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Abstract

Data are distributed across different sites due to computing facility limita-
tions or data privacy considerations. Conventional centralized methods—
those in which all datasets are stored and processed in a central computing
facility—are not applicable in practice. Therefore, it has become neces-
sary to develop distributed learning approaches that have good inference
or predictive accuracy while remaining free of individual data or obeying
policies and regulations to protect privacy. In this article, we introduce the
basic idea of distributed learning and conduct a selected review on vari-
ous distributed learning methods, which are categorized by their statistical
accuracy, computational efficiency, heterogeneity, and privacy. This catego-
rization can help evaluate newly proposed methods from different aspects.
Moreover, we provide up-to-date descriptions of the existing theoretical
results that cover statistical equivalency and computational efficiency un-
der different statistical learning frameworks. Finally, we provide existing
software implementations and benchmark datasets, and we discuss future
research opportunities.
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1. INTRODUCTION

The distributed inference method integrates results derived from different analyses conducted on
datasets from multiple study sites. If a supercomputer with infinite power and no data sharing
barriers were available, there would be no need to develop new methods for processing big data,
and existing methodologies and their associated software could be directly applied.Unfortunately,
current computers do not have such capacity, nor do they allow operational convenience in terms
of merging multiple datasets stored at different sites; thus, the distributed learning (DL) paradigm
has emerged as a state-of-the-art computational solution to make distributed data computations
feasible.Over the past 10 years,many studies have developed distributed computing and inference
methods to address the various problems presented by distributed data. Figure 1 shows the rapid
development of DL in recent years and five highly cited articles each in computer science and
statistics. In this article, we provide a selected review of the existing distributed computing and in-
ference methods. First, we describe the basic idea of DL,which focuses on the divide-and-conquer
strategy, and its early development. Second,we discuss the current state of theDL literature, as cat-
egorized by four essential aspects: statistical accuracy, computational efficiency, heterogeneity, and
privacy. Third, we summarize the current theoretical advances that are related to the equivalence
of distributed estimators and centralized estimators with all data stored together.Fourth,we briefly
review the existing software implementations, open source platforms, and benchmark datasets.
Finally, we recommend directions for future research to make DL more practical and powerful.

2. Distributed Learning

In response to the rapidly growing demands for big data analytics and computational tools, parallel
computing and distributed data storage have become the leading innovations for solving big data
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Frequency of published articles concerning distributed learning in recent years. All data were retrieved from
https://www.scopus.com/.
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problems. For example, data from different hospitals are isolated and become data islands. Because
each data island is limited in terms of size and the number of variables, appropriately and collab-
oratively integrating all data islands allows practitioners to use data analysis to answer a scientific
hypothesis of interest and/or obtain good predictive accuracy for a specific task. Multicore and
cloud computing platforms, including the popular open source Hadoop (White 2015) platform,
are now the standard software technologies that are extensively used in academia and industry
(Taylor 2010, Hammoud et al. 2012, Jiao et al. 2012, Dittrich et al. 2013, Fernando et al. 2013).
This new distributed file system necessitates the development of a general statistical method that
allows for analyzing massive data through parallel and scalable operations in a distributed software
framework.

DL can be traced back toMenabrea (1843). Its earlier development can be attributed to parallel
computing, which was executed on a single computer and was built upon the divide-and-conquer
strategy (Horowitz & Zorat 1983). For most statistical problems, we can divide a large complex
task intomany small pieces so that they can be approached simultaneously onmultiple central pro-
cessing units (CPUs) or machines. The outcomes are then aggregated to obtain the final results.
For parallel computing purposes, different processors can share the samememory.Therefore, they
can exchange information, including individual data, with each other in any efficient way (Gao
et al. 2022). As the data size increases, the data must be stored at multiple locations. Built upon the
divide-and-conquer strategy, the MapReduce paradigm refactors data processing into two prim-
itives: a map function, which is written by the user to process distributed local data batches and
generate intermediate results, and a reduce function, which is also written by the user to combine
all intermediate results and then generate summary outputs (Dean & Ghemawat 2008).

Figure 2 shows a schematic outline of the MapReduce workflow, which splits data and per-
forms computing tasks through parallel computation (Zhou & Song 2017). The salient features
of MapReduce include the scalability and independence of data storage; the former enables the
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Schematic flow chart of the multiserver distributed data management and processing strategy according to the MapReduce paradigm as
the heart of the Hadoop platform. The data partition scheme consists of R disjoint subsets that are distributed stored. Based on the data
subset, a processor simultaneously processes K tasks in parallel. Adapted with permission from Zhou & Song (2017).
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automatic parallelization and allocation of large-scale computations, and the latter allows data to
be processed without requiring them to be loaded into a common data server.This process reduces
the computational costs of loading input data into a centralized data server prior to conducting an
analysis. Although MapReduce and its variants have performed well when processing large-scale
data-intensive applications on high-performance clusters, most of these systems are restricted by
acyclic data flows, which are not suitable for general statistical analyses because iterative numerical
operations are involved. This issue arises because the operation of an iterative algorithm, such as
Newton–Raphson, requires the repeated reloading of data from multiple data disks into a com-
mon server, incurring a large performance penalty.To solve the abovementioned problem, existing
work can be categorized into two directions: (a) one-shot learning and (b) communication-iterative
learning.

