two
erroneous variables. Given how pervasive ME is, one should assume correlated MEs unless one
can credibly explain why MEs among key variables in the model would be uncorrelated.

2.4. Misreporting Versus Misperception

Traditionally, econometricians treat ME as a reporting error by survey respondents who know and
act upon the true value of the variable(s) of interest, and simply misreport it, whether intention-
ally or inadvertently. In such cases, it becomes imperative to correct, as best as one can, for ME.
But what is commonly interpreted as misreporting—that is, the differences between self-reported
and objectively measured values—may instead reflect, at least in part, mistaken beliefs or misper-
ceptions honestly held by the survey respondent, especially if the true value of the variables of
interest is beyond the respondent’s control or capacity for knowledge (Lewbel 2007; Abay et al.
2021, 2022b; Wossen et al. 2022). For example, a farmer may have been allocated a plot of land
by a customary authority or a family member without any formal, cadastral measure of the area
transferred and thus not know its true size. Frequent subdivision of parcels into plots may also
lead to misperception of plots sizes. In some contexts, traditional measurement units may cause
misperceptions. For example, land area in parts of Ethiopia is traditionally measured by oxen days
needed to plow or till it. But this measure can create mistaken beliefs about plot size if farmers fail
to correct for factors that vary across plots, including travel distance to the plot, soil texture, plot
slope, and livestock power/health.Or a farmermay have been told a seed type by an input dealer or
extension agent but be unable to verify the variety herself by direct inspection. The informality of

1For example, considering adoption of agricultural technologies, when the true adoption status is one (i.e.,
adopter status), theME can take a value of only negative one (false negative). Similarly, when the true adoption
status is zero (i.e., nonadopter status), ME can take a value of only one (false positive).
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seedmarkets inmost developing countries can be amajor source of misperception about the plant-
ing material farmers use (Wossen et al. 2022). In such cases, self-reported information might not
reflect misreporting per se so much as it reflects agents’ underlying beliefs and decision-making
processes (Drerup et al. 2017, Abay et al. 2021, Wossen et al. 2022). Under this scenario, the an-
alyst needs to decide what truth she wishes to study. Self-reported information may have more
explanatory power for understanding agents’ decision-making processes and behavioral responses
such as input allocation decisions, while objective measures may be more relevant for predicting
biophysical relationships such as yield response to an input (Abay et al. 2021).

2.5. Optimal Prediction Error (Berkson-Type Error)

Berkson-type error is a special case of ME based on misperception that may arise when respon-
dents have imperfect control over a given variable and form their best prediction of the true value
given available information, almost surely yielding a prediction that deviates from the true value
(Berkson 1950,Hyslop& Imbens 2001,Hoderlein&Winter 2010, Schennach 2020). Farm house-
holds may predict rather than know agricultural metrics for several reasons. For example, keeping
track of frequent, variable agricultural input applications (e.g., labor, fertilizers, pesticides) can be
difficult; farmers may predict these outcomes using other characteristics (e.g., land size multiplied
by a recommended application rate or the weight of a purchased container but ignoring amounts
spilled or given to others). Rounding can also generate Berkson-type error (Schennach 2020). As
shown by Hyslop & Imbens (2001), the inferential implications of these types of errors depend on
the information set agents use for predicting a variable and whether a predicted variable appears as
a dependent or an explanatory variable in predictive models.Unlike the usual CME,Berkson-type
error is innocuous when the predicted variable appears as an explanatory variable and agents em-
ploy only the information set associated with the dependent variable (Hyslop & Imbens 2001).On
the other hand, Hyslop & Imbens (2001) show that Berkson-type ME in the dependent variable
leads to downward bias.

2.6. Differential and Nondifferential Measurement Error

Nondifferential ME occurs when the error is independent of the outcome (dependent variable)
of interest, while differential error involves ME that is correlated with the outcome of interest
(Imai & Yamamoto 2010). However, nondifferential ME is not necessarily equivalent to CME:
Unlike CME,nondifferential error may still depend on the true value of themismeasured variable.
For instance, in Equations 1–2 differential ME may arise due to (a) the correlation between the
ME and other observables in the model, including the dependent variable, and (b) the correlation
between theME and the unobservable [i.e., Cov(μ, ε ) �= 0]. Conceptually, the distinction between
differential and nondifferential ME resembles that between misreporting and misperceptions.

