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Abstract

For real-valued parameters, significance tests can be motivated as three-
decision methods, in which we either assert the sign of the parameter above
or below a specified null value, or say nothing either way. Tukey viewed this
as a “sensible formulation” of tests, unlike the widely taught null hypoth-
esis significance testing (NHST) system that is today’s default. We review
the three-decision framework, collecting the substantial literature on how
other statistical tools can be usefully motivated in this way. These tools
include close Bayesian analogs of frequentist power calculations, p-values,
confidence intervals, and multiple testing corrections. We also show how
three-decision arguments can straightforwardly resolve some well-known
difficulties in the interpretation and criticism of testing results. Explicit re-
sults are shown for simple conjugate analyses, but the methods discussed
apply generally to real-valued parameters.
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1. INTRODUCTION

Statistical testing has long been a controversial topic (Fisher 1935b, Neyman & Pearson 1933,
Jeffreys 1935), and debate on it continues (Wasserstein & Lazar 2016, Benjamini et al. 2021). In
particular, the formal reject/accept framework of hypothesis tests, though widely taught, has been
criticized for lack of relevance to underlying scientific aims (McShane et al. 2019). In this article
we review and explore an alternative, much less well-known approach to statistical tests—viewed
by John Tukey as a “sensible formulation” of them ( Jones & Tukey 2000)—that views tests as
decisions about the sign of an underlying univariate parameter. The signs can be asserted to be
positive or negative, or, in an important third option, we can make no decision either way.

Elements of this “three-decision” approach have long been known (Lehmann 1950, Bahadur
1952, Cox 1958), but to date no single reference draws together the depth of developments to
which it leads, unpicking many of the difficulties that afflict standard tests. This article groups
these developments into three core areas. In Section 2 we review the basic three-decision ap-
proach and its properties, as well as Bayesian and decision-theoretic versions of it, that provide
measures defining its optimality. Section 3 extends the approach to motivate other well-known
tools used with tests (e.g., power calculations, p-values, multiple testing corrections), giving them
“sensible” formulations, too. Finally, Section 4 introduces some novel tools for assessing the relia-
bility of testing-based inferences.We conclude with a contemporary worked example and a short
discussion, including scope for further work in this area.

2. REVIEW OF VIEWING TESTS AS THREE-DECISION PROBLEMS

2.1. Defining the Three Decisions

Using the three-decision approach, we denote the results of a test as one of the options inTable 1,
where (as throughout this article) θ is the univariate parameter of interest and θ0 is a prespecified
null value, where the sign of θ around θ0 is of scientific interest. For simplicity—and following
the arguments of, e.g., Jones & Tukey (2000) about its scientific relevance—we assume θ cannot
plausibly be exactly equal to θ0 and so do not entertain conclusions of that form.

Initial formulations of the three-decision problem (Lehmann 1950) considered decisions where
onemight accept a central null region, but compatibility of inference with intuition about evidence
then becomes challenging (Schervish 1996,Hansen & Rice 2022).Moreover, as argued by Bohrer
(1979), by considering small enough effect sizes we can never completely rule out situations where,
using standard hypothesis tests, the probability of correctly determining the sign would approach
only 0.5—i.e., no better than a coin toss. To avoid this, the third “no decision” option is required.
It was proposed initially by Bahadur (1952), who suggested a view of the t-test where, with non-
significant results, one should just reserve judgement (see also Kaiser 1960). Separately, Esteves
et al. (2016) show how the option of a nondecision is required if tests are to have certain logi-
cal coherence properties. Key subsequent references on the three-decision problem are the work
of Harris (1997), who stresses how viewing tests as sign decisions can avoid many problems of

Table 1 Notation and informal names for potential decisions under the three-decision
framework

Notation Informal name Assertion
d = A Above θ > θ0

d = N No decision None
d = B Below θ < θ0

Assertions made concern the sign of unknown parameter θ relative to null value θ0.
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misinterpretation, and Hurlbert & Lombardi (2009), for whom three-decision approaches are an
important element of their “neo-Fisherian” system. As noted by Harris (1997), viewing testing
results in this way is not far from current practice: Reporting the estimated sign of θ (albeit also
with an estimate of its magnitude) is standard, as is reserving judgement about the sign of θ around
θ0 when tests do not reject the point null hypothesis that θ = θ0.

However, default justification of hypothesis tests of point nulls (Barnett 1999, p. 196) provides
neither of these two elements. First, using classical tests a rejection of the point null hypothesis says
nothing about the sign of θ , unless we augment it by considering the possibility of a type III error—
rejecting the null hypothesis with an erroneous sign estimate, i.e., making the right decision “for
the wrong reason” (Mosteller 1948, p. 61). Second, simply reserving judgement is not an option
whenever we consider type II error rates or, equivalently, power. As power is defined in terms of
accepting the null—not remaining agnostic about it—using power to justify making no assertion
at all is at best a mismatch between motivation and practice. Jonsson (2013) considers frequentist
alternatives to power that are compatible with the three-decision approach; Berg (2004) develops
optimality criteria for three-decision tests.

For balance, we note that even this close connection with practice is not compelling to some
authors; the three-decision approach was derided as impractical by Hunter (1997), whose call for
statistical testing to be abandoned is still being made (e.g., Longford 2020).

For completeness, we also note that if we omit one of the possible decisions—i.e., we remove a
row in Table 1—then one-sided significance and hypothesis tests result (Rice et al. 2020). Much
of what follows in this article can also be developed for one-sided tests, but we focus on the two-
sided version as, following, e.g., Bland & Altman (1994), it is almost always important to entertain
making sign decisions in either direction, and not just one’s preferred direction.

2.2. Decision-Theoretic and Bayesian Approaches

With the set of three decisions given in Section 2.1, if we constrain interest in θ to just its
sign around θ0 (positive or negative), then evaluation of testing methods relies on, at most,
3 × 2 = 6 quantities. This makes standard decision-theoretic approaches particularly com-
pelling, as an exhaustive set of losses can be considered; all that one needs is the relative loss
for decisions A, N, or B under θ of either sign. [ Jonsson (2013) avoids specifying relative costs
by—unconventionally—maximizing overall rates of correct sign decisions subject to uniformly
most powerful unbiased testing of two null hypotheses, that θ is above or below θ0, and uni-
form minimization of nondecision rates. The rationale for this precise form of constraint is not
specified.]

Further restrictions on the six values in the loss function limit the form of tests that need to be
considered; a straightforward commitment to veracity means we should use losses that penalize
wrong decisions more than correct ones (see also Duncan 1965, section 5.1). Rice et al. (2020)
further show how, with losses that penalize d=N equally regardless of the underlying true sign of
θ − θ0 and are symmetric with regard to sign errors in either direction, the loss must be equivalent
to

L(d, θ ) = 1d=above ∩ θ<θ0 + α

2
1d=no decision + 1d=below ∩ θ>θ0 1.

for some α � (0, 1) chosen by the user. The loss may be more informally written as

1make sign error + α

2
1make no decision,

i.e., a trade-off between a potentially-wrong sign decision where errors are costly and a cheaper
but fixed-cost nondecision. Trade-off rate α/2 states how many times cheaper it is to make no
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decision than to make a sign error, where both quantities are measured relative to the zero loss we
incur for correct sign decisions. While we expect that α = 0.05 will be a natural default for many
users, considering the trade-off being made may instead help users choose a rate α based on the
scientific setting relevant to their analysis. We return to this topic in Section 4.3.

