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Abstract

With the availability of massive multivariate data comes a need to de-
velop flexible multivariate distribution classes. The copula approach allows
marginal models to be constructed for each variable separately and joined
with a dependence structure characterized by a copula. The class of multi-
variate copulas was limited for a long time to elliptical (including the Gaus-
sian and t-copula) and Archimedean families (such as Clayton and Gumbel
copulas). Both classes are rather restrictive with regard to symmetry and tail
dependence properties. The class of vine copulas overcomes these limita-
tions by building a multivariate model using only bivariate building blocks.
This gives rise to highly flexible models that still allow for computationally
tractable estimation and model selection procedures. These features made
vine copulamodels quite popular among applied researchers in numerous ar-
eas of science. This article reviews the basic ideas underlying these models,
presents estimation and model selection approaches, and discusses current
developments and future directions.
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1. INTRODUCTION TO COPULAS

For the analysis of large multivariate data sets, flexible multivariate statistical models are required
that can adequately describe also the multivariate tail behavior. Standard distributions, such as
the multivariate normal or Student’s t-distribution, are too inflexible in their marginal and joint
behavior. They often require that all univariate and multivariate marginal distributions are of the
same type and only allow for highly symmetric dependence structures. These characteristics are
rarely satisfied in applications. The copula approach allows us to separate the univariate margins
from the dependence structure. In particular, a d-dimensional copula C is a multivariate distribu-
tion function on the d-dimensional hypercube [0, 1]d with uniformly distributed marginals. For
an absolutely continuous copula, the corresponding copula density can be obtained by partial dif-
ferentiation, i.e., c(u1, . . . , ud ) := ∂d

∂u1 ...∂ud
C(u1, . . . , ud ) for all u in [0, 1]d. Sklar (1959) proved the

following fundamental representation theorem.

Theorem 1 (Sklar’s Theorem). Let X be a d-dimensional continuous random vector with
joint distribution function F, marginal distribution functions Fj, and marginal density functions
fj for j = 1, . . . , d. Then the joint distribution function can be expressed as

F (x1, . . . , xd ) = C(F1(x1), . . . ,Fd (xd )) 1.

with associated density f (x1, . . . ,xd) = c(F1(x1), . . . , Fd(xd))f1(x1)���fd(xd) for some d-
dimensional copula C with copula density c.

For absolutely continuous distributions the copula C is unique. Equation 1 also holds for dis-
crete random variables; however, the probability mass function is different than the density above.
For simplicity, we will work in the continuous case in what follows. Using this theorem, flex-
ible multivariate distributions can be constructed from d-dimensional copulas. By inversion of
Equation 1 we can use any d-dimensional distribution function to obtain the corresponding cop-
ula. Examples are the Gaussian and the Student’s t-copula. Using these copula families together
with arbitrary margins results in multivariate distributions that are much more flexible than the
multivariate distribution classes used in the inversion. Archimedean copulas are another class of
parametric copulas that are built directly using generator functions. The Gumbel, Clayton, and
Frank copula families are prime examples. Two-parameter copulas such as the biparameter bivari-
ate (BB) class allow for different, nonzero upper and lower tail behavior and are discussed by Joe
(1997, section 5.2). Specific members of this class are enumerated by BB1 to BB8. A nice elemen-
tary introduction to copulas is given by Genest & Favre (2007), and more theoretical treatments
are the books by Nelsen (2007) and Joe (1997).

From Theorem 1 for d = 2, we can immediately derive expressions for the conditional density
and distribution functions, which are needed later. In particular, the conditional density f1|2 and
distribution function F1|2 can be expressed as

f1|2(x1|x2) = c12(F1(x1),F2(x2)) f2(x2), 2.

F1|2(x1|x2) = ∂

∂F2(x2)
C12(F1(x1),F2(x2)) = ∂

∂v
C12(F1(x1), v)|v=F2(x2 ). 3.

Since vine copulas are built out of bivariate copulas, we now discuss properties of bivariate cop-
ulas. To investigate the dependence properties, we consider several dependence measures. Since
the Pearson correlation ρ(X1,X2) = Cor(X1,X2) is not invariant with respect to monotone trans-
formations of the margins, it is more useful to consider invariant dependence measures, such as
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Kendall’s τ and Spearman’s ρ. In particular, Spearman’s rank correlation is defined as the Pear-
son correlation of the random variables F1(X1) and F2(X2), i.e., ρ s(X1, X2) = Cor(F1(X1), F2(X2)).
Another popular measure invariant to marginal transformations is Kendall’s τ , defined as

τ (X1,X2) = P((X11 − X21)(X12 − X22) > 0) − P((X11 − X21)(X12 − X22) < 0),

where (X11, X12) and (X21, X22) are independent and identically distributed (i.i.d.) copies of
(X1,X2). Since τ (X1,X2) and ρ s(X1,X2) are invariant with regard to margins, they depend only on
the underlying copula. More specifically, it holds that

τ (X1,X2) = 4
∫ 1

0

∫ 1

0
C(u1, u2)dC(u1, u2) − 1,

ρs(X1,X2) = 12
∫ 1

0

∫ 1

0
u1u2dC(u1, u2) − 3.

In contrast to these central measures of dependence, tail dependence coefficients are used to char-
acterize dependence among extreme events. We consider the probability of the joint occurrence
of extremely small or large values and define the upper and lower tail dependence coefficients as

λupper = lim
t→1−

P(X2 > F−1
2 (t )|X1 > F−1

1 (t )) = lim
t→1−

1 − 2t +C(t, t )
1 − t

,

λlower = lim
t→0+

P(X2 ≤ F−1
2 (t )|X1 ≤ F−1

1 (t )) = lim
t→0+

C(t, t )
t

.

The Gaussian and Frank copulas do not exhibit tail dependence—i.e., λupper = λlower = 0. The
Student’s t-copula has symmetric tail dependence—i.e., λupper = λlower. The Clayton and Gumbel
copulas have only lower or upper tail dependence, respectively.

To allow for a visual comparison between different bivariate copula families, marginally nor-
malized contour plots are helpful. For this we consider 3 different scales: the original scale
(X1, X2), the copula scale (U1, U2) = (F1(X1), F2(X2)), and the marginally normalized scale (z-
scale) (Z1, Z2) = (�−1(U1), �−1(U2)). Here, � denotes the standard normal distribution function.
Comparison of contours on the copula scale for different families is difficult, since copula densities
are in general unbounded at the corners of [0, 1]2. This is not the case if one works on the z-scale.
Here, (Z1, Z2) has N(0, 1) margins, and thus any nonelliptical contour shape indicates a deviation
from a Gaussian dependence. An example is given in Figure 1. The perfect circle in Figure 1a
corresponds to independence, and the elliptical shape in Figure 1b corresponds to a Gaussian
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Figure 1

Examples of normalized contour plots: (a) independence, (b) Gaussian, (c) Gumbel, and (d) Student’s t-copula.
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copula. Deviations from Gaussian dependence can be seen in the two right panels—Figure 1c,
a Gumbel copula, shows a spike in the upper-right tail, which is an indication of upper tail de-
pendence. Figure 1d shows a Student’s t-copula, which has tail dependence in both the upper and
lower tails. To allow for further flexibility of bivariate parametric copulas, their survival and reflec-
tion versions can be considered. For example, the survival version of a bivariate copula density c is
given by c̄(u1, u2) = c(1 − u1, 1 − u2). These can be visualized through rotations of the normalized
contours (Czado 2019, section 3.6).

