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Abstract

Although both randomized and nonrandomized study data relevant to a ques-
tion of treatment efficacy are often available and separately analyzed, these
data are rarely formally combined in a single analysis. One possible reason
for this is the apparent or feared disagreement of effect estimates across de-
signs, which can be attributed both to differences in estimand definition and
to analyses that may produce biased estimators. This article reviews specific
models and general frameworks that aim to harmonize analyses from the
two designs and combine them via a single analysis that ideally exploits the
relative strengths of each design. The development of such methods is still
in its infancy, and examples of applications with joint analyses are rare. This
area would greatly benefit from more attention from researchers in statistical
methods and applications.
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1. INTRODUCTION

Much of modern medical and social research is geared toward testing or estimating a causal asso-
ciation between an agent or treatment and a particular outcome. Developers of causal inference
methods, however, disagree on many topics, including even the definition of an effect. In re-
cent years, these arguments have focused particularly on the ideal study design. Experimentalists
emphasize the potential for strong internal validity afforded by randomization. That is, because
randomization creates two groups that are on average balanced on pre-treatment characteristics,
one may on average attribute post-intervention differences between the two groups to differences
in treatment. This feature has led to medical research communities considering the randomized
controlled trial (RCT) to be the gold standard in providing causal evidence. The added support
of the evidence-based medicine movement has solidified the RCT as the ideal design for medical
inference. For example, randomized trials are routinely placed near the top of so-called evidence
pyramids (see, e.g., Howick et al. 2011) and given the highest quality in rating schemes (Moher
et al. 1995). Social scientists have more recently begun to favor randomization in their work as
well. (see, e.g., Cook et al. 2008, Green & John 2010).

Despite the potential internal validity asset of randomization, studies without randomization
have some important advantages (e.g., Black 1996, Williams & Garner 2002, Cohen et al. 2004,
Cook et al. 2008). For example, observationalists note that compared with randomized studies,
nonrandomized studies can be more feasible; simpler to conduct; and inclusive of more diverse
subjects, treatments, and outcomes. Researchers in many fields have been increasingly interested
in the usefulness of observational designs, as evidenced by a multiplicity of recent meetings and
conferences that highlighted the relative merits of nonrandomized designs (e.g., IOM 2013, Reeves
et al. 2013). The continuing development of more appropriate methods for extracting evidence
on causal effects from nonrandomized data has also helped to elevate the value of these designs in
the minds of many researchers.

Although unequal valuation of different assets leads individual researchers to favor different
designs, both randomized and nonrandomized studies are currently and will continue to be relevant
for inquiries into a wide range of treatment effects. Growing recognition of the relative advantages
of and comfort with modern methods for both randomized and nonrandomized studies creates a
pressing need for methods to jointly analyze both types of data. A case study of the safety of pediatric
antidepressant use (see sidebar, Case Study: Pediatric Antidepressant Safety) demonstrates the
relative merits of an array of relevant data and the importance of basing decisions on all relevant
evidence.

Joint analysis of multiple data sets is the subject of a rich literature and the focus of several
organizations (e.g., the Cochrane Collaboration for medical research and the Campbell Collabo-
ration for social science). Most work in this area relates to combining summaries from collections
of studies with the same design and related to the same or similar questions in order to estimate
a single treatment effect. Further, the emphasis has been on combining only high-quality studies,
implying that only randomized studies are used. Although both the Cochrane and Campbell Col-
laborations allow the inclusion of nonrandomized data in research reviews, the lack of supporting
tools for doing so belies the smaller value that has until recently been afforded these designs. For
example, the Cochrane Collaboration is just now developing a tool for evaluating the quality of
nonrandomized studies of interventions (Reeves et al. 2013). Pressures such as the need for policy
makers to have timely information on relevant effects (Reeves et al. 2013) have pushed the field
into recognizing the value of casting a broader net, and many researchers suggest that randomized
and nonrandomized studies can provide complementary information (Grootendorst et al. 2010,
Peinemann et al. 2013, Shrier et al. 2007).
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CASE STUDY: PEDIATRIC ANTIDEPRESSANT SAFETY

Although psychiatric professionals had suspected an increase in treatment-induced suicides since the early 1990s
(Teicher et al. 1990), intense study of this issue did not begin until a 2003 GlaxoSmithKline report to the US
Food and Drug Administration (FDA) indicated some evidence for this causal relationship in its pediatric RCT's of
Paxil (Hamad et al. 2006). Shortly thereafter, the FDA and its British counterpart [the Medicines and Healthcare
Products Regulatory Agency (MHRA)] issued public health advisories warning of the increased risk. These advisories
prompted a number of conflicting studies based on a wide array of data sources. In this case study, I highlight analyses
that address issues of internal and external validity. [Bridge & Axelson (2008) provide a more comprehensive review
of relevant studies. ]

In an analysis typical of evidence-based medicine, the follow-up study conducted by the FDA relied exclusively
on RCTs. Their meta-analysis of 24 trials found a roughly twofold increase in the risk of suicidal thoughts and
behaviors (termed “suicidality”) due to new-generation antidepressant drugs (Hamad et al. 2006), and, in 2006,
the FDA strengthened its advisory to a black box warning. Although randomization may protect against selection
bias, this so-called definitive study has several shortcomings, such as use of exclusion criteria (including baseline
suicidality), reliance on a surrogate endpoint, and short study duration (Kaizar et al. 2006). Some of these limitations
to the study of pediatric antidepressant safety using RCT's can be addressed via many types of alternative data sources,
as the following examples demonstrate.

1. The role of exclusion criteria (or, more broadly, population sampling) can be examined via both variability
among RCTs with different enrollment strategies (see, e.g., Kaizar et al. 2006) and comparisons with more
representative samples. Greenhouse et al. (2008) took the latter approach to judging the generalizability of
the FDA’s collection of RCTs. Using a nationally representative sample survey from the United States (the
Youth Risk Behavior Survey), they found the rate of suicidality events in the RCT's to be half that observed
in the adolescent population at large. Such a substantial difference casts doubt on the direct relevance of the
FDA'’s results for the treatment of suicidal depressed youth.

2. The large sample sizes and longer follow-up times of insurance claims databases allow researchers to use
attempted and completed suicide as an outcome, rather than the more frequent surrogate outcome, “suicidal
thoughts and behaviors.” (There were no completed suicides in the 24 trials.) Analyses based on a private
insurance claims database (Valuck etal. 2004) and a Medicaid claims database (Cooper etal. 2014) did not find
any significant association between antidepressant use and suicide attempt. Note that regardless of study size
and design, classification of observed actions according to the child’s intent is difficult at best and a limitation
of any study of suicide.