In Bayesian decision theory, under an assumed prior and model describing knowledge of θ and
how data update that knowledge, the Bayes rule is chosen to minimize the posterior expected loss
(Bernardo & Smith 2009, p. 448). This further automates the connection of scientific goals with
statistical methods. For three-decision problems, Bayes rules must depend on only the posterior
tail area, P[ θ < θ0 ], or equivalently P[ θ > θ0 ]. [For formal proof, consider special cases of the
results of Bansal & Sheng (2010); see also Thulin (2014).] For any three-decision loss satisfying
the coherence conditions, the Bayes rule asserts the sign of θ about θ0 only if the correspond-
ing tail area is below some critical threshold. Further assuming symmetry around θ0, the critical
quantity is the smaller of the two tail areas, and we only make a sign decision when this criti-
cal quantity is smaller that α/2—very much like a standard non-Bayesian two-sided test. By the
Bernstein–von Mises theorem (Van der Vaart 2000, chapter 10), under mild regularity conditions,
this means the Bayesian test also provides large-sample control of the type I error rate, and with
Equation 1’s symmetric loss, we control it at level α. Less formally, the Bayesian test achieves the
usual frequentist definition of a valid test. Sign decision tests therefore avoid the Jeffreys-Lindley
paradox (Lindley 1957), in which results from default Bayesian tests—based on priors with atoms
of probability at exactly θ = θ0—can strongly disagree with default frequentist tests.

The minimized expectation of Equation 1’s symmetric loss can be written as

1
2
min(P̃,α), where P̃ = 2min(P[ θ < θ0 ],P[ θ > θ0 ]).

We see that, when a sign decision occurs, the minimized loss is just the smaller of the two tail areas,
strongly analogous to frequentist methods that double the smaller tail. Similarly, P̃ gives a close
Bayesian analog of the standard frequentist p-value from a two-sided test that rejects the point null
when p < α. Importantly, this shows that while such p-values are “irreconcilable” with Bayesian
measures of support for point null hypotheses (Berger & Sellke 1987), they are straightforwardly
compatible with other forms of Bayesian tests. Moreover, the Bayesian three-decision motivation
requires no statement of hypothetical replications, which appears to be a notable challenge to
making correct use of p-values intuitive (McShane & Gal 2017).

For frequentist evaluation, the ”risk” of a given rule is the average, over repeated experiments,
of its realized loss. For the Bayes rule, the risk is

risk(θ ) = Pθ

[
P̃ < α ∩ θ̂ > θ0

]
1θ<θ0 + α

2
Pθ

[
P̃ > α

]
+ Pθ

[
P̃ < α ∩ θ̂ < θ0

]
1θ>θ0 , 2.

where θ̂ denotes the posterior median, used here just to indicate which side of θ0 has greater
support. In all cases the outer expectation is frequentist, over repeated experiments for which θ is
the true parameter. Informally the risk may be stated as

risk = rate
[
make sign error

] + α

2
rate

[
make no decision

]
.

The Bayes rule’s risk for a setting where we have independent N(θ , 1) observations and a zero-
centered Normal prior on θ (a Normal-Normal setup) is given in Figure 1; we note that risk
is monotone in the magnitude of Normal location parameter θ but not monotone decreasing in
sample size, nor monotone decreasing in prior precision, when keeping all other factors fixed.
The nonmonotonicity reflects a combination of the two components that contribute to the risk.
Increasing the sample size, the contribution from nondecisions shrinks straightforwardly. How-
ever, the contribution from sign errors is more complex; it is small when the sample size is tiny,
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Figure 1

Frequentist risk of Bayes rules for independent N(θ , 1) observations using Equation 1’s loss with α = 0.05 and prior θ ∼ N(0, τ 2). We fix
τ 2 = 1 and vary n in panel a; in panel b we fix n = 1 and vary τ 2. The risk is monotonic decreasing in |θ | for fixed n and τ , but not
monotonic decreasing in n for all fixed θ and τ , or monotonic decreasing in τ for all fixed θ , n.

as the prior dominates and sign errors are very rare. It is also small with large sample sizes, as the
likelihood dominates and sign errors are rare. Yet in between, there is a “twilight zone” in which
the rate of sign errors peaks sufficiently strongly to overwhelm the shrinking contribution from
nondecisions. Similar arguments explain the nonmonotonicity with respect to prior precision.

3. EXTENSIONS

3.1. Power and Related Issues

When planning studies or analyses, or comparing classical testing methods, the default measure
considered is power or, equivalently, type II error rate. This presents a challenge to the three-
decision approach; while some measure of performance is clearly needed, as noted in Section 2.1
[and known going back to at least Neyman (1952, chapter 1, part 3)], power is not an obvious
metric when we never accept null hypotheses.

Various alternatives to power are available (O’Hagan & Stevens 2001, Gelman & Carlin 2014,
Bayarri et al. 2016), but we focus on thosemost directly connected to Equation 1’s loss. Specifically,
these are its corresponding risk, defined in Equation 2, and the Bayes risk, the expectation of risk
with respect to the prior.

Informally, the risk tells us how bad a testing procedure is on average, assuming nondecisions
are cheaper than sign errors by a factor of α/2 and that correct sign decisions incur no loss. This
is similar in spirit to the motivation of Neyman & Pearson (1933, p. 291) for using power—trying
to ensure that we are “not too often wrong”—though here α appears as part of the statement of
losses, not as a distinct rate that we choose to control. Close connections between risk and power
can be expected whenever the contribution from nondecisions, the central term in Equation 2, is
much greater than that from wrong sign decisions; the risk will be essentially just a rescaled prob-
ability of nondecisions, equivalent in the standard approach to a type II error rate. (Still stronger
connections between risk and power occur when, as in Figure 1, both are monotonic in effect
size.) Familiar formulae for power calculations can be expected to also largely determine the risk
of three-decision methods at a given effect size or sample size.

Notable differences do exist, however. In the classical setting, when we consider decreasing
absolute effects or sample sizes, for reasonable tests we can expect power to tend to α. But no such
lower bound applies to the risk under Equation 1’s loss; if a large enough proportion of active

www.annualreviews.org • Three-Decision Tests 529



ST10CH22_Rice ARjats.cls February 14, 2023 13:47

sign decisions are incorrect—described by Gelman & Tuerlinckx (2000) as having a high “type
S error rate”—then risk will exceed α/2, i.e., the test will perform worse than simply ignoring the
data and making no decision regardless. Such testing procedures have been labeled “futile” (Rice
et al. 2020). Futile tests need not be pathological or unrealistic situations: For the Normal location
problem of Figure 1, using the standard Z test (which is uniformly most powerful unbiased; see
Casella & Berger 2021, pp. 390–91), at level α = 0.05, futility occurs whenever the test has less
than 12% power. If prior knowledge strongly supported such small effects, then the corresponding
Bayes rule would still lead to futility for some parameter values, but with risk at those small effect
sizes being closer to α. Averaging over the prior on effect sizes, the corresponding Bayes rule will
(by its definition) always achieve Bayes risk below α/2.

