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Abstract

Advances in information technology have increased the availability of time-
stamped relational data, such as those produced by email exchanges or
interaction through social media.Whereas the associated information flows
could be aggregated into cross-sectional panels, the temporal ordering of
the events frequently contains information that requires new models for the
analysis of continuous-time interactions, subject to both endogenous and ex-
ogenous influences. The introduction of the relational event model (REM)
has been a major development that has stimulated new questions and led to
further methodological developments. In this review, we track the intellec-
tual history of the REM, define its core properties, and discuss why and how
it has been considered useful in empirical research.We describe how the de-
mands of novel applications have stimulatedmethodological, computational,
and inferential advancements.
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1. INTRODUCTION

Statistical models for social and other networks are receiving increased attention, not only in
specialized field journals such as Network Science or Social Networks but also in prominent interdis-
ciplinary science journals such as Science (Borgatti et al. 2009, Butts 2009), PNAS (Stadtfeld et al.
2019), and Scientific Reports (Elmer & Stadtfeld 2020).

Attention to statistical models for networks is also on the rise in well-established generalist
statistics journals, such as, for example, the Journal of the American Statistical Association (Hunter
et al. 2008), the Annals of Applied Statistics (Snijders et al. 2010a), Statistical Science (Schweinberger
et al. 2020), and the journals of the Royal Statistical Society (series A, B, and C) (Krivitsky &
Handcock 2014, Gile & Handcock 2017, Vinciotti & Wit 2017, Koskinen & Snijders 2023). The
Annual Review of Statistics and Its Application itself has recently demonstrated considerable interest
inmodels for social networks by publishing comprehensive and up-to-date reviews on two popular
classes of statistical models: exponential random graph models (ERGMs) (Amati et al. 2018) and
stochastic actor-oriented models (SAOMs) (Snijders 2017).

Since the publication of these reviews, the availability of time-stamped data has increased due
to innovations in data production, collection, storage, and retrieval technologies. It has been shown
that network data samples based on observations collected at fixed time intervals are likely to miss
fundamental differences in the timescales over which relational processes unfold (Golder et al.
2007). Computer-mediated communication (Lerner & Lomi 2023), sociometric badges (Wu et al.
2008, Stehlé et al. 2011,Elmer& Stadtfeld 2020), electronic trading platforms (Zappa&Vu 2021),
online interaction logs (Tonellato et al. 2023), and video recordings (Pallotti et al. 2022) are just
some of the new data-generating technologies capable of producing large quantities of relational
event data connecting sender and receiver units.

During the same period, studies based on a variety of possible event-oriented designs have
also become more common. While the empirical opportunities offered by relational event data
have long been acknowledged by students of social networks (Freeman et al. 1987,Marsden 1990,
Borgatti et al. 2009), statistical models affording a degree of temporal resolution consistent with
the frequency of observed social interaction (Butts 2009) have become available only during the
past fifteen years (Butts 2008).

Timescales vary considerably based on interaction settings. High-frequency transactions in
financial markets (Bianchi & Lomi 2023) occur within seconds or fractions of seconds, while com-
munication in emergency situations (Butts 2008, Renshaw et al. 2022) may take several minutes.
Email exchanges (Perry & Wolfe 2013) can extend over hours, whereas interaction generated by
more complex forms of social coordination among corporate actors may become observable only
over days or even weeks (Amati et al. 2019). In these various cases, aggregating time-stamped
relational event data into network ties defined over conventional, or convenient, time periods is
unlikely to afford high-fidelity representations of the underlying interaction processes (Tuma &
Hannan 1984).

