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Abstract

In the era of precision medicine, time-to-event outcomes such as time to
death or progression are routinely collected, along with high-throughput
covariates. These high-dimensional data defy classical survival regression
models, which are either infeasible to fit or likely to incur low predictability
due to overfitting.To overcome this, recent emphasis has been placed on de-
veloping novel approaches for feature selection and survival prognostication.
In this article, we review various cutting-edge methods that handle survival
outcome data with high-dimensional predictors, highlighting recent inno-
vations inmachine learning approaches for survival prediction.We cover the
statistical intuitions and principles behind these methods and conclude with
extensions to more complex settings, where competing events are observed.
We exemplify these methods with applications to the Boston Lung Can-
cer Survival Cohort study, one of the largest cancer epidemiology cohorts
investigating the complex mechanisms of lung cancer.
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1. INTRODUCTION

Survival analysis is an area of statistics where the random variate is survival time or the time until
the occurrence of a specific event, which represents a qualitative change or the transition from one
discrete state to another (e.g., alive to deceased). The most often studied event in biomedicine is
death, though events of interest in fields ranging from sociology to industry, engineering, finance,
and astronomy are widely encountered as well. The goals of survival analysis are to describe the
probability of an event occurring by some time, to detect associations between risk factors and
events, or to predict survival times based on informative characteristics. What distinguishes sur-
vival outcomes from other outcomes is the presence of censoring, meaning that the event of
interest may not be observed for all subjects; subjects whose event times are not observed are
said to be censored. In practice, the fraction of event times that are censored in a study popu-
lation can be substantial, prohibiting the direct use of standard regression methods. Estimation
methods in survival analysis are built around extracting information from all subjects, censored or
not.

In the era of precision medicine, survival outcomes with high-throughput covariates or pre-
dictors are routinely collected. These high-dimensional data (i.e., with the number of predictors
exceeding the number of observations) challenge classical survival regression models, which are
either infeasible to fit or likely to incur low predictability due to overfitting. Recently, emphasis
has been placed on developing novel approaches for feature selection and survival prognostication.
We review various methods that handle survival outcome data with high-dimensional predictors,
highlighting recently developed machine learning approaches for survival prediction. We also
discuss recent developments for deep learning in survival settings and introduce some new deep
learning techniques in the presence of competing or semicompeting outcomes. A competing risk
is an event whose occurrence precludes the occurrence of another event of interest (Austin &
Fine 2017), while in a semicompeting setting, the occurrence of a nonterminal event (e.g., disease
progression) is subject to a terminal event (e.g., death), but not vice versa (Haneuse & Lee 2016).
We illustrate a novel deep learning approach for prediction under semicompeting outcomes and
exemplify the method using data from the Boston Lung Cancer Survival Cohort (BLCSC), a large
hospital-based cancer epidemiology cohort investigating the molecular mechanisms and clinical
pathophysiology of lung cancer (Christiani 2017).

This review is outlined as follows. In Section 2, we provide a brief overview of some key
concepts and notation in survival analysis and introduce the necessary prerequisites on which
much of the subsequent literature is built. In Section 3, we survey current techniques for fitting
survival models with high-dimensional covariates, primarily focusing on methods that perform
feature selection under sparsity assumptions. We briefly discuss ultra high-dimensional set-
tings and introduce screening methods, and end this section with a discussion of methods for
drawing valid inference with high-dimensional covariates. In Section 4, we turn to machine
learning for survival prediction. We first discuss the application of common machine learning
concepts in these settings, such as support vector machines (SVMs), recursive partitioning and
survival trees, and ensemble learners such as random survival forests. We briefly review arti-
ficial neural networks and extend this notion to survival prediction. In Section 5, we review
existing deep learning procedures for competing risk analysis, illustrate a new deep learning
approach for predicting semicompeting outcomes, and work through the BLCSC study. We
conclude with remarks on future work and open areas. Supplemental Appendixes A and B
tabulate the reviewed methods and their available software, and present additional simulation
results.
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Figure 1

Schematic of observations for two example patients, with different entry times, over the course of a study.
The event of interest, death, is observed for patient 1, whereas patient 2 is censored, as the patient is still
alive at the end of the study.

2. NOTATION

Consider a study consisting of n subjects. The outcome variable is the time to the event of inter-
est, such as death or cancer progression. Events in other contexts can be bankruptcy, COVID-19
infection, graduation, missing a mortgage payment, and so on. A time zero also needs to be set
carefully to have proper biological or practical interpretations when helping to address specific
scientific questions. For instance, some common choices of time zero in medical studies include
date of birth, time of diagnosis, date of randomization in a clinical trial, or first date receiving a
treatment. A unique aspect of survival analysis is that the event may go unobserved for some indi-
viduals. In particular, right censoring occurs when a subject’s follow-up time ends before the event
can be observed (Figure 1). Though other types of censoring exist, we focus on right censoring,
which happens most often in practice.

We denote the ith subject’s survival and censoring times by Ti and Ci, respectively
(i = 1, . . . , n), which are nonnegative random variates. For the ith subject, we observe X i, a
p-vector of covariates; Yi = min (Ti, Ci); and the event indicator δi = I(Ti ≤ Ci ), where I(·) is an
indicator function. We assume that subjects are independent from each other and that Ti ¥ Ci,
given X i. Often, the goal of survival analysis is to associate X i with the distribution of Ti and, in
particular, model the conditional hazard function given X i, i.e.,

λ(t|X i ) = lim
1→0

1
1

Pr(t ≤ Ti < t +1|Ti ≥ t,X i ), 1.

which measures the instantaneous failure rate at a given time among those who are alive and with
X i. Throughout this review, for simplicity, we assume that X i is time invariant, though in many
circumstances extensions to time-dependent X i are possible.