We now turn to estimation in the parametric setting. In a copula based model specified by
Equation 1, we have to estimate both the marginal and copula parameters. Joint maximum likeli-
hood estimation can be used if the number of parameters is not too large. It is more common to
use a two-step approach, however. In a first step, the marginal parameters are estimated based on
the i.i.d. observations xi = (xi1, . . . , xid ) for i = 1, . . . , n. This can be done separately for each of
the d margins. In a second step, pseudo copula data are formed by setting

ui = (ui1, . . . , uid ) = (F̂1(xi1), . . . , F̂d (xid )), i = 1, . . . , n, 4.

fromwhich the copula parameters are estimated. If parametric marginal models are used,we speak
of an inference for margins approach ( Joe 2005). If the empirical distribution function is used
for the margins, we have a semiparametric approach (Genest et al. 1995). Genest et al. (2011)
have further proposed to estimate copula parameters by the inversion of empirical Kendall’s τ

estimates, when there is a one-to-one relationship between τ and the copula parameter. However,
this approach is less efficient.

To help the reader to follow all reviewed concepts, we use the abalone data set taken from
the University of California–Irvine database (http://archive.ics.uci.edu/ml/datasets/Abalone).
Abalones are marine snails whose shells have a spiral structure. The data set contains measure-
ments of diameter, height, several types of weight (whole, shucked, viscera, and shell), and the
number of rings. In our illustrations, we restrict the data to female abalone shells. The upper-
right triangle of Figure 2 shows scatter plots of pseudo copula data along with their empirical
Kendall’s τ for the weight variables shuck, viscera (vis), and shell. The empirical Kendall’s τ values
between shuck and vis, shuck and shell, and vis and shuck are 0.73, 0.65 and 0.69, respectively.
Using empirical margins (diagonal of Figure 2) shows that the pseudo data (u-scale) are approxi-
mate uniform. Normalized pairwise contour plots (z-scale) are shown in the lower-left triangle of
panels in Figure 2. The panels indicate that dependence is asymmetric, with stronger dependence
in the lower-left tail. Since the normalized pairwise contours are not elliptical, a Gaussian copula
is not appropriate.We start by searching for an appropriate parametric copula model for the vari-
able pair shuck and shell.We allow for the Gaussian, Student’s t, (survival) Clayton, and (survival)
Gumbel copula. Corresponding log-likelihood, Akaike information criterion (AIC), and Bayesian
information criterion (BIC) values based on the pseudo copula data are given in Table 1, which
shows that a survival Gumbel model is the best among the studied models.

In the case where copula models do not fit the data, we can also use a nonparametric approach.
Transformation kernel estimators were shown to perform best by Nagler et al. (2017) and were
implemented in the kdecopula and rvinecopulib R packages (Nagler 2018, Nagler & Vatter
2020a). Finally, we note that copula estimation based on pseudo copula data requires approxi-
mately i.i.d. data. This is usually not the case for multivariate time series data or in the presence of
covariates. Here, we advise to first remove the time series or regression structure for each margin
by fitting appropriate univariate time series or regression models, respectively. For time series,
the resulting standardized residuals can then be used to form the pseudo copula data. In regres-
sion models, the fitted conditional response distribution should be used for the transformation to
pseudo observations.
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Figure 2

Dependence exploration for the weight variables shuck, viscera (vis), and shell. Along the diagonal are
histograms of the pseudo copula data using empirical margins. The upper triangle shows pairwise scatter
plots of the pseudo copula data, and the lower triangle shows pairwise normalized contour plots on the
z-scale.

2. PAIR COPULA DECOMPOSITIONS AND CONSTRUCTIONS
IN THREE DIMENSIONS

While the catalogue of bivariate parametric copula families is large, this is not the case for d > 2.
The motivation for vine copula models was to find a way to construct multivariate copulas using
only bivariate copulas as building blocks. The appropriate tool to obtain such a construction is

Table 1 Parametric copula estimation for the variable pair shuck and shell

Family Log-likelihood AIC BIC
Gaussian 802.79 −1,603.58 −1,598.40
Student’s t 825.01 −1,646.02 −1,635.68
Clayton 894.73 −1,787.46 −1,782.29
Gumbel 660.07 −1,318.14 −1,312.96
Survival Clayton 464.26 −926.52 −921.35
Survival Gumbel 914.87 −1,827.74 −1,822.57

Abbreviations: AIC, Akaike information criterion; BIC, Bayesian information criterion.
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conditioning. Joe (1996) gave the first pair copula construction in terms of distribution functions,
while Bedford & Cooke (2001, 2002) independently developed constructions in terms of densi-
ties. They also provided a framework to identify all possible constructions. We first illustrate this
construction for d = 3 by starting with the recursive factorization

f (x1, x2, x3) = f3|12(x3|x1, x2) f2|1(x2|x1) f1(x1) 5.

and treat each part separately. Here Fj|D and fj|D denote the conditional distribution or density
function of Xj givenXD, respectively. To determine f3|12(x3|x1, x2) we consider the bivariate condi-
tional density f13|2(x1, x3|x2). The copula density c13; 2(·, ·; x2) denotes the copula density associated
with the conditional distribution of (X1, X3) given X2 = x2. Using Theorem 1 for f13|2(x1, x3|x2)
gives

f13|2(x1, x3|x2) = c13;2(F1|2(x1|x2),F3|2(x3|x2); x2) f1|2(x1|x2) f3|2(x3|x2). 6.

Now f3|12(x3|x1,x2) is the conditional density ofX3 givenX1 = x1,X2 = x2,which can be determined
using Equation 2 applied to Equation 6, yielding

f3|12(x3|x1, x2) = c13;2(F1|2(x1|x2),F3|2(x3|x2); x2) f3|2(x3|x2). 7.

Finally, direct application of Equation 3 gives

f2|1(x2|x1) = c12(F1(x1),F2(x2)) f2(x2), 8.

f3|2(x3|x2) = c23(F2(x2),F3(x3)) f3(x3). 9.

Inserting Equations 7–9 into Equation 5 yields a pair copula decomposition of an arbitrary three-
dimensional density f (x1, x2, x3) as

f (x1, x2, x3) = c13;2(F1|2(x1|x2),F3|2(x3|x2); x2) × c23(F2(x2),F3(x3))

× c12(F1(x1),F2(x2)) f3(x3) f2(x2) f1(x1).
10.

We see that the joint density can be expressed in terms of bivariate copula densities, marginal
densities, and conditional distribution functions. However, this decomposition is not unique:

f (x1, x2, x3) = c23;1(F2|1(x2|x1),F3|1(x3|x1); x1) × c13(F1(x1),F3(x3))

× c12(F1(x1),F2(x2)) f3(x3) f2(x2) f1(x1) and
11.

f (x1, x2, x3) = c12;3(F1|3(x1|x3),F2|1(x2|x1); x3) × c13(F1(x1),F3(x3))

× c23(F2(x2),F3(x3)) f3(x3) f2(x2) f1(x1)
12.

are two different decompositions using a reordering of the variables in Equation 5.
All decompositions of the density have a conditional copula term of the form cij; k(·, ·; xk), called

a pair copula. To facilitate estimation, we normally neglect the dependence on the specific condi-
tioning value xk. This is called the simplifying assumption. For a three-dimensional density with
copula parameter vector θ = (θ12, θ23, θ12;3), we then get the following simplified pair copula con-
struction:

f (x1, x2, x3; θ) = c13;2(F1|2(x1|x2),F3|2(x3|x2); θ13;2) × c23(F2(x2),F3(x3); θ23)

× c12(F1(x1),F2(x2); θ12) f3(x3) f2(x2) f1(x1),
13.

where c13;2(·, ·; θ13;2), c12(·, ·; θ12) and c23(·, ·; θ23) are arbitrary parametric bivariate copula densities.
The dependence on marginal parameters has been suppressed to ease notation.This is no longer a
decomposition but a construction,where the dependence on x2 in c13;2(F1|2(x1|x2),F3|2(x3|x2); θ13;2)
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is solely captured by the arguments. If the margins in Equation 13 are uniform, we have a three-
dimensional parametric copula density.