Perhaps the main motivation that inspired the development of the relational event model
(REM) proposed by Butts (2008) was to provide a general analytical framework where sequen-
tial ordering and timing replace concurrency and temporal aggregation of network edges as the
“dominant concepts of phenomenal concern” (Butts 2008, p. 192) in the analysis of social inter-
action. This framework involves deriving, specifying, and estimating statistical models capable of
assimilating and analyzing complex relational data without altering—through time aggregation—
the natural time structure and sequential ordering of observed social interaction. Conversation
(Gibson 2005), communication (Pilny et al. 2017), market exchange (Lomi & Bianchi 2021), and
other, more complex forms of social coordination (Lerner & Lomi 2020a) can be understood
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only with reference to the timing and sequential order of the relational events of interest (Abbott
1992), which contain important information that is typically lost when time-stamped events are
aggregated into binary network ties (Pallotti et al. 2022).

Since its introduction, the REM has been significantly refined and adapted to an ever-
increasing diversity and sophistication of emerging empirical problems (Butts et al. 2023). This
review provides an opportunity to position relational event modeling in the broader context of
statistical models for directed social interaction and assess the current state of field, incorporating
a broad review of contemporary methodological, computational, and inferential developments.

The article is organized into eight main sections. Section 2 traces the intellectual origins and
historical context of REMs. Section 3 identifies the observation plans and empirical research de-
sign elements typically associated with event-oriented studies of network dynamics. Section 4
surveys the available classes of REMs developed, at least in part, in response to specific problems
with no satisfactory modeling solutions. Section 5 is dedicated to issues of empirical model spec-
ification and estimation. Section 6 examines the broad area of applications where REMs seem to
have found fertile ground for development. Section 7 reviews the main challenges and open issues
that orient current research. Section 8 concludes with a summary and a discussion of the main
promises of relational event modeling.

2. HISTORICAL CONTEXT OF RELATIONAL EVENT MODELS

Contemporary statistical models for social and other kinds of networks rely heavily on the formal-
ism of graph theory (Butts 2009)—an inheritance, in part, from earlier network models developed
in sociometry (Moreno 1934, Jennings 1948), and within the structural tradition of social and cul-
tural anthropology (White 1963, Lévi-Strauss 1971, Hage 1979, Barnes & Harary 1983, Hage &
Harary 1984). Concepts that are central in contemporary statistical models for networks (Snijders
2001, Amati et al. 2018), such as those of degree, path distance, reciprocity, and transitive closure,
are firmly rooted in the mathematical representation of networks as graphs (Barabási 2016).

The graph-theoretic formalism that inspired early Markov random graph models (Holland &
Leinhardt 1977, 1981; Frank & Strauss 1986) may be considered the intellectual antecedent of
contemporary statistical models for social networks (Wasserman & Pattison 1996, Snijders 2001,
Snijders et al. 2006).Only recently have the limitations in representing networks of social relations
as graphs started to become apparent. REMs entail an alternative understanding of social relations
as emergent from sequences of relational events connecting a sender behavioral unit to one or
more receivers (Butts 2008, 2009; Perry & Wolfe 2013; Lerner & Lomi 2023).

REMs provide a framework for analyzing and making inferences about the relational processes
and dynamics in complex social systems. They are designed to capture the patterns of dependence
in the occurrence and timing of relational events, such as communications, transactions, or social
interactions, within a network.

Formally, REMs are rooted in event history models (for a review, see, e.g., Keiding 2014) ex-
pressing the hazards of an event to occur as a function of the history of previous events, as well as,
potentially, additional nodal and relational attributes (Butts 2008). REMs afford analyses of how
events unfold over time, how they are influenced by various factors, and how they, in turn, affect
the structure and evolution of the network.