3. HIGH-DIMENSIONAL SURVIVAL MODELS

In high-dimensional settings, it is not recommended to build prediction models with all of the
available features due to the risk of overfitting. A useful strategy is to select only the most vital
features under the assumption of sparsity, meaning that most of the potential predictors are unim-
portant, with nearly no effect on the outcome (Friedman et al. 2010). A key question is how to
perform variable selection and estimation simultaneously, and themost widely used approaches fall
under the class of regularized regression models. Regularization refers to the addition of a penalty
term to the objective function, which shrinks the coefficient estimates toward zero and possibly
forces some of them to be exactly zero. This mitigates overfitting and results in parsimonious
prediction models (Tibshirani 1996).
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3.1. Regularized Cox Models

The approach that dominates survival analysis in the biomedical literature is the Cox (1972) pro-
portional hazards model, famed for presenting both a novel hazard model and a novel concept of
partial likelihood. The model links the conditional hazard function (Equation 1) to X i via

λ(t|X i ) = λ0(t ) exp(X T
i β),

where the baseline hazard, λ0(t), is unspecified, and β = (β1, . . . ,βp)T is the coefficient vector of
X i to be estimated, with a fixed p < n, by maximizing the partial likelihood,

PL(β) =
∏
i:δi=1

PLi(β),

with PLi(β) being the contribution for subject i who is observed to die:

PLi(β) = Pr(subject i dies at Yi | someone from R(Yi ) dies at Yi ) = exp(X T
i β)∑

j∈R(Yi )
exp(X T

j β)

whereR(Yi ) = { j : Yj ≥ Yi}. In high-dimensional settings—that is, p > n and asymptotically p and
n may both go to infinity (Zhao & Yu 2006)—directly optimizing the partial likelihood is not
feasible because of overparameterization. Instead, regularized regression adds a penalty term to the
negative log partial likelihood, ℓ(β), and optimizes a penalized version of the objective function:

−ℓ(β) + ηPen(β),

where the penalty Pen(β) is controlled by a positive tuning parameter, η, to be selected through
cross-validation. A widely recognized family of penalties is based on the lq-norm,

||β||q =
 p∑

j=1

|β j|q
1/q

, q ≥ 0.

Regularization approaches with Pen(β) = ||β||22, known as ridge regression (Hoerl & Kennard
1970), were applied to the Cox model by Verweij & VanHouwelingen (1994) and returned unique
and shrunk estimates. However, ridge regression does not promote sparsity, as it cannot shrink in-
dividual coefficients to zero.The least absolute shrinkage and selection operator (lasso) (Tibshirani
1996), with Pen(β) = ||β||1, penalizes the absolute sum of the coefficient estimates and has been
routinely used for producing sparse models. Its application to survival settings (Tibshirani 1997),
namely, Cox lasso, has become a widely used approach for high-dimensional survival analysis by
performing feature selection and estimation simultaneously (Figure 2).

Lasso has several notable statistical properties. It possesses model selection consistency un-
der certain regularity conditions, in particular, the strong irrepresentable condition when p grows
much faster than n (i.e., that the absolute sum of coefficients for the regression of any noise vari-
able on signal variables must be strictly smaller than 1) (Zhao & Yu 2006) and has a Bayesian
interpretation by viewing β as having a double exponential prior (Tibshirani 2009). However, as
the lasso penalty term is linear in the size of the coefficients, it leads to biased estimates, especially
for the coefficients with large absolute values. To remedy this, Zhang & Lu (2007) proposed the
adaptive Cox lasso by utilizing Pen(β) = ∑

j w j|β j|, with smaller weights, wj, assigned to larger
coefficients and vice versa. The estimates are

√
n consistent if

√
nη = O(1) and have oracle prop-

erties if
√
nη → 0 and nη→ ∞.When p > n, the author suggested using robust estimates such as

ridge regression estimates to determine the wjs.
Fan & Li (2002) proposed a smoothly clipped absolute deviation (SCAD) penalty, which is a

quadratic spline function of |β| with knots at η and αη. Its derivative with respect to |β|, i.e.,

η

{
I(|β| ≤ η) + (αη − |β|)+

(α − 1)η
I(|β| > η)

}
; α > 2, η > 0,
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Figure 2

Graphical representation of Cox lasso with two-dimensional predictors. The blue diamond represents the
constraint region |β1| + |β2| ≤ s for a given s. β̂MPLE and β̂lasso represent the maximum partial likelihood
and Cox lasso estimates, respectively, and the red ellipses are contours of the partial likelihood function. As
shown, subject to the l1 constraint, β̂lasso is shrunk to zero compared with β̂MPLE, and Cox lasso estimates β1
to be exactly zero.

may more clearly show the role of the penalty in regularizing estimating equations (Fan & Li
2002). While the SCAD penalty retains the penalization rate of lasso for small coefficients, it
relaxes the rate of penalization smoothly as the absolute value of the coefficient increases. Asymp-
totically, the SCAD penalty yields

√
n-consistent estimates (with a proper rate of η) and possesses

oracle properties (if
√
nη → 0 and nη → ∞). Strong oracle properties for lasso and SCAD were

established by Bradic et al. (2011), who further proposed a class of nonconvex penalization pro-
cedures for the Cox model. Nonconvex regularization, including SCAD, is appealing as it obtains
support recovery properties under much weaker assumptions than for l1 penalization (Loh &
Wainwright 2017).

Another extension is the elastic net penalty for Cox models (Wu 2012), which combines the
lasso and ridge penalties but, unlike lasso, is capable of selecting more predictors than the sample
size (Zou & Hastie 2005). This notion was generalized by Vinzamuri & Reddy (2013) with the
kernel elastic net Cox regression model, which replaced the ridge penalty with βT6β. Here,6 is a
p× p radial basis function kernel matrix of predictors, which measures pairwise similarity between
predictors. This penalty is meant to encourage correlated predictors to have similar strengths on
survival prediction.Other regularized Cox methods include the group Cox lasso (Kim et al. 2012),
which selects groups of related covariates as a whole, and the fused lasso (Chaturvedi et al. 2014),
which penalizes both the coefficient estimates and their successive differences for ordered features
(Table 1).

3.2. The Dantzig Selector for Survival Data

Candès & Tao (2007) proposed another type of regularized estimator known as the Dantzig
selector for linear regression:

Y = Xβ + ϵ, 2.
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Table 1 Examples of regularized Cox regression methods and their penalty terms

Method Penalty Constraints
Ridge ||β||22 NA
Lasso ||β||1 NA
Elastic net α||β||1 + (1 − α)||β||22 0 < α < 1
Adaptive lasso

∑
jwj|β j| wj ≥ 0

SCAD (Pen(|β|)) Pen′(|β|) = η

{
I(|β| ≤ η) + (αη − |β|)+

(α − 1)η
I(|β| > η)

}
α > 2, η > 0

Group lasso
∑

g ||βg||1 βg = (βg1, . . . ,βg jg )
T

Fused lasso
∑

j|β j| and
∑

j|β j − β j − 1| NA

Abbreviations: Lasso, least absolute shrinkage and selection operator; NA, not applicable; SCAD, smoothly clipped absolute
deviation.

where Y , X , β, and ϵ are an n × 1 vector of responses, an n × p covariate matrix, a p × 1 vector
of coefficients and an n × 1 vector of zero-mean residual errors, respectively. It estimates β by
solving

min ||β||1
subject to ||X T (Y −Xβ)||∞ ≤ ηQ,

where ηQ > 0 is a tuning parameter. Empowered by linear programming, the Dantzig selector
offers a useful alternative as a regularized estimating equation approach. As a dual problem of
lasso, it often produces the same solution path (Candès & Tao 2007).