3. National mortality statistics allow us to focus on completed suicide only, as adjudicated by coroners or similar
professionals. Gibbons et al. (2006) used the natural variation in antidepressant prescription rates (as estimated
from a pharmacy database) among US counties to show that counties with higher rates of antidepressant use
also tend to have lower rates of adolescent suicide, although the ecological data do not allow a direct causal
conclusion to be made.

4. Because of the regulatory actions taken by the FDA, variation in suicide rates across time also implies that
antidepressant use is protective for completed suicide. Studies based on national mortality statistics (Gibbons
et al. 2007) and a large longitudinal insurance claims database (Lu et al. 2014) showed increases in US suicide
rates after the FDA actions. Although this trend might be attributable to other changes that occurred during
that same time period, these data add to the preponderance of nonrandomized evidence against increased
risks of completed suicide due to antidepressant use.

Although these examples focus on US-based data, many of these same studies have been repeated in Europe,
with similar conclusions.
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CASE STUDY: PEDIATRIC ANTIDEPRESSANT SAFETY (CONTINUED)

This case study clearly shows that although regulatory agencies considered randomized data to be definitive, there
is a wealth of nonrandomized data that provide evidence on many aspects of the underlying question of the safety

of antidepressant drugs. Consideration of all of the available evidence may have led to a decision more focused on

nuanced trade-offs related to the real, long-term risk of suicide.

As of now, there has been only cautious exploration into how to jointly analyze evidence from
both randomized and nonrandomized studies. For example, a search of the medical literature in
2012 produced only 42 papers on the joint use of multiple study designs, whereas 2,270 meta-
analyses were indexed in PubMed between 1995 and 2012 (Peinemann et al. 2013, Ioannidis
et al. 2013). Given the potential for complementary analyses, explicit methods for and successful
examples of syntheses are in very short supply.

This article aims to review the literature directly related to methods for incorporating evi-
dence from randomized and nonrandomized designs in a single analysis, as well as some relevant
supporting work. Both broad design categories contain many subclassifications. However, the
key concepts discussed in this paper typically apply regardless of this detailed taxonomy. In par-
ticular, the term “observational study” is sometimes reserved to describe a particular subset of
nonrandomized designs that excludes interventional studies such as uncontrolled or historically
controlled trials. Instead, I use the terms “nonrandomized” and “observational” interchangeably,
and, in particular, I identify specific designs for which this distinction may be important. In ad-
dition, a very large and hotly discussed literature is devoted to correcting for selection bias in
nonrandomized studies. Although these corrections are important to syntheses across designs, a
review of these methods is beyond the scope of this article.

The review is organized as follows. Section 2 discusses and carefully defines the causal effect
that is often the estimand of interest. Section 3 reviews methods that estimate single effect sizes
via linear combinations of study-specific effect sizes, which are direct extensions of fixed- and
random-effects meta-analyses. In this section, I also review an approach that has recently been
losing favor, which is to adjust the weight assigned to low-quality study effect estimates that may
be biased. Section 4 contains more general approaches to adjusting each study for possible design
shortcomings and combining studies via methods that acknowledge design differences, including
the cross design synthesis method proposed by Eddy etal. (1992) and other parametric bias models.
I place a particular focus on methods to estimate how generalizable the results of a study may be,
as well as methods to construct more generalizable effect estimates. The article concludes with a
summary of the existing literature, comments on possible future directions, and a plea for more
methods development and examples of applications in this important area.

2. TREATMENT EFFECT DEFINITIONS

In this review, I consider only those analyses for which the goal is estimation of the effect of an
intervention (as opposed to the effect of some factor that cannot be changed directly, such as a
person’s race). Even with such focus, there is no single uniform definition of a treatment effect.
Definitional differences are extremely important to the relevance of various study designs and
analysis choices. Of the many possible ways to specify a treatment effect, the individual treatment
effect {TE) is perhaps the most universally applicable, as knowledge of this effect for all individuals
would permit perfect decision making (see sidebar, Individual Treatment Effect). Because we can
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INDIVIDUAL TREATMENT EFFECT

The effect that an intervention has on a single individual, typically taken to be the difference between the outcome
that would have been observed had the individual received the intervention and the outcome that would have been
observed had the individual not received the intervention, is known as the individual treatment effect (I'TE). [This
definition of treatment effect can be extended to consider probability distributions for the outcomes of treatment
versus lack of treatment, as well to cases in which multiple or continuous treatments are considered (see, e.g., Imai

& van Dyk 2004) ]

observe or have direct evidence on only one individual counterfactual outcome, we must rely
on an indirect or modeling approach to estimate each ITE. For example, in a study in which
randomization balances all covariates across treatment groups, the average outcome among those
who received the active treatment may be a reasonable estimate for the average counterfactual
outcome for those who received the control treatment, and vice versa. Thus, the difference between
these two sample averages, the primary statistic in many randomized trials, is an estimator of the
sample average treatment effect (SATE). Although not theoretically required, methods for causal
inference often focus on average treatment effects, regardless of study design or statistical tools
used. (One notable exception is in economics, in which distribution quantiles are typically of more
interest than means.)

Imai etal. (2008) provide an excellent in-depth review of average effects that may be of interest,
as well as elements of study design and analysis that can be used to improve estimates of these
means. In particular, they recognize that estimating average causal effects involves two important
and interrelated considerations: The first (Consideration 1) is how to estimate the (average) coun-
terfactual outcomes (i.e., internal validity), and the second (Consideration 2) is how to define the
population over which the treatment effect should be averaged (i.e., external validity). In the latter,
population can be very broadly defined; for example, it can be defined to include not only individ-
ual demographics but also environment. The clear distinction between these two considerations is
essential for joint analyses of randomized and nonrandomized data, as each design relates to these

POST-ASSIGNMENT SELECTION BIAS

Counterfactual
outcome: The
outcome for one
individual that would
be observed under one
of the possible
interventions,
regardless of the
intervention that was
actually received

Sample average
treatment effect
(SATE): The average
ITE, averaged across
the study participants

In theory, simple averages are attractive estimators for counterfactual average outcomes for randomized trials. In
practice, however, one must utilize them with caution, as the course of events occurring after assignment to treatment
(and perhaps due to this assignment) but prior to outcome measurement can severely bias these estimators. For
example, randomized subjects may drop out of a study for many important reasons, such as perception of an
ineffective control treatment (likely inducing a positive bias in the estimate of the counterfactual average outcome
for the control treatment) or adverse side effects of the active treatment (likely inducing a negative bias in the
estimate of the counterfactual average outcome for the active treatment). Model-based approaches to missing data
can correct these biases in some cases. As a second example, consider subjects who do continue to participate in the
study but do not comply with the assigned treatment. One may be able to overcome this problem by using principle
stratification to define latent groups based on potential compliance with assigned treatment and by using observed
compliance to create unbiased estimates of the average treatment effect on the compliers instead of on the entire
sample (Frangakis & Rubin 2002).
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Selection bias:

Any bias in a causal
estimator due to
systematic imbalance
between the treatment
groups

Generalizability bias:
Any bias in a causal
estimator due to
systematic differences
between a study and
the application of
interest, including the
population, treatment,
and outcome

Hawthorne effect:
Changes in the
counterfactual
outcome of an
individual that result
from the attention
garnered by study
participation

considerations very differently. Typically, trialists address Consideration 1 through randomization
and dismiss Consideration 2 by arguing that the purpose of the study is to test for a beneficial treat-
ment effect for any population subset (rather than to estimate the average magnitude of the effect
in a well-defined population). Observationalists address Consideration 1 via statistical methods
to adjust for selection bias (e.g., propensity score matching or instrumental variables) and rely on
elements of study design, such as probability sampling, to define the population in Consideration 2.