Moving away from futile tests, the goal of reducing risk can motivate calculations much like
those familiar for sample size/minimum effect sizes. The key choice here is how much lower than
α/2 the risk has to be for a study to have merit. No default level of reduction exists, but in closely
related work, Shafer (2021) suggests that learning enough to improve performance by a factor
of 5 merits attention; one might view this as the testing setup being “worthwhile.” Of note, for
Figure 1’s Normal location problem using Z tests with α = 0.05, reducing risk to the worthwhile
level of 0.05/10 = 0.005 or less corresponds to requiring sample size/effect size yielding at least
80% power (Krakauer & Rice 2021)—a familiar criterion in current practice.

Rather than specifying a particular value of θ , one can also average risk(θ ) over the prior, giving
the Bayes risk. Ensuring that the Bayes risk is below a prespecified threshold (e.g., α/10) also
determines a sample size calculation, for analysts who share the relevant prior beliefs. This is
essentially the approach used in “Bayesian assurance,” although it averages power, not risk, over
the prior (O’Hagan & Stevens 2001). Following reasoning used to set minimum thresholds for
Bayesian assurance, to set a threshold for sufficient Bayes risk reduction, one should consider the
cost of the study: Amodest reduction in risk (i.e., having a moderate chance that any sign decisions
are wrong, at a priori plausible θ values) may be worthwhile if the study is cheap to conduct.With
still more explicit assumptions about trade-offs of cost per data point versus reduction in risk, one
could (following Lindley 1997) determine an optimal sample size, not just a sufficiently large one.
Section 4.3 discusses posterior estimation of the risk and how this may help with interpretation
of results.

3.2. Two-Sided p-Values

As noted in Section 1, controversy over statistical testing is widespread, with corresponding criti-
cism of p-values (Nuzzo 2014).Nevertheless, various authors have defended p-values, for example,
as being in practice “too familiar and useful to ditch” (Matthews et al. 2017, p. 41, quoting David
Spiegelhalter). P-values also have a formal interpretation as a summary of potential tests, as the
highest α at which the null would not be rejected. Rafi & Greenland (2020) also review how
p-values are a legitimate measure of data-model conflict even without doing tests.

Decision-theoretic views of p-values can clarify their connections with tests. Following the
arguments of Rice et al. (2020, appendix B), we consider the loss function

L(s, a, θ ) = 1√
a

(
2s1θ<θ0 + a+ 2(1 − s)1θ>θ0

)
for decisions a � (0, 1) and s � {0, 1}, which is related to but distinct from three-decision
Equation 1’s loss. Ratio a describes how much more willing we are to accept a unit of loss for
the indicator of the sign of θ around θ0 (which is known imperfectly) versus a fixed cost, and the
choice of sign is given by binary decision s. The Bayes rule sets sB = 0, 1 according to whether
there is greater posterior support for θ < θ0 or θ > θ0, respectively, and aB is just P̃, i.e., twice the
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minimum tail area and a direct Bayesian analog of the two-sided p-value. This Bayesian analog of
two-sided p-values is obtained without test being done—however, it does require that we consider
quantities that (as seen in Sections 2.2 and 3.1) are strongly relevant to testing decisions, so some
connection remains. Formally, we are viewing the p-value as the Bayes rule for a problem that is
the dual of the testing problem, and in which we decide the optimal rate for making trade-offs
between functions of the sign of θ . A distinct advantage of the three-decision approach is how it
avoids needing to consider long-run frequency properties under the point null, the relevance of
which is strongly criticized by, e.g., Jeffreys (1980).

3.3. Credible Intervals

A widely used formulation of confidence sets comes from inverting tests, describing the, e.g.,
95% confidence set as the collection of null values θ0 that would not be rejected by tests with level
α = 0.05. Rice et al. (2020) show how decision theory permits the same construction for univariate
parameters. One simply integrates the sign-testing Equation 1’s loss over all possible null values
θ0, making a distinct decision for each null value. Formally, this gives

L(A,B,N , θ; π ) = π (A ∩ {θ0 : θ < θ0}) + α

2
π (N ) + π (B ∩ {θ0 : θ > θ0}), 3.

where decisions A, B, and N are the sets of all null values about which we report that θ is above
or below or make no decision, and user-chosen measure π states the relative importance given to
each contributing value of θ0. Informally, Equation 3’s loss may be written as

area(sign errors) + α

2
area(no decision),

where the areas—subsets of the space of possible null values—are calculated with regard to mea-
sure π .We trade the area of null values about which we make sign errors for the area of null values
about which we make no decision, with no decision being cheaper per unit area by a factor of α/2.

Assuming, reasonably, that π provides nonzero support to all θ0 � 2, then the Bayes rules
for A and B, respectively, report simply the sets of values above and below the 1 − α/2 and α/2
posterior quantiles, and the central quantile interval is the Bayes rule for N. Of note, the Bayes
rules are the same for all measures π with nonzero support everywhere, so beyond this regularity
condition, the choice of measure π can be ignored formaking set decisions. Frequentist agreement
between credible and confidence intervals follows by the usual Bernstein–von Mises results (see
Section 2.2), but notably, the agreement happens at a faster rate for quantile-based intervals than
for other credible sets (Hartigan 1966). (Specifically, the quantile-based interval is a second-order
confidence interval, with asymptotic accuracy of its coverage for sample size n shrinking with 1/n,
compared with other first-order intervals where accuracy only shrinks with 1/

√
n.)

Having the sets be connected comes for free in this motivation; Equation 3’s loss does not
specify it directly.This is not the case for othermotivations, specifically the loss given by Schervish
(1995, section 5.2.5) for the ends of a connected interval, which balances penalties for interval
width and for being further from the true θ , when it is not covered by the interval.

Use of the overall expected loss (which can be expected to depend onmeasure π ) for evaluation
and criticism of credible sets—similarly to Section 3’s discussion of test trustworthiness—remains
unexplored. Extensions in which we divide the real line into more than three sets, bringing in con-
cerns about the consonance (Gabriel 1969) of different decisions, also have yet to be implemented.
A further unexplored but intriguing connection is with point estimation. Unlike implementing
credible intervals as accompaniments to point estimates (e.g., Rice & Ye 2022), the inverting-tests
approach here yields credible intervals without any intermediate estimation step. Nevertheless, in
the limit as α approaches 1, the Bayes rule for setN reduces to a single point, the posterior median,
a widely used point estimate.
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3.4. Multiple Testing

When multiple hypotheses are to be tested, the controversy noted in Sections 1 and 3.2 intensi-
fies; prominently expressed views range from the stance that no corrections are needed (Rothman
1990) to claims that unaccounted-for multiple testing is a major reason for false positive find-
ings (Forstmeier et al. 2017) and hence the replication crisis. There is also a large and pragmatic
middle ground, however. For example, most statisticians would agree that when a large number
of hypotheses are tested, reporting only the smallest p-values is quite likely to be misleading (Cox
2006, p. 86).When inference for multiple parameters is considered, using just their signs has been
recognized as a helpfully robust approach, in terms of being widely applicable and also leading
to estimation of error rates with reduced sensitivity to modeling assumptions (Stephens 2017).
Formal decision theory approaches date to Lehmann (1957a,b) and Duncan (1965).