2.1. One-Shot Learning

Many real-world distributed data networks are not fully automated (Toh et al. 2017). Research
sites often use their own analysts to manage their local data management and analysis tasks, which
may not be automated by application programming interfaces; thus, full automation is challeng-
ing, and the number of allowable communication rounds is typically small. This type of data exists
predominantly in distributed health care platforms, insurance provider networks, and collabo-
rative research. One-shot learning requires just one round of communication between the local
machines and the central server, which markedly reduces the required communication effort and
broadens the application use cases to a wide variety of the abovementioned nonautomated systems.
Due to the one-time communication process, one-shot methods often require a large sample size
for each local site. Methods belonging to this category include the following.

2.1.1. Simple averaging. The most popular and direct aggregation method, simple averaging,
averages the estimators obtained on each local machine. For each 1 ≤ k ≤ K, the local estimates
(i.e., the θ̂ks) are transferred to the central machine to obtain the final average estimator:

θ̂ave = 1
K

K∑
k=1

θ̂k.

Under appropriate regularity conditions, θ̂ave is the same as that of the entire sample estimator
in terms of its convergence rate, i.e., it has first-order equivalence (Zhang et al. 2013, Rosenblatt
& Nadler 2016, Battey et al. 2018, Chen et al. 2022).

2.1.2. Meta estimators. A simple average is easy to calculate but loses efficiency by ignoring the
variance of each local estimator. To achieve improved efficiency, meta estimators θ̂meta are defined
as the inverse variance-weighted average of θ̂k:

θ̂meta =
(

K∑
k=1

Var−1(θ̂k )

)−1 ( K∑
k=1

Var−1(θ̂k )θ̂k

)
.

These estimators were developed by Borenstein et al. (2021), Lin & Zeng (2010), and Liu et al.
(2015). Liu et al. (2015) showed that their meta estimator was asymptotically as efficient as the
maximum likelihood estimator (MLE) derived from using the entire input dataset once. With
random-effects models, Zeng & Lin (2015) reported a similar finding; thus, their meta estimator
was at least as efficient as that obtained from all data. Lin & Xi (2011) proposed an aggregated
equation estimator.
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2.1.3. Confidence distribution estimators. Meta-type estimators are objective-free methods.
Later, using a confidence distribution (CD) (Xie & Singh 2013), the CD estimator was developed
to offer a more general sample-dependent distribution-based estimator. Its biggest contribution
is that it provides a flexible objective for aggregating local information by multiplying confidence
densities. In particular, we denote hk(θ;Dk ) as a confidence density function derived from the kth
study with dataset Dk:

hk(θ;Dk ) = 1
(2π )p/2|6̂k|1/2

exp
{
−1
2
(θ − θ̂k )⊤6̂−1

k (θ − θ̂k )
}
,

where θ̂k is the estimator based on datasetDk and 6̂k is its variance estimator.Then, a CD estimator
is constructed by maximizing the following combined CDs:

θ̂CD = argmax
θ
h(c)(θ;D1, . . . ,Dk ) := argmax

θ

K∏
k=1

hk(θ;Dk ).

Related research includes the work of Singh et al. (2005) for univariate CDs, the study con-
ducted by Liu et al. (2015) for multivariate common parameters, the work of Tang et al. (2020)
for high-dimensional debiased estimators, and the research of Shen et al. (2020) for individu-
alized fusion learning, among others. When each local sample size is large, the normal density
assumption for the local CD is appropriately attributed to the central limit theorem. Clearly, CD-
based estimators include meta estimators and average estimators as special cases. Due to the linear
property of theGaussian distribution,CD estimators can be treated as linear combinations of local
estimators.

2.1.4. Nonlinear combined estimator. Liu & Ihler (2014) proposed a Kullback–Leibler (KL)
divergence–based combination method, i.e.,

θ̂KL = argmin
θ

K∑
k=1

KL
(
p(Dk | θ̂k )∥p(Dk | θ)

)
,

where p(Dk | θ) is the density probability, and the KL divergence is defined by KL( p(x)∥q(x)) =
+p(x)log ( p(x)/q(x))dµ(x). Liu & Ihler (2014) showed that θ̂KL is exactly the global MLE θ̂ if p is a
full exponential family.

To mitigate the impact of local sites with potentially poor quality, Minsker (2019) proposed a
robust assembling method as follows:

θ̂robust = argmin
θ

K∑
k=1

ρ(|θ − θ̂k|),

where ρ(·) is a robust loss function.

2.2. Communication-Iterative Learning

Although one-shot approaches have the lowest communication costs, they suffer from several dis-
advantages. First, compared with a centralized estimator,which is estimated based on all individual
data, a one-shot estimator incurs an estimation accuracy loss. To obtain the same convergence rate
with a one-shot estimator and a centralized estimator, each local site should have sufficient data
relative to the number of sites (Wang et al. 2017, Jordan et al. 2019). A higher-order equivalency
between a one-shot estimator and a centralized estimator requires a larger sample size for each lo-
cal site if a debiased procedure is not conducted. Second, a one-shot estimator requires a stronger
homogeneity assumption across the local sites; for example, in regression problems, the covari-
ates should share a common distribution. If some covariates are highly unbalanced in several local
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sites, then one-shot estimators may suffer from large variations across the local sites or even fail
to provide any results (Zhou et al. 2022). Therefore, objective-dependent algorithms allowing
a reasonable number of iterations may lead to better estimation results in terms of stronger or
higher-order equivalence and weaker conditions regarding the number of sites, the sample size
needed for each local site, homogeneity, etc.