The exact hazards of a REMmay follow different functional forms and specifications. In many
instances, the hazard is assumed to be piecewise constant, resulting in wait times that are condi-
tionally exponentially distributed. However, the precise definition of hazards will depend on the
research questions and the empirical context, and these choices have implications for computa-
tional complexity, model fit, and interpretation of the model (Butts & Marcum 2017, Schaefer &
Marcum 2017, Stadtfeld et al. 2017).
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Two other modeling frameworks are appropriate for the analysis of longitudinal networks:
the temporal ERGM and the SAOM. The formulation of the ERGM (Robins et al. 2007) may
be understood in terms of the conditional probability of a network edge, given the relationships
among all other network edges (Wasserman & Pattison 1996, Snijders et al. 2006). In the ERGM,
the edges connecting pairs of senders and receivers are assumed to be interdependent, and such
interdependencies can be captured by local configurations of network ties, such as triangles or star-
shaped structures (Robins et al. 2007). More specifically, the existence of a tie in a social network
is conditionally independent of ties that are far distant in space (Frank & Strauss 1986). Temporal
extensions of the ERGM (Hanneke et al. 2010,Krivitsky &Handcock 2014) have been introduced
to model network dynamics over time.

The SAOM (Snijders 1996, 2001, 2005, 2017) is a probability model evaluating change in net-
work ties observed in adjacent time periods.While the SAOM takes into account relational states
observed at multiple time points, it operates under the assumption that ties change continuously
over time through a series of microsteps occurring between observations. Each microstep involves
at most one alteration (Holland & Leinhardt 1977) in the network, with social actors choosing
what ties to alter based on a multinomial choice probability model (McFadden 1973) accounting
for the local configurations in which potential ties are embedded.

3. RELATIONAL DATA AND STUDY DESIGN

The relational event modeling framework was introduced to analyze the dynamics underlying so-
cial networks, with a focus on complex interactions and dependencies between behavioral units
observed over time. REMs are flexible because they integrate temporal, structural, and attribu-
tional aspects of the data within a single framework. This flexibility sustains specification of very
general yet detailed models of network evolution (Brandes et al. 2009).

3.1. Network Structure

The building block of the REM is the relational event, defined as an interaction initiated by a
sender unit and directed toward one or more targets (Butts 2008). Examples include hospitals
sharing patients (Vu et al. 2017, Amati et al. 2019), credit institutions exchanging financial assets
(Lomi& Bianchi 2021,Zappa&Vu 2021, Bianchi & Lomi 2023), students telephoning each other
(Stadtfeld & Block 2017), people interacting face-to-face (Elmer & Stadtfeld 2020) and in social
groups (Hoffman et al. 2020), or employees exchanging emails (Quintane et al. 2013, Perry &
Wolfe 2013).

Although relational events are typically defined between a single sender and a single receiver,
generalizations are possible in which a sender may reach multiple receivers simultaneously. This
situation is common in technology-mediated communication (Lerner & Lomi 2023), citation net-
works (Filippi-Mazzola &Wit 2023, Lerner & Hâncean 2023), and social gatherings attended by
many participants (Lerner et al. 2021).

REMs can also model relations between units belonging to different classes in the context of
more general bipartite processes. Examples include nonnative species invading new spatial niches
( Juozaitienė et al. 2023), editors modifying Wikipedia pages (Lerner & Lomi 2017), computer
developers fixing software problems (Tonellato et al. 2023), and political actors supporting or
rejecting proposed legislation (Brandenberger 2018b, Haunss & Hollway 2022).

3.2. Sampling and Recording

Event network studies typically look at social units interacting within a bounded environment. Ex-
amples of geographical areas consist of student houses (Stadtfeld&Block 2017) or hospitals within
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NOTATION

The REM describes temporal interaction between two (sets of ) social units. We use the following notation:

■ (t, s, r): a relational event at time t in which sender s interacts with receiver r
■ λsr(t): the rate/hazard at which sender s contacts receiver r at time t
■ Ht : filtration of the process, containing all information about relational events until time t
■ L, LP: likelihood and partial likelihood
■ R(t ): risk set at time t, consisting of all relational events that can happen at that time
■ R̃(t ): sampled risk set at time t, consisting of the event (s, r) at time t and a set of sampled nonevents
■ xsr(t): dyadic covariate(s) with corresponding effect(s) β
■ zsr(t): dyadic covariate(s) with corresponding random effect(s) γ
■ a: alter, i.e., an individual different from sender or receiver

geographical regions (Vu et al. 2017, Zachrison et al. 2022), whereas examples of situations with
temporal boundaries involve interaction between emergency teams during different phases of a
crisis (Butts 2008) or hospitals transferring patients on specific days of the week (Amati et al. 2019).
Relational events taking place outside the main observation domain are usually not recorded, so
the social networks reconstructed from streams of relational events are often incomplete. Unlike
studies of statistically independent observations, network boundary specification might affect the
validity, robustness, and replicability of the results (Laumann et al. 1989).