Mismatches between the treatment effect (as defined by the two considerations) and the study
protocol may bias effect estimates. Errors in addressing Consideration 1 are termed “selection
biases” (which could result from issues such as dropout, missing data, or errors in measurement),
and errors with respect to Consideration 2 are called “generalizability biases.” In addition to pop-
ulation considerations, the generalizability of an estimator encompasses other factors regarding
the relationship between (#) interventions and outcomes observed within the confines of a study
and (b) those that would be observed naturally. For example, critics of randomized trials in health
care note that the definitions of treatment (e.g., counseling intervention provided by an expert)
and outcome of interest (e.g., short-term follow-up or surrogate endpoint) often differ from those
observed naturally once an intervention is adopted (e.g., novice counselor or long-term outcome)
(Rothwell 2005). Finally, one must consider phenomena such as the Hawthorne effect, in which
the act of conducting a study influences the outcomes observed in that study. For example, many
segments of the population spurn participation in organized studies, thus skewing or truncating
the population represented in any study requiring recruitment. When jointly considering random-
ized and nonrandomized studies, we must pay particular attention to the danger of influencing
recruitment and retention by the very act of randomization (Heckman & Smith 1995).

Discrepancies in target treatment effect definitions are critical, as they may explain ostensibly
different effect estimates derived from randomized and nonrandomized studies. To demonstrate
this point, Herndn et al. (2008) compared the risk of coronary heart disease due to hormone
replacement therapy as estimated in the Women’s Health Initiative (WWHI) RCT with that reported
in the Nurses’ Health Study (NHS) observational study. The original observational data analyses
indicated that hormone users are at reduced risk of heart disease, whereas the randomized study
indicated the reverse: Hormone users are at increased risk. Hernan et al. (2008) reanalyzed the
NHS data mimicking the same design and analysis choices of the randomized WHI study, notably
using regression adjustments to address possible selection bias and using similar inclusion criteria to
address generalizability bias. (The reanalysis also carefully harmonized the definition of treatment
by looking at only hormone initialization, not current use, in order to parallel the “intent to treat”
analysis in the RCT") This case study found that “much of the apparent WHI-NHS difference
disappeared” (p. 773) once the definition of the treatment effect was standardized. Although many
comparisons do find differences between effects estimated from studies using different designs
(Peinemann et al. 2013), MacLehose et al. (2000) and Shadish et al. (2008) generally confirmed
the results of Herndn et al. (2008), finding only small differences in effect estimates in comparisons
between randomized and observational studies with comparable populations and adequate control
for selection.

3. LINEAR COMBINATIONS OF STUDY-SPECIFIC EFFECTS

Regardless of design, when multiple studies provide evidence regarding the same or similar treat-
ment effects, it is natural to consider combining these studies in a single analysis. As in the single-
design case, analysts often do not have access to original study data and must rely on reported
study-specific estimates to conduct their analysis. Thus, researchers also naturally consider ex-
tending single-design meta-analytic methods to accommodate studies with differing designs.
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3.1. Fixed-Effects Meta-Analysis

Historically, meta-analyses have typically focused on combining study-specific effect estimates
from published studies via a weighted average. For example, let {éj}]j-:1 and {6, }]JZI represent
estimators of the effect sizes and their corresponding standard errors from J separate studies. For
randomized studies, the estimator is typically the difference in means or a log odds ratio comparing
the active treatment and control arms. For nonrandomized studies, the estimator may be adjusted
to eliminate selection bias (as mentioned in Section 2).

These meta-analytical estimators can be developed under two paradigms. The first supposes
that each study estimate is unbiased for the true treatment effect. In this case, the most simplistic
estimator is the simple average. Weighting each study-specific estimate according to its precision
reduces the variance of the overall estimator, and the result is termed the fixed-effects estimator:

=
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Heuristically, the fixed-effects estimate gives more weight to studies with smaller variability (e.g.,
those with larger sample size) than to those with larger variability. When the study-specific esti-
mates have approximately normal probability distributions, fgg is the maximum likelihood esti-
mator for the linear model:

9]' =0 + € js
where ¢€; have independent N (0, 67) distributions. Fixed-effects estimators can also be formu-
lated within a generalized linear model framework, such as the following model for a continuous
outcome:

Y =u;+0T; +ey,
where T is an indicator of the active treatment group (equal to 1 for i = 1 and to 0 for i = 2)
and ¢;; have independent N (0, 6]2) distributions.

Although this type of model is typically applied to collections of similarly designed studies, it
can incorporate both randomized and nonrandomized data. Begg & Pilote (1991) used a fixed-
effects model to jointly analyze a collection of randomized trials and separate uncontrolled trials
of each treatment to estimate the comparative effect of allogeneic bone-marrow transplantation
versus conventional chemotherapy in treating leukemia. Under the assumption that {x; }]J.:1 are
independently and identically distributed (i.i.d.) with mean x and finite variance 72, the uncon-
trolled trials contribute to the information about the treatment effect 6. [Begg & Pilote (1991)
require normal distributions, but Li & Begg (1994) do not.] They note that if the mean outcome u;
varies a lot across studies, this approach naturally discounts the contribution of the uncontrolled
studies (Begg & Pilote 1991). In fact, for infinite 72, the uncontrolled studies do not contribute
to the estimate of 6 at all. For 2 close to 0, however, inference about the treatment effect 6 can
be greatly improved by synthesizing the uncontrolled studies along with the randomized trials.
Estimation for both models is accomplished via maximum likelihood or empirical Bayes methods.

This model unrealistically specifies identical means for both randomized and nonrandomized
studies. Begg & Pilote (1991) extended the model to include treatment-specific bias terms, 1 and
&, for the uncontrolled trials:

Yij=w; +0T; +nS; +§T;S; + e,

where S; is an indicator for an uncontrolled study. In this way, the estimand 6 represents the gold
standard treatment effect with strong internal validity. Unfortunately, because this model includes
an interaction between treatment and study type, the uncontrolled trials now contribute only via
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improved estimation of the between-study variance 7. Note that this model assumes constant bias
(although some heterogeneity may be reflected in the variance estimate 05-) for all uncontrolled
studies, a strong a priori assumption.