In particular, we consider an objective ϕ(θ;D1, . . . ,DK ) = 1
K

∑K
k=1 ϕk(θ;Dk ) with K sites. We

then denote ϕ̇ and ϕ̈ as the first- and second-order derivatives of ϕ with respect to θ, respectively.
Under the smoothness condition of ϕ, a centralized estimator can be obtained via the following
iterative algorithms:

θ̂cen = θ̂
∞
, θ̂

(r) = θ̂
(r−1) − ηϕ̇(θ(r−1) ), r = 1, 2, . . . ,

where η is the step size tuning parameter. With η prespecified, the algorithm belongs to the
class of gradient decent methods, which enjoy a linear convergence rate in general. When η :=
(ϕ̈(θ(r−1) ))−1, the algorithm is theNewton–Raphson algorithm,which has a quadratic convergence
rate.

With a distributed framework, gradient-based methods require the gradient vector ϕ̇ to be
transferred during each round of communication, and Newton–Raphson methods must transfer
an additional Hessian matrix ϕ̈ during each round. With unlimited time, both gradient descent
methods andNewton–Raphson methods generate the same distributed estimators as a centralized
estimator (i.e., θ̂cen = argminθ

1
K

∑K
k=1 ϕk(θ;Dk )).When computational complexity or time is con-

sidered, compared with gradient-based methods, the Newton–Raphson algorithm requires fewer
communication rounds at the cost of transferring both gradients ϕ̇ and Hessians ϕ̈. The balance
between the number of communication rounds and computational complexity must therefore be
considered. When the dimensionality of θ is large, particularly in deep learning fields, transfer-
ring a Hessian matrix or calculating a Hessian matrix is difficult or impossible. For the maximum
likelihood method, we can use the Bartlett identity to replace the Hessian matrix with the outer
product of the gradient, which requires only a gradient transfer operation. However, for gen-
eral loss functions, transferring an approximate Newton-type method is one direction to reduce
communication costs and achieve communication efficiency. Methods of this type include the
following.

2.2.1. Distributed approximate Newton-type method. Shamir et al. (2014) proposed a
distributed approximateNewton-typemethod (DANE),where theHessianmatrices are not trans-
ferred. In particular, for an objective ϕ(θ) = 1

K

∑K
k=1 ϕk(θ) with K local sites, they denoted �ϕ and

�2ϕ as the gradient and Hessian, respectively. They then updated θ as follows:

θ
(r)
k = argmin

θ

{
ϕ(θ(r−1) ) + ⟨∇ϕ(θ(r−1) ), θ − θ(r−1)⟩ + 1

η
Dk(θ; θ(r−1) )

}
,

where the first two terms ϕ(θ(r−1) ) + ⟨∇ϕ(θ(r−1) ), θ(r−1)⟩ are linear approximations of the overall
objective ϕ(θ) concerning the current iteration θ(r−1) and do not depend on site k, and

Di(θ; θ(r−1) ) = ϕi(θ) − ϕi(θ(r−1) ) − ⟨∇ϕi(θ(r−1) ), θ − θ(r−1)⟩ + µ

2
∥θ − θ(r−1)∥22.

The DANE estimator at iteration r is θ̂
(r)
DANE = 1

K

∑K
k=1 θ̂

(r)
k . After a simple calculation,

θ
(r)
k ≈ θ(r−1) − η

(∇2ϕi(θ(r−1) ) + µI
)−1 ∇ϕ(θ(r−1) ),

θ(r) ≈ θ(r−1) − η

(
1
K

K∑
k=1

(∇2ϕi(θ(r−1) ) + µI
)−1

)
∇ϕ(θ(r−1) ).
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This result contrasts that of the true Newton-type update, which replaces
( 1
K

∑K
k=1(∇2ϕi(θ(r−1) ) +

µI )−1
)
with

( 1
K

∑K
k=1 ∇2ϕk(θ(r−1) )

)−1. This difference is ignorable when ∇ϕk(θ), k = 1, . . . ,K are
similar. Thus, θ̂DANE approximates the true Newton update without communicating Hessians.
Zhang & Lin (2015) also avoided the direct transfer of Hessians from local sites to the center
machine via an inexact damped Newton method.

2.2.2. Communication-efficient surrogate likelihood. Jordan et al. (2019) developed a
communication-efficient surrogate likelihood (CSL) framework to solve distributed statistical
inference problems, where the key idea is to update the Hessian matrix on a single site only.
Thus,

θ̂
(r)
CSL = θ̂

(r−1) −
(
∇2ℓ1(θ̂

(r−1)
)
)−1

∇ℓ(θ̂
(r−1)

),

where ℓ is the log-likelihood and ∇ℓ(θ) = 1
K

∑K
k=1 ∇ℓk(θ). The Hessian matrix is thus calculated

on a single site, and transmission costs can be saved. However, the satisfactory performance of
CSL relies on a properly selected local site, and Fan et al. (2021) added an additional regularized
term to prevent sensitivity to the choice of a single machine.