In contrast to Section 2.2’s single sign decision, for which all loss functions can be considered in
a small table, joint losses for tests of multiple parameters quickly become challenging. In particular,
different rules will be preferred depending on whether wemeasure performance based on a simple
summation of univariate testing losses, versus some measure of the rate of errors among sign
decisions that are made [see Shaffer (2002) and Lewis & Thayer (2004, 2013), but also the earlier
work of Robbins (1951) and its extensions by Sun & Cai (2007)]. Without forethought, this can
lead to reversals between one-at-a-time tests of multiple parameters and multiplicity-corrected
versions of them (Perlman & Wu 1999) that might be expected to be more stringent.

Illustrating this in the sign decision setting, we first simply add together a copy of Equation 1’s
loss for each parameter, giving loss

#{d j = A ∩ θ j < θ0 j} +
∑
j:d j=N

α j

2
+ #{d j = B ∩ θ j > θ0 j}. 4.

By the results of Lehmann (1957a) (and see also Lewis & Thayer 2013), this leads to testing at
level αj for each θ j, with no correction for multiplicity. However, the simple count of incorrect
sign decisions is likely inappropriate in many settings, where making each additional sign error
need not incur the same additional penalty. A simple—but extreme—form of interaction between
the sign errors is given for m parameters by loss∑

j:d j=N

α j

2
+ 1∪m

j=1{(d j=A ∩ θ j<θ0 j )∪( d j=B ∩ θ j>θ0 j )}, 5.

in which the sum of all costs for nondecisions is traded against an indicator that any sign error has
occurred. This means that making one sign error is as bad as making any larger number of them,
up to and including sign errors for all m parameters.

It is notable that with Equation 5’s loss, not all sets of αj will make sense. In particular if∑m
j=1 α j/2 > 1/2, then deciding dj = N for all j will always incur more expected loss than making

sign decisions dj = A or B throughout, with the choice made according to which sign has greater
posterior support. The expected loss is then bounded above by 1/2, and hence we would never
set all dj = N, regardless of the observed data. To avoid this, we can correct the αj levels, relative
to their use in single parameter tests, and constrain

∑m
j=1 α j < 1. For the simple case where all αj

are equal, we can set αj = α/m for some α < 1, recognizable as a Bayesian version of Bonferroni
correction (Bland & Altman 1995). As with classical use of Bonferroni controlling family-wise
error rate, the criterion employed is conservative. It can similarly be shown that using a conserva-
tive approximation of the Bayes rule for Equation 5’s loss with αj = α/m is essentially a Bayesian
version of applying Bonferroni correction to the p-values used for testing (Rice et al. 2020).

Extending the multiple testing losses above leads to other criteria and methods. Lewis &
Thayer (2013), following Sarkar & Zhou (2008), note how the Bayes risk of Equation 4’s loss—the
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expectation over repeated experiments of the minimized posterior loss—is bounded:

1
2
E

 ∑
j:P̃j<α j

P̃j +
∑
j:P̃j>α j

α j

 ≤ 1
2

m∑
j=1

α j ,

and rearranging this, we must have

E

[ ∑
j:P̃j<α j

P̃j

#{ j : P̃j < α j}

]
≤

∑m
j:P̃j<α j

α j

#{ j : P̃j < α j}
.

The left-hand quantity is the expectation (with respect to both prior and sampling uncertainty)
of the #{sign errors}/max(1, #{sign decisions}) and so is termed the “Bayesian directional false
discovery rate” (Sarkar & Zhou 2008), which in turn is similar to the directional false discovery
rate introduced by Williams et al. (1999). The right-hand quantity, minimized over selections of
indices j, provides an upper bound on the Bayesian directional false discovery rate; for the simple
situation with all αj = α, it is just α.

The connection to frequentist false discovery rate (FDR) control is more direct if we instead
adapt Equation 4’s loss, now trading off the proportion of active decisions that are wrong for the
proportion of parameters about which no decision is made, giving loss

#{sign errors}
1 ∨ #{sign decisions} + α

2
#{sign nondecisions}

m
,

where we note that no parameter is upweighted compared with any other. As shown by Lewis
& Thayer (2009), the Bayes rule is given by a Bayesian version of the Benjamini–Hochberg algo-
rithm,making sign decisions for the parameters ordered by their increasing P̃j , up until the largest
value for which P̃( j) <

α j
m . Further work remains on evaluating or adapting these losses for infer-

ence on selected parameters, or explicitly reflecting dependence between knowledge of different
parameters, via either simple correlation or more complex graphical structures.

4. TOOLS TO ASSESS THREE-DECISION INFERENCE

Even with well-planned studies providing inference on clearly specified and relevant parameters,
results will not always be clear-cut. A large part of the current crises in both statistical under-
standing and reproducibility (Gelman&Loken 2014,Goodman 2016,Wasserstein &Lazar 2016)
may be due to overinterpretation of findings that are ambiguous or weaker. Using simple accept/
reject (or accept/do not accept) dichotomies may fuel these problems—and tests have long been
criticized as excessively crude summaries of data analyses, for example, the depiction of them as
“mechanical rituals” (Cohen 1994, p. 1001). In fairness, providing a sign decision is only slightly
more informative, so essentially the same criticisms apply if sign decisions alone are reported.

However, rather than retiring tests completely (Amrhein et al. 2019), a more complete picture
of testing results may be produced by augmenting them with a corresponding measure of trust-
worthiness (Hand 2022), meaning their capacity to dispute anything other than true statements.
While this is an active area of research for classical tests of point nulls (Mayo & Spanos 2006,
Gelman & Carlin 2014, Bayarri et al. 2016, Hannig et al. 2016, Matthews 2018, Shafer
2021), beyond p-values and confidence intervals, measures of trustworthiness are rarely actually
reported—and misinterpretations and misuse of these measures are widespread (Goodman 2016).
While not a panacea, three-decision approaches are attractively simple in three distinct ways. First,
they consider only a limited, easily understood set of decisions. Second, they omit point masses
of support at the null value—unlike, e.g., postexperimental rejection odds (Bayarri et al. 2016).
Third, they optimize a single criterion—the expectation of Equation 1’s loss—without constraint,
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instead of optimizing one criterion (power) subject to a strict bound on another (type I error rate).
All three factors may help readers see more directly how tests are being assessed. Below, we de-
scribe how tests may be assessed using established reverse-Bayes approaches (i.e., evaluating which
priors would lead to different decisions) and loss estimation in which the realized value of Equa-
tion 1’s loss is estimated, to the extent that this is possible.We also consider risk estimation, a novel
approach in which standard Bayesian tools update beliefs about the risk of the testing setup over
replicate studies. This leads to surprising distinctions between the motivation to make a specific
testing decision versus trust in the testing procedure that generated it.