On the other hand, accelerated failure time (AFT) models have become a useful alternative to
Cox models due to their ease of interpretation (Saikia & Barman 2017). An AFT model links the
(log transformed) survival time to covariates via a linear model

log(Ti ) = X T
i β + ei, 3.

where the log transformation ensures the parameter space of β is unconstrained, and the dis-
tribution of the errors, ei, induces a distribution for Ti (Table 2). For parametric AFT models,
maximum likelihood estimation can be used for inference. When ei’s distribution is unspecified,
the models are semiparametric and themaximum likelihood estimates are difficult to obtain, as the
likelihood involves infinite-dimensional parameters. With a fixed p < n, Buckley & James (1979)
proposed an estimating equation approach by imputing the censored outcomes and solving a least
squares problem.

For AFTmodels with high-dimensional predictors, one cannot directly apply lasso estimation,
as the objective function again involves infinite-dimensional parameters.Motivated by the work of
Candès & Tao (2007) for regularized least squares estimation, Li et al. (2014) used Buckley-James

Table 2 Specifications of various parametric accelerated failure time models

Distribution of ei Induced distribution of Ti
Normal distribution Log-normal distribution
Extreme value distribution Weibull distribution
Logistic distribution Log-logistic distribution

ei is the residual term, and Ti is the survival time.
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imputation to express AFT estimation as a least squares problem and then applied the Dantzig
selector:

min ||β||1
subject to ||X TPn{T ∗(β) −Xβ}||∞ ≤ ηQ,

where T ∗
i (β) = log(Yi ) + (1 − δi )

∫∞
ei (β)

Ŝ(s,β)ds

Ŝ(ei (β),β)
are imputed outcomes with the Kaplan-Meier

estimate, Ŝ(·,β), based on {ei(β) = log(Yi ) − βTX i, δi}, i = 1, . . . , n, and T ∗(β) =
(T ∗

1 (β), . . . ,T
∗
n (β))

T . Here, the projection matrix Pn = In − 11T /n, where In and 1 are an
n × n identity matrix and an n × 1 vector of 1s, respectively, is for centering covariates to
avoid estimation of the intercept or the expectation of ei in Equation 3. An iterative approach is
necessary because this is not a linear programming problem, and, like the Dantzig selector for
linear models, estimates may be biased and may not possess the oracle property.

To address this, Li et al. (2014) considered an adaptive version of the Dantzig selector with
data-driven weights that vary inversely with the magnitude of coefficients. They showed that the
weighted Dantzig selector has model selection consistency and oracle properties. On the other
hand, a Dantzig selector for the Cox model was proposed by Antoniadis et al. (2010) based on
partial likelihood score equations.

Note that in ultra high-dimensional settings where p k n, penalized variable selection meth-
ods such as those described may incur high computational costs, numeric instability, and poor
reproducibility (Fan & Lv 2008). As such, variable screening is a crucial first step in identifying
predictive biomarkers and reducing the dimensionality of the feature space before applying regu-
larizedmethods. Feature screeningmethods such as sure independence screening (Fan&Lv 2008)
fitmarginal regressionmodels for each covariate one at a time, choose a threshold, and retain those
covariates with magnitudes of marginal effects above the threshold. In the ultra high-dimensional
survival settings, additional censoring issues need to be addressed.Recent advancements in survival
feature screening have included sure independence screening (Fan et al. 2010), principled sure in-
dependence screening (Zhao & Li 2012), score test screening (Zhao & Li 2014), concordance
measure–based screening (Ma et al. 2017), Buckley-James assisted sure screening (Liu et al. 2020),
conditional screening (Kang et al. 2017, Hong et al. 2018b), integrated power density screening
(Hong et al. 2018a), Lq-norm screening (Hong et al. 2020), and forward regression (Hong et al.
2019, Pijyan et al. 2020). A focused review of survival feature screening is provided by Hong & Li
(2017).

3.3. Inference with High-Dimensional Covariates

As simultaneous estimation and inference is challenging within the high-dimensional survival
framework, we review the limited methods available for drawing inference in this area. More
broadly, high-dimensional regression inference methods largely fall under postselection inference
and debiased lasso estimation. Further challenges arise in that postselection inference is condi-
tional on the selected subset and does not account for variation in model selection. Several authors
used debiased lasso ( Javanmard&Montanari 2014,Van deGeer et al. 2014, Yu et al. 2018) to draw
inference; however, these methods require estimation of the inverse of a p× p information matrix,
which is a daunting task, especially when p > n (Xia et al. 2021, 2022).

3.3.1. Selection-assisted partial regression and smoothing. To address this challenge, Fei
et al. (2019) proposed selection-assisted partial regression and smoothing (SPARES) to draw
inference for high-dimensional linear models (Equation 2) with p > n. Under this framework,

www.annualreviews.org • High-Dimensional Survival Analysis 31



ST10CH02_Li ARjats.cls February 14, 2023 11:13

model selection and partial regression are conducted separately on partitioned data, and multiple
sample splittings or bootstraps are used to account for variations in variable selection and
estimation. Specifically, given data D = (X ,Y ) and a variable selection procedure Sη, data are
split into equally sized D1 and D2. Denote the variables selected by Sη on D2 as S = Sη(D2 ). On
D1 = (X 1,Y 1 ) and for any j � {1, . . . , p},Y 1 is regressed on X 1

S∪ j to estimate β0
j by

β̃ j =
{
(X 1

S∪ j
T
X 1

S∪ j )
−1X 1

S∪ j
T
Y 1
}
j
, 4.

where {·}j denotes the estimate corresponding to variable j. Equation 4 is termed the partial
regression estimator (Fei et al. 2019). Set β̂ = (β̃1, . . . , β̃p)T . The rationale behind this idea is that
if Pr(S ⊃ S0 ) → 1, where S0 is the true active set, the one-time partial regression in Equation 4
returns a consistent estimate for β0

j , regardless of whether j� S. However, the one-time estimator
is highly variable, depends heavily on S and the specific data split, and does not account for
variation in the variables selected. To address this, repeated applications of data splitting and

partial regression are carried out over B random splits. Denote by β̂
b
the estimate of β based on

the bth resample (b = 1, . . . , B). The SPARES estimator is

β̂ = 1
B

B∑
b=1

β̂
b
.