4. SPECIFICATIONS OF RELATIONAL EVENT MODELS

The units of analysis in the REMare the edges connecting individual pairs of senders and receivers.
Those edges are typically stored in tuples (t, s, r), where s is the sender, r is the receiver, and t is the
time of the relational event connecting s to r. At its core, the REM is defined as a point process for
directed pairwise interactions that, in turn, are modeled through their rate function λ. The model
assumes that λmay depend upon sender, receiver, past event history, and/or exogenous covariates.
For more information on the notation used in this article, see the sidebar titled Notation.

4.1. Types of Relational Event Models

We consider a fixed time interval [0,T ], with 0 < T < ∞, in which events occur. Events are de-
fined as time-stamped interactions between senders and receivers. Both the sets of senders S and
receivers R are assumed to be finite. For one-mode networks, the sets of senders and receivers
overlap,S=R, whereas for two-mode or bipartite networks, they are distinct.The relational event
process is a marked point process (Daley &Vere-Jones 2003,Cressie 2015) based on more general
approaches (Borgan et al. 1995, Aalen et al. 2008) for event history sequences {(ti, si, ri) : i ≥ 1,
si � S, ri � R} and defined on a probability space (�,F ,P) adapted to the filtrationHt , consisting
of the history of process (Andersen et al. 1993). In principle, the marks (s, r) can be individuals or
sets of senders and receivers.

Associated with this marked point process, we define a multivariate counting processN, whose
components Nsr record the number of directed interactions between s and r,

Nsr (t ) =
∑
i≥1

1{ti≤t; si=s; ri=r}.

According to the Doob–Meyer decomposition theorem (Meyer 1962), there exists a predictable
process 3sr and a residual martingale process Msr, such that the counting process can be
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written as

Nsr (t ) = 3sr (t ) +Msr (t ).

The aim of the REM is to describe the structure of the predictable cumulative hazard process
3sr. By assuming that the counting process is an inhomogeneous Poisson process, we can write
the cumulative hazard as

3sr (t ) =
∫ t

0
λsr (τ ) dτ ,

where λsr is the hazard function of the relational event (s, r). The general REM is defined as

λsr (t ) = 1{(s,r)∈R(t )} λ0(t ) ψ
{
β (t ), xsr (t )

}
, 1.

where λsr(t) is only nonzero if the event (s, r) is contained in the risk set R(t ) of possible events at
time t, λ0(t) is the baseline hazard function unrelated to (s, r),ψ is a relative risk function as defined
by Thomas (1981), xsr(t) is the Ht measurable set of endogenous and exogenous (possibly) time-
varying variables, and β(t) are the effect sizes. The function ψ is positive and, for identifiability,
normalized by setting ψ(β, 0) = 1.

The relational event literature has focused on the exponential risk functionψ(β, x)= exp(β¤x).
Under the conditional independence framework (Besag 1974, 1975), network statistics are, by
construction, dependent through space and time. Accordingly, the propensity of pairs of senders
and receivers to mutually connect depends on which relational events they have sent or received in
the past; their order in time, if not their exact timing; and exogenous factors like nodal or network
attributes.

4.1.1. The original relational event model. Butts (2008) introduced the REM as a piecewise
homogeneous Poisson process, whereby the rate function is specified as

λsr (t ) = λ0 exp
{
β⊤xsr (t )

}
1{(s,r)∈R(t )}, 2.

where xsr(t) is the collection of sufficient network statistics associated with the parameter vector
β ∈ Rp. The covariates in xsr(t) can depend on nodal characteristics, such as the age of r or the age
difference between the pair (s, r), and also on the history of the process. For instance, the covariates
xsr(t) can include a count of the number of past events between (s, r) before time t.