For the estimation of the parameter θ based on an i.i.d. sample xk = (xk1, xk2, xk3), k =
1, . . . , n, we follow the two-step approach discussed in Section 1. We create the associated
pseudo data uk, j , k = 1, . . . , n, j = 1, . . . , 3, as in Equation 4. This allows us to write the joint
(pseudo) likelihood for the trivariate copula density associated with Equation 13 as

�(θ;u)=
n∏

k=1

c13;2(C1|2(uk,1|uk,2; θ12),C3|2(uk,1|uk,2; θ23); θ13;2)

× c23(uk,2, uk,3; θ23)c12(uk,1, uk,2; θ12). 14.

Maximizing Equation 14 gives the joint maximum likelihood estimator θ̂. However, there is an
alternative sequential estimation method, which remains computationally tractable in high di-
mensions. First, we find parameter estimates θ̂12 and θ̂23 by maximizing

n∏
k=1

c12(uk,1, uk,2; θ12) and
n∏

k=1

c23(uk,2, uk,3; θ23)

over θ12 and θ23, respectively. Second, we define the pseudo observations

uk,1|2,̂θ12 = C1|2(uk,1|uk,2; θ̂12) and uk,3|2,θ̂23 = C3|2(uk,3|uk,2; θ̂23), 15.

for k = 1, . . . , n. Under the simplifying assumption, these provide an approximate i.i.d. sample
from the pair copula C13; 2. Further, the marginal distribution associated with the pseudo observa-
tions Equation 15 is approximately uniform, since the transformation in Equation 15 is a proba-
bility integral transform with estimated parameter values. Therefore, we use them to estimate the
parameter(s) of the pair copula c13; 2 by maximizing

n∏
k=1

c13;2(uk,1|2,̂θ12 , uk,3|2,̂θ23 ; θ13;2)

over θ13;2. This splits the estimation θ into three simpler problems. The sequential estimate can
also be used as a starting value for the joint maximum likelihood estimation. A similar sequential
approach can also be followed when estimating pair copulas nonparametrically.

We now estimate all three possible pair copula constructions for the weight variables shuck, vis,
and shell in the abalone data set. With the aid of normalized contour plots, we select appropriate
pair copula families for the three possible constructions, and the sequential parameter estimation
results are contained in Table 2. We see that in all three models, dependence is strong in the un-
conditional copulas but weaker in the conditional copula.We should note that the latter estimates
are only valid if the model assumptions are satisfied. In Table 3, fit statistics of the three models
are compared, showing the superior performance of the pair copula construction c23 − c12 − c13; 2.
This illustrates that it matters which pair copula construction is fitted to the data.

In more than three dimensions, it will be helpful to represent the density factorization as a
graph called a vine tree structure. Figure 3 shows the graphical representations of the three fac-
torizations given in Equations 10–12 (from left to right). Figure 3a consists of two levels. In the
top level, the nodes labeled 1, 2, and 3 represent the random variables X1,X2, and X3, respectively.
They are connected by two edges, 1–2 and 2–3, corresponding to the pair copula terms involving
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Table 2 Sequential parameter estimates, selected copula families, and implied dependence
measures for the weight variables shuck (1), viscera (vis) (2), and shell (3)

c23 − c12 − c13; 2 Term Family Parameter(s) Kendall’s τ λupper λlower

c23 Survival Gumbel 3.21 0.69 0.00 0.76
c12 Survival Gumbel 3.65 0.73 0.00 0.79
c13; 2 Survival Gumbel 1.23 0.19 0.00 0.24

c13 − c12 − c23; 1 Term Family Parameter(s) Kendall’s τ λupper λlower

c13 Survival Gumbel 2.93 0.66 0.00 0.73
c12 Survival Gumbel 3.65 0.73 0.00 0.79
c23; 1 Survival Gumbel 1.43 0.30 0.00 0.38

c23 − c13 − c12; 3 Term Family Parameter(s) Kendall’s τ λupper λlower

c23 Survival Gumbel 3.21 0.69 0.00 0.76
c13 Survival Gumbel 2.93 0.66 0.00 0.73
c12; 3 Student’s t (0.62, 12.06) 0.43 0.11 0.11

c12 and c23 in Equation 10. The graph in the bottom level is formed by turning the edges above
into nodes and connecting them by an edge. This edge represents the pair copula term involving
the conditional density c13; 2(·, ·; x2), where the conditioning variable 2 is identified as the common
element of the nodes 1, 2 and 2, 3. Hence, each edge in the vine graph is associated with a copula
density. The factorization of the joint density corresponding to a given vine graph is then simply
the product of marginal densities and all copula densities associated with the edges of the vine tree
structure. The graphs in Figure 3b,c correspond to the factorizations in Equations 11 and 12 in
a similar manner.

3. REGULAR VINE COPULAS AND DISTRIBUTIONS

As shown in the previous section, there are three pair copula constructions available for d = 3.
Similar arguments can be used to derive factorizations of the joint density f (x1, . . . , xd) for general
d, but additional complications arise. For example, for d= 4 we can derive the two factorizations

f (x1, x2, x3, x4)

= c14;23(F1|23(x1|x2, x3),F4|23(x4|x2, x3); x2, x3)
× c13;2(F1|2(x1|x2),F3|2(x3|x2); x2) × c24;3(F2|3(x2|x3),F4|3(x4|x3); x3)
× c34(F3(x3),F4(x4)) × c23(F2(x2),F3(x3)) × c12(F1(x1),F2(x2))

× f4(x4) f3(x3) f2(x2) f1(x1)

16.

Table 3 Fit statistics for three possible pair copula constructions for the weight variables
shuck (1), viscera (vis) (2), and shell (3)

Model Log-likelihood Number of parameters AIC BIC
c23 − c12 − c13; 2 2253.91 3 −4501.82 −4486.29
c13 − c12 − c23; 1 2247.47 3 −4488.95 −4473.42
c13 − c23 − c12; 3 2253.25 4 −4498.50 −4477.80

Abbreviations: AIC, Akaike information criterion; BIC, Bayesian information criterion.
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Figure 3

Graphical representation of the three pair copula constructions (a) c23 − c12 − c13; 2, (b) c13 − c12 − c23; 1, and
(c) c13 − c23 − c12; 3.

and

f (x1, x2, x3, x4)

= c34;12(F3|12(x3|x1, x2),F4|12(x4|x1, x2); x1, x2)
× c23;1(F2|1(x2|x1),F3|1(x3|x1); x1) × c24;1(F2|1(x2|x1),F4|1(x4|x1); x1)
× c14(F1(x1),F4(x4)) × c13(F1(x1),F3(x3)) × c12(F1(x1),F2(x2))

× f4(x4) f3(x3) f2(x2) f1(x1).