To draw inference, a nonparametric delta method (Van der Vaart 2000, Efron 2014) is used to
estimate the standard error of β̂ j ( j = 1, . . . , p) as ŝeBj = [

∑n
i=1 ˆcov2i j]

1/2, where ˆcovi j is the sample
covariance between Ibi and β̂bj , with Ibi indicating whether subject i is included in the bth resam-
ple (used for partial regression). Approximate 95% confidence intervals are given by β̂ j ± 1.96 ŝeBj ,
while a two-sided p-value testingH0 : β j = 0 is given by 2 × [1 −8(|β̂ j|/ŝeBj )], where8(·) is the dis-
tribution function of N(0, 1). SPARES provides a novel inference technique that converts a high-
dimensional problem to a low-dimensional regression. It is valid with general selection methods,
including lasso, SCAD, screening, and boosting, as long as they possess selection consistency or the
relaxed sure screening condition of Fei & Li (2021). Furthermore, this approach is not sensitive to
the tuning parameter η in Sη and can be extended to analyze censored outcomes, as detailed below.

3.3.2. High-dimensional censored quantile regression. As opposed to the Cox and AFT
models, censored quantile regression permits the effects of covariates to vary across quantile lev-
els, thus accommodating potentially heterogeneous impacts of certain risk predictors. For τ �

(0, 1), the τ th quantile is a value at or below which a τ -fraction of population lies. Denote the
τ th conditional quantile of T̃ = log(T ) given X i by QT̃ (τ |X i ). The censored quantile regression
model (Powell 1986, Portnoy 2003) stipulates that

QT̃ (τ |X i ) = β0(τ ) +X T
i β(τ ), 5.

where β(τ ) is a vector of quantile-specific regression coefficients. With a fixed p < n, Peng &
Huang (2008) proposed a class of martingale-based estimating equations to estimate β(τ ) in Equa-
tion 5 over a fine grid of quantile levels—that is, 0m = {ν = τ 0, τ 1, . . . , τm = τU}, where 0 < τU <
1 is an upper bound for estimability. Specifically, β(τk ) values, where τ k � 0m, can be sequentially
and consistently estimated by solving

n∑
i=1

X i

(
Ni

(
X T

i β(τk )
)

−
k−1∑
r=0

∫ τr+1

τr

I[logYi ≥ X T
i β̌(τr )]dH (u)

)
= 0, 6.

where Ni(t ) = I(logYi ≤ t, δi = 1) and H(u) = −log (1 − u) (Peng & Huang 2008).
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Figure 3

Example censored quantile regression analysis on n = 153 patients from the BLCSC study. Estimated local quantile measures (Portnoy
2003) from a Cox model are shown in red, and the reference β = 0 is given in black. Also shown are the point estimates (blue curves) of
the quantile-specific regression coefficients and their 95% confidence intervals (lighter blue shaded regions). Figure adapted with
permission from Hong et al. (2019, figure 2). Abbreviation: BLCSC, Boston Lung Cancer Survival Cohort.

As a concrete example, with a subset of 153 patients from the BLCSC study,Hong et al. (2019)
fit a censored quantile regression model that linked the conditional quantile of overall survival to
age (years), sex (0: female, 1: male), pack-years, cancer type (0: adenocarcinoma, 1: nonadenocar-
cinoma), and cancer stage (0: stage 1, 1: stage 2 or above). Figure 3 displays the point estimates
of the quantile-specific regression coefficients and their 95% confidence intervals.

While methods have been proposed to deal with variable selection for high-dimensional cen-
sored quantile regression (HDCQR), including penalized quantile regression (Wang et al. 2013a),
adaptive penalized quantile regression (Zheng et al. 2013),model-free variable screening (He et al.
2013), and stochastic integral-based estimating equations (Zheng et al. 2018), none could draw
statistical inference with HDCQR. Belloni et al. (2019) provided postselection inference in high-
dimensional quantile regression at some fixed quantile levels; however, the method cannot handle
censored outcomes.

To address this issue, Fei et al. (2021) proposed a fused HDCQR method, which utilizes a
variable selection procedure for HDCQR (Zheng et al. 2018) to reduce the dimension of the
data and applied partial regression to estimate the effect of each predictor, regardless of whether
it is selected. Estimates are aggregated based on multiple data splits and selections. Specifically,
when p > n, fused HDCQR adapts the SPARES procedure and fits low-dimensional censored
quantile regressions using Equation 6.With B random sample splittings, these estimates, denoted
by β̃bj , b = 1, . . . ,B, are aggregated to form the fused HDCQR estimator,

β̂ j (τk ) = 1
B

B∑
b=1

β̃bj (τk ), τk ∈ 0m,

β̂ j (τ ) = β̂ j (τk ), τk−1 ≤ τ < τk, k = 1, . . . ,m,

and a functional delta method (Van der Vaart 2000) can be applied to estimate the variance of
β̂ j (τk ). The fused HDCQR procedure involves repeated fitting of low-dimensional regressions,
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which is computationally feasible and can estimate and conduct hypothesis testing for the
heterogeneous effects of various risk factors.

The use of fused HDCQR is illustrated with the BLCSC data by studying the differential im-
pacts of genetic variants on different quantiles of survival times. For example, Fei et al. (2021)
focused on 2,002 candidate single nucleotide polymorphisms (SNPs) residing in 14 well-known
lung cancer related genes and investigated how each SNP played a different role among high-risk
(i.e., lower quantiles of overall survival) versus low-risk (i.e., higher quantiles of overall survival)
cancer survivors. With the fused HDCQR approach, the estimated coefficient of active smok-
ing ranged from −0.42 (p = 0.0011) to −0.53 (p = 0.0005) as τ changed from 0.2 to 0.5, and
then it increased to −0.31 (p = 0.038) as τ changed to 0.7, suggesting that active smoking might
be more harmful to the high- or median-risk groups than the low-risk group of patients. The
results resonated with the strong need to develop effective smoking cession programs among
high-risk populations (Barbeau et al. 2006). Furthermore, SNP AX.37793583_T remained sig-
nificant throughout τ = 0.2 to τ = 0.7, but its estimated coefficient decreased from 2.75 (τ = 0.2)
to 1.39 (τ = 0.7), indicating its heterogeneous impacts on survival—i.e., stronger protective effect
at lower quantiles and vice versa, which could not be detected using traditional Cox models (Fei
et al. 2021).

4. MACHINE LEARNING TECHNIQUES FOR SURVIVAL PREDICTION

Significant work has gone into the development of machine learning algorithms that can
accommodate survival data. These nonparametric learning approaches can handle nonlinear rela-
tionships or higher-order interaction that would otherwise be costly using classical methods, and
they can improve accuracy in prediction for survival outcomes.