Consideration of bias for the uncontrolled studies points to the possibility that the true treat-
ment effect is not uniform across studies. Even if randomization balances the treatment groups, it
is seldom tenable to assume a constant treatment effect, even among RCT's, because the studies to
be synthesized rarely have uniform protocols (e.g., they may have different participant selection,
treatment application, environment, outcome measurement, and follow-up time). The second
synthesis paradigm assumes such between-study heterogeneity of treatment effects. If the studies
are thought to be randomly selected to be naturally representative of the real-world heterogeneity
among populations, treatments, or other study features, then the simple average described above
is still a reasonable estimate of the true average treatment effect (Peto 1987). Most researchers,
however, turn to random-effects models instead.

3.2. Random-Effects Meta-Analysis

Random-effects models place a probability distribution on the study-specific effect sizes, {6, }]J.=1.
Though not necessary, i.i.d. normality is typical:

0, "N, 12).
The usual target of inference, 6, is the average of the true study-specific effects, butitis interpreted
as the “true” treatment effect. The numerous methods for its estimation include method-of-
moments-based weighted averages, generalized linear models, and Bayesian hierarchical models
(Amatya et al. 2014).

As with fixed-effects models, nothing about the random-effects model dictates study type.
One can assume that randomized and nonrandomized studies have identical means and directly
include all studies without further model modifications. However, this approach may be an in-
adequate treatment of such collections for a number of reasons. For example, the effect sizes of
very large observational studies with correspondingly very small standard errors may swamp any
evidence provided by the randomized trials (Reeves et al. 2011). This feature would be particularly
troubling if the nonrandomized study estimates are biased. Thus, model extensions again permit
design-specific differences in treatment effect means.

Prevost et al. (2000) used an approach similar to the grouped random-effects model proposed
by Larose & Dey (1997) to posit random differences in design-specific average effects, leading to
an extra level in the hierarchy as follows:

0 ~ N(Oj, 63,
Bk ~ N(O. T7),
O ~ N(8, v?),

where 6; is the design-specific effect for design type £ (¥ = 1 for randomized studies and ¥ = 2
for nonrandomized studies). As in traditional random-effects meta-analysis, the goal is to estimate
the overall effect 6. A Bayesian approach to parameter estimation is arguably necessitated by the
difficulty of estimating the variance v’ with only two design types. As Prevost et al. (2000) note,
the results are sensitive to the prior distribution for this parameter.

Prevost et al. (2000) demonstrated their method in an analysis of the effect of breast cancer
screening promotion on mortality. They estimated a design-averaged relative risk in favor of
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screening promotion but noted that (#) the effect estimate for the randomized studies was slightly
smaller than that for the nonrandomized studies, and (b) the variability of this estimate was also
slightly smaller than that for the nonrandomized studies. These trends were confirmed by Deeks
et al. (2003), who found that treatment effects in observational studies tend to be more variable
than those of their randomized counterparts.

Although this analysis was among the earliest examples of combining studies with different
designs, few have used itin practice. Grines etal. (2008) used the three-level model directly in their
study of the comparative effectiveness of thrombectomy and percutaneous coronary intervention,
Sampath et al. (2007) studied the use of loop diuretics for acute renal failure, and McCarron et al.
(2010) examined abdominal aortic aneurysms. The latter two studies also implemented model
extensions to adjust for perceived data quality.

3.3. Discounting Possibly Low-Quality Data

Rather than embracing the philosophy of including all available relevant studies (e.g., via the
three-level hierarchical model), some believe that only the “best” studies (or those of “sufficient”
quality) should be included in an analysis (Ades & Sutton 2006, Welton et al. 2009, Higgins et al.
2013). In designed research syntheses, such decisions about inclusion are based on quality scoring
systems, such as the Cochrane Collaboration’s tool for assessing randomized trials (Higgins et al.
2011) or similar tools for observational studies (Deeks et al. 2003).

A less extreme approach is to include all available studies but to downweight those that are
considered to be oflower quality (e.g., nonrandomized designs, which appear lower on the evidence
pyramid). Many researchers have suggested methods of implementing such quality weighting. For
example, Bérare & Bravo (1998) propose a simple quality score weight to inflate study variance
via multiplication. [This idea is very similar to utilization of a power prior distribution for the
effect size (Ibrahim & Chen 2000).] Spiegelhalter & Best (2003) flesh out this idea in a model-
based context via a very general model that is particularly relevant to combining randomized and
nonrandomized data, as it separates external bias (§g) from internal bias (8;) for each study:

0; =0+ 8g; + 4y (1)

2
~N (6,1 + 1)) =N<9, i'*) )
7
where
8e; ~ N (0, ),

b ~N(0.%3).

and the quality weight ¢; = (t)/(z§ + 1'12].) is the fraction of the total variance due to external
variability.

As separate information about the random-effects variance 7} and quality weights {g; }]J-:1 in
the relevant studies is limited, Spiegelhalter & Best (2003) propose informative prior distributions
based on similar meta-analyses or expert opinion. For example, in their assessment of the cost-
effectiveness of hip prostheses based on an RCT, a registry, and a case series, Spiegelhalter &
Best (2003) used quality weights of 1, 0.5, and 0.2, respectively. These weights reflect an a priori
specification that the variance of the case study is inflated fivefold to reflect the true uncertainty in
the evidence about the “true” parameter from this “low-quality” design. They also suggest using
sensitivity analyses to mitigate the strong influence of these priors.

An alternative that allows nonzero means for the distributions of the bias parameters is to use
meta-epidemiological studies to specify prior distributions. Several authors have attempted to use
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collections of research syntheses to evaluate the magnitude of biases in randomized trials, for
example, as classified by the domains in a quality or risk-of-bias classification scheme (see, e.g.,
Sterne et al. 2002, Siersma et al. 2007). A more recent proposal by Welton et al. (2009) directly
uses these estimates to correct for bias in meta-analysis.

Specifically, Welton etal. (2009) built upon a simplified version of a model proposed by Siersma
etal. (2007) to create a meta-regression that includes a single bias indicator:

0; ~N@© + B X;,67).

where X is an indicator of high risk of bias. Thus, the mean for each high-risk-of-bias study effect
is randomly offset from the true mean, 8, which is defined as the mean of the low-risk-of-bias study
effects. The indicator-based adjustment ; allows unbiased estimation of this mean. A hierarchy
of prior distributions for the random offsets, 8;, reflect between-meta-analysis variability in bias
as well as the uncertainty in the overall average bias. This, in turn, effectively downweights the
contributions of the studies at high risk of bias. For example, adding ten high-risk trials to an
analysis provides a gain in precision that is equivalent to adding between one and six low-risk
trials, depending on the hierarchical variability (Welton et al. 2009).