17.

The factorizations are represented as regular vine (R-vine) tree structures in Figure 4, where
Figure 4a corresponds to Equation 16 and Figure 4b to Equation 17. In Figure 4a, each graph
level consists of a path. In contrast, in Figure 4b, each graph level consists of a star (where one
node is connected to all the others).

By permuting the variable indices, the two types of vine structures generate 12 factorizations
each for a total of 24 (compared with only three possible factorizations for d= 3).When d≥ 5, the
subgraphs are no longer restricted to be paths or stars and the number of possible decompositions
increases superexponentially in d (Morales-Nápoles 2011). Furthermore, it becomes increasingly
difficult to verify whether a factorization like those in Equation 16 and 17 actually represents a
valid density. To characterize and organize all valid factorizations, Bedford & Cooke (2001, 2002)
developed a convenient graphical tool called an R-vine tree structure. An R-vine consists of linked
trees, where the edges in one tree become the nodes of the next.

More formally, recall that a tree is a connected acyclic graph T = (N, E) with node set N and
edge set E. The set of graphs V = (T1, . . . ,Td−1) is an R-vine tree sequence on d elements if

1. T1 is a tree with node set N1 = {1, . . . , d} and edge set E1.
2. For j ≥ 2, Tj is a tree with node set Nj = Ej − 1 and edge set Ej.
3. For j = 2, . . . , d − 1 and {a, b} � Ej it must hold that |a � b| = 1

(proximity condition).

1 2 3
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1, 2; 3

2, 3
4

3, 4

1, 3 2, 3
2, 4; 3

3, 4

a

1, 3; 2 2, 4; 3
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2, 4; 1
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1, 3
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1, 4

Figure 4

The two types of regular vine structures in four dimensions.
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The proximity condition states that an edge between nodes in tree Tj is only possible if the cor-
responding edges in Tj − 1 share a common node.

The R-vine tree structure corresponding to Equation 10 has nodes N1 = {1, 2, 3} and edges
E1 = {{1, 2}, {2, 3}} in tree T1 and nodes N2 = {{1, 2}, {2, 3}} and edges E2 = {{1, 2}, {2, 3}} in tree
T2. Since this set notation quickly becomes unwieldy, a simpler notation is needed. For any edge
e � Ei, define the complete union

Ae =
{
j ∈ N1|∃ e1 ∈ E1, . . . , ei−1 ∈ Ei−1 such that j ∈ e1 ∈ . . . ∈ ei−1 ∈ e

}
.

The conditioning set De of an edge e = {a, b} is defined as De := Aa � Ab, and the conditioned sets
Ce,a and Ce,b are given by

Ce,a = Aa \De and Ce,b = Ab \De.

Kurowicka & Cooke (2006) showed that Ce,a and Ce,b are singletons, so we often abbreviate the
edge e = (Ce,a, Ce,b;De ) as e = (ae, be; De). For example, the edge e = {a = {1, 2}, b = {2, 3}} has
Aa = {1, 2} and Ab = {2, 3}, and thereforeDe = {2}. It follows that Ce,a = {1} and Ce,b = {3}, resulting
in e = (1, 3; 2).

We have already seen two common special cases in Figure 4 for d= 4. In a canonical (C-)vine,
all trees are stars: In every tree there is a single node, called the root, that connects all the others.
A specific C-vine can be identified by the order of root nodes. Another example of a C-vine is
shown in the middle panels of Figure 5, where the root nodes are 1, (1, 4), (6, 4; 1), (6, 2; 4, 1),
and (5, 2; 6, 4, 1). Since all indices from previous root nodes are contained in the label of later root
nodes, we can also specify this order by only referencing the index that enters in the next tree. For
example, the root node sequence above can be written as 1, 4, 6, 2, 5, 3. In a drawable (D-)vine tree
structure, all trees are paths. More formally, this means that all but two nodes have exactly two
neighbors. The two nodes with only one neighbor are called leaves. For a D-vine tree sequence,
the proximity condition implies that the specification of tree T1 determines all other trees. To
characterize a D-vine structure, we therefore only need to specify the path in the first tree, called
the order of a D-vine. The right panels in Figure 5 show a D-vine with order 3–5–6–2–1–4 (or,
equivalently, 4–1–2–6–5–3). The tree structure of a D-vine can be drawn in a way that resembles
a grapevine, which is why Bedford & Cooke (2001) called the linked tree sequence a vine.

After the building plan is defined, we can construct an R-vine distribution for a d-dimensional
random vector X = (X1, . . . ,Xd ). This distribution is specified by the triplet (F ,V ,B) with the
following:

1. Marginal distributions: F = (F1, . . . ,Fd ) is a vector of continuous marginal distribution
functions of the random variables X1, . . . , Xd.

2. R-vine tree sequence: V is an R-vine tree sequence on d elements.
3. Bivariate copulas: The set B = {Ce|e ∈ Ei; i = 1, . . . , d − 1}, where Ce is a bivariate copula

with density. Here, Ei is the edge set of tree Ti in the R-vine tree sequence V .
4. Relation between R-vine tree sequence and the set of bivariate copulas: For each e � Ei, i

= 1, . . . , d − 1, e = {a, b}, Ce(·, ·) is the copula associated with the conditional distribution of
XCe,a and XCe,b given XDe .

The copula Ce corresponding to edge e is denoted by CCe,aCe,b;De with corresponding density
cCe,aCe,b;De . This copula is also called a pair copula.We already employed the simplifying assumption
above: We assume that Ce(·, ·) does not depend on the specific value of XDe . In nonsimplified
models, we would need a separate set B of bivariate copulas in item 3 for every possible value
of the random vector X . This means that for every edge e, the pair copula Ce would depend on
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Figure 5

Vine tree structures for variables whole, shuck, viscera (vis), shell, diameter (dia), and length (len) from the female abalone data set.
Abbreviations: BB, biparameter bivariate; BB8_90, reflected 90° degree BB8 copula; BB8_270, reflected 270° BB8 copula; C, Clayton
copula; C270, reflected 270° Clayton copula; C-vine, canonical vine; D-vine, drawable vine; F, Frank copula; G, Gumbel copula; I,
independence copula; N, Gaussian copula; R-vine, regular vine; SBB1, survival BB1 copula; SBB8, survival BB8 copula; SG, survival
Gumbel copula; t, Student’s t-copula.
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the value of XDe . For simplicity, we only consider the simplified case. For the existence of such
distributions, Bedford & Cooke (2002) showed the following result.

Theorem 2 (existence of an R-vine distribution). Assume that (F ,V ,B) satisfy the proper-
ties in items 1–3 above; then, there is a valid d-dimensional distribution F with density

f1,...d (x1, . . . xd )= f1(x1) × · · · × fd (xd ) 18.

×
d−1∏
i=1

∏
e∈Ei

cCe,aCe,b;De (FCe,a|De (xCe,a |xDe ),FCe,b|De (xCe,b |xDe )),

such that for each e � Ei, i = 1, . . . , d − 1, with e = {a, b}, we have for the distribution function
of XCe,a and XCe,b given XDe

FCe,aCe,b|De
(
xCe,a , xCe,b |xDe

)
= Ce

(
FCe,a|De (xCe,a |xDe ),FCe,b|De (xCe,b |xDe )

)
.

Furthermore, the one-dimensional margins of F are given by Fi(xi), i = 1, . . . , d.