2.2.3. Alternating direction method of multipliers–based method. Zhou et al. (2022) de-
veloped an alternating direction method of multipliers (ADMM)-based algorithm to distinguish
between local parameters and global parameters and avoid transferring the Hessian matrix. Thus,
we have

θ̂ADMM := α̂ = argmin
θk ,α

{
1
K

K∑
k=1

ϕk(θk;Dk ), θk ≡ α

}
.

Utilizing the ADMM algorithm, we update the local parameters θk at each local site by minimiz-
ing 1

K ϕk(θk;Dk ) + ρ(α(r−1) − θk − λ
(r−1)
k )2, where ρ is a tuning parameter. At a central machine,

we update the global parameter α(r) = 1
K

∑K
k=1(θ

(r−1)
k + λ

(r−1)
k ). Two sets of local vectors θk and

λk are then transferred to the central machine, and the global vector α is transferred to each
local site. Other related studies include those conducted by Boyd (2010) and Zhou & Li
(2021).

When the given regression model has high dimensionality, regularization-based methods are
commonly used. Further advancement in this area necessitates the formulation of meticulously
designed transferring statistics. In a related study, the application of one-shot learning within a
sparsity structure was demonstrated (Chen & Xie 2014). Battey et al. (2018) explored the utiliza-
tion of a high-dimensional generalized linear model. Song et al. (2015) employed a linear model
featuring feature splitting techniques. Lee et al. (2017b) adopted a broader perspective by utiliz-
ing a general smooth convex loss and debiased lasso techniques. Lv & Lian (2017) introduced
a novel approach through a partial linear model incorporating a debiased reproducing kernel
Hilbert space method. Lian & Fan (2018) innovatively addressed the challenge by developing
a hinge loss with debiased l1-support vector machine techniques. Wang et al. (2017) explored
communication-iterative learning in the context of a sparsity structure. Tuning parameters, in-
cluding the bandwidth in local polynomial methods and the number of splines in spline-based
methods, usually determine the convergence rates of nonparametric methods and thus must be
carefully chosen under a distributed framework. Related studies include those of Xu et al. (2016),
Shang & Cheng (2017), Szabó et al. (2019), Banerjee et al. (2019), and Cai & Wei (2022), among
others.
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3. PROPERTIES

With the recent and rapid development of DL methods, the criteria for evaluating their
performance can be summarized into the following types.

1. Statistical accuracy: Due to computing facility limitations or data use agreements, individual
datasets from different data sites cannot be aggregated together into a single machine un-
der distributed platforms. To aggregate information from different local data sites, several
summary statistics are calculated and transferred. The equivalence of the resultant aggre-
gated estimators to centralized estimators with all individual data combined is one of the
most important criteria for measuring the performance of distributed methods. One-shot
estimators (Shamir et al. 2014, Battey et al. 2018, Shi et al. 2018, Volgushev et al. 2019,
Zhao et al. 2016, Fan et al. 2019) possess first-order equivalence to centralized estimators
and typically require the number of sites to not be too high and the data size at each site to
be large. To relax the conditions regarding the number of sites and the data size at each site,
several subsampling methods (Kleiner et al. 2014) and debiased methods (Zhang et al. 2013,
Lee et al. 2017b, Lian & Fan 2018) have been developed. Communication-iterative meth-
ods have also been developed to relax these conditions (Arjevani & Shamir 2015, Zhang &
Lin 2015,Wang et al. 2017).

2. Computational efficiency: Under the distributed framework, communications implemented
across different local data sites must integrate information. More communication rounds
lead to greater communication time requirements. Conversely, fewer rounds of commu-
nication usually require the calculation of more complex statistics, implying increased
information complexity being transferred and more restrictive conditions. For example, we
denote p as the dimensionality of the parameters.Then, gradient-based distributedmethods
requiremore communications to converge but with only the gradient being transferred [i.e.,
the size of the transferred statistics is on the order of O( p)], while Newton-based methods
require the Hessian and gradient to be transferred simultaneously [i.e., the size of the trans-
ferred statistics is on the order of O( p2)] with fewer communications. Distributed methods
with limited communications and restricted types of information transfer are becoming
more important (Zhu & Jin 2020). To attain increased computational efficiency, we must
balance the number of communication rounds and the communication complexity of such
methods. Shamir et al. (2014) proposed DANE,which requires fewer communications than
the Newton-based method by transferring gradients only. By measuring the dependence
between the number of communication rounds, complexity and statistical accuracy, we can
evaluate the performance of distributed methods from the computational aspect. As shown
by Jordan et al. (2019), to ensure the same asymptotic distribution as that of a centralized
estimator, at least ⌈logK/log n⌉ iterations are needed, where K and n represent the num-
ber of sites and the data size at each local site, respectively. Other related studies include
those byWang et al. (2019), Shamir et al. (2014), Zhang & Lin (2015), and Fan et al. (2021),
among others.