4.1. Reverse-Bayes Assessment of Three-Decision Results

Dating at least to Good (1950), it has been recognized that Bayesian updating can be reversed,
deducing the prior given a posterior and likelihood. This approach lends itself to assessment of
analyses by reverse-Bayes methods, where, for a given likelihood and a set of posteriors—say,
those consistent with a certain decision—we deduce the corresponding priors. Using subjunctive
reasoning (Senn 2001), we then assess whether the priors needed to motivate a given decision are
compatible with existing scientific insights. In other words, we determine if making a different
decision would require one to have started from untenable beliefs. Where this occurs—and the
elements providing the likelihood are trusted—the initial results appear warranted.Where it does
not, the testing result, while formally valid, may nevertheless be uncompelling.

A thorough review of this general approach is given by Held et al. (2021). It is particularly
well suited to the three-decision problem: We need only categorize priors according to which
sign decision or nondecision they lead to, when combined with the likelihood.Moreover, with the
implicit use of univariate parameters, the sets of priors we might consider—when characterized
by a small set of key features such as mean and variance—is tractable.

Implementing reverse-Bayes methods for three-decision analysis, denoting the initial posterior
density as post(θ ) obtained using initial prior density prior(θ ), we can obtain the alternate posterior
under another prior by calculating

post(θ )
prior(θ )

prior∗(θ ),

for alternate prior density prior∗(θ ), and then normalizing so that this quantity integrates to 1.
From there, we only need the minimum tail area to either side of θ0 to calculate the corresponding
alternate P̃∗ and alternate Bayes rule d∗.When there is conjugacy (e.g., the simple but useful setting
where both prior and posterior are Normal), closed form evaluations are available; more generally,
we can reweightMonte Carlo samples from the initial posterior to approximate values of alternate
P̃∗ values.

We give four examples in Figure 2. We suppose all initial sign decisions use θ0 = 0, with α =
0.05 and initial prior where θ ∼ N(0, 25). The data (and hence posterior) for each case are chosen
to give the specified initial P̃ value. In each row we do this in two different ways: one in which
the posterior is precise and one where it is diffuse. Contours within the plot connect the different
alternate N(µ∗, σ ∗ 2) priors that give particular P̃∗ values, with shading colors indicating the set of
alternate priors for which the alternate Bayes rule is d = B,N, or A.

In the top row,with initial P̃ = 0.046 and d=A, from themore precise posterior we see that the
d= A decision accords with the Bayes rules under priors that are more precise only if they indicate
a slight bias for positive effects; for less precise priors, some degree of negative bias would also lead
to d=A.Under themore diffuse initial posterior, a much smaller set of {µ∗,σ ∗} combinations leads
to alternate decisions that agree with the initial one. Clearly, P̃ alone does not tell us everything
about how compelling the initial analysis may be.
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Figure 2

Contour plots of P̃∗ at alternate prior means µ∗ and standard deviations σ ∗, for reverse-Bayes analysis of the initial posteriors in each
figure title, all with an initial N(0, 25) prior and the stated initial P̃ values. The colored regions indicate the corresponding Bayes rule,
for sign decisions with α = 0.05. Also highlighted are the critical priors given by analysis of credibility, which considers only priors
indicated by the yellow line. Contours of P̃∗ from 0.01 through 0.3 are shown, although we omit contours in regions where the initial
sign decision is completely reversed. A, B, and N stand for the decision that would be made (above, below, or no decision; see Table 1)
at the given alternate prior.

The vertical lines in the top row of Figure 2 indicate alternate priors considered under
Matthews’s (2018) analysis of credibility (AnCred) (initially developed by Matthews 2001; see
also Spiegelhalter et al. 2004, section 3.11). For initial sign decisions, AnCred only considers pri-
ors centered at the null value. It seeks the critical prior, which is the alternate prior giving results
exactly on the boundary between a sign decision and nondecision, i.e., where P̃∗ = α. The crit-
ical priors are indicated on the plots; the formulae that give them are provided by Held et al.
(2021). Matthews (2018) further suggests summarizing them by the extreme 2.5% quantiles of
the prior, labeling these the skepticism limits. These limits represent the most extreme null values
about which one would make no decision (under Equation 1’s loss) using the alternate prior alone,
where that alternate prior is chosen such that its posterior has equal expected loss under d = A
and d = N. In the examples of the top row of Figure 2, the distance between the original and
critical prior similarly indicates how much/little skepticism about larger θ values would be needed
to overturn the Bayes rule for the precise/diffuse posteriors, respectively.

In the lower row we give two results that have the same P̃ (P̃ = 0.23, giving Bayes rule d = N)
but have different interpretations when challenged with the use of alternate priors. For the precise
posterior, we see that to change to d = A, one needs a prior with a mean several times bigger than
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its standard deviation. For the diffuse posterior, the Bayes rule can be changed by priors with
approximately equal mean and standard deviation, at least for θ values that are plausible under the
initial prior.

For these initial d=N decisions, AnCred obtains its critical prior by considering alternates for
which,making decisions based on the prior alone, a sign decision just favors asserting the direction
under consideration instead of making no decision. These priors correspond to the line through
the origin with slope 1/zα/2, i.e., 1/1.96 for α = 0.05. The critical prior on this line occurs where
P̃∗ = α, i.e., the alternate Bayes rule, is also exactly borderline. In place of the skepticism limit,
AnCred summarizes this prior by the advocacy limit, which is the 0.025 quantile in the direction
of consideration. It represents the least extreme null value about which one would make a sign
decision using the alternate prior alone, where the alternate prior is chosen such that its posterior
yields equal expected loss under d= A and d=N. In the examples in the bottom row of Figure 2,
the horizontal difference in the critical prior under the precise/diffuse priors similarly illustrates
how strongly shifted prior beliefs would have to be to overturn the initial posterior Bayes rule yet
retain d = N under the alternate prior.

Reverse Bayes offers a direct way to assess the sensitivity of decisions to prior assumptions,
indicating the prior beliefs that (when updated rationally with the information in the data and as-
sumed model) give results that agree or disagree with the initial Bayes rule. In application it does,
however, require that the alternate priors can be concisely parameterized. This is not a major
problem for univariate analyses with simple closed-form priors, but where more flexible classes of
alternate priors are considered, it will be a challenge to summarize the set of P̃∗ indexed by larger
numbers of parameters. Using testing-based properties to define a reduced set of alternate priors
for consideration, as AnCred does, also risks confusion with the testing that is the primary pur-
pose of the analysis. A final limitation of reverse Bayes is its propensity for considering priors (for
example, unrealistically precise ones) with which the observed data are strongly in conflict (Evans
& Moshonov 2006). Rather than Bayesian updating, faced with such priors, the data would pro-
voke reappraisal of relevant modeling assumptions. One can rule out considering such priors, but
defining them in the first place is itself a challenge. The notion of intrinsic credibility (Matthews
2018) assesses this concern in part, evaluating whether observed data are tenable under critical
priors, but more general assessment of prior/data conflict and its impact on decisions remains
unresolved.