4.1. Support Vector Machines

SVMs fall under the supervised learning family (Vapnik et al. 1995, Noble 2006) and seek to find
a hyperplane that provides maximal separation between groups (Figure 4). Specifically, consider
a binary outcome Yi � {−1, 1} for each individual i, with a corresponding p-dimensional covari-
ate vector, X i. The goal of SVMs is to identify a hyperplane, H (ψ , a) = {v ∈ Rp|⟨ψ , v⟩ + a = 0},
separating these two groups so that the margin, 2/||ψ ||, can be maximized, where ψ ∈ Rp is the
slope vector and ⟨·, ·⟩ denotes the inner product (Figure 4). Often, the two classes may not be sep-
arable in the original feature space within Rp, and we use F(·) to map the original predictors to a
higher-dimensional space where the outcomes can be distinguished, in which case, the hyperplane
to deal with is H (ψ , a) = {v ∈ Rp|⟨ψ ,F(v)⟩ + a = 0} and, with slight overuse of notation, the di-
mension of ψ is the same as that of F(v). In practice, F(·) does not have to be obtained explicitly
and ⟨ψ ,F(v)⟩ can be calculated by using a reproducing kernel (Wahba et al. 1999). We further
introduce a slack variable, ξi = [1 −Yi{⟨ψ ,F(X i )⟩ + a}]+, to dictate the degree to which the ith
data point is misclassified, as illustrated in Figure 4.

SVMs have been extended to model continuous time-to-event data, which are prone to cen-
soring, by predicting the survival time to be ⟨ψ ,F(X i )⟩ + a. Van Belle et al. (2007) formulated
the survival SVM based on the rank concordance between the prediction and observed survival
time, Yi, among comparable individuals in the presence of censoring. Specifically, they introduced
a comparability indicator, vi j = δiI(Yi < Yj ), such that the ordering of the observed survival times
for subjects i, j can only be determined when vij = 1. For a comparable pair with vij = 1, a con-
cordance in rank is reached if and only if ⟨ψ ,F(X j )⟩ − ⟨ψ ,F(X i )⟩ > 0. Allowing varying degrees
of pairwise slacks, i.e., when ⟨ψ ,F(X j )⟩ − ⟨ψ ,F(X i )⟩ ≤ 0 with vij = 1, across comparable pairs,
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Figure 4

A support vector machine to distinguish binary outcomes with two-dimensional covariates v = (v1, v2 )T by a
linear separating line. The solid line represents the optimal hyperplane separating the data, while the dotted
lines denote the maximal margin defined by the support vectors (open double circles) for one group (white
circles) versus the other (cyan squares). Misclassified points are labeled in red, with corresponding magnitudes
for slack variables, ξ .

Van Belle et al. (2007) proposed to solve

min
ψ ,ξ

1
2
∥ψ∥2 + γ

∑
(i, j):Yi<Y j

vi jξi j

subject to
⟨
ψ ,F

(
X j
)⟩− ⟨ψ ,F (X i )⟩ ≥ −ξi j

and ξi j ≥ 0, i, j = 1, . . . , n,

where ξ ijs are pair-specific slacks, whose summation is to be minimized, and γ > 0 is a regulariza-
tion parameter controlling the maximal margin and misclassification penalties. This formulation
can be shown to maximize the Harrell rank-based concordance index (Harrell et al. 1982). Hence,
it is termed the rank-based SVM approach for survival data and does not estimate the inter-
cept a. An alternative regression approach (Shivaswamy et al. 2007) aimed to find a prediction,
⟨ψ ,F(X i )⟩ + a, for continuous survival times by identifying a hyperplane that best fit the data that
are subject to censoring (Smola & Schölkopf 2004):

min
ψ ,a,ξ, ,ξ∗

1
2
∥ψ∥2 + γ

n∑
i=1

(
ξi + ξ ∗

i

)

subject to Yi − ⟨ψ ,F (X i )⟩ − a ≤ ξi,

δi (⟨ψ ,F (X i )⟩ + a−Yi ) ≤ ξ ∗
i ,

and ξi, ξ ∗
i ≥ 0.

With censoring indicators incorporated into the constraints, the formulation utilizes available
information from both censored and noncensored observations. To make full use of the strengths
of both approaches, Van Belle et al. (2011) and Pölsterl et al. (2015) further proposed hybrid
approaches, combining the penalties imposed by both methods.
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Figure 5

Illustration of a classification tree with three binary covariates that yields four terminal nodes.

4.2. Tree-Based Methods

While SVMs are adept at estimating nonlinear relationships, they do not scale well for large
datasets and often underperform when the outcomes are noisy. Also, there may be no clear inter-
pretations for classifying data points above or below the estimated hyperplane (Somvanshi et al.
2016). Decision trees are an alternative for classifying patients that provide an intuitive interpre-
tation of the hierarchical relationships between predictors. Broadly, classification and regression
trees are umbrella terms for a set of recursive partitioning algorithms, which predict the group
membership (classification) or target value (regression) for an observation based on a set of binary
decision rules (Figure 5).

Gordon & Olshen (1985) first presented survival trees, and Ciampi et al. (1986, 1987) solid-
ified the notion and established splitting criteria based on the log-rank and likelihood ratio test
statistics, respectively, gaining predictive accuracy and interpretability. A recursive partitioning
algorithm for generating a survival tree is given as follows:

1. Discretize each covariate to be a binary variable (categorical variables with m levels are
expressed as m − 1 dummy variables).

2. For every binary covariate, Xj, j = 1, . . . , p, compute the log-rank statistic to test the
difference between the survival curves for the two groups defined by Xj.

3. Choose the covariate—say, X j∗—with the largest significant test statistic and partition the
full sample (i.e., the root node) into two groups (child nodes) based on X j∗ .

4. Repeat steps 2 and 3 for each subset (child node) until reaching the terminal nodes—that
is, no covariates produce a significant test statistic and there are enough events (exceeding
a prespecified number) in each terminal node.

The resulting terminal nodes split the original sample into distinct groups, which are deemed
more homogeneous within groups than across groups, and will output survival estimates via
Kaplan-Meier estimation in each group. Further variations in splitting are based on metrics that
accommodate censored data, either by minimizing within-node homogeneity or maximizing
between-node heterogeneity. For example, these metrics can be martingale residuals (Therneau
et al. 1990) or deviance residuals (LeBlanc & Crowley 1992). With an established splitting
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criterion, to select a final tree, either a full survival tree is grown and pruned or a stopping rule is
applied in backward or forward selection (Bou-Hamad et al. 2011).