In the original formulation, the baseline rate of the interaction process λ0 is assumed constant.
This means that the waiting times between events are exponentially distributed, and once an event
takes place, the context of the action is changed, and all the possible relational event waiting times
are restarted.

4.1.2. Weighted and signed networks. One of the first extensions of the original REM in-
volved geopolitical conflicts and cooperation (Brandes et al. 2009). The authors highlighted that
each interaction event between countries, international organizations, or ethnic groups could be
given either a positive or negative weight according to the degree of cooperation or hostility
between countries.

In this extended relational event definition (t, s, r, w), the interaction weight w is modeled
alongside the event (t, s, r) as p{(t, s, r,w) | Ht−} = p{(t, s, r) | Ht−} × p{w | (t, s, r),Ht−}. The sec-
ond term models the interaction weights depending on which countries are interacting and how
they interacted in the past,whereas the first term is the usual REM likelihood,which is also allowed
to depend on past interaction weights included in Ht−.

Subsequent versions of the REM have accommodated weighted network statistics (Amati et al.
2019, Bianchi & Lomi 2023) associating a decay function f (t, ti, α) to each past event (si, ri), where
t is the current time and α is a decay parameter. In its simplest formulation, the temporal relevance
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of an event is assumed to decrease according to a power law, f (t, ti, α) = (t − ti)−α , though other
specifications may be used instead (Lerner & Lomi 2020b).

4.1.3. Multicast and polyadic interaction. Multicast or polyadic interaction occurs when a
single event links an individual sender to multiple receivers simultaneously.The possibility of one-
to-many interaction was explicitly recognized by DuBois et al. (2013b) in their model of teacher-
student interaction in a classroom context. In the same year, Perry & Wolfe (2013) provided a
more general formulation specification of the intensity function for a sender s � S addressing a
set of receivers R = {r1, . . . , rm} � R, taking

λsR(t ) = λ0s(t; |R|) exp
{
β⊤
0

∑
r∈Rs (t )

xsr (t )

}∏
r∈R

1{r∈Rs (t )}. 3.

The event rate function involves two types of stratification, discussed in greater detail in
Sections 4.1.4 and 4.2.3, which explain the sender-specific definition of the risk setRs(t ) and base-
line hazard, which also depend on the size of the receiver set. The network statistics are defined
as the sums of the individual dyadic statistics xsR(t) = ∑

r � Rxsr(t).
Lerner & Lomi (2023) introduced the relational hyperevent model (RHEM) by generalizing

the definition of multicast network statistics. A hyperedge statistic xsR is a function of the sender
and the entire set of receivers that cannot, necessarily, be decomposed into the sum of dyadic
covariates. An example of a hyperedge covariate is inertia, the tendency toward repeating past
relational events, defined as

xinertiasR (t ) =
∑
ti<t

f (t, ti,α)1{si=s,Ri=R}.

In email exchanges, for instance, inertia may result in the existence of a mailing list including
a moderator communicating with exactly the same group of individuals. In contrast, unordered
repetition captures interaction within a stable set of actors with turn-taking among the senders
(Gibson 2005). Replacing dyadic covariates with their hyperedge counterparts not only provides
a richer collection of network covariates but also improves model fit (Lerner & Lomi 2023).

Alternative approaches for modeling polyadic interactions have been proposed. Kim et al.
(2018) introduced the hyperedge event model, assuming that dyadic intensities stochastically de-
termine the sender of the next event and its receiver set. Mulder & Hoff (2021) introduced a
latent variable model whereby all potential receivers are assigned to the receiver set on the basis
of a suitability score that depends on the sender- and receiver-specific characteristics.