As Welton et al. (2009) note, we could in theory include an observational study in an analysis
by defining it as having high risk of bias. They did not attempt such an analysis, however, and
suggest that collecting evidence to specify empirically based prior distributions for the bias param-
eters would be difficult. [Ryan et al. (2012) do use a large collection of observational studies, but
they focus on identifying preferable statistical analysis methods rather than reweighting.] Unfor-
tunately, currently available evidence does not support the use of such empirical priors, even for
RCT-only analyses. In their study of 148 meta-analyses of randomized trials, Wood et al. 2008)
found that the magnitude of biases can vary across different types of studies. For example, they
found that biases due to inadequate allocation concealment were larger for subjective outcomes
than for objective ones. They also found inconsistencies in the direction of the bias that could
have resulted from other study differences.

Welton et al. (2009) demonstrate that the model-based approach can be easily extended to
incorporate more sources of variability (e.g., by allowing the ; to vary randomly or by allowing the
between-study variance to vary across meta-analyses) and more sources of bias [e.g., by assuming
that indicators of high risk of bias in multiple domains linearly contribute to the mean; also
presented in articles by Siersma et al. (2007) and Turner et al. (2009)]. Turner et al. (2012b)
used a version of this quality-based adjustment to analyze data from one randomized and nine
nonrandomized studies of a treatment routinely administered to pregnant women to prevent
undesirable immune responses during subsequent pregnancies.

Despite the relative ease of specification, models including quality indicators have some major
drawbacks. Detailed quality information is often not available, and the intercept in the meta-
regression model may not be jointly estimable with the regression coefficients (Higgins et al.
2009). In addition, limited numbers of studies may make estimation for extended models difficult
and highly dependent on assumptions. To avoid these disadvantages, it is tempting to collapse
multiple dimensions of bias into a single quality score that can be used as a single regression
coefficient. Greenland & O’Rourke (2001) provide detailed discussion of this use of quality weights
for randomized studies, noting that biases related to quality are not necessarily all in the same
direction, much less additive or even linear.

More complex linear bias models are also possible. Dias et al. (2010) propose a mixed
treatment comparison meta-analysis similar to that done by Welton et al. (2009). Their ap-
proach includes random-effects bias parameters with normal probability distributions that have a
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treatment-by-comparison-specific mean. The authors suggested further extensions to include
multiple study designs, but they did not explicitly describe or implement such a method.

A few authors have implemented a linear model approach to bias adjustment in analyses of
collections including both randomized and nonrandomized studies. In their study of loop diuret-
ics and acute renal failure, Sampath et al. (2007) found moderate evidence that quality score and
study completion year were important effect moderators that increase the effect size. No evidence
for effect moderation was found for the average age, gender, or control arm risk. McCarron et al.
(2010) used imbalance between the treatment arms on three variables as covariates in their study
of treatments for abdominal aortic aneurysms. This approach requires that there are a moder-
ate number of imbalanced variables to consider and that arm-specific information is available.
If individual-level data were available, bias adjustment via methods such as propensity score ad-
justments would help to overcome the dimensionality problem. However, analysts seem to more
often synthesize randomized and nonrandomized studies separately (see, e.g., Mak et al. 2009,
Chowdhury et al. 2014).

4. GENERAL BIAS MODELS

The linear approaches to bias addressed in the previous section can be thought of as special
cases of more general bias models. In particular, they are closely tied to the response surface
modeling philosophy for meta-analysis that Rubin (1990) proposed as an alternative to traditional
meta-analyses focused on simply averaging high-quality study-specific effect sizes (Greenland &
O’Rourke 2001). To form the surface, subject-specific effect moderators that affect external validity
or generalizability bias can be thought of as being located along one set of axes, and the study-
specific effect moderators that affect internal validity, or selection bias (including randomization),
can be thought of as being located along a second set of axes. The response surface on the third axis
(or set of axes) reflects the expected treatment effect at each point in the two-dimensional subject
x study space. In this framework, the average treatment effect of interest could be identified by
a weighted average (or integral) across a subject-specific subspace at a single “ideal” cross-section
along the study-specific set of axes. As Figure 1 shows, the response surface approach is closer to
the Spiegelhalter & Best (2003) bias-adjusted model than to the Prevost et al. (2000) three-level
average model, where the treatment effect is defined to be the average of the response surface over
both the subject and study dimensions.

The simplest response surface models can be created via extensions of the three-level model
such as those that Prevost et al. (2000) used to assess the effect of breast cancer screening on
mortality. Notably, the authors analyzed data for younger and older women separately. The
strikingly different effect estimates suggest that age moderates the effect of cancer screening
encouragement. Such moderation can be incorporated into an overarching model for both groups
of women and both study design types via an age group indicator covariate while maintaining
design-specific variance parameters:

éjk =0+O(Xjk+5k+6jk,
5 N, v),
ind N
€jr ~NO, 77 + szk),
where Xj; is an indicator for age group (Prevost et al. 2000). The authors were very thoughtful
about specifying design-specific variance components, rather than the tempting but difficult to
justify assumption that 77 is equivalent for all design types k (Turner et al. 2012). The effect of

interest was for the older women (0, i.e., for X = 0).

www.annualreviews.org o Jointly Analyzing Randomized and Observational Data



oy yusunedl

Figure 1

Nonrandomized
A
Randomized - Subjects select
g treatment
=
7]
- ) .
c Subjects randomized
g to treatment
-
]
[
S
=
3
>

External validity moderators

Relationship between response surface, three-level linear models, and bias-adjusted models. (#) A hypothetical response surface. Gray
lines represent two cross-sections at the internal validity design points, “randomized” and “nonrandomized,” where line thickness
reflects the precision of each design. (b)) The same cross-sections as in panel # projected in two dimensions. The red line represents the
effect surface of interest if the “randomized” design was considered ideal. A single average effect estimate could be a single weighted
integral over this line, where the weights are specified by the target population. The blue line represents the effect surface that averages
between the two internal validity design points, weighted by the inverse precision. For well-matched studies, the effect estimate from a
three-level linear model would be a weighted integral of this surface, where the weights are determined by the study designs. Similarly,
the effect estimate from a bias-adjusted model would be a weighted integral of the red line.
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This example can be reconceived as a coarse response surface consisting of four points corre-
sponding to the age x design combinations, each of which has corresponding data available for
direct estimation. Assumptions about smoothness of the response surface and variance structure
would imply a joint model such as that presented by Prevost et al. (2009). The response surface
idea could also be used to estimate an average effect across age groups, where the effect size would
be a weighted average of the age-specific effect estimates on the “randomized” cross-section of
the surface. Of course, if more specific data were available, this type of regression model could
also incorporate more study features based on population, intervention, or outcome.