3. SOURCES OF MEASUREMENT ERROR IN AGRICULTURAL DATA

This section reviews sources and potential causes of ME in agricultural data (see Carletto et al.
2021 for a more comprehensive discussion of sources of ME in agricultural data). MEs may arise
from errors generated by the choices researchers make regarding the data-generation process
and analysis (i.e., survey design, data collection, and processing), from participant (e.g., farmers)
misreporting (e.g., erroneous response), and misperceptions (i.e., mistaken beliefs). ME can also
arise from third parties (e.g., enumerators, lab tests, and technologies) involved in the production
and processing of agricultural data.
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3.1. Measurement Error Arising from Researchers’ Design and Choice

The decisions researchers make about the data-generation process (e.g., questionnaire design,
field implementation modes, and protocols) often involve trade-offs related to budget constraints
and are among the main sources of ME (Biemer 2010, Dillon et al. 2020). Poorly designed sur-
vey instruments are a major source of ME. Questionnaire length and complexity, sequencing and
skip patterns, durations and differences in reference periods, (incomplete) response categories,
and (im)precise definitions, among others, can have important implications (Schwarz et al. 1991,
Beaman & Dillon 2012, Kilic & Sohnesen 2019, DeWeerdt et al. 2020, Ambler et al. 2021b). For
example,Wollburg et al. (2021) find that key agricultural input, output, and productivity variables
are systematically related to the length of the recall period, with longer recall periods systemati-
cally generating higher reported quantities of harvest, labor, and fertilizer inputs. A recent survey
experiment that randomly assigned seven different household consumption and expenditure sur-
vey designs in Tanzania finds that hunger rates can vary by up to 50 percentage points and that
differences in hunger rates vary systematically by household characteristics depending on the de-
sign (De Weerdt et al. 2015, 2020). Similarly, a survey experiment that varied the level of detail
in a labor survey module (e.g., with and without screening questions) shows that questionnaire
design impacts employment statistics, with effects varying by gender (Bardasi et al. 2012).2 Survey
specification and unit errors may also introduce substantial ME. Survey specification errors occur
when the concept implied by the survey question differs from the concept that should have been
measured (e.g., lack of clarity in defining plots relative to parcels), and unit errors occur due to
missing conversion factors (i.e., failure to collect adequate detail on the conversion of local units
of measure to more universal ones) or from forcing respondents to report in standardized units
that they do not typically use (Biemer 2010, De Weerdt et al. 2015, Carletto et al. 2021). These
types of MEs can lead to incorrect constructs, biased parameter estimates, and invalid inferences.

Survey modes (e.g., face-to-face versus by phone/web, on-paper versus electronic format, self-
administered versus interviewer-led) and associated choices made by researchers can also affect
data quality. Recent experimental studies show differences between information collected by in-
terviewing face-to-face versus telephone. Abate et al. (2023) find a 23% difference in reported
consumption and show that this lower reported consumption via phone interviewing results in an
estimated poverty headcount twice as high in the phone survey relative to the in-person survey.
Conversely, evidence of overreporting in phone surveymode is found in dietary diversity measures
(Lamanna et al. 2019) and contraceptive use (Greenleaf et al. 2020).

The environment and setting in which a survey is conducted can also introduce ME if the
context contributes to intentional misreporting by respondents, especially for sensitive topics
subject to economic and social desirability bias (e.g., food insecurity, land size and use, technology
adoption, employment, contraceptive use). Kilic et al. (2020) show that nonprivate interviewing
results in significant underreporting of employment compared to measurement through private
interviews, with a stronger effect for women. Researchers’ decisions related to both who within
the household to interview and what to use as an enumerator (gender, age group, income level)
may also affect data quality through context-specific social norms and customs (e.g., Caroli &
Weber-Baghdiguian 2016). For instance, social norms governing interactions between men and
women may shape what can be reported to or discussed with an interviewer of the opposite gen-
der. Other fieldwork design choices likely to contribute to measurement error include decisions

2Survey length and associated respondent and enumerator fatigue may also introduce substantial ME (e.g.,
Laajaj & Macours 2021, Ambler et al. 2021b, Abay et al. 2022c).
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about survey visit timing (time of day and time of year). Phung et al. (2015) show that time of day
and season significantly affect data quality, while LoPalo (2022) find that the temperature at the
time of interview affects the quantity and quality of interviewer output.

Besides errors that arise because of poor research design, researchers’ decisions in the con-
struction of variables from raw data can also generate substantial ME, including aggregation
bias (Sharma & Gibson 2019, Huntington-Klein et al. 2021). For example, researchers’ desire
to measure imprecisely defined concepts (e.g., ability), choice of imputation (Huntington-Klein
et al. 2021), and aggregation process (Sharma & Gibson 2019) can introduce errors that may
significantly affect statistical inferences.

3.2. Measurement Error Arising from Survey Respondents

ME also originates from study participants, mainly due to misreporting and misperception. Mis-
reporting occurs when respondents provide incorrect information to a response to a question,
intentionally or unintentionally (Biemer 2010). Recall errors (because of memory decays) are per-
haps the most common such ME. Questions with longer recall periods or that elicit information
about less frequent and less salient events are often subject to recall errors mainly because of the
cognitive demand on the respondents (Fermont & Benson 2011, Beegle et al. 2012, Gourlay et al.
2019). De Nicola & Giné (2014) found that beyond a certain recall period, respondents switch
from enumeration to estimation,which translates into different error patterns. Similarly,Wollburg
et al. (2021) and Arthi et al. (2018) document the presence of nonrandom MEs systematically
related to the length of the recall period in multiple agricultural surveys.