4.3. Ensemble Learners

While survival trees provide a fast and intuitive means of studying hierarchical relationships of
predictors with outcomes, they are prone to overfitting and high variability (Steingrimsson et al.
2016, Hu & Steingrimsson 2018). Ensemble learners overcome the instability issues by using
techniques such as bagging, boosting, and random forests.

4.3.1. Bagging. Bootstrap aggregation, or bagging, refers to a means of training an ensemble
learner by resampling the data with replacement, training weak learners (e.g., individual survival
trees) in parallel, and combining these results over the multiple bootstrapped samples (Breiman
1996). It has three steps:

1. Bootstrapping: Resample from the original data of size n with replacement to form a new
sample also of size n, and obtain B such samples.

2. Parallel training: With each bootstrap sample, b = 1, . . . , B, independently train the weak
learners in parallel.

3. Aggregation: Combine the B individual predictions by averaging over them or by taking a
majority vote.

Bagging for survival trees was first proposed byHothorn et al. (2004); in contrast to bagging for
classification trees, aggregation is done by averaging survival predictions, rather than a majority
vote. Each survival tree is grown so that every terminal node has enough events, which are used
to predict the survival function node-wise at each terminal node. Then, for any newcomer, the
predictions are averaged over the individual trees to yield an ensemble prediction of their survival
function (Figure 6).

Figure 6

Ensemble learning with bootstrap aggregation (bagging) for survival trees.
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4.3.2. Boosting. In a similar vein, boosting trains a series of weak learners with the goal of ag-
gregating them into a better ensemble learner (Bühlmann&Hothorn 2007).Hothorn et al. (2006)
proposed a gradient boosting algorithm for survival settings. Consider a mortality risk prediction
based on covariates X i. For anM-step gradient boosting algorithm, a prediction,Fm(X i ), is made
at each step, say m = 1, . . . ,M, based on a previous prediction, Fm−1(X i ), and an additional weak
learner fm(X i ), which is the projection of the residual error of Fm−1(X i ) to the space spanned by
X i,

Fm(X i ) = Fm−1(X i ) + wm fm(X i ),

where 0 < wm ≤ 1 (e.g., wm = 0.1) is the step size, the residual error refers to the gradient of the
loss function [e.g., the negative log partial likelihood function in a survival setting, evaluated at
Fm−1(X i )], and the number of steps,M, can be viewed as a tuning parameter.

Boosting has two notable differences from bagging. First, boosting trains weak learners se-
quentially, updating the weights placed on learners iteratively, whereas in bagging individual weak
learners such as survival trees are trained independently and in parallel, which are aggregated via
majority voting or averaging. Second, boosting is applicable to settings where learners have low
variability and high bias, as the performance is improved by redistributing the weights. In contrast,
bagging is often applied when individual learners exhibit high variability but low bias, as it reduces
variations arising from individual trees.

4.3.3. Random forests. Yet another class of ensemble learners are random forests (Breiman
2001), which, like bagging, aggregate predictions from individual trees generated over bootstrap
resampled datasets. However, unlike bagging, random forests randomly select a subset of features,
say p′ < p features, when generating each tree and use them for the individual tree’s growth. By
doing so, random forests reduce correlations among individual trees, leading to gains in accuracy
(Breiman 2001).The choice of p′ is problem-specific, so it can also be viewed as a tuning parameter.
In survival settings, Ishwaran et al. (2008) aggregated the survival predictions arising from each
tree by averaging the predicted cumulative hazard functions into an ensemble prediction.

Further notable developments include those of Ishwaran et al. (2011), who extended random
survival forests to high dimensions by incorporating regularization; Ishwaran & Lu (2019), who
provided standard errors and confidence intervals for variable importance; and Steingrimsson et al.
(2019), who proposed censoring unbiased regression trees and ensembles.

4.4. Deep Learning and Artificial Neural Networks

Deep learning has emerged as a powerful tool for risk prediction. This work stems from artificial
neural networks that tried to mirror how the human brain functions (Rosenblatt 1958), wherein
nodes (or neurons) are connected in a network as a weighted sum of inputs through a series of
affine transformations and nonlinear activations.

A fully connected, feed-forward artificial neural network is made up of L layers, with kl neurons
in the lth layer (l = 1, . . . , L) (Figure 7). With an input, network predictions are made based on
an L-fold composite function, fL + fL − 1 + ÅÅÅ + f1(·), with (g + f )(·) = g(f(·)). At the lh layer, fl(·) is
defined as

fl (v) = σl (Wlv + bl ) ∈ Rkl ,

where v is a kl − 1 × 1 input vector fed from the (l − 1)th layer, σl (·) : Rkl → Rkl is an activation
function,Wl is a kl × kl − 1 weight matrix, bl is a kl × 1 bias vector, and the 0th layer is the input
layer. Typical choices of σ l(·) include the sigmoid function or the rectified linear unit activation
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Figure 7

Diagram of a feed-forward, fully connected two-layer artificial neural network, including the hidden (first)
and output (second) layer. The input (0th) layer is not counted as a real neural network layer.

function (ReLU), that is, σl (b) = max(0,b), where b ∈ Rkl and max (0, ·) is operated component-
wise.

For survival prediction, several deep learning approaches have emerged, beginning with the
seminal work of Faraggi & Simon (1995), who adopted a fully connected, feed-forward neural
network to extend the Cox model to nonlinear predictions. Other feed-forward neural networks
(Liestbl et al. 1994, Brown et al. 1997, Biganzoli et al. 1998, Eleuteri et al. 2003) use the survival
status as a training label and output predicted survival probabilities. Further developments have
been made in Bayesian networks (Lisboa et al. 2003, Bellazzi & Zupan 2008, Fard et al. 2016),
convolutional neural networks (Katzman et al. 2017, 2018; Ranganath et al. 2016; Yao et al. 2017),
and recurrent neural networks (Yang et al. 2018).

5. PREDICTION FOR COMPETING AND SEMICOMPETING RISKS

Many survival processes in real applications involve multiple competing events. Risk prediction
in these settings is an up-and-coming field with many potential developments. We focus on two
common competing event settings, competing and semicompeting risks.

5.1. Competing Risks

In a competing risk setting, observing an event type, labeled by c � {1, . . . , K}, effectively elim-
inates the chance of observing other event types happening to the same individual (Young et al.
2020). For example, when studying the survival of patients with cancer, competing events can be
cancer-related death (c = 1) or death by cardiac disease (c = 2) (Figure 8); an individual cannot
die of cardiovascular disease once they have died of cancer, and vice versa. Two commonly used
statistical metrics are used to characterize the risk of competing events, cause-specific hazard and
subdistribution hazard, which target different counterfactual scenarios. The former describes the
risk under hypothetical elimination of competing events, while the latter describes the observable
risk without elimination of any competing events (Rudolph et al. 2020).