The response surface idea is more powerful in more common situations in which randomized
evidence is notavailable for all of the subject-specific design points. For example, many randomized
studies exclude relevant segments of the population for efficiency or ethicality. In this case, the

response surface can be used to extrapolate to the design point of interest. This idea is incorporated
in cross design synthesis.

4.1. Cross Design Synthesis

An idea that is similar to (but more well developed than) the response surface was promoted by the
US General Accounting Office (GAO) (1992) as part of its approach to jointly using experimental

and observational evidence in a cross design synthesis (CDS). In its entirety, CDS is a very general
four-step methodology:

Step 1 Assess external validity of randomized studies.

Step 2 Assess internal validity of observational studies.
Step 3 Adjust all studies for internal/external validity.

Step 4 Combine adjusted results within and across designs.
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Table 1 Synthesis Framework: Primary and Secondary Dimensions of Stratification®

Primary dimension: type of design
Secondary dimension: coverage of patient groups in | Results of randomized studies: Database analyses:
randomized studies” Stratum 1 Stratum 2
Covered in randomized studies (e.g., whites) Stratum 1a Stratum 2a
Not covered in randomized studies (e.g., blacks, Stratum 1b (empty) Stratum 2b
and other minorities)

*Reprinted from GAO (1992), table 4.2.

bAssumes that existing database analyses cover all patient groups.

The first two steps of a CDS roughly correspond to the two dimensions of the response sur-
face described by Rubin (1990). Step 1 focuses on the subject dimension, and Step 2 focuses on
the study dimension. On the basis of these assessments, the GAO approaches Steps 3 and 4 by
following Hlatky (1991) in partitioning the design space into four strata based on the study type
and randomized study inclusion criteria (see Table 1). This stratification is again a coarse repre-
sentation of a response surface and, again, corresponds to the Prevost et al. (2000) example had
no randomized data been available for young women. In this simple CDS, by design, one stratum
has no direct evidence, so we must extrapolate to estimate an effect size in that stratum. Following
the response surface idea, an estimate of the average treatment effect for the whole population (all
ages of women) is a weighted average of the effect size estimates in the “randomized evidence”
stratum (Table 1, left column). Kaizar (2011) showed that the simple linearly extrapolated esti-
mator is unbiased whenever the bias due to poor internal validity in the observational studies is
separate from the inclusion criteria. That is, the estimator is unbiased whenever the bias due to
weak external validity in the randomized studies can be estimated without bias, using only data in
the observational study strata.

The CDS framework is particularly notable for its explicit treatment of the two dimensions
of internal and external validity in a manner that clearly exploits the complementary strengths
of randomized designs (which usually have strong internal validity) and observational designs
(which usually have strong external validity). To my knowledge, however, no complete practical
application of CDS has been published. In fact, the GAO itself used the first three steps of the
CDS methodology to examine breast conservation versus mastectomy in the treatment of breast
cancer, but it did not complete the fourth and final step: synthesizing the studies (see sidebar,
Case Study: US General Accounting Office Cross Design Synthesis Comparing Mastectomy and
Breast Conservation Therapy).

4.2. Parametric Bias Models

CDS and response surface methodology can also be viewed as special cases of much broader
approaches to bias. Ades & Sutton (2006) provide an in-depth review of general approaches to
these types of models under the term “multiparameter evidence synthesis.” This subsection reviews
some of the major contributors to the literature on parametric bias models, with particular emphasis
on applications that relate to the joint analysis of randomized and nonrandomized study data.
One of the earliest general bias models was the confidence profile method (CPM) proposed by
Eddy and colleagues (Eddy 1987, 1989; Eddy et al. 1992), which is a methodology for precisely
defining questions of interest, relating those questions to available data via probability models,
and estimating relevant parameters in those models. In particular, the CPM promotes the use of
influence diagrams (graphs) to organize data and clearly identify biases for each study, to create
probability models based on the diagrams, and to estimate all of the parameters simultaneously via
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CASE STUDY: US GENERAL ACCOUNTING OFFICE CROSS
DESIGN SYNTHESIS COMPARING MASTECTOMY AND BREAST
CONSERVATION THERAPY

Five relevant RCT's suggest that breast conservation therapy (BCT) is no less effective than mastectomy. There
is, however, a potential for considerable treatment heterogeneity that might induce different treatment effects in
less-controlled natural practice (e.g., practice in which doctors decide both which patients are good candidates for
BCT and how much tissue to remove). Thus, in their 1994 study, the GAO turned to observational data collected
in the National Cancer Institute’s Surveillance, Epidemiology and End Results (SEER) database of cancer patients
to examine the generalizability of the RCT results. The GAO focused on creating and analyzing the SEER data to
preserve the validity of cross design comparisons.

1. External validity: The GAO included only SEER patients whose characteristics (e.g., tumor size and age)
and treatment (e.g., BCT including lumpectomy, nodal dissection, and radiation) were comparable to those
included in the RCTs.

2. Internal validity: The GAO compared survival of patients only within propensity score quintiles based on
demographic characteristics and tumor size. (Although no quintile showed a statistically significant difference
in treatment, there was a trend suggesting that treatment was less effective for those patients who tended to
receive BCT less often.)

In its main analysis, which compared treatment effects estimated in the two study designs, the GAO found
the SEER-based effect (odds ratio) to be approximately 0.06 smaller than single-site RCTs and 0.11 smaller than
multisite RCTs. That s, both designs consistently showed no evidence that BCT is inferior to mastectomy. Because
biases due to inadequate adjustment for external and internal validities could potentially offset any true effect
differences between the study designs, however, the GAO also conducted a sensitivity analysis that compared the
combined treatment survival rates across designs. This analysis showed a 4.3% observed difference in five-year
survival rates between the SEER and single-center RCT's, suggesting the possibility of some uncontrolled patient
differences between the two study designs.

Using these analyses, the GAO successfully addressed their main questions regarding the generalizability of
RCT-based hypothesis tests by comparing estimates between appropriately adjusted analyses in studies with two
designs. The GAO did not, however, take the additional step to complete a full CDS by formally jointly modeling
all of the data to estimate relevant population quantities.

maximum likelihood or Bayesian methods. [In the event that calculating a simultaneous solution
is intractable, Eddy et al. (1992) suggest using a sequential analysis.] In the creation of diagrams
and distributions, the CPM makes a clear distinction between the functional parameters for which

the data provide direct information (e.g., means that reflect unideal study features), and the true
parameter(s) of interest (e.g., the average treatment effect). The functional parameters can often

be characterized as a function of the true parameters and nuisance bias parameters.