Closely related to recall error that may lead to (unintentional) misreporting is telescoping,
wherein respondents misdate events by either recalling more distant events as occurring more re-
cently (forward telescoping) or pushing recent events further back in time (backward telescoping)
(Sudman & Bradburn 1973, Gaskell et al. 2000). Recent experiments confirm that responses from
recalls with no memorable recall marker (unbounded recall) significantly differ from bounded
recalls that provide a salient recall marker (reference points) in respondents’ memory to better
contextualize responses (DeWeerdt et al. 2020, Abate et al. 2022). For instance, the typical seven-
day food consumption recall without a salient recall marker results in a 16% higher consumption
(equivalent to an entire extra day worth of consumption) compared to consumption levels based
on bounded recall (Abate et al. 2022).

Measurement error is also a common problem when the variables of interest are unobservable
(latent), either for privacy reasons (e.g., crime, sexual preference, gender roles) or because they
are difficult to observe or measure directly (e.g., ability, risk aversion, empowerment) (Schennach
2020, Calvi et al. 2022). This is often the case in gender empowerment studies, particularly
when both hidden information (adverse selection) and hidden actions (moral hazard) are present
(Ambler et al. 2021a, Kilic et al. 2021). Social norms and customs associated with specific socio-
economic groups (e.g., gender, age group and income levels) may influence rates of intentional
misreporting (Caroli & Weber-Baghdiguian 2016). For instance, a recent study in Ghana found
systematic differences in amounts of agricultural labor reported by men versus women and by
their perceived quality of marriage (Dervisevic & Goldstein 2023).

Misreporting may also arise from the use of proxy respondents (e.g., typically the male head
of the households in agricultural surveys) who inaccurately represent activities or events related
to household members that occur outside the respondent’s purview (Biemer 2010). Kilic et al.
(2021) show that interviewing one knowledgeable household member results in higher measured
rates of exclusive ownership of land assets among men and lower rates of joint ownership among
women, compared to those reported by self-respondents. Bardasi et al. (2012) show that response
by proxy rather than self-report produces substantially lower male employment rates, mostly due
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to underreporting of agricultural activities with effects attenuated when the proxy respondents are
spouses and individuals with some schooling. Respondents recall facts about their own lives more
reliably than others’ characteristics (Baird et al. 2008, Hogset & Barrett 2010). Reliance on proxy
informants to report on household-level agricultural variables may also lead to misreporting due
to aggregation errors (Dillon & Mensah 2021).

Reporting error due to respondent rounding (focal point bunching) occurs often in farmers’
self-reported land area and production, with regression-to-mean patterns as farmers owning rel-
atively larger (smaller) landholding under(over)-reporting landholdings (e.g., Carletto et al. 2013,
2015; Desiere & Jolliffe 2018; Abay et al. 2019, 2021; Abay 2020; Gourlay et al. 2019). Carletto
et al. (2015) and Abay et al. (2019) confirm that the presence of rounding contributes to increasing
ME mainly due to asymmetric heaping (i.e., bunching by farmer with small landholdings); Abay
et al. (2022b) show that rounding explains about 18%of the variation inME in land area inMalawi.

Respondents may also intentionally misreport (Bound et al. 2001, Norwood & Lusk 2011,
Krumpal 2013). In the case of landholdings, respondents may deliberately overreport due to sta-
tus considerations or underreport because of taxation or redistribution concerns. A number of
agricultural variables including modern input use, hired labor and child labor, and adoption of
sustainability standards and climate-smart practices can similarly be subject to social desirability
bias. Jouvin (2021) shows that child labor use in Ivorian cocoa farms is twice as high when mea-
sured using a list experiment approach that reduces social desirability relative to a direct survey
question related to child labor. Another study on environmental protection behavior found that
more than 60% of the self-reports were inaccurate, because of both under- and overreporting
(Moore & Rutherfurd 2020).

Misperception is another mechanism through which respondents introduceME in survey data.
Although it is challenging to distinguish misperception from misreporting in survey data, few re-
cent studies use empirical techniques to apportion MEs between misperception and misreporting
(e.g., Abay et al. 2021,Wossen et al. 2022). One distinction between misreporting and mispercep-
tion relates to the impact of ME on respondents’ actual decision-making processes. In the case
of misreporting, respondents know and base their decision on their latent, accurate perceptions
instead of its mismeasured values (Lewbel 2007, Chetty 2012). Misperception, however, reflects
inaccurate beliefs that affect respondents’ underlying decision-making processes (Chetty 2012,
Drerup et al. 2017,Hu&Wansbeek 2017,Wilhelm 2019,Abay et al. 2021).Abay et al. (2021) show
that MEs in plot sizes represent a mixture of farmers’ misperception and misreporting, whereas
Wossen et al. (2022) show that crop variety misclassification is mostly driven by misperception
(i.e., farmers acquiring planting material that is not what they think).