4.2. Estimating Loss of Three-Decision Results

Even when prior assumptions on θ and the model are uncontroversial, with limited data there
may still be concern that a specific decision—even an optimal Bayes rule—may still not be a good
decision in absolute terms. A natural quantification of this is given by estimating the realized loss
for the specific decision, i.e., the loss that was actually incurred. Given the decision, the realized
loss is a function of the unknown θ alone, and hence amenable to Bayesian inference. For example,
under squared-error loss for estimation decisions, the Bayes rule is the posterior mean and the
realized loss is (θ − E[ θ ])2, typically estimated by its posterior expectation, the posterior variance.
To estimate the realized lossmore formally using decision theory,we can either expand the original
loss function so it also estimates realized loss as an auxiliary decision (Rukhin 1988), or instead—
fixing inference from the original decision—use an entirely separate loss function (Robert 2007,
pp. 178–80).

For the three-decision problem this formalism seems excessive, as we can only make correct
sign decisions, nondecisions, or incorrect sign decisions, and the realized loss can only take one
of three values: 0, α/2, and 1. Moreover, for nondecisions, we know with certainty that the loss
is exactly α/2, so the only uncertainty comes from whether sign decisions, if made, are correct or
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Figure 3

Probabilities of the three possible values of realized loss for a single Y ∼ N(θ , 1) observation with prior θ ∼ N(0, 25). P̃ is also shown.
The shaded regions indicate the corresponding Bayes rule under Equation 1’s loss with α = 0.2. Where sign decisions are made, the
posterior expectation of the realized loss, a binary variable, is just the probability that loss = 1, i.e., half the P̃ value. A, B, and N stand
for the decision that would be made (above, below, or no decision; see Table 1).

not.Figure 3 shows (using α = 0.2 for clarity) the three posterior probabilities as functions of the
observed sample value, when we have an n = 1 realization of N(θ , 1) with prior θ ∼ N(0, 25). The
shading color indicates the corresponding Bayes rule under Equation 1’s loss.Where d= A or d=
B and sign decisions are made, the posterior expectation of the realized loss is just the probability
that loss = 1, i.e., half the P̃ value. In other words, when a sign decision is made, P̃ completely
determines what is known about the realized loss.

Motivated in this way, P̃ values are an inevitable measure of vulnerability of sign decisions—i.e.,
their capacity to produce “a consequence which is substantially discrepant from what we would
expect were an assertion true” (Hand 2022, p. 333). Interpreting P̃ as a loss estimate—and report-
ing it to assess the vulnerability of an initial testing decision—provides a Bayesian analog of the
standard non-Bayesian practice (see e.g., Altman et al. 1983) of reporting full p-values and not just
whether p < α.

The redundancy, when we know P̃, of other posterior-based measures of vulnerability (i.e.,
realized loss) is rhetorically useful. Under the setup we have described, it forces discussions of how
to assess a given test away from which measure(s) to report, focusing instead on interpretability of
the assessment given by P̃. Given the challenges different audiences have in interpreting standard
p-values (Royall 1986, Hubbard & Bayarri 2003, Goodman 2008), there seems value in having a
variety of presentations.

The redundancy also provides a Bayesian analog of Hoenig & Heisey’s (2001) celebrated cri-
tique of observed or post hoc power calculations. In these calculations, in an effort to understand
whether a specific testing decision is well-motivated or not, users reuse the data used for the test to
also estimate the parameter being tested, and plug that estimate (and perhaps also estimates of any
nuisance parameters) into standard power formulae. Post hoc power calculations were common
in earlier literature, and debates over them continue (Bababekov & Chang 2019, Heinsberg &
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Figure 4

Risk at fixed θ and density of risk of Bayes rules for independent N(θ , 1) observations using Equation 1’s loss with α = 0.05 and prior
θ ∼ N(0, 1), for results with P̃ = 0.046. (a) The posterior for θ is summarized and risk(θ ) at each θ shown, as also shown in Figure 1.
(b) The posterior density for risk(θ ) is shown. Both plots show the suggested threshold risk levels of α/2 and α/10.

Weeks 2022), but as noted by Gelman (2019, p. e64, quoting a phrase from Bababekov & Chang
2019), “considering this noisy estimate as knowing the power after the fact is an invitation to
overconfidence.” Hoenig & Heisey (2001) showed that for several common settings, the post hoc
power estimate is just a fixed function of the p-value, and so it provides zero further information
about the chances of a type II error. In the Bayesian analog, with knowledge of the P̃ value, zero
further information is available about whether a sign decision is a sign error.We also note that the
Bayesian analog result is completely general for univariate parameters, holding for any posterior;
Hoenig & Heisey’s (2001) version is claimed to be general, but no rigorous proof of this is given.

4.3. Estimating Risk of Three-Decision Methods

As seen in Section 3.1, the risk of three-decision methods plays a central role in study planning.
While it does not inform one of the plausible losses actually incurred in an analysis (as Section 4.2’s
loss estimates do), updating knowledge of the risk is nevertheless natural, using the available data
to enable more precise statements of the long-run average costs incurred in repeated use of those
methods.

Indeed, some knowledge of this form of frequentist calibration seems essential in practice, as
those reading the results are unlikely to trust them if obtained from methods that “if used repeat-
edly, give systematically misleading conclusions” (Reid & Cox 2015, p. 295; Hand 2022, p. 333).
More positively, establishing acceptable levels of risk helps build the case for the trustworthiness
of the methods being used (Sekhon et al. 2014).

Compared with loss estimation, implementing risk estimation for three-decision approaches
using Bayesian inference is more straightforward: Risk, for the Bayes rule of interest and under a
specified study design and loss, is simply a function of θ , and so the posterior obtained for θ also
conveys all posterior uncertainty about the risk at the true value of θ . As we describe below, this
simplicity nevertheless provides straightforward motivations for why sign-testing decisions merit
skepticism, particularly when results are borderline.

Figure 4b shows the distribution of risk(θ )—the long-run average loss incurred using the Bayes
rule for Equation 1’s loss with α = 0.05 and θ0 = 0—under the N(0, 1) prior and Normal location
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model used in Figure 1, where the observed data in each case give P̃ = 0.046, as in Figure 2.
Less technically, Figure 4b shows beliefs about risk based on data that only just result in a sign
decision; other cases are considered by Krakauer & Rice (2021). Notably, the posterior of the risk
is not simply stretched or shifted as sample size varies; the shape differs. At the smallest sample
size, situations with borderline d= A or d= B decisions give (nontrivial) 12.1% support to futility
of the testing setup—i.e., risk(θ ) > α/2—with most of the rest of the support for only slightly
lower risk.With increasing sample size, the risk curve gets steeper around θ = 0, but the posterior
support for θ also becomes more concentrated. These factors combine to make the posterior of
the risk more uniform. More specifically, support for futility decreases, but (importantly) only to
10.9%, not vanishing to zero.