Some authors (Lau et al. 2009, Koller et al. 2012) have stated that the subdistribution hazard is
useful for predicting the probability of having an event by a given time and having it be of a type
of interest, termed cumulative incidence function (CIF), which reflects an individual’s actual risks
and prognosis. In the following, we focus on subdistribution hazard, which is derived from CIF,
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Figure 8

Schematic of observation times for three example patients with competing risks. The red crosses indicate
cancer and cardiac death, and the open circle indicates censoring.

i.e., Fc(t ) = Pr(Ti < t, Ci = c), where Ci marks the event type for subject i. Specifically, for each
event type c = 1, . . . , K, the subdistribution hazard is defined as

λc(t ) = lim
1→0

Pr (t ≤ Ti < t +1, Ci = c | Ti ≥ t ∪ {Ti < t ∧ Ci ̸= c})
1

= dFc(t )/dt
1 − Fc(t )

,

which denotes the instantaneous risk of failure from event type c among those who have not ex-
perienced this type of event. That is, the risk set at t includes those who are event free as well
as those who have experienced a competing event (other than type c) by t. The subdistribution
hazard model (Fine & Gray 1999) links a subdistribution hazard function to covariates via

λc(t|X i ) = λ0c(t ) exp(X T
i β), 7.

where λ0c(t) is the baseline subdistribution hazard function for event type c, and β specifies the
effect of X i on the probability of event c occurring over time. In fact, the model in Equation 7
implies that 1 − Fc(t|X i ) = {1 − F0c(t )}exp(XT

i β), where Fc(t|X i ) and F0c(t) are the CIF given X i and
the baseline CIF, respectively.

With high-dimensional predictors, several authors (Kawaguchi et al. 2019, Ha et al. 2014, Ahn
et al. 2018) proposed regularized subdistribution hazard models for variable selection, and Hou
et al. (2019) further performed inference using a one-step debiased lasso estimator. For prediction,
several deep learning methods for competing risks have been proposed based on CIFs. For exam-
ple, Lee et al. (2018) developed a multi-task network, DeepHit, to nonparametrically estimate
Fc(t|X i ) for c = 1, . . . , K. The network is trained to minimize a loss function, which is constructed
based on the joint distribution of the first hitting time for competing events of each subject, while
ensuring the concordance of estimates across subjects (Harrell et al. 1982)—that is, a patient who
died at a given time should have a higher risk at that time than a patient who survived longer.
Dynamic DeepHit (Lee et al. 2019) further incorporated longitudinal information for dynamic
predictions. Other approaches have included DeepCompete (Aastha & Liu 2020), as well as a
hierarchical approach to multi-event survival analysis (Tjandra et al. 2021).

5.2. Semicompeting Risks

Semicompeting risk problems, a variant of competing risk problems, have commonly been en-
countered in clinical studies. By semicompeting, we mean that the occurrence of one event, i.e.,
a nonterminal event, is subject to the occurrence of another, terminal event, but not vice versa
(Figure 9). As the nonterminal event (e.g., cancer progression) is often a strong precursor to the
terminal event (death), semicompeting events are often related and, hence, the terminal event may
informatively censor the nonterminal event ( Jazić et al. 2016). To overcome such informative cen-
soring, researchers either consider only the terminal event (i.e.,mortality) or a composite outcome
such as progression-free survival, that is, time to progression or death, whichever comes first.
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Figure 9

Schematic of four example patients with semicompeting risks. Diamonds indicate nonterminal events, crosses indicate terminal events,
and open circles indicate censoring.

What is lacking in these models is how to model a predictor’s potentially different roles in
disease progress and death, and they ignore crucial information about the sojourn time between
progression and death. Even in settings where the nonterminal and terminal event times are only
modestly correlated, failing to acknowledge this sojourn time may lead to incorrect inference or
biased predictions (Crilly et al. 2021).

5.2.1. The illness-death model. Central to the formulation of the semicompeting problem is
the illness-death model, a compartment-type model for the rates at which individuals transition
from being event-free (e.g., from time of diagnosis) to progression or to death or from progression
to death (Andersen et al. 2012). Letting Ti1, Ti2, and Ci denote the times to the nonterminal and
terminal events and to the censoring time, respectively, we observe (Yi1, δi1, Yi2, δi2, X i ), i =
1, . . . , n, where Yi2 = min (Ti2, Ci), δi2 = I(Ti2 ≤ Ci ), Yi1 = min (Ti1, Yi2), δi1 = I(Ti1 ≤ Yi2 ), and
X i is a p-vector of covariates. The hazards for each subject at t (since diagnosis) are defined and
modeled as follows:

λ1 (t | γi,X i ) = lim
1→0

Pr(t ≤ Ti1 < t +1|Ti1 ≥ t,Ti2 ≥ t, γi,X i )
1

= γiλ01 (t ) exp
{
h1(X i )

}
, 8.

λ2 (t | γi,X i ) = lim
1→0

Pr(t ≤ Ti2 < t +1|Ti1 ≥ t,Ti2 ≥ t, γi,X i )
1

= γiλ02 (t ) exp
{
h2(X i )

}
, 9.

λ3 (t | t1, γi,X i ) = lim
1→0

Pr(t ≤ Ti2 < t +1|Ti1 = t1,Ti2 ≥ t, γi,X i )
1

= γiλ03 (t − t1 ) exp
{
h3(X i )

}
,

10.

where 0 < t1 < t, and Equations 8, 9, and 10, respectively, correspond to the transitions from
diagnosis to progression prior to death, fromdiagnosis to death prior to progression, and frompro-

gression (that happens at t1) to death (Haneuse & Lee 2016).Here, γi
i.i.d.∼ 0(1/θ , 1/θ ), i = 1, . . . , n

(i.e., both shape and rate are 1/θ so that the mean and variance are, respectively, 1 and θ ), is
a patient-specific frailty that models the dependence among these three transition processes
within subject i—that is, a larger value of θ reflects a stronger dependence. In addition, λ0g(·),
g = 1, 2, 3, are the baseline hazard functions for the three state transitions, respectively, and hg(·),
g = 1, 2, 3, are log-risk functions which relate a patient’s covariates to each potential transition.
The λ0g functions can be taken to be Weibull functions or piecewise constant with jumps at the
distinct observed event times. Given Equations 8–10, and by integrating out the frailty term,
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Reeder et al. (2022) derived the marginal likelihood based on n independent subjects as

L =
n∏
i=1

{λ1i(Yi1 )}δi1 {λ2i(Yi1 )}(1−δi1 )δi2 {λ3i(Yi2 −Yi1 )}δi1δi2
(
1 + θ−1)δi1δi2

× [
1 + θ−1 {31i (Yi1 ) +32i (Yi1 ) +33i (Yi2 −Yi1 )}

]−θ−δi1−δi2 ,
11.

where λgi(s) = λ0g (s) exp
{
hg(X i )

}
and 3gi(t ) = ∫ t

0 λgi(s)ds for g = 1, 2, 3.