If all margins are standard uniform, we call the resulting distribution an R-vine copula. Let D
be a set of indices from {1, . . . , d} not including i and j. The copula associated with the bivariate
conditional distribution (Xi, Xj) given that XD = xD is denoted by Cij; D(·, ·). In contrast, the con-
ditional distribution function of (Ui, Uj) given UD = uD is expressed as Ci j|D(·, ·|uD ). This is, in
general, not a copula.

Equation 18 involves conditional distribution functions as arguments of the pair copula densi-
ties. These can be determined recursively from conditional distributions associated with the pair
copulas in the model. In particular, Joe (1996) showed the following result: Let X be a random
variable and Y be a random vector with absolutely continuous joint distribution. Let Yj a com-
ponent of Y and denote the subvector of Y with Yj removed by Y − j . In this case the conditional
distribution of X given Y = y satisfies the following recursion:

FX |Y (·|y) =
∂CX ,Yj ;Y − j (FX |Y j (x|y− j ),FYj |Y j (y|y− j ))

∂FYj |Y − j (y j|y− j )
, 19.

where CX ,Yj ;Y − j (·, ·) is the copula corresponding to (X, Yj) given Y − j .
For C- and D-vine tree sequences, we call the associated R-vine distributions C- and D-vine

distributions, respectively. Omitting arguments, their densities are given by

f1,...,d (x1, . . . , xd )=
[ d−1∏

j=1

d− j∏
i=1

c j, j+i;1,..., j−1

]
×

[ d∏
k=1

fk(xk )
]
and

f1,...,d (x1, . . . , xd )=
[ d−1∏

j=1

d− j∏
i=1

ci,(i+ j);(i+1)...,(i+ j−1)

]
·
[ d∏
k=1

fk(xk )
]
.

Using the first column of Figure 5, we can express the associated R-vine distribution as

f rv1,...,6 = c12c13c14c16c56c15;6c36;1c34;1c24;1c23;14c46;13c35;16

c45;136c26;134c24;1346 f1 f2 f3 f4 f5 f6
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and the C- andD-vine tree structures corresponding to the middle and right columns of Figure 5,
respectively, by

f cv1,...,6 = c12c13c14c15c16c24;1c34;1c45;1c46;1c26;14c36;14c56;14

c23;146c25;146c35;1246 f1 f2 f3 f4 f5 f6 and 20.

f dv1,...,6 = c41c12c26c56c35c24;1c16;2c25;6c36;5c23;65c15;26c46;12

c45;126c13;256c34;1256 f1 f2 f3 f4 f5 f6. 21.

If all or some of the variables are discrete, similar vine-based factorizations of the joint proba-
bility density/mass function can be derived. We refer readers to Panagiotelis et al. (2012), Stöber
(2013), and Stöber et al. (2015) for more details.

4. ESTIMATION AND SELECTION OF VINE COPULA MODELS UNDER
THE SIMPLIFYING ASSUMPTION

Asmentioned in the previous section, a stepwise approach to estimation is more tractable in higher
dimensions. Here, we first estimate the marginal distribution functions and use them to create
pseudo copula data. These copula data are then used to estimate an appropriate vine copula. For
this vine copula model we have to solve three problems of increasing complexity:

1. Given the vine tree sequence and pair copula families, estimate the copula parameters.
2. Given the vine tree sequence and a catalogue of pair copula families, select the best family

and estimate the corresponding parameters for each edge in the vine.
3. Select the vine tree structure and the pair copula families and estimate the corresponding

parameters for each edge.

We can solve problem 1 using the sequential estimation approach discussed in Section 2. For
this we extend the construction of the pseudo data from tree T2 given in Equation 15 to trees
T3 to Td − 1 using estimated conditional copula distribution functions. This approach is very fast
since it allows the estimation of the parameters of each pair copula term separately, starting from
tree T1 until Td − 1. The asymptotic properties of such parameter estimators, including standard
errors, are studied by Haff et al. (2013), Stöber & Schepsmeier (2013), and Schepsmeier & Stöber
(2014). For problem 2, we can also proceed sequentially and consider each pair copula separately.
We fit the parameters for each family in the catalogue and choose the one that minimizes the AIC
or BIC.

Problem 3 is the most challenging, since the number of vine tree structures grows as d! ×
2(d − 2)(d − 3)/2 − 1 (Morales-Nápoles 2011). For example, the number of R-vine tree structures for
d= 10 is approximately 5 × 1014. Even if one wants to restrict to C- and D-vines, there are almost
2million structures to be investigated.Dissmann et al. (2013) develop a greedy selection algorithm
based on the idea of fitting the strongest dependencies first. This is natural since estimation errors
are propagated in the sequential estimation approach and we may hope to find sparse models. To
measure the strength of dependence, the empirical Kendall’s τ is used. The Dissmann algorithm
selects tree T1 by using a maximal spanning tree algorithm with the absolute value of empirical
Kendall’s τ between any pair of variables as weights. Once tree T1 is determined, all pair copula
families and parameters are selected and estimated using the approaches outlined in problems 1
and 2. For tree T2, all possible edges allowed by the proximity condition are considered. This
identifies pairs of variables in the pseudo data as defined in Equation 15. The absolute empirical
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Table 4 Sequential parameter estimates, selected copula families, and implied dependence
measures for six variables of the female abalone data set

Tree Edgea Family Parameter(s) Kendall’s τ λupper λlower

1 6,5 Survival Gumbel 6.39 0.84 0.00 0.89
1 6,1 Survival Gumbel 5.20 0.81 0.00 0.86
1 1,3 Survival Gumbel 4.92 0.80 0.00 0.85
1 1,4 Survival Gumbel 4.82 0.79 0.00 0.85
1 1,2 Survival Gumbel 5.64 0.82 0.00 0.87
2 5,1;6 Student’s t (0.39, 6.24) 0.25 0.11 0.11
2 6,3;1 Frank 0.53 0.06 0.00 0.00
2 3,4;1 BB8 90° (−1.37, −0.97) −0.15 0.00 0.00
2 4,2;1 Student’s t (−0.65, 5.46) −0.45 0.00 0.00
3 5,3;6,1 Clayton 270° −0.10 −0.05 0.00 0.00
3 6,4;3,1 Clayton 0.09 0.05 0.00 0.00
3 3,2;4,1 Student’s t (−0.41, 4.93) −0.27 0.01 0.01
4 5,4;6,3,1 Frank 1.47 0.16 0.00 0.00
4 6,2;3,4,1 Survival BB8 (1.61, 0.85) 0.15 0.00 0.00
5 5,2;6,3,4,1 Independence – 0.00 0.00 0.00

aVariables are whole (1), shuck (2), vis (3), shell (4), dia (5), and len (6).
Abbreviations: BB, biparameter bivariate; dia, diameter; len, length; vis, viscera.

Kendall’s τ for these pairs is used as a weight for selecting the maximal spanning tree for T2. We
can again select pair copula families and estimate parameters as in problem 2. We continue that
way until all trees, pair copula families, and parameters are selected and estimated. This approach
can be adapted for C- and D-vine structures. For a C-vine, we choose the root node as the one
maximizing the sum of absolute empirical Kendall’s τ , as illustrated by Czado et al. (2012). For D-
vines, we search for the path that maximizes the sum of absolute empirical Kendall’s τ . The above
procedures also work with nonparametric pair copulas (for a survey and comparison of available
methods, see Nagler et al. 2017) and censored data (Barthel et al. 2017, 2018).