3. Heterogeneity: The success of DL methods lies in the integration of similar information.
However, integrating all information, including both similar and heterogeneous informa-
tion, generates biased estimates and unreliable inferences (Karimireddy et al. 2020, Yu et al.
2022). As the data distributions across local sites are typically not completely identical, the
development of methods that are more personalized toward individual sites while borrow-
ing strength from similar individuals has attracted growing interest (Smith et al. 2017).
To appropriately address heterogeneity, the existing studies can be categorized into four
directions:
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■ (a) Target (personalized) learning: Considering a target site, the goal of target learning
is to achieve improved inference or prediction accuracy for the target site by appropri-
ately borrowing information from other sites. Related studies include those conducted
by Dinh et al. (2020) and Ghosh et al. (2022).

■ (b) Federated learning with personalized awareness: The goal of this method is to achieve
improved inference or prediction accuracy for the entire population while allowing het-
erogeneity to exist to some extent. Related studies include those by Li et al. (2020a) and
Fallah et al. (2020a).

■ (c) Fairness: In this category, researchers have tried to minimize the heterogeneity caused
by specific variables, such as gender, race, and site differences. Related studies include
those by Mohri et al. (2019) and Li et al. (2020b).

■ (d) Robustness: The goal of this method is to obtain predictions that are robust to
heterogeneity. Related studies include that of Reisizadeh et al. (2020).

4. Privacy: Many existing distributed methods require communication gradient or surrogate
statistics only. Although free of individual data, individual information can still be recov-
ered through several techniques, such as data poisoning attacks (Chen et al. 2017), model
poisoning attacks (Bagdasaryan et al. 2020), Byzantine faults (Castro & Liskov 1999), and
membership inference attacks (Shokri et al. 2017). Recently, several differential methods
have been used to overcome privacy issues, including homomorphic encryption (Phong
et al. 2018), secure multiparty computation (Bonawitz et al. 2017), and differential privacy
(Geyer et al. 2017).

We summarize some important existing works in Table 1 according to their statistical ac-
curacy, their local data size conditions, their required communication rounds (time), the size of
their transferred statistics (space), their tolerance to heterogeneity, and their targets. Furthermore,
Table 2 summarizes the existing methods for handling different types of heterogeneity.

4. THEORETICAL PROPERTIES

The existing theoretical results for DL focus on the equivalence between distributed estimators
and centralized estimators, the dependence between the number of communication rounds and the
convergence rate, the impact of heterogeneity, and privacy protection strategies.We now describe
these properties in detail.

4.1. Equivalence

The equivalence between distributed estimators and centralized estimators can be summarized
into three classes, which are as follows: (a) In first-order equivalence, a distributed estimator is
equal to a centralized estimator when their error bounds have the same rate:

E∥θ̂DL − θ∗∥22 = O
(
1
N

)
, and E∥θ̂cen − θ∗∥22 = O

(
1
N

)
,

where N is the size of the whole sample (Liu & Ihler 2014, Rosenblatt & Nadler 2016, Fan et al.
2021, Chen et al. 2022). (b) In the case of same asymptotic efficiency, the asymptotic distribu-
tion equivalence between a distributed estimator and a centralized estimator facilitates statistical
inference (Chen & Peng 2021, Chang et al. 2023). Thus,

√
N (θ̂DL − θ∗ ) → N (0,6), and

√
N (θ̂cen − θ∗ ) → N (0,6).

Additionally,when heterogeneity exists to some extent, a distributed estimator with proper weight-
ingmethods generates more efficient estimators than a centralized estimator that does not account
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Table 1 Comparison among the existing works in the field of distributed learning

Conditions Computational Efficiency

Studies Target Size Heterogeneitya C(time) C(space)
Statistical
Accuracy

Battey et al. (2018) GLM K = O(
√
N/(s2 log p)) NA O(1) O(p) 1st equiv.

Chang et al. (2023) NA n can be finite NA O(1) O(p+M ) SAE
Chen & Peng (2021) Symmetric K = o(N1 − 1/(2C)) NA O(1) O(p) SAE
Chen & Xie (2014) GLM log (Kp) = o(n) NA O(1) O(p2 ) 1st equiv.
Fan et al. (2021) S, SC n ≥ Cp δ-BHD O

(
log(Np )/ log(

1
η
)
)
,

η = κ2(logN )p/n
O(p) 1st equiv.

Gupta et al. (2021) S, SC NA NA O
(√

n
√

1
ε

)
O(p) NA

Jordan et al. (2019) S NA NA O
( logN
log n

)
O(p) 1st equiv.

Karimireddy et al.
(2020)

S, SC NA (G, B)-BGD O
(

σ 2

µKEε
+

√
LG

µ
√

ε
+

B2L
µ

) O(p) NA

Karimireddy et al.
(2020)

S, SC NA δ-BHD O
(

σ 2

µKEε
+ L

µ

)
O(p) NA

Lee et al. (2017a) S, SC NA (G, 0)-BGD O
( LK

µn log 1
ε

)
O(p) NA

Lee et al. (2017b) Smooth spline n ≳ Ks2log p NA O(1) O(p) 1st equiv.