5.2.2. A new deep learning approach for semicompeting risks. We propose a multi-task
deep neural network for semicompeting risks (DNN-SCR), by using Equation 11 as the objective
function with potentially high-dimensional covariates. DNN-SCR consists of three risk-specific
subnetworks, respectively corresponding to the three possible state transitions, and a finite set
of trainable parameters for specifying the baseline hazards (i.e., the ϕ parameters in Figure 10)
if we specify Weibull baseline hazards, λ0g(s) = ϕg1ϕg2sϕg2−1 for g = 1, 2, 3, in Equations 8–11 as
well as the dependence among the three transition processes (i.e., θ in Figure 10). Instead of
the classical models, we opt for flexible, nonparametric estimation of hg(·), g = 1, 2, 3, to better
capture potential nonlinear dependencies of covariates on semicompeting events and to maximize
the predictive accuracy.

In particular, we design three neural network subarchitectures to estimate the h functions
nonparametrically as outputs. For identifiability, we require hg(0) = 0, g = 1, 2, 3, where 0 is a
p× 1 vector of 0’s. Each subnetwork is a fully connected feed-forward neural network with ReLU
activation functions and a linear activation in the final layer (Figure 10). The number of hidden
layers and nodes per layer, as well as the dropout fraction, regularization, and learning rates are op-
timized as hyperparameters over a grid of values based on predictive performance.We implement

Figure 10

Architecture for the proposed semicompeting risk deep neural network.
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our approach using the R interface for the deep learning library TensorFlow (Abadi et al. 2015),
with model building and fitting done using the Keras application programming interface (API)
(Chollet & Keras Team 2015). Finite-dimensional parameter training is done via the Gradient-
Tape API (Agrawal et al. 2019) for automatic differentiation. Intensive simulations have indicated
the new method predicts the risks well (Supplemental Appendix A).

Revisiting the BLCSC study, we exemplify our method by studying the impact of clinical and
genetic predictors on disease progression and mortality. The subset includes 5,296 patients with
nonsmall cell lung cancer diagnosed between June 1983 and October 2021. Also included in the
dataset are patients’ characteristics, namely, age at diagnosis (years), sex (0: male, 1: female), race
(0: other, 1: white), ethnicity (0: non-Hispanic, 1: Hispanic), height (meters), weight (kilograms),
smoking status (0: never, 1: former, 2: current), pack-years, cancer stage (1–4), and two indicators
of genetic mutations [epidermal growth factor receptor (EGFR) and Kirsten rat sarcoma viral
oncogene homolog (KRAS)]. Semicompeting events of cancer progression and death are docu-
mented in the data; the date of progression is the date of the first source evidence, including exam,
radiology report or pathology. Progression followed by death is observed in 111 patients (2%),
progression but alive at the last follow-up date is observed in 224 patients (4%), and death prior
to progression is observed among 1,916 patients (36%).

To investigate the dependence of disease progression on death and predict the transition pro-
cesses, we fit the models in Equations 8–10 via a DNN-SCR. Specifically, we assume Weibull

baseline hazards λ0g(s), g = 1, 2, 3, and γi
i.i.d.∼ 0(1/θ , 1/θ ) (as specified following Equation 10) and

let X i be the ith patient’s characteristics, i = 1, . . . , 5, 296. We then use DNN-SCR to optimize
the objective function (Equation 11) in order to output the estimates of the finite-dimensional
parameters (ϕs and θ ) and the predicted hg, g= 1, 2, 3 (log risk estimates), for any covariate values.

We estimate the frailty variance, θ , to be 3.15 (bootstrapped 95% confidence interval: 3.02–
3.29), which suggests that progression is indeed correlated with death. Figure 11 depicts the h
functions (log risks) for the effect of age at diagnosis on each state transition, stratified by sex
and initial cancer stage while fixing the other covariates to be at their sample means or modes.
There seems to exist a nonlinear effect of age that differs by transition, cancer stage, and sex.

Figure 11

Log risk functions of age at diagnosis on each state transition, stratified by sex (solid versus dashed lines) and
initial cancer stage (line color).
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Figure 11a shows that younger age and more advanced stage are associated with higher hazards
for progression; for the transitions from diagnosis or progression to death (Figure 11b,c), older
age is associated with higher hazards; interestingly, while sex does not seem to play a role in disease
progression (Figure 11a), male patients are more likely to die than female patients after diagnosis
(Figure 11b) or after progression (Figure 11c). Finally, more advanced stage is associated with
higher hazards for all the transitions.

6. CONCLUSIONS

We have presented various methods for analyzing survival outcome data with high-dimensional
predictors. We first provided a primer on time-to-event data and the unique features of sur-
vival analysis that make it distinct from other areas of statistics. We then reviewed regularized
approaches for extending classical models such as the Cox, AFT, and censored quantile re-
gression models, which lay the foundation for much of the subsequent work in this field, to
high-dimensional settings. We briefly touched on feature screening for ultra high-dimensional
predictors and discussed high-dimensional inference with survival data. Finally, we focused on
machine learning for survival prediction and concluded with methods at the forefront of the field
of prognostication with competing event data.

This review is intended to provide a road map for readers interested in high-dimensional sur-
vival analysis (see Supplemental Appendix B for a tabulation of the reviewed methods and their
available software), though our review is by no means exhaustive. This is an exciting and rapidly
evolving field, with many open questions and new developments. For example, progress in survival
predictions with high-dimensional predictors, including deep learning, active learning, and trans-
fer learning, will open new avenues to interdisciplinary breakthroughs in biomedical research and
methods with greater prognostic utility. Also, our review is mainly focused on frequentist meth-
ods, and in the past decade, a significant portion of Bayesian works (Annest et al. 2009, Bonato
et al. 2011, Lee 2011,Wang et al. 2013b, Pungpapong 2021) have appeared, which make the field
even more exciting. This review pays tribute to the late Sir D.R. Cox, whose work in survival anal-
ysis has fundamentally changed the paradigm of biomedical research and will continue to impact
future research for years to come.
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