As an example, consider a study in which 100 2% of participants are lost to follow-up. If 64 is
the mean outcome for the subjects that drop out, 6. is the corresponding mean for subjects that

complete the study, and 6 is the mean outcome across the whole population (the parameter of

interest), then we can see that for normally distributed outcomes with constant variance,

0. = (O —109)/(1 — 1), and
Y. ~ Normal(6,, 0 /n.),
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where Y. is the observed average outcome for the subjects that completed the study. The goal is
to estimate the true parameter 6, but the lack of direct information about the nuisance parameter
64 precludes standard frequentist likelihood-based estimation. Instead, we must either augment
our data with auxiliary sources relevant to 64 or rely on a prior distribution (based on reasonable
assumptions or elicited expert opinions).

Eddy et al. (1992, p. 309) recognized that construction of a model for all of the evidence that
incorporates complex biases can be sensitive to many modeling decisions, and they recommend
using sensitivity analyses to “explore the impact of uncertainties, assumptions, and judgments.” In
particular, they suggest using prior distributions for all parameters (i.e., a full Bayesian analysis)
and repeating the analysis with different model assumptions. The CPM can address random
study-to-study variation via random-effects models for the so-called true parameters, much like
the three-level hierarchy described in Section 3.3 does.

Many other authors have used quite similar approaches to modeling biases using several data
sources. For example, Greenland (2005, 2009) suggests multiple bias models, focusing on methods
for estimation based on sensitivity analyses and discussing technical issues that arise in models with
high-dimensional bias parameters. He demonstrates his methodology using case-control studies,
for which he indirectly uses auxiliary information to create prior distributions for the bias param-
eters. Wolpert & Mengersen (2004) promote methods using adjusted likelihoods, demonstrating
the use of auxiliary data to provide direct evidence about nuisance bias parameters such as measure-
ment error. Molitor et al. (2009) use Bayesian graphical models to combine several observational
studies in order to overcome limitations due to missing data.

In theory, models such as these can correct all types of bias (either empirically by estimating
bias parameters or by using a sensitivity analysis), including the different biases typically seen in
observational and randomized studies. In practice, however, these bias-correcting methods focus
on observational data and corrections for selection biases; they typically do not include both
randomized and observational data.

4.3. Generalizability

Generalizability methods are unique in that they nearly uniformly require a synthesis of both
observational and randomized data. Their focus on carefully defining the population over which
the treatment effect will be estimated, and adjusting the estimates to apply to this population,
also sets them apart from most causal modeling. When the number of variables that define the
target population is small, standard survey reweighting techniques can be used to reweight the
randomized participant data to match the observed variable distributions in the nonrandomized
study. For larger numbers of variables, Cole & Stuart (2010) propose using propensity scores to
accomplish this reweighting in a single dimension. They demonstrate their method by reweighting
participants in a study of antiretroviral therapy among HIV-infected US residents to match the
age, sex, and race of the HIV-infected US population, as estimated by the Centers for Disease
Control and Prevention (CDC) via observational data.

Unfortunately, this approach is limited by its assumption that all segments of the target popu-
lation are represented in the study sample. Because randomized trial recruitment criteria are often
designed for efficiency and ethicality rather than for generalizability, however, this assumption
may not hold. For example, HIV investigators who conducted a trial reanalyzed by Cole & Stuart
(2010) only recruited subjects with low CD#4 cell counts. If this variable is an effect moderator,
any reweighting scheme will result in a partial adjustment (Cole & Stuart 2010). A complete
adjustment would be possible only through extrapolation, such as via CDS.
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When appropriate data for reweighting are not available, it is still prudent to assess the po-
tential extent of study generalizability. Many authors compare baseline characteristics and out-
comes between randomized and observational studies, either individually (e.g., Stevens et al. 2007,
Greenhouse et al. 2008) or by comparing estimated propensities for enrolling in a trial (e.g., Stuart
et al. 2011). If only summaries of the randomized data analysis are available, researchers can at
least raise concerns about the potentially limited generalizability of a randomized study owing to
inclusion criteria for recruitment by estimating the portion of an observational data set that would
have been ineligible to participate (e.g., Fortin et al. 2006, Humphreys et al. 2000, Zimmerman
etal. 2004).

Other authors explore limitations to the generalizability of randomized studies that are induced
by characteristics that are not directly measurable. For example, many people do not consent
to randomization even if they are eligible for and available to enroll in a randomized study.
Marcus (1997) proposed a method to examine the effect of these unmeasured selection forces, or
nonconsent bias, by comparing randomized trial participants with a nonrandomized registry of
patients who were asked to participate in the trial but declined to consent. She used propensity
score matching (based on estimated probabilities of belonging to the randomized group) in a study
of pharmaceutical versus surgical treatments for otitis media and found modest nonconsent bias
indicating that the randomized study effect estimate was too large. In addition, randomization bias
can be examined via comprehensive cohorts (in which only participants who are agnostic about
treatment choice are randomized) and two-stage randomized designs (in which members of one
randomly selected group are allowed to choose their own treatment, whereas those in the other
group are randomly assigned to active or control treatment). In a review of studies that used these
designs in the medical literature, King et al. (2005) found little evidence for randomization bias
large enough to be practically important.

4.4. Chains of Evidence

Another dimension of generalizability concerns the outcome measures of interest. Prospective
randomized trials measure many outcomes (such as long-term outcomes or rare events) less effi-
ciently than an observational study would. For example, we would expect a prospective study of
10-year survival to take at least 10 years to complete, whereas we could retrospectively analyze
existing data in a matter of weeks. Thus, prospective studies often utilize surrogate outcomes. In
such cases, analysts may construct a chain of evidence that leads from the interventions through
the surrogate outcome to the outcome of interest. The same general models for bias correction
presented above can be repurposed to estimate treatment effects in chain of evidence situations.

For example, Eddy etal. (1992) present a hypothetical use of the CPM for a chain of evidence in
which either experimental or observational data are used to estimate parameters for different links
in the chain. They also analyze real data related to the effect of tissue-type plasminogen activator
(t-PA) on stroke survival, for which most links were estimated using randomized data, but evidence
regarding the relationship between intermediate outcome (reperfusion) and outcome of interest
(survival) was taken from the control arm of a randomized trial. Ratcliffe et al. (1998) also rely on
a chain of evidence modeled via the CPM to estimate the cost-effectiveness of several methods
of preventing mother-to-infant transmission of HIV. Most links in this chain were estimated via
observational data, but the effect of oral zidovudine in transmission prevention was estimated from
a randomized trial.

Different uses of chains of evidence also build on CPM ideas. Epstein et al. (2013) were able
to use a randomized trial to learn about the effect of different monitoring tests to prevent dia-
betic adverse events, but these data contained no direct information about the mechanism of the
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treatment. The authors were able to infer properties of the mechanism by incorporating evidence
regarding some intermediary outcomes from an observational study. In this spirit, estimating a
causal network of variables may assist in better understanding the relationships among a collection
of potential moderators and mediators. A substantial literature describes such network discovery
based on Bayesian methods and observational data. Cooper & Yoo (1999) and Yoo (2012) demon-
strate extensions to these methods that incorporate both randomized and observational data.