We illustrate the modeling process using the variables whole, shuck, vis, shell, diameter (dia)
and length (len) of the abalone data set. In a preliminary step, nonparametric estimates of the
marginal distribution functions are used to create pseudo copula data. Then we apply Dissmann’s
algorithm to fit R-, C-, and D-vine copula models to the pseudo data. The fitted vine tree struc-
tures are shown in Figure 5. Table 4 contains the selected pair copula families and estimated
parameters for the R-vine copula model. As expected, the fitted dependence strength decreases as
we move from T1 to T5. As a benchmark, we also fit a Gaussian vine copula model. This is equiva-
lent to a Gaussian copula but is more general than a multivariate Gaussian model, since we allow
for non-Gaussian marginal distributions.Table 5 compares the different vine copula models and
shows that the R-vine copula model provides the best fit. In particular, a Gaussian copula model
is clearly insufficient.

5. COMPUTATIONAL ASPECTS

The flexibility of R-vine copula models comes with computational challenges. First, the num-
ber of pair copulas grows quadratically in the dimension, which necessitates efficient algorithms
for inference and simulation. Second, such algorithms must deal with the huge number of possi-
ble vine tree structures. Most of these issues have been addressed by the research community in
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Table 5 Fit statistics for several vine copula models for variables whole, shuck, vis, shell, dia,
and len from the female abalone data set

Copula model Log-likelihood Number of parameters AIC BIC
R-vine copula 9,097.57 17 −18,161.14 −18,073.17
Gaussian vine copula 8,257.21 14 −16,486.43 −16,413.98
C-vine copula 9,097.85 17 −18,159.70 −18,066.56
D-vine copula 9,073.32 22 −18,102.65 −17,988.80

Abbreviations: AIC, Akaike information criterion; BIC, Bayesian information criterion; C-vine, canonical vine; D-vine,
drawable vine; dia, diameter; len, length; R-vine, regular vine; vis, viscera.

the past, but the algorithms are difficult to implement for nonexperts. Hence, the availability of
user-friendly software libraries was key to the popularity of vine copula models. These libraries
include the R packages VineCopula (Nagler et al. 2020b) and rvinecopulib (Nagler & Vatter
2020a), the MATLAB toolboxes VineCopulaMatlab (Kurz 2015) and MATvines (Coblenz 2021),
the C++ library vinecopulib (Nagler & Vatter 2020c), and Python libraries pyvinecopulib
(Vatter et al. 2020) and pyvines (Yuan & Hu 2019). These relieve applied researchers from algo-
rithmic difficulties, but they still need to translate the model into a form the software can work
with.

Morales-Nápoles (2011) developed a compact representation of the vine tree structure in the
form of a triangular matrix.This representation was later used by Dissmann et al. (2013) to encode
entire vine copula models. For example, the tree sequence in the left column of Figure 5 can be
translated into the array

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

6 1 1 1 1 1
1 3 4 2 2
3 4 2 4
4 2 3
2 6
5

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

The label of the jth edge in tree t is given by (mj, d − j + 1,mt, j; mt − 1, j, . . . ,m1, j). Less formally,

� start with the counter-diagonal element of column j (first conditioned variable),
� jump up to the element in row t of column j (second conditioned variable), and
� gather all entries further up than row t in column j (conditioning set).

For example, the first column encodes the edges (5, 2; 4, 3, 1, 6), (5, 4; 3, 1, 6), (5, 3; 1, 6),
(5, 1; 6), and (5, 6). Dissmann et al. (2013) derived conditions that ensure the array corresponds to
a valid R-vine tree sequence.

For parametric vine copula models, the pair copula families and parameters can be stored in
similar arrays. For example, if θ t, j is the parameter of the jth edge in the tth tree, we can store the
model parameters in the array

	 =

⎛
⎜⎜⎜⎜⎜⎝

θ1,1 θ1,2 θ1,3 θ1,4 θ1,5

θ2,1 θ2,2 θ2,3 θ2,4

θ3,1 θ3,2 θ3,3

θ4,1 θ4,2

θ5,1

⎞
⎟⎟⎟⎟⎟⎠.

In software libraries, the arrays are usually written as square matrices, where empty entries
in the matrix are filled with zeros by convention. For our example, this would mean using a
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6 × 6 matrix for both M and 	. The orientation of the matrices above is arbitrary, and differ-
ent software libraries adopt different conventions. The upper-left triangular form above is used
by the vinecopulib library and its interfaces. In this format, the (t, j) entry of the matrices is the
pivotal element for the jth edge of tree t, which is intuitive and simplifies indexing in algorithms.
In several other libraries, the rows of the matrix are reversed, making it lower-left triangular. The
software provided by Joe (2014) reverses the column order, making it upper-right triangular.

Vine copula models are often used for simulation, which is achieved through the Rosenblatt
transform (Rosenblatt 1952) and its inverse.The Rosenblatt transform turns a random vectorU =
(U1, . . . ,Ud ) with copula C into another vectorV = (V1, . . . ,Vd ) = R(U ) containing independent
uniform variables. It is given by

Vj = Cj| j−1,...,1(Uj|Uj−1, . . . ,U1), j = 1, . . . , d,

where Cj|D is the conditional distribution of Uj given UD. The corresponding inverse operation
U = R−1(V ) turns independent uniform variablesV into a vectorU with copula C. It is given by

Uj = C−1
j| j−1,...,1(Vj|Vj−1, . . . ,V1), j = 1, . . . , d.

In vine copula models, the conditional distributions and inverses appearing in the transformations
can be computed efficiently using recursion over conditional distributions associated to the pair
copulas in the model [see Equation 19 and Czado (2019, chapter 6)]. The same technique can
be used to simulate conditionally from a vine copula model, provided the required conditional
distributions can be expressed by pair copula terms without the need for integration (see, for
example, Aas et al. 2021, section 4.2). A specialized implementation for D- and C-vines is given
in the CDVineCopulaConditional library (Bevacqua 2017).

6. CURRENT AND FUTURE RESEARCH DIRECTIONS

In what follows, we summarize the literature of four particularly active areas of research and point
to future directions, mainly focusing on methodological developments. Further topics and appli-
cations of vine copulas were reviewed recently by Czado (2019, chapter 11) and Aas (2016); readers
are also directed to vine-copula.org for a broad collection of papers, talks, and videos.

6.1. Statistical Learning

In recent years, vine copula models have been used increasingly in statistical learning problems.
One of the main tasks in statistical learning is regression. In the context of vine copulas, regres-
sion problems are solved by building conditional response distributions. This allows us to extract,
among others, conditional means and conditional quantiles.

A first question is how to best set up the vine structure in such a context. One approach builds
a vine distribution for the covariates alone and adds the response in a way that the resulting con-
ditional distribution is available in closed form, i.e., without the need for integration over the vine
copula density (Chang & Joe 2019, Chang et al. 2019, Cooke et al. 2019). These approaches focus
on the vine structure of the covariates first, which may be unnatural in the regression context.
An alternative is to start with the response as the first vine node and then add in such a way that
the conditional distribution remains available in closed form. The selection procedure stops if the
conditional (penalized) log-likelihood is no longer increasing. This idea was first developed for
D-vine models by Kraus & Czado (2017a) and later extended to certain R-vine structures by Zhu
et al. (2021). Tepegjozova et al. (2021) considered both D- and C-vines but generalized the proce-
dure to look two steps ahead before adding a new variable.While the D- and C-vine methods are
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feasible in large dimensions, the search for R-vines is restricted to smaller dimensions because of
the huge number of possibilities. How to select the covariates in high-dimensional R-vine copula
regression models therefore remains an open problem.