Besides misreporting and misperception, respondents may also introduce MEs through opti-
mal prediction error. Some farmers may base their assessment of soil quality and soil type on crop
yields (Berazneva et al. 2018) or their plot size based on the seed quantity used (David 1978). Pre-
diction error may also be introduced by the length of the recall period because respondents may
switch from enumeration to estimation beyond a certain recall length (De Nicola & Giné 2014).

3.3. Measurement Error Arising from Third-Party Actors

ME in agricultural data may also be introduced by third-party actors such as enumerators or
technologies deployed for data collection. Survey enumerators’ actions and characteristics may
systematically affect respondents’ responses. Enumerator-related ME arises when differences
across enumerators (e.g., in gender, education, ability) and their behavior (e.g., pace of interview,
compliance with survey procedure, fatigue) affect the interview process (Biemer 2010, Berazneva
2014, Carletto et al. 2021). Enumerators’ characteristics and their differences from respondent
characteristics can generate systemic biases (Baird et al. 2008, Lavrakas 2008, De Weerdt et al.
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2015, Phung et al. 2015,Himelein 2016,Di Maio & Fiala 2019). Baird et al. (2008) find systematic
errors in survey data due to enumerator fatigue (i.e., error rates increase with the number of in-
terviews completed per day). The nature and magnitude of enumerator effects are also influenced
by question salience and sensitivity (Himelein 2016, Laajaj & Macours 2021).

Researchers are increasingly relying on alternative data sources such as sensors as low-cost and
scalable solutions to collect agricultural data (Burke&Lobell 2017,Lobell et al. 2019).While these
relatively new data sources offer opportunities for collecting agricultural data with rich spatial and
temporal dimensions, these modes of data collection are not immune fromME ( Japec et al. 2015,
Amaya et al. 2020). For instance, several studies show that poorly equipped technologies including
the lack of calibration in satellite-based models can generate MEs in satellite-based estimates of
yield (Lobell et al. 2007, 2019; Jain 2020), agriculture/irrigation water use (Foster et al. 2020), eco-
nomic activities (Gibson et al. 2020, 2021), economic well-being (Yeh et al. 2020), and pollution
concentrations (Fowlie et al. 2019), among others. Gibson et al. (2020, 2021) show that nightlight
data extracted from the DefenseMeteorological Satellite Program (DMSP) satellite sensors suffer
from NCME because of blurring, top-coding, and lack of calibration. Michler et al. (2022) show
that the sign andmagnitude of the relationship between agricultural production andweather varies
across remote sensing weather products, while Li & Ortiz-Bobea (2022) demonstrate how re-
searchers’ decisions related to the aggregation of remotely sensed weather data can generate
NCME. Amaya et al. (2020), Jain (2020), Fowlie et al. (2019), and Gibson et al. (2021) provide
extensive discussions on various sources of ME in satellite data and potential avenues to address
them.

4. TESTING AND CORRECTING FOR MEASUREMENT ERROR
IN HOUSEHOLD SURVEY DATA

The appropriate responses to ME depend on the nature and type of the errors as well as the
analytical objective.Figure 1 summarizes the pertinent questions and appropriate responses in the
form of a decision tree.The first question relates to the nature of data needed: survey or nonsurvey
(e.g., remote sensing, administrative) data, or both. The choice of data should consider potential
vulnerability to mismeasurement as well as potential remedies to address these inaccuracies. As
discussed in Section 3, the sources of ME in survey data and nonsurvey data differ, requiring
different diagnostics.

In the case of survey data still to be collected, someME can be addressed by improving research
design and measurement protocols. As described by De Weerdt et al. (2020) and Carletto et al.
(2021), definitional clarity, length, complexity, and modality of delivering survey questionnaires
all affect the quality and relevance of agricultural data to inform policy. Although some of these
improvements can be costly, reducing recall length and increasing visit frequency can reduce both
cost and ME in survey data (Beegle et al. 2012,Wollburg et al. 2021). Bounding recall periods and
references significantly eases the cognitive burden on respondents and hence minimizes errors
(Abate et al. 2022). Carletto et al. (2021) argue that proper enumerator recruitment, training,
and monitoring can minimize enumerator-driven ME. Given many prospective sources of survey
error, however, addressing all types and causes in a single research design can be impractical; some
ME will likely remain even in those data collected with best-practice survey designs.