Considering low values of risk, we can follow Shafer (2021) and deem settings with risk(θ ) <

(α/2)/5 as a worthwhile reduction in risk. With n = 1 we have support 0.0009, i.e., 0.09%, for
the setting being worthwhile, given borderline P̃ = 0.046. This is shown by Figure 4b’s very light
left tail of risk(θ )’s posterior, below α/10. For larger n (e.g., n = 30) we see greater support in this
region given the same borderline P̃, but support rises to only 21% as n increases without bound.
In plain terms, we see that while borderline results may result in active sign decisions, they do not
provide support that the testing process by which they arose is a reliable one that is “not too often
wrong.”

Tomeet this stricter standard of defensibility, a lower P̃ threshold can be introduced. For exam-
ple, obtaining P̃ = 0.005 or below, as suggested by Benjamin et al. (2018), with large n, we reduce
support for futility (of the sign decision with α = 0.05) to just 2.1%, while support for risk values
low enough to be worthwhile (as defined above) rises to 50.1%, i.e., a coin toss.

Clearly, these considerations of risk link the sign decision framework to other approaches, no-
tably the motivation of the p< 0.005 criterion via approximate Bayes Factor arguments (Benjamin
et al. 2018, Johnson 2013), or via 80% replicability (Greenwald et al. 1996).While not considered
here, links to still further approaches can be obtained by elaborating upon the calculation of risk.
Specifically, when integrating loss over replicate datasets to obtain risk(θ ), we can consider the
proportion of them for which the data are more extreme than that actually observed, where ex-
tremity might be measured by the corresponding P̃ values. This proportion defines a form of
severity (Mayo & Spanos 2006), a measure of the stringency of the test; severe tests are capable of
uncovering falsehood in a false hypothesis. Severity is more specifically defined as the probability
the test statistic would be more extreme than that observed under a range of true θ . Inference on
the severity of a test can therefore be provided as we have done for risk, but its implicitly subjective
choice of how to measure extremity would first need to be defended.

Finally, as noted by Rice (2010), there may be good scientific reasons to consider lower α

with larger sample sizes; trade-off rates for different types of error may differ in small versus
large studies. Wakefield (2009), following Cox & Hinkley (1974), shows how this adaptation can
reconcile frequentist tests with measures of evidence for and against point null hypotheses. In
considering risk, reducing α proportionally with (n log n)−1/2 (Cox &Hinkley 1974, p. 397) means
that borderline results yield decreasing support for futility (at the relevant α) at larger sample sizes.
Less technically, this means that even with borderline results, we eventually conclude the testing
setup is not futile.

5. EXAMPLE: ANALYSIS OF THE ANDROMEDA-SHOCK TRIAL

To illustrate practical use of three-decision analyses, we consider data from the ANDROMEDA-
SHOCK trial (Hernández et al. 2018). It studied treatments for septic shock, an exceptionally
serious condition with anticipated four-week mortality up to 45%. ANDROMEDA-SHOCK
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compared peripheral perfusion-targeted resuscitation (a novel treatment) to lactate-targeted re-
suscitation. The study enrolled n = 424 participants, sufficient to provide 90% power to detect a
15% reduction—or hazard ratio (HR) of 0.60—in the four-week mortality rate. On analyzing the
data, the two-sided p-value of 0.06 just exceeded the prespecified α = 0.05. However, the study
did provide some evidence of benefit of the novel treatment, with estimated HR = 0.75 [95% CI
0.55–1.02] (Hernández et al. 2019).

Despite these borderline results, the investigators primarily concluded that the novel treatment
did not reduce mortality (Hernández et al. 2019).This was controversial: Others claimed that “the
new treatment clearly reduced mortality” (Hardwicke & Ioannidis 2019, p. 4), consistent with
common interpretations of just-nonsignificant results as “trending towards significance” (Wood
et al. 2014, p. 1). The ensuing public debate over interpreting the results (Ahuja 2019, Amrhein
et al. 2019, Hardwicke & Ioannidis 2019, Spiegelhalter 2020) motivated several Bayesian analyses
of the data, including one by the original study team (Spiegelhalter 2020, Zampieri et al. 2020).

To show how three-decision Bayesian approaches could help, we illustrate the approaches
of Sections 2.1–4.3 for three Normal priors for θ , the log HR of interest. The priors are cen-
tered around the null, θ0 = 0, but have different prior variances ν2. We consider (a) a weakly
informative N(0, ν2 = 10) prior; (b) a somewhat skeptical N(0, ν2 = 0.134) prior, chosen to
have a 95% prior credible interval identical to a prior used by some members of the original
ANDROMEDA-SHOCK team (Zampieri et al. 2020); and (c) a very skeptical N(0, ν2 = 0.032)
prior used by Spiegelhalter (2020), with a 1 in 500 prior chance of the HR being below 0.60, the
HR for which the original study was well-powered.Updating the prior generally requires defining
the full data likelihood, which would, in this case, require defining the baseline hazard, a high-
dimensional nuisance parameter. For simplicity and in keeping with the Cox proportional-hazards
model’s lack of dependence on baseline hazard, we instead update the prior using an approxima-
tion of the sampling distribution of the log HR (Tsiatis 1981), where 2̂ ∼ N (θ̂ , ŝ2 ), using estimate
ŝ of the standard error from the fully adjusted Cox regression output (Spiegelhalter et al. 2004,
pp. 27–30).

For all three priors, the Bayes rule for Equation 1’s loss with α = 0.05 is to make no decision
about mortality differences between the treatments, with P̃ = 0.15, 0.08, and 0.06 for ν2 = 0.032,
0.135, and 10, respectively. As expected, P̃ most closely approximates non-Bayesian two-sided
p = 0.06 for the most diffuse prior. For the same priors, the HR’s quantile-based 95% credible
intervals (developed in Section 3.3) are, respectively, (0.68–1.07), (0.59–1.04), and (0.55-1.02).The
latter interval, from the most diffuse prior, is essentially identical to the original 95% frequentist
confidence interval (Hernández et al. 2019).

The dataset is large enough that, even comparing values of ν2 that differ by orders of magni-
tude, in addition to the Bayes rule being d = N, the P̃-values and credible intervals are broadly
similar. In particular, the HR’s intervals all contain 1, the null value, but also HR = 0.75, which is
equivalent to an 8.5% reduction in absolute risk during the trial and deemed clinically significant
by the investigators (Zampieri et al. 2020).

Using reverse Bayes via Matthews’s (2018) AnCred recommendations (as discussed in Sec-
tion 4.1), and considering only Normal priors, we note that the critical prior for θ that just leads
to an active sign decision yet retains zero in the central 95% of the prior is N(−111.72, 572).
The great majority of this prior belief lies at implausibly small HRs (e−111.72 ≈ 3 × 10−49), and so
the trial results put no useful constraint on advocates of θ < 0 who seek to challenge the origi-
nal nondecision. In other words, there is insufficient evidence present for credibility of the initial
nondecision and only more data can resolve this ambiguity. This issue persists across any study
yielding borderline p-values (Matthews 2018).
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Figure 5

(a) Risk of Bayes rules at fixed θ , under the ANDROMEDA-SHOCK design, for various N(0, ν2) priors on log hazard ratio θ , and
using α = 0.05. The violin plots below show the posteriors for θ given the ANDROMEDA-SHOCK data. (b) Posterior densities for
risk(θ ) for each of the posteriors and risks denoted in panel a. Both plots indicate where risk(θ ) = α/2, the threshold for futility, and
risk(θ ) = α/10, the suggested threshold for the analysis being worthwhile, in the sense described in Section 4.3.