In the context of quantile regression, we need to adequately model tail dependence. The clas-
sical approach is the linear quantile regression model of Koenker & Bassett (1978). Bernard &
Czado (2015) showed that for univariate Gaussian margins, the Gaussian copula is the only one
complying with linear regression quantiles. Thus, linear quantile regression is of little use for data
with tail dependence. A further problem is that linear quantile lines usually cross for different lev-
els if the truemultivariate distribution is not Gaussian.Noh et al. (2015) formulated a copula based
quantile regression approach, which was later extended to censored response variables (De Backer
et al. 2017) and other regression problems (Nagler & Vatter 2020b). In these papers, the condi-
tional response distribution is not necessarily available in closed form but is found through copula
based estimating equations. In contrast, Kraus & Czado (2017a) proposed a D-vine model where
the conditional quantile function can be computed by inverting the conditional response distri-
bution function, which is available in closed form. Extensions including ordinal discrete variables
and nonparametric pair copulas were considered by Schallhorn et al. (2017) and Tepegjozova et al.
(2021).

Another important task of statistical learning is clustering. For model-based clustering, finite
mixtures of distributions are often assumed.Here, the random vector X = (X1, . . . ,Xd ) has a den-
sity given by

f (x; θ,π) =
k∑
j=1

π j f j (x; θ j ), 22.

where π j ≥ 0,
∑k

j=1 π j = 1, and f j (·; θ j ) is the density of the jth cluster with parameters θ j . The
task is to estimate the unknown mixing probabilities π = (π1, . . . ,πk ) and the unknown parameter
vector θ = (θ1, . . . , θk ), as well as the number of clusters k. Given a fitted mixture model, obser-
vations are assigned to the cluster with the highest conditional probability given the data. Esti-
mation in finite mixture models is facilitated with the expectation–maximization (EM) algorithm
of Dempster et al. (1977). Mixtures of normals are the most prominent models (Fraley & Raftery
2002) but require cluster distributions to have elliptical shape. To achieve nonelliptical cluster
shapes, Diday (2002) utilized copulas and adapted the EM algorithm. A restrictive d-dimensional
Clayton copula was used by Cuvelier & Noirhomme-Fraiture (2005). Vrac et al. (2005) used the
expectation/conditional maximization (ECM) algorithm of Meng & Rubin (1993) together with
the Frank copula to jointly cluster bivariate atmospheric profiles.

There has been somework connecting finitemixturemodels to vine copulas.Markov treemod-
els are equivalent to vine copulas truncated after the first tree (see, e.g., Brechmann et al. 2012) and
have been considered by Kirshner (2008) and Silva & Gramacy (2009). Kim et al. (2013) consid-
ered parametric D-vine copulas with a single pair copula family and estimated parameters jointly
in the maximization step (M-step), which is only tractable for small d. Roy & Parui (2014) use mix-
tures of D-vine distributions for the analysis of observed principal components, where the node
order is determined by the magnitude of the eigenvalues. In contrast, Sun et al. (2017) considered
C-vine copulas as mixture components and sequential estimation for the mixture components.
In the M-step, the stepwise selection and estimation approach for C-vines outlined in Section 4
was used. However, their method neglects the fact that the choice of the C-vine copula families
and parameters might depend on the weights resulting from the expectation step (E-step). Sahin
& Czado (2021) extended these methods and allow selection and estimation of different R-vine
distributions for each cluster based on the ECM algorithm. All methods above implicitly assume
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that all variables in the data set are relevant for the clustering. In high dimensions, this may not
be the case, and improvements can be expected when restricting to only relevant variables. How
to select this set of variables is an open problem, however.

Themixture model in Equation 22 can also be used for classification problems.Here, we assign
observations to the class with the highest posterior probability. Classification algorithms based on
this rule are called Bayes classifiers. Copula based Bayes classifiers were considered by Elidan
(2012) using Bayesian networks and Salinas-Gutiérrez et al. (2017) using chain graph models.
Chen (2016), Carrera et al. (2016), and Carrera et al. (2019) employed parametric vine copu-
las for the mixture components. Nagler & Czado (2016) used nonparametric pair copulas, and
Schellhase & Spanhel (2018) allowed for nonsimplified vines with a penalized spline approach.
Tekumalla et al. (2017) used D-vine models but, in contrast to the previous methods, allowed for
multiple classes and discrete variables through a computationally challenging Bayesian approach.
Most of these works show good performance compared with other competitors but do not address
important methodological issues. In particular, variable selection and hyperparameter tuning in
vine copula based classifiers remain an open problem.

6.2. Structure Selection and High-Dimensional Models

In Section 3, we saw that there are many possible R-vine structures. In principle, classical
likelihood-based criteria (like AIC or BIC) can be used to determine the best structure. How-
ever, because the number of possible vines grows superexponentially (see Section 4), such proce-
dures become infeasible even in moderate dimensions. This explosion and the complex algebraic
structure of vine tree sequences make their selection an extremely challenging problem.

Dissmann’s heuristic, mentioned in Section 4, greedily maximizes the dependence in each tree
based on the absolute value ofKendall’s τ .Variants replacingKendall’s τ with AIC,BIC,or p-values
of goodness-of-fit tests were investigated by Czado et al. (2013), variants with nonparametric pair
copulas by Nagler et al. (2017), and a variant taking the simplifying assumption into account by
Kraus & Czado (2017b). The empirical studies in these papers indicate small improvements in
performance, but these gains appear negligible in view of the added computational demand.Non-
heuristic methods based on Markov chain Monte Carlo (Gruber & Czado 2015, 2018) and neural
networks (Sun et al. 2019) lead tomore notable improvements but take orders of magnitude longer
to compute and are therefore only feasible in rather small dimension. In view of the above, Diss-
mann’s heuristic remains the gold standard, even a decade after it was initially developed in his
thesis. A promising path for improvement is to find ways to efficiently explore the space of vine
structures. A first step along these lines based on the concept of common sampling orders was
taken by Cooke et al. (2015) and Zhu et al. (2020). Another approach, by Chang et al. (2019), lim-
its the greediness of the algorithm by looking ahead a fixed number of trees using Monte Carlo
tree search. Although these approaches improve significantly over the benchmark on various data
sets, there remains much room for improvement—especially in higher dimensions.

In high-dimensional models, further challenges for model selection arise. The number of
model parameters grows quadratically in the dimension, which calls for sparse vine copula models.
A vine copula model is sparse when many pair copulas correspond to (conditional) independence.
A natural subclass is truncated vine copulas, i.e., models where all pair copulas after a certain tree
are set to independence. The question then becomes how to select the right truncation level, and
several solutions have been proposed (Kurowicka 2011, Brechmann et al. 2012, Brechmann &
Joe 2015, Joe 2018). An alternative model class is thresholded vine copulas, where all pairs with
sufficiently weak dependence are set to independence. Traditionally, the thresholding is done by
an independence test based on Kendall’s τ (e.g., Dissmann et al. 2013), as implemented in the
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VineCopula package. Amodified BIC criterion specifically tailored to high-dimensional vines was
proposed by Nagler et al. (2019) and is suitable to select both truncation level and thresholding
level. This method is implemented in the vinecopulib library. A separate line of research (Müller
& Czado 2018, 2019a,b) exploits connections between vine copulas and Gaussian directed acyclic
graphs to find sparsity patterns. A completely different approach is to use dimension reduction
techniques before employing a copula model (as in Tagasovska et al. 2019). In high-dimensional
linear models, it is well known that theoretical guarantees for estimation and inference break when
the number of parameters is large compared with the number of samples. There is no reason to
believe that vine copula models are exempt from this phenomenon, but it is unclear where the
breakpoint lies. The only known theoretical results in this regime were given in the model selec-
tion context byNagler et al. (2019), but they rely on an unverified assumption of consistent param-
eter estimates. Thus, we are in dire need of asymptotic results for inference in high-dimensional
vine copula models.