Although ex post analysis and adjustment may generate some insights to circumvent these data
quality deficiencies, addressing ME ex ante through appropriate survey design and technologies
is typically the best approach. Once data are collected, researchers have fewer corrective options.
Increasing effort by researchers to understand (a) data-generating processes, (b) units of obser-
vation, and (c) the local context and actors involved in the design, collection and processing of
agricultural data can minimize those MEs.
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If the data are already collected and researchers have limited opportunities to address potential
mismeasurement, analysts should focus on (a) assessing the presence and type of ME in the data,
(b) evaluating the inferential implications and assessing whether an error should be corrected, and
(c) if an error should be corrected, understanding how to make those corrections. Several alterna-
tive approaches exist to test for the presence and properties of ME. Although some approaches
can be employed as diagnostic tests without additional information, most require validation or
external information.

Among those diagnostic tests to evaluate the presence of potential mismeasurement in a spe-
cific variable of interest, several studies employ Benford’s law to test the properties and associated
distribution of a specific variable of interest. Judge & Schechter (2009) test the distribution of the
first significant digit of various data using Benford’s law and identify potential mismeasurement
in agricultural surveys in Paraguay. Similarly, Schündeln (2018) employs Benford’s law and shows
that a longer recall period increases ME in consumption data. However, these types of diagnostic
tests are only applicable for sufficiently continuous measures.

Other methods for testing the presence of ME require either proxies (e.g., repeated measures)
or external information that could serve as an instrumental variable (IV). For example, somemeth-
ods estimate linear regressions using ordinary least squares and IV estimators and attribute the
differences between the two estimates to ME (e.g., Hausman 1978,Hausman et al. 1998,Mahajan
2006, Hu 2008, Wilhelm 2019, Lee & Wilhelm 2020). Mahajan (2006) proposes a test for the
presence of ME for binary explanatory variables. This test requires an additional random vari-
able that is correlated with the unobserved true underlying variable but unrelated to the ME.
Wilhelm (2019) extends this approach, relying on testing whether ME distorts key outcomes of
interest instead of directly testing the presence or absence of ME. Lee &Wilhelm (2020) provide
a Stata package to implement this simple nonparametric test of the no ME hypothesis, which is
inferred based on the relevance of ME (i.e., whether measurement distorts expected relationships)
by comparing distribution functions for a given variable of interest.

Testing for the presence and properties of ME is considerably easier in the presence of bench-
mark measurement or validation data.When a researcher has the option to design data collection,
building in validation checks on measures of key variables is typically a wise investment of scarce
survey time and resources. For example, one can evaluate whether ME behaves classically or non-
classically by regressingME on the true value of the variable of interest (i.e., either μ ontoX ∗ or ω

onto Y ∗, considering the expression in Equation 1). A statistically significant correlation between
ME (μ and ω) and true values implies NCME. Several studies use GPS-based plot size as a bench-
mark for this type of empirical test to confirm NCME in self-reported land size and production
measures (Desiere & Jolliffe 2018; Abay et al. 2019, 2021, 2022b).

Identifying the presence of ME is not sufficient for understanding the inferential implica-
tions, nor is identifying the presence sufficient to decide whether an error should be corrected. As
discussed, the distinction between misreporting and misperceptions especially matters for both
statistical inference and understanding respondents’ actual decision-making processes (e.g., farm
management). Considering the expression in Equations 1–3,misperception implies that ME in an
explanatory variable (μ) is likely to matter for farm management decisions and hence production
outcomes. Abay et al. (2021) employ an empirical test to evaluate the predictive role of measure-
ment error on farm management decisions. In the absence of misperceptions conditional on X ∗,
the additional information contained in X must be uninformative about farmers’ behaviors, a hy-
pothesis that entails testing whether ME in agricultural inputs (μ) predicts input use decisions by
directly introducing ME as a regressor in the spirit of a control function approach as follows:

Y = α + βX ∗ + λμ + ε. 4.
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If λ = 0, then there is no evidence of misperceptions. The hypothesis test in Equation 4
requires validation data and is vulnerable to misspecification of the functional form of the re-
lationship between Y and X ∗ (Wilhelm 2019). To overcome those limitations, Wilhelm (2019)
proposed a simple nonparametric test for ME (including NCME).

Wossen et al. (2022) combine self-reported crop variety adoption with DNA fingerprinting re-
sults and, assuming these variables as two proxies of the latent variety perception, conduct a simple
nonparametric test of the no ME null hypothesis by testing whether ME distorts the conditional
mean of farmers’ complementary input use functions (particularly fertilizer and herbicide inputs).
Wossen et al.’s test explicitly evaluates equality of the input use expectation, conditional on the
alternative proxies employed. This is a nonparametric evaluation of how the conditional mean
of Y ∗ depends on the various proxies assumed (Mahajan 2006, Wilhelm 2019, Lee & Wilhelm
2020). These tests do not necessarily imply the absence of ME in the two adoption proxies, only
that, if any ME exists, it does not affect the conditional mean of the input use function. When
researchers have access to repeated measurements, they may be able to infer the origins of ME by
testing the joint conditional expectations for various variables of interest (e.g., land use, consump-
tion, production choices). However, these tests are only as credible as the assumptions used. Thus,
it is prudent to scrutinize whether such assumptions are plausible in view of the data-generating
process and context.