Li et al. (2020a) S, SC NA (0, B)-BGD O
( B2

µ

)
O(p) NA

Lian & Fan (2018) SVM K ≤ O((N/ log p)1/3 ) NA O(1) O(p) 1st equiv.
Liu & Ihler (2014) GLM NA NA O(1) O(p) 1st equiv.
Lv & Lian (2017) PLM K ≤ √

N/ log p NA O(1) O(p) 1st equiv.

Shamir et al. (2014) QR NA NA O
( L2K

µ2N
log 1

ε

)
O(p) NA

Shang & Cheng
(2017)

S K = O(N (4L−1)/(4L+1) ) NA O(1) NA 1st equiv.

Smith et al. (2017) S + SC/NC NA NA O
( L+µ

µ
log 1

ε

)
O(p) NA

Song et al. (2015) LM NA NA O(1) NA SE
Tang et al. (2020) GLM N k p NA O(1) NA 1st equiv.
Wang et al. (2017) S, SC + l1 n ≳ s2log p NA O(logK ) O(p) 1st equiv.

Wang et al. (2018) QR (l2) NA NA O
( log(κ/ε)
log(n/K )

)
O(p) NA

Wang et al. (2019) SVM NA NA log2
( logN−log p
logK−logN

)
O(p) 1st equiv.

Zhang & Lin (2015) S, SC NA NA O
(√

1 + 2µ log
( 1

ε

))
O(p) 1st equiv.

Zhou et al. (2022) NA K = O(n1/2 − δ) NA NA O(p) SE

a(G, B)-BGD indicates that there exist constants G ≥ 0 and B ≥ 1 such that ∀θ, 1
K
∑K

k=1 ∥∇ϕ(θ)∥2 ≤ G2 + B2∥∇ϕ(θ)∥2. δ-BHD indicates that there exist
constants δ > 0 such that ∀θ, ∥∇2ϕ(θ) − ∇2ϕ(θ)∥ ≤ δ.
Other notation is as follows: C, a positive constant; E, the number of local update steps; K, the number of sites; L, the smoothness of true function f0; N, the
data size of the entire sites; n, the data size at each local site; p, the dimensionality of the parameters; s, the sparsity of the parameters; κ , the condition
number of true function f0; µ, the convexity of true function f0; σ 2, the variance bounds of the stochastic gradient of local loss function ϕk; ε, the required
optimization accuracy.
Abbreviations: 1st equiv., first-order equivalence; GLM, generalized linear model; l1 and l2, penalty terms; LM, linear model; NA, not applicable/not
available; NC, nonconvex; NS, nonsmooth; PLM, partial linear model; QR, quadratic; S, smooth; SAE, same asymptotic efficiency; SC, strongly convex;
SE, strong equivalence; SVM, support vector machine.
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Table 2 Comparison among the existing methods for handling different types of
heterogeneity in distributed learning

Scenario Objectivea Algorithm and studyb Method
HDL-XY a pFedMe (Dinh et al. 2020) Regularization
HDL-XY a FL+HC (Briggs et al. 2020) Clustering

IFCA (Ghosh et al. 2022)
FedSEM (Long et al. 2023)

HDL-XY b FedProx (Li et al. 2020a) Regularization
FedCL (Yao & Sun 2020)
MOON (Li et al. 2021)

HDL-XY b ARUBA (Khodak et al. 2019) Meta-learning
Per-FedAvg (Fallah et al. 2020a,b)

HDL-XY c Agnostic FL (Mohri et al. 2019) Weighted loss
q-FedAvg (Li et al. 2020b)

HDL-XY d FedRobust (Reisizadeh et al. 2020) Perturbation
HDL-Y a FedCurv (Shoham et al. 2019) Regularization

MOCHA (Smith et al. 2017)
VIRTUAL (Corinzia et al. 2021)
FedAMP (Huang et al. 2021)

VDL a FTL (Liu et al. 2020) Regularization

aObjectives, corresponding to those listed in Section 3, are as follows: (a) target (personalized) learning, (b) federated
learning with personalized awareness, (c) fairness, and (d) robustness.
bAbbreviations in algorithm names: Agnostic FL, agnostic federated learning; ARUBA, average regret-upper-bound
analysis; FedAMP, federated attentive message passing; FedCL, federated learning with continual local training; FedCurv,
federated curvature; FedProx, federated learning with proximal term; FedRobust, federated learning framework robust to
affine distribution shifts; FedSEM, federated stochastic expectation maximization; FL + HC, federated learning with
hierarchical clustering; FTL, federated transfer learning; IFCA, iterative federated clustering algorithm; MOCHA,
framework for federated multi-task learning; MOON, model-contrastive learning; Per-FedAvg, personalized federated
averaging; pFedMe, personalized federated learning with Moreau envelopes; q-FedAvg, q-federated averaging; VIRTUAL,
variational federated multi task learning.
Other abbreviations: DL, distributed learning; HDL-XY, horizontal DL with varied covariates and outcomes distributions;
HDL-Y, horizontal DL with varying conditional outcome distributions given covariates; VDL, vertical DL.

for such heterogeneity (Zhou et al. 2022). Thus, Var(θ̂cen ) − Var(θ̂DL ) is semipositive definite.
(c) In the case of strong equivalence, if a distributed estimator almost surely equals a centralized
estimator, P(θ̂DL = θ̂cen ) = 1 (Song et al. 2015, Zhou et al. 2022). More related work is reported
in Table 1.