Pearl (2009) also suggests using CPM ideas in a hypothetical estimation of a lower bound
for the probability of causation for a treatment. He relies on the strong internal validity of ex-
perimental data to estimate a counterfactual mean and on the external validity of observational
data to estimate population probabilities. In light of the methods discussed in this section, Pearl’s
claim that both randomized and nonrandomized designs are necessary for such estimation is quite
strong. Nevertheless, this hypothetical example crisply demonstrates the value of joint analysis of
data from multiple types of designs.

We must exercise extreme caution in using different sources of evidence to estimate different
links in a chain of evidence, however, as these analyses are highly dependent on model assumptions.
Similar phenomena have long been recognized in available case approaches to analyses with missing
data. For example, we may estimate a variance-covariance matrix with a matrix constructed of
pairwise sample covariances, calculating each element using all individuals for whom that pair
of variables was measured. Because the elements of the matrix are based on different subsamples
of the data, the resulting estimated covariance matrix may not be positive definite (Little & Rubin
2002). In fact, because the mechanisms that caused the missing data imply that each covariance
parameter may be conditional on different population properties, a theoretical variance-covariance
matrix constructed in this manner is also not guaranteed to be positive definite or to represent
the variance-covariance matrix for the intended full sample. The chain-of-evidence analog is that
the mechanisms or study designs that created the different data sets (i.e., the known or latent
participant, intervention, environment, and outcome characteristics that differ across studies)
may lead to discordant or incongruent parameter estimates. As Pearl (2009, p. 303) notes, the
combination of estimates he suggests is valid only when the participants in both studies “were
sampled properly from the population at large.” That is, the estimate is valid only if the assumed
models for external validity are correct.

5. DISCUSSION

In the current climate of increasing demand for timely inference about treatment effects, turning
to collections of relevant data with diverse designs may be both more efficient and more robust
than relying on the so-called best evidence from a single design. Although some comparisons
indicate that randomized and nonrandomized studies provide divergent evidence, careful analyses
that precisely consider the definition of the target average treatment effect show markedly more
agreement across designs.

Development of statistical methodology to combine information across designs has generally
fallen into two categories: (#) those that use variables that are potentially related to bias (design
elements or quality scores) to adjust the mean of a model for study-specific effect sizes (Section 3),
and (b) those that consider more general models for bias-generating mechanisms and chains or
networks of evidence that synthesize evidence on different parts of a complete causal picture
(Section 4). Neither category has benefitted from an overabundance of methods development
or practical application specifically related to incorporating studies with both randomized and
nonrandomized designs. The linear approaches have received more attention, likely because of
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their simpler implementation with less need for application-specific customization and detailed
individual-level data.

Even if data were more available, however, general bias methods are not developed to the point
at which rich data and plentiful manpower could be easily exploited. Within a few sound general
frameworks, several authors have described specific methods for overcoming some specific insults
to external or internal validity. Unfortunately, many more threats to sound causal conclusions
exist, and specific methods for overcoming them remain undeveloped. One particularly inviting
area is methods to jointly address internal and external biases. As reviewed in this article, these
two dimensions of validity have largely been addressed separately. Even though in theory these
dimensions could be jointly applied, the details of doing so must be worked out and the feasibility
demonstrated with examples. Looking forward, considerations regarding research synthesis should
also be incorporated into the design of both randomized and nonrandomized studies. The current
literature is lacking in such guidance.

Joint analysis across designs would also benefit from further development of several areas of
statistics not reviewed here but necessary to support practical joint data analysis. For example,
methods to harmonize variables measured differently in different studies are essential for the
practical joint analysis of many studies of the same type, but such methods are arguably even more
important for synthesizing collections of studies designed within different traditions. Methods
for exploring treatment effect heterogeneity are another example. The random-effects models
discussed in Sections 3 and 4 are usually justified via the recognition of study-to-study variability
in true study-specific treatment effect. However, the development of methods to exploit this
variability in order to estimate more personalized effect sizes has only recently begun in earnest.

Much groundwork has already been laid for sound causal inference based on collections of
studies that incorporate both randomized and nonrandomized study designs, but the amount of
work still needed to complete the development of detailed methods suitable for practical applica-
tion is considerable. As the availability of both randomized and nonrandomized data continues to
grow, the joint analysis of all available relevant data will play a key role in fulfilling the increasing
demand for treatment effect estimates for use in evidence-based decision making.

SUMMARY POINTS

1. The exact definition of the treatment effect of interest determines the relative value
of various study designs and statistical methods. Researchers wishing to make causal
conclusions must be precise in defining the exact treatment effect of interest and in
specifying any assumptions about treatment effect heterogeneity.

2. Estimates and tests of average treatment effects vary from study to study and may appear
to correlate with the type of study design. But, variation in the precise definition of and
assumptions about average treatment effect across the designs is likely more responsible
for such observed correlation than are any inherent strengths or weaknesses of the study
designs.

3. Researchers have historically placed greater value on the strong internal validity typical of
randomized designs than on the strong external validity typical of observational designs.
The view that the two designs have complementary strengths will yield better statistical
inference in many cases.
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4. Joint analyses of data from randomized studies and from observational studies can pro-
vide more information about a treatment effect than two separate analyses would. In
such cases, each study may relate directly to the effect (with some possible bias) or may
contribute information about some pieces of a chain of evidence leading from treatments
to outcomes.

5. Researchers have created a variety of methods to jointly analyze data from collections of
studies with multiple design types. Some methods are based on weighted averages of the
study-specific effect estimates; some more general approaches are designed to estimate
the results of an ideal internally and externally valid study via extrapolation, interpolation,
and averaging.

6. Developing and improving methods to jointly model data from collections of differently
designed studies, as well as methods to address specific sources of selection and gener-
alizability bias, may in many cases reduce the cost and increase the timeliness of robust
inference about treatment effects.

FUTURE ISSUES
1. Further development of prospective designs for multipart studies that include both ran-

domization and natural observation will facilitate more efficient, accurate, and general-
izable inference.

2. More nuanced use of existing data to plan future studies will facilitate more efficient,
unbiased, and generalizable inference.

3. Whereas separate ideas for mitigating selection bias and generalizability bias have been
utilized together in single analyses, single methods that jointly target both types of bias
may improve estimation.

4. Improving methods for variable harmonization in complex, large-scale data sets will make
joint analyses more practical.

5. The goal of causal analyses will continue to move from the estimation of average treat-
ment effects in broad populations to the estimation of treatment effects that are specific

to subgroups or individuals. Robust statistical strategies must be developed to support
this shift.

6. Publishing practical recommendations and more examples would promote precise and
accurate estimation of relevant treatment effects via the joint analysis of diverse data sets.
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