Whether researchers need (and how) to correct MEs depends mainly on the type/nature of
the error and on the purpose of the analysis. Errors that arise due to misperceptions affect both
statistical inference as well as respondents’ decision-making processes.Thus, in the case of misper-
ception, researchers interested in estimating behavioral parameters associated with respondents’
decision-making processes and behavioral responses can benefit from using misperceived values.
In contrast, researchers interested in the prediction of actual biophysical phenomena (e.g., yield
response to an input) should typically employ objective measurements of these variables. Concep-
tually, identifying misperception and providing updated information to respondents who display
misperceptions may allow them to update mistaken beliefs and thereby improve investment and
other management choices and associated outcomes.Moreover, mistaken beliefs about one object
may spill over to affect beliefs about other objects, as Abay et al. (2022b) find in the case of plot
size misperceptions’ effects on self-reports of fertilizer and labor use in Malawi.

Some misperceptions and mistaken beliefs might be driven, however, by respondents’ behav-
ioral anomalies such as inattention, self-esteem, or confirmation bias or by local agricultural input
market imperfections (e.g., the informality of input markets). Such factors might impede respon-
dents from updating their beliefs in response to information-based interventions (e.g., agricultural
extension programming). Abay et al. (2022b) evaluate the impact of an information-based inter-
ventionmeant to address farmers’ misperceptions about plot size and show that learning is limited,
heterogeneous, and asymmetric.

To summarize, while some types and sources of MEmay be addressed by improving the survey
design or measurement protocol or using improved measurement technologies, many other types
of ME are less amenable to correction during data collection, and an analyst might not even want
to study corrected data. Characterizing and examining the nature of ME are crucial to justify
investment in correction or identify appropriate statistical remedies to minimize the consequences
of these errors on policy relevant inferences. Similarly, evaluating whether these sources of ME
affect just one or multiple variables of interest can inform whether one should invest in correcting
ME in agricultural data. Researchers should routinely test for the presence of ME in agricultural
data and characterize important features of these errors just as they do other specification tests in
data analysis.
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Almost all methods aiming to conduct statistical inference in the presence of ME require
some additional information, whether validation data or some assumptions on error distributions,
repeated measurements, or instruments (Schennach & Hu 2013). Auxiliary or validation data as-
sociated with a specific variable of interest can facilitate IV estimation to overcome bias due toME
(Mahajan 2006; Lewbel 2007; Hu 2008; Kreider et al. 2012; Schennach 2016, 2020; Di Traglia
& García-Jimeno 2019). For example, the availability of multiple imperfect measurements of the
same unobserved underlying true variable can provide a practical way to correct inferential biases
associated with ME, particularly when the error in one measure is plausibly classical and hence
can serve as an instrument (Schennach 2020). Along these lines, Battistin et al. (2014) use two
repeated measures of education qualification to estimate returns to education. When multiple
imperfect measurements and IVs are available, Calvi et al. (2022) propose an ME robust LATE
(MR-LATE) estimation approach. It may be reasonable to assume that ME (if any) in crop vari-
ety identification through DNA fingerprinting or land size measured via GPS is random (i.e., it
is CME), allowing researchers to use these measurements as instruments to overcome bias due
to ME in self-reported information. Cohen (2019) uses this logic to address potential bias
due to ME in land area. However, IV-based correctives require strong assumptions about the na-
ture of ME or the relationship between the instrument and ME. Those assumptions often cannot
be validated empirically, especially in the presence of NCME, such as the core IV assumption that
the instrument is strongly correlated with the unobserved true underlying variable but unrelated
to the ME.

5. BEHAVIORAL IMPLICATIONS OF MEASUREMENT ERROR
IN AGRICULTURAL DATA

No data will be error-free. But as discussed above,whenME at least partly represents respondents’
mistaken beliefs, it also adds new, potentially valuable information to an analysis. Researchers are
beginning to take farmer misperceptions seriously as objects of analysis in their own right.

As discussed by Abay et al. (2022b), the existence and persistence of farmer misperceptions
may reflect important behavioral phenomena, including rational inattention (Gabaix et al. 2006,
Gabaix 2017), selective inattention (Hanna et al. 2014, Schwartzstein 2014) and confirmation bias
(Rabin & Schrag 1999), and motivated reasoning (Nyhan 2020). In the presence of rational or
selective inattention, farmers fail to notice and thus fail to learn from information available to
them. Confirmation bias and motivated reasoning prompt farmers to pay attention mainly (or
only) to new information that confirms their prior beliefs or generates some anticipated payoff.

These behavioral explanations may help explain the existence or persistence of misperceptions,
yet they have little to say about their initial formation. The causal mechanisms behind farmer
misperceptions—their formation and evolution—are important, nascent research areas, and an-
alytically distinguishing among potential behavioral explanations for ME is an area of research
with considerable promise.