6.3. The Simplifying Assumption

As mentioned in Sections 2 and 3, vine copula models are usually built under the simplifying
assumption. The assumption is much weaker than conditional independence. Conditional depen-
dence of any strength and form is allowed, but only if it does not change with the conditioning
value. It is worth emphasizing that the simplifying assumption is only required for explicit pair-
wise dependencies in the model, i.e., those corresponding to an edge in the vine. All other pairwise
dependencies can (and often will) be nonsimplified. An obvious question, first raised by Hobæk
Haff et al. (2010), is how constraining the simplifying assumption is. Some popular multivariate
parametric copulas, most notably elliptical copulas and the Clayton copula, are known to satisfy
the simplifying assumption (Stöber et al. 2013) in a very strong sense: Due to their closedness in
conditioning and marginalization, they are simplified for every possible R-vine structure. Hobæk
Haff et al. (2010) provided numerical examples suggesting that a simplified parametric model can
be a very good approximation even if the true model is not simplified.

To check whether the simplifying assumption holds for a particular data set, several statis-
tical tests have been developed. Most of them focus on a simpler setting, where there is only
one bivariate copula and one or more covariates (e.g., Acar et al. 2013, Derumigny & Fermanian
2017, Gijbels et al. 2017). The problem is more difficult in the context of vine copulas because
the assumption needs to be tested for every pair copula. A procedure tailored to parametric vine
copulas was developed by Kurz & Spanhel (2018) and implemented in the pacotest R package
(Kurz 2017). The authors performed an empirical study suggesting that the assumption cannot
be rejected in several financial data sets but is already rejected in the second tree for some others.
Even if the assumption is violated, Portier & Segers (2018) showed that a simplified empirical
copula can be estimated nonparametrically at

√
n-rate, as suggested by simulations in the context

of simplified vines by Haff & Segers (2015). In a similar vein, Nagler & Czado (2016) proved that
simplified vine copula densities can be estimated at a rate equivalent to a two-dimensional prob-
lem. Their simulations suggest that, in a nonparametric setting, the simplifying assumption can
be beneficial even if it is severely violated.

It is also possible to build nonsimplified models. Acar et al. (2012) developed a kernel method
for three-dimensional semiparametric vines. A fully parametric model, where the conditional de-
pendence is modeled similar to a generalized linear model, was proposed by Han et al. (2017). A
semiparametric model allowing for more general, additive relationships was developed by Vatter
& Nagler (2018) and is implemented in the gamCopula R package (Vatter & Nagler 2017). A
fully nonparametric method based on splines and dimension reduction of the covariate space was
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proposed by Schellhase & Spanhel (2018) and is available through the pencopulaCond R package
(Schellhase 2017).

The fact that vine copula models contain multiple interrelated pair copulas complicates in-
terpretation of the simplifying assumption. Killiches et al. (2017) used visualizations of three-
dimensional density contours to provide some geometrical intuition. However, Spanhel et al.
(2019) showed in several toy examples that the simplifying assumption can have several unin-
tuitive implications. First, using the true pair copulas in the first tree is often suboptimal. Second,
spurious dependence can appear in higher tree levels, which makes interpretation of those pair
copulas difficult. Mroz et al. (2021) further proved that any copula can be approximated arbitrar-
ily well by a simplified vine copula in the supremum metric, but not for more intuitive notions of
distance (like Kullback–Leibler divergence or total variation metric) and the distance can be quite
large.This alone should not discourage researchers from employing a simplified model. The exact
validity of a model’s assumptions is not the primary determinant of its usefulness, but some care
is in order when interpreting the results.

6.4. Time Series Models

Time seriesmodels based on vine copulas have become quite popular, especially in financial econo-
metrics. In the context of a multivariate time series X 1, . . . ,X T ∈ Rd , there are two types of de-
pendence: serial dependence (dependence across different points in time) and cross-sectional de-
pendence (dependence in the vector X t at a given point in time).

The majority of works separate the two types of dependence. Classical time series models are
used to filter the univariate serial dependence in each margin and a vine copula model is employed
for the cross-sectional dependence across residuals. A first instance of such a model with ARMA-
GARCH filters was given in the seminal paper by Aas et al. (2009) and in higher dimensions by
Brechmann & Czado (2013). Later, Min & Czado (2014) additionally allowed for nonparametric
estimation of the marginal residual distribution and provided asymptotic results for the copula
parameter estimates. Other marginal filters can be used as well—for example, in the presence of
nonstationary trends (e.g., Jäger et al. 2019).

In most early works, the cross-sectional dependence was assumed to be fixed. Chollete et al.
(2009) relaxed this assumption by allowing the parameters of a C-vine copula to switch between
two regimes depending on a latent Markov process. This model was generalized by Stöber &
Czado (2014) and Fink et al. (2017) to multiple regimes, each corresponding to a different R-vine
copula. Other works modelled the change of dependence on a finer scale by explicitly specifying
the dynamics of copula parameters. In So & Yeung (2014), each parameter follows observation-
driven dynamics similar to the DCC-GARCH model (Engle 2002). Another line of research
considers model-driven dynamics, where copula parameters are modeled as latent autoregressive
models of order 1 [AR(1)] processes. Almeida et al. (2016) and Goel & Mehra (2019) developed
frequentist estimation procedures for C- and D-vine models. Kreuzer & Czado (2019, 2021) pro-
posed Bayesian approaches for general R-vine models and parsimonious factor copulas expressed
as C-vines. A different approach was taken by Vatter &Nagler (2018) and Acar et al. (2019), where
the model parameters are modeled as smooth functions of time and estimated by spline and kernel
techniques, respectively.

The separation of serial and cross-sectional dependence is convenient because it allows us to
rely onwell-establishedmodels for univariate series.But serial dependence can be characterized by
a copula, too, and conceptually there is no reason to treat the serial part differently from the cross-
sectional one.Around the same time, three papers independently proposed vine copulamodels that
capture both types of dependence simultaneously: the copula autoregressive (COPAR) model of
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Brechmann & Czado (2015), the D-vine model of Smith (2015), and the M-vine model of Beare
& Seo (2015). The three models differ in the vine structure, but their motivation is the same. The
idea is to choose a structure that ensures stationarity of the model by imposing a simple restriction
on the pair copulas: If we shift all indices of an edge in time, the associated pair copula must re-
main the same. This idea was formalized by Beare & Seo (2015) and called translation invariance.
Nagler et al. (2020a) gave a complete characterization of the class of vine structures that ensure
stationarity under translation invariance. Surprisingly, the COPAR model does not fall under this
category and, hence, may not be stationary. Nagler et al. (2020a) also derived asymptotic proper-
ties of parameter estimates and simulation-based predictions from suchmodels.They also pointed
to an open problem regarding to the mixing properties of the resulting time series. Another inter-
esting venue for future research is to adapt these models for nonstationary and long-memory time
series.
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