Finally, we estimate the risk of this testing setup, as described in Section 4.3. The risks of the
Bayes rule test under the three priors are given in Figure 5a, with the three posteriors for θ shown
in the violin plots immediately below. Unlike Section 4.3’s example, here we see that the risk
is noncontinuous, fundamentally because of the mean–variance relationship our approximation
of the sampling distribution of θ̂ induces. However, these discontinuities have little impact on
subsequent calculations.

Combining the risk functions with the posteriors on θ , we get posterior distributions for risk(θ ),
shown in Figure 5b. Both panels show the threshold risk(θ ) = α/2 (futility; see Section 3.1) and
suggested threshold risk(θ ) = α/10 (for the testing setup being worthwhile; see Section 4.3).

With prior variance ν2 = 0.032, 0.134, and 10, support for futility is 36.4%, 20.7%, and 15.5%,
respectively. These values do support the test being better than simply ignoring the data, but not
overwhelmingly so, even for the most diffuse prior that mostly supports values of θ that are large
in absolute terms. At the other extreme of the risk distribution, the same three priors give small-
to-negligible support (0.07%, 6.8%, and 17.9%, respectively) for risk(θ ) < α/10, the suggested
threshold for the testing setup being worthwhile enough for others to trust its conclusions. Com-
bining these,we find that under all of the priors, it is reasonable to believe that the testing setup (the
results of which, for the observed data, give P̃ = 0.06 and d=N) would, over long-run replications,
be only moderately less risky than ignoring the data altogether.

Consequently, it seems that no strong conclusions are justified about which treatment, if any, is
better.This includes the original report of no benefit, but also strong claims ofmortality reduction.
Even if the treatment’s effect is to reducemortality, it is rational to also believe that the trial’s design
would not “rarely fail” (Fisher 1935a, p. 16) to give us correct results.

6. CONCLUSIONS AND FUTURE ISSUES

This review has shown that there is a substantial and diverse body of work on setting up tests as
three-decision problems, and has discussed the benefits of this approach. Not only is Section 2’s
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motivation of tests themselves straightforward, but three-decision reasoning also leads directly
to other widely used and familiar statistical tools and results, as in Section 3. Three-decision ap-
proaches also provide insights relevant to ongoing debates about statistical inference, for example,
Section 4’s distinction between inferring the performance of a specific test versus that of the test-
ing process that generated it. Here, we describe some limitations of the approach and open areas
for further research.

One difficultymay be the focus on signs alone.Sign(θ ) likely captures overall qualities of the un-
derlying reality—for example, that a drug is beneficial or harmful, on average, over some specified
population under the circumstances that occurred in the study—but not more than this, such as
the magnitude or transportability of the drug’s effect. A form of inference on effect magnitude can
be given by Section 3.3’s intervals, and differences in the drug’s effect between subgroups might be
addressed in part by Section 3.4’s multiple testing methods. However, where analysts are willing
to expend the cognitive energy to construct an appropriate loss function—likely more complex
than Equation 1—parameter estimates (in one or more dimensions) will more directly motivate
correspondingly optimal summaries of the posterior. Credible intervals also follow directly from
this specified loss function (Rice & Ye 2022), without testing as an interim step. However, in bas-
ing results around estimates, the analysis inevitably makes more assumptions than tests and can
be expected to be more sensitive to them.

A further advantage of restricting attention to signs is that—together with the language in
Section 2.1 that sign decisions are asserted—it may reduce the propensity to overinterpret test
results as proof of a real effect, that in the traditional frameworks follows all too easily when
the decision is presented as unequivocally rejecting the [point] null hypothesis. In three-decision
approaches, even when the sign of the parameter does merit assertion, this result may come with
substantial caveats about the reliability of the test itself (see Sections 4.3 and 5).

We distinguish the problem of overinterpretation of the test result from overinterpretation of
the underlying parameter. In the traditional hypothesis testing framework, there is a strong ten-
dency for analysts to accept their preferred alternative hypothesis when testing a null hypothesis
that is not plausibly exactly true; Gelman (2016, p. 1) calls this a “parody of falsificationism.” By
not accepting the null—using θ0 only as a reference point and not as a value we report as true—
three-decision approaches may help somewhat; however, when multiple explanations are available
for a sign decision result (e.g., θ > 0 due to a true causal effect, association due to confounding,
sampling bias, measurement errors, etc.) the temptation to focus on the one with the most appeal
must still be avoided. This difficulty also depends on the purpose served by the test; for a useful
catalog of these, readers are directed to Cox et al. (1977).

Another outstanding problem is the role of preliminary analytic choices—for example, choos-
ing among models, or choosing which hypothesis to test. Where these choices can be identified
ahead of time, they may (with some effort) be included in the loss function as auxiliary decisions,
and there is flexibility to have the losses for testing decisions to vary based on them. However,
when the preliminary choices are ignored, their impact on the resulting analysis (often leading to
overly confident results) can be very difficult to assess (Gelman & Loken 2014), not least as the
analysts may have made their choices essentially unconsciously.

Finally,we provide some areas where new toolsmight be developed by further expanding three-
decision approaches. A first concern is what to do with nuisance parameters. For the sign decisions
themselves, this is not a problem: Following standard Bayesian theory, one can integrate over the
nuisance parameters in the posterior and use the tail areas of the marginal posterior for θ to
give decisions, P̃ values, intervals, and reverse-Bayes assessments. Yet to evaluate risk we need to
incorporate nuisance parameters.Rice et al. (2020, section 2.4) explore how thismatters little when
risk is extremely high or low, but a formal system for allowing for this extra uncertainty is needed.

542 Rice • Krakauer



ST10CH22_Rice ARjats.cls February 14, 2023 13:47

There is also a clear practical need for tests of multivariate parameters; declaring signs of at least
one of a set of possible univariate parameters or linear combinations of them could be considered
as a basis for relevant loss functions.Fortunately loss functions formultivariate estimation are well-
studied (see, e.g., Ye&Rice 2021) and will likely provide useful insights. Sequential testing (Ghosh
& Sen 1991) also adds another outcome, in which interim decisions may be to make no decision
but keep sampling, versus the terminal decisions to assert the sign of θ or make no decision and
stop the study.Practical insights abound about whatmakes sequential testmethods better or worse,
but motivating methods via formal loss functions (and the appraisal of decisions made using them)
remains relatively unexplored. Lastly, simply permitting more categories of decisions about a real-
valued θ opens up further loss functions, though maintaining coherence of the resulting decisions
can be expected to provide challenges (Hansen & Rice 2022).
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