Misperceptions about the quality, quantity, and type of agricultural inputs could result from,
and be reinforced by, inaccurate information about input quality and purchasing decisions. For
example, frequent measurement of land area is not common in many African countries, so farmers
form beliefs about the size of their plots through varied, often inaccurate land allocation processes.
Similarly, in the absence of lab-based testing facilities and in contexts where agricultural inputs
andmarkets are informal and prone to adulteration, farmers’ assessments of fertilizer and pesticide
(or herbicide) quality likely suffers from misperceptions (Bold et al. 2017, Ashour et al. 2019,
Michelson et al. 2021, Hoel et al. 2022, Maredia & Bartle 2023).

Regardless of the causes of misperception, mistaken beliefs about the quantity and quality
of agricultural inputs and related technologies can affect farm management and agricultural
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investment decisions. A large literature has demonstrated the relevance of farmer uncertainty
about inputs and technologies to adoption decisions. Farmer uncertainty about seed identity and
traits and uncertainty regarding implementation of the bundled management choices that come
with switching from a known variety to a new variety have long been concerns of development
economics research, dating back at least to the framework laid out by Feder (1980). Uncertainty
about agricultural input quality is associated with lower expected returns, reducing incentives for
adoption and use (Bold et al. 2017, Michelson et al. 2021). Bulte et al. (2023) use a randomized
controlled trial to show that farmers who are uncertain about whether their maize seed is a hybrid
or local variety reallocate labor away from maize production, lowering yields by 30% relative to
the complete information scenario.

A slight but important distinction exists between uncertainty and misperception, however.
A misperception is an incorrect understanding rather than an understanding characterized by
complete uncertainty. Building on the study of the importance of uncertainty to examine farmer
misperceptions may provide additional insights into farm management and investment decisions.
Recent work suggests a strong relationship between farmer beliefs about the type and quality
of different agricultural inputs and farming outcomes. For example, recent studies show signif-
icant relationships between farmer beliefs about soil quality, input application, and crop yields
(Marenya et al. 2008, Berazneva et al. 2018, Abay et al. 2022a). Mullally (2012) argues that farm-
ers hold mistaken beliefs about the mean of the cotton yield distribution in their region; farmers
believe mean yields are higher than the researchers can establish with extant data. As a result,
farmers are unwilling to purchase the index insurance offered at an actuarily fair price based on
the researcher-established mean yield.

Besides their impact on technology adoption and investment decisions, farmer misperceptions
can ultimately reduce agricultural productivity and allocative efficiency.Wossen et al. (2022) show
that misperceptions induce crowding-in(out) of complementary agricultural inputs. More impor-
tantly, Wossen et al. find that these misperception-driven input allocations are associated with
lower yields, implying that such mistaken beliefs may induce allocative or technical inefficiency.
Similarly, Mallia (2022) estimates the impact of varietal misperception on farmer decisions, pro-
ductivity, and profits using data from farmers who either grow an improved maize variety and
know it (true positive) or grow an improved variety and think that they do not (false negative).
Farmers that correctly perceive their status as improved maize adopters invest in more variable
inputs (fertilizers and labor) and have higher yields.

Although the literature on the implication of farmer misperceptions remains nascent, the
limited studies to date highlight the potential prevalence, magnitude, and costs of misperceptions
and associated inaccurate information in agricultural systems. This implies that identifying
and addressing farmer misperceptions and associated agricultural market imperfections may
improve farmers’ investment choices and productivity outcomes. The degree to which farmers’
misperceptions can be corrected likely depends on the kind of misperception and degree to
which information sufficiently addresses its underlying behavioral phenomenon, however. For
example, mistaken beliefs that arise from agricultural market imperfections and frictions may be
addressed by providing access to quality information, verification, and regulatory mechanisms.
Information-based campaigns and interventions may also ameliorate farmers’ inherent mistaken
beliefs, although the empirical validity of this presumption remains largely untested, and the
scant existing evidence is not encouraging (e.g., Abay et al. 2022b). Some behavioral phenomena
that may generate misperceptions (e.g., inattention, confirmation, and self-esteem bias) might
also obstruct learning and updating of mistaken beliefs. These behavioral anomalies and potential
systematic variation in these attributes can affect the effectiveness of information interventions
as well as heterogeneities across observable and unobservable characteristics of farmers. For
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example, some individuals are skeptical about, and thus less accepting of, information that is
inconsistent with their preferences, a tendency known as directionally motivated reasoning. If
individuals scrutinize any information inconsistent with their preferences, information campaigns
may need to be tailored asymmetrically based on whether they largely reinforce or counter target
recipients’ preferences (Ditto & Lopez 1992).