4.2. Dependence

To relax the strict conditions regarding the number of sites and the data size at each local site while
achieving the same convergence rate as that of centralized estimators, iterative methods have been
developed. The type of statistics being transferred determines the number of communications. To
achieve the same first-order equivalence as that of the centralized estimator, many studies have
listed the number of iterations and the statistics that must be transferred. Huang & Huo (2019)

proposed a one-step updatemethod θ̂
(1)

via the use of the gradient andHessianmatrix of the global
empirical criterion function, which achieves a lower upper bound on the mean squared error than
does the simple averaging-based one-shot estimator θ̂ave:

E[∥θ̂(1) − θ∗∥22] ≤ C1

N
+O(N−2 ) +O(K4N−4 ).
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Jordan et al. (2019) presented a CSL framework and noted that with N−1/2-consistent initial esti-
mators, at most ⌈logK/logN⌉ iterations are required to obtain the same asymptotic distribution
as that of the centralized estimator. Fan et al. (2021) proposed the communication-efficient accu-
rate statistical estimation (CEASE) algorithm and showed that the proposed algorithm achieves
statistical efficiency in O

(
log

(N
p

)
/ log

( 1
η

))
iterations. Other related works are also summarized

in Table 1.

4.3. Impact of Heterogeneity

The bias–variance tradeoff is particularly crucial to the success of DL methods when various lev-
els of heterogeneity are present. Incorrectly borrowing information from other sites with large
heterogeneity leads to unreliable inferences and/or low prediction power, which is even worse
than that attained when using local sites only (Yu et al. 2022). In addition, utilizing DL without
accounting for such heterogeneity can cause poor algorithmic convergence (Karimireddy et al.
2020). Existing methods that correctly identify similar sites include clustering (Briggs et al. 2020,
Ghosh et al. 2022, Long et al. 2023) and regularization methods (Li et al. 2020a, Dinh et al.
2020, Yao & Sun 2020). Situations with different covariates (i.e., vertical DL), the same covariates
with different distributions (i.e., horizontal DL with varied covariate and outcome distributions),
and the same marginal covariate distribution but with different conditional outcome distributions
given covariates (i.e., horizontal DL with varying conditional distributions) are three types of het-
erogeneous scenarios that are commonly considered.Table 2 summarizes these and other studies
that consider different heterogeneity types, targets and methods.

4.4. Impact of Privacy Protection

With regard to privacy protection, more iterations are required for homomorphic encryption
and secure multiparty computations, thereby reducing communication efficiency (Bonawitz et al.
2017, Phong et al. 2018). Conversely, differential privacy strategies may affect the equivalence of
distributedmethods to centralizedmethods, although the careful selection of differential strategies
may markedly reduce the impact of this choice (Dwork et al. 2006, Dwork & Roth 2013, Dong
et al. 2022).

5. IMPLEMENTATIONS

DL research has undergone rapid progress due to the availability of powerful distributed com-
puting frameworks. In Table 3, we present some widely used traditional distributed computing
frameworks, such as MapReduce (Dean & Ghemawat 2008), Spark (Zaharia et al. 2012), Flink,
Storm (Toshniwal et al. 2014), and Samza (Noghabi et al. 2017), and describe some recently de-
veloped platforms for federated learning research, such as TensorFlow, PySyft (Ryffel et al. 2018),
FedML (federated machine learning) (He et al. 2020), FATE (federated AI technology enabler),
and PaddleFL (paddle federated learning) (Ma et al. 2019). We provide a concise comparison of
these frameworks to facilitate reader comprehension. For further details, please refer to the works
cited.

MapReduce, Flink, Spark, Storm, and Samza do not directly offer data privacy protection
capabilities. To achieve this goal, these methods can be combined with other technologies or
frameworks. For example, we can use Spark orMapReduce to conduct differential privacy analysis
using the Privacy on Beammodule of Apache Beam.We can also perform encrypted computations
and secure multiparty computations on Samza or Apache Flink using the PrivacyGuard module.
Additionally, specific solutions, such as StreamShield (Nehme et al. 2009), have been designed to
preserve the privacy of data streams.
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Table 3 Summary of diverse distributed and federated computing frameworks

Framework
Data
type Supported language

Privacy
protection

Built-in
datasets

Built-in
algorithms

MapReduce B C++, Java, Groovy, Perl, Ruby 7 7 7

Flink B, S Java, Scala 7 7 ✓
Spark B, S Java, Python, R, Scala 7 7 ✓
Storm S JavaScript, Perl, Python, Ruby 7 7 7

TensorFlow B, S C++, Java, Python DP, HE, SMC ✓ ✓
Samza S Java, JVM, Scala 7 7 7

PySyft B Python DP, HE, SMC ✓ ✓
FATE B Python, Java DP, HE, SMC ✓ ✓
PaddleFL B C++, Python DP, HE, SMC ✓ ✓
FedML B Java, Python, Swift DP, HE, SMC ✓ ✓

Frameworks are listed in chronological order of introduction. Abbreviations: B, batch; DP, differential privacy; FATE,
federated AI technology enabler; FL, federated learning; HE, homomorphic encryption; ML, machine learning; S, stream;
SMC, secure multiparty computation.