Efforts to correct misperceptions among farmers have achieved mixed success. Maertens et al.
(2022) study patterns of farmer beliefs and beliefs updating about urea fertilizer quality in response
to a randomized information campaign in Tanzania. They find that farmers exposed to the infor-
mation campaigns update their beliefs significantly, revising upward their belief that urea is of
good quality. They also find that urea purchases increase, especially among farmers who were not
previously using the input and who believed quality was bad at baseline. Tamim et al. (2022) find
that farmers update their beliefs about the soil fertility of their plots after receiving input vouchers,
but that farmers who receive both vouchers and plot testing do not change their beliefs, nor do
farmers who receive the information alone. Abay et al. (2022b) use a randomized controlled trial
to show that even after farmers are provided GPS measures of their plot size, only a small number
correct their self-reports: 37% do not correct at all, 28% partly correct (meaning that they move
closer to the GPS-measured value), 13% fully correct, and 13% move from one focal point value
to another. Those that are likely to correct are those who underestimated at baseline relative to
the GPS measure.

6. IMPLICATIONS FOR FUTURE RESEARCH AND SMALLHOLDER
AGRICULTURAL DEVELOPMENT

MEs are pervasive in data of all sorts, and analysts must be alert to those errors. Failure to account
for ME can lead to mistaken inferences, including about important policy-relevant phenom-
ena, such as the inverse-size productivity relationship (Desiere & Jolliffe 2018, Abay et al. 2019,
Gourlay et al. 2019) or the magnitude of allocative inefficiency in African agriculture (Gollin &
Udry 2021). The fact that stylized facts that routinely inform policy design can at least partially
be explained by measurement should serve as a caution to empirical analysts about proceeding
without careful consideration of the prospective causes and consequences of ME in their data.

The pervasiveness and implications ofME justify further investments to improvemeasurement
of agricultural data, about which two very nice surveys offering excellent guidance have been writ-
ten recently (DeWeerdt et al. 2020, Carletto et al. 2021). But while more careful data collection is
essential, one can never fully correct for ME. Evolving scholarship on the nature and implications
of ME raises several ripe opportunities for future research.

First, more careful thought needs to be devoted to whether, when, and how to correct for
ME. For example, if one is fundamentally interested in farmer behaviors that might be informed
by misperceptions, or if NCME is correlated among multiple variables, some of which cannot be
corrected, then erroneous data may be—counterintuitively—more appropriate objects for analysis
than partly corrected data series. Researchers do not yet have good rules of thumb regarding when
to correct and when not to correct.

Second, growing evidence on the pervasiveness of misperceptions within ME suggests the
importance of evaluating the quality and veracity of information provided to, rather than received
from or about, farmers through both new and old dissemination platforms as a part of agricultural
extension or policy evaluation efforts. Inaccurate information can itself be a source of mispercep-
tions or can serve to reinforce existing misperceptions. If misperceptions are associated, especially
causally, with underinvestment or underperformance, greater attention needs to be paid to the
origins and evolution of farmer misperceptions. Moreover, providing research subjects with
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inaccurate information can inadvertently cause harm, so researchers need to exercise caution in
information experiments (Barrett & Carter 2014). Important differences exist between providing
farmers with validated information on their own circumstances (e.g., the GPS-measured size
of their plot, the DNA-identified variety of their seed, or the lab chemistry analysis of their
soils or purchased fertilizer or pesticides) versus giving them estimates based on large spatial or
intertemporal sample averages or statistical models that almost surely differ from the subject’s
individual-specific parameter value(s).

Third, the introduction and scaling of technologies that dramatically reduce the costs of both
collecting information on or from farmers and providing information to farmers raise the stakes
and the salience of the issues we discuss in this review. For example, digital agriculture, which
uses information communications technology–based means of providing information to farm-
ers, is the focus of a significant and growing industry (reviewed by Birner et al. 2021, Spielman
et al. 2021, Abate et al. 2023), and text messages are now a primary digital channel used to reach
farmers with information in Africa at scale, at least in part because the costs of providing informa-
tion texts to smallholder farmers are extremely low.3 As a consequence, an intervention with only
modest effects on knowledge and uptake can potentially deliver positive social returns if the pro-
cess of generating actionable information for farmers is sufficiently cheap. Yet African agriculture
is characterized by considerable heterogeneity in growing conditions across relatively small dis-
tances that suggests a need for caution (Tittonell et al. 2005, 2013; Vanlauwe et al. 2019) because
any management recommendation is only as accurate as the spatial scale of the most coarsely mea-
sured variable used to derive it. Information interventions that are careful about contextualized
measurement and external validity and that vet the information appropriately for accuracy may
be difficult and expensive to implement, undercutting one of the main arguments for information
interventions: their seemingly low unit cost.

The recent literature on ME has focused heavily on survey data. But as greater attention turns
toME in administrative and remotely sensed data, as well as to the evaluation of digital agricultural
interventions, appropriate attention should be paid to the errors that such methods may introduce
into researchers’ analyses but also to the potential negative costs borne by farmers from receiving
wrong information at scale.
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