Benchmark datasets are used to evaluate and compare the performance of machine learning
algorithms on specific tasks or problems. They provide a common platform for researchers to
test their methods and measure their accuracy, speed, robustness, etc., thus markedly advancing
machine learning research.However, high-quality public datasets are not common, particularly in
the field of DL. Fortunately, with the development of related fields, researchers have constructed
popular and recognized high-quality benchmark datasets; some commonly used datasets include
Federated EMNIST (extendedMNIST), Federated CIFAR-10, Shakespeare, and Federated Red-
dit. Most existing federated frameworks provide some benchmark datasets for researchers to use;
for example, LEAF (Caldas et al. 2018) provides various datasets, including federated EMNIST,
Shakespeare, CelebA, and Sentiment140. FLamby (federated learning ample benchmark of your
cross-silo strategies) (du Terrail et al. 2022) includes some federated cross-silo healthcare datasets,
such as Fed-Camelyon16 (Cancer Metastases in Lymph Nodes Challenge 2016), Fed-KITS2019
(Kidney Tumor Segmentation Challenge 2019), Fed-ISIC2019 (International Skin Imaging Col-
laboration 2019), and Fed-Heart-Disease. FedGraphNN (federated graph neural networks) (He
et al. 2021) provides datasets for federated graph neural network research, such as social networks,
citation networks, and knowledge graphs.

6. FUTURE DIRECTIONS

DL is attracting increasing attention, and although many successes have been achieved from both
theoretical and numerical perspectives, numerous interesting topics still require further study.

6.1. Robustness

Most existing studies have focused on equivalence, statistical efficiency, and communication
efficiency. As distributed healthcare platforms, insurance provider networks, and other quality-of-
life–related distributed data platforms increase in number and size, robustness to heterogeneity
and contaminated data has attracted increasing interest. Zhou & Song (2017) considered the
robustness of their proposed distributed Rao-CD method against contaminated data or hetero-
geneously correlated structures. Their numerical results showed that when the sample size is
moderate, general distributed methods can still generate reasonable inference results. However,
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when the sample size increases and more outliers are introduced to the data, distributed methods
that are not robust to outliers suffer severe estimation biases due to these outliers. Thus, devel-
oping novel methods to address robustness is urgent and necessary. Recently, various techniques
have been explored to address robustness in DL and provide inspiration for future studies. Related
work includes the use of adversarial training (Reisizadeh et al. 2020), which employs a minimax
optimization method to improve robustness against distribution shifts across local data sites, and
quantile regression (Chen et al. 2020), which uses a nonsmooth quantile loss function to handle
heavy-tailed noise.

6.2. Fairness

Researchers are paying more attention to the issue of fairness in DL as fair contribution-reward
mechanisms encourage greater client participation in the real world (Li et al. 2023). When faced
with heterogeneous scenarios, a training process using the sample size averaging–based scheme re-
sults in unfair resource allocation, and the generalization performance achieved by the aggregated
model for all clients exhibits inconsistency with their corresponding contributions to the model.
For instance, a few clients may dominate the training process and skew the results with dispro-
portionately large samples. To address these learning fairness problems, most recent research has
focused on using the performance achieved by a model for individual clients throughout the train-
ing process to adjust the weight of the transmitted model or parameters, hence ensuring balanced
performance on local clients. Some interesting work in this area includes that of Li et al. (2020b),
Lyu et al. (2020), and Zhang et al. (2020), but these methods come at the price of additional com-
munication costs and information leakage risks. Thus, further exploration is needed for fairness
considerations in DL.

6.3. Network and Survival Data

Many studies have used cross-sectional data and/or time series data. Embraced by the rapid de-
velopment of computing software and online communications, distributed data with network
structures and survival data in distributed platforms have emerged. However, the existing DL
methods cannot be directly extended due to the non-Euclidean property of the network structure
and the nonseparability of the objectives for survival data. Novel DL methods are required to
address network and survival data.

6.4. Postregularization Inference

Statistical inference is also important, particularly for human life–related data. To appropri-
ately integrate distributed data information, correctly identifying similar data sites is crucial.
Regularization-based techniques are some of the most popular methods for automatically
identifying homogeneous data sites.However, properly addressing the randomness caused by reg-
ularization is challenging and markedly increases the complexity of statistical inference. A few
studies have conducted postselection inference (van de Geer et al. 2014, Zhang & Zhang 2014),
but research in this area remains lacking for general postregularization inference; this topic is
particularly interesting for future research, especially with a distributed framework.

6.5. Causal Distributed Learning

Causal inference, which is the process of drawing a conclusion about a causal connection based on
the conditions of the occurrence of an effect (Yao et al. 2021), is a critical research topic. Recently,
Tan et al. (2022) provided an interpretable tree-based ensemble of conditional average treatment
effect estimators, which joined heterogeneous models across different sites. Determining causal
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inference under a distributed framework is an appealing research direction due to the causal
interpretability and large amount of available data.
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