4.1.4. Separable intensity functions. Stadtfeld et al. (2017) developed the dynamic network
actor model (DyNAM), an actor-oriented model for relational event data built upon the same
paradigm introduced by Snijders (1996, 2017). The distinctive feature of the DyNAM is that it
explains social interaction in terms of “individuals’ preferences, available interaction opportunities,
and individuals’ perception of the social network they are embedded in” (Stadtfeld & Block 2017,
p. 318). Accordingly, the inferential framework of the DyNAM consists of modeling a composite
process made of

1. the sender’s decision to initiate a relational event at a certain point in time and
2. the sender’s decision to address a specific receiver.

The DyNAM decomposes event rates into two sender-centered components, i.e.,

λsr (t ) = λs(t )︸︷︷︸
select sender s

× p (r | s)︸ ︷︷ ︸
sender s

addresses receiver r

. 4.
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Similar to the paradigm of Snijders (2005), sender event rates λs are modeled through an
exponential link function evaluating nodal attributes at individual and network levels,

λs(t ) = λ0 exp
(
θ⊤xs

)
1{s∈R(t )}. 5.

Following McFadden (1973), receiver choice is modeled via a multinomial distribution, i.e.,

p (r | s,Ht ) = exp
{
β⊤xsr (t )

}∑
r′∈Rs (t ) exp

{
β⊤xsr′ (t )

} . 6.

The timing distribution does not explicitly depend on the receiver characteristics, and this
typically sacrifices model fit in favor of an actor-oriented interpretation of the model parameters.

The DyNAM has been recently extended with the incorporation of the DyNAM-i (Hoffman
et al. 2020), which explains sequences of joining and leaving events in the context of group-based
interactions. This extension captures

1. the specific nature of group conversations and interactions that typically occur in cliques
and

2. the need to align networkmodeling strategies with the increasing use of sensor technologies,
such as Bluetooth or radio frequency identification badges, to detect collective interaction.

Vu et al. (2017) also exploited the separability of intensity functions by decomposing the stream
of relational events into event times and event destinations. The separable sender intensity and
receiver choice model adds more flexibility to the relational event framework, allowing for the
separation between sender and receiver effects, and not only between event weights and dyads as
in Brandes et al. (2009).

4.2. Network Covariates

Given the general expression of theREMhazard in Equation 1, the drivers of the relational process
xst(t) describe known,Ht− measurable, quantities quantifying endogenous or exogenous statistics
of the sender, the receiver, or both.

4.2.1. Endogenous versus exogenous covariates. In statistical models for networks (e.g.,
Snijders et al. 2010b), covariates are endogenous to the extent that they depend on past in-
teraction. Covariates are exogenous when they depend on characteristics of single nodes, i.e.,
monadic covariates, or pairs or nodes, i.e., dyadic covariates. One example of an endogenous
covariate is reciprocity, while gender and geographical distance are exogenous covariates, rep-
resenting monadic and dyadic characteristics, respectively. A basic selection of endogenous and
exogenous covariates is displayed in Table 1. Other ad hoc specifications, such as those based on
exchange sequences in conversational analysis, are explained by Butts (2008).

An additional consideration refers to the hierarchy principle, whereby lower-order interaction
terms should always be included in the presence of higher-order interaction terms (Pattison &
Robins 2002,Wang et al. 2013). In the REM, for example, failing to account for heterogeneity of
the senders and receivers may result in incorrect detection of triadic effects ( Juozaitienė & Wit
2022a).

4.2.2. Heterogeneity. There are two fundamental types of heterogeneity in event networks.
Endogenous heterogeneity, or emergence, refers to the inherent stochasticity of the process it-
self combined with the dependence of future interactions on current ones. An example is virality,
whereby, for instance, a paper gets cited because it was cited many times before. In the REM,
endogenous heterogeneity can be captured by endogenous statistics.
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Table 1 Basic menu of network statistics defined in the relational event model

Network statistic Mechanism Formula

Out-degree a s
∑
a̸=s

Nsa(t− )

Out-intensity a s 1
out-degrees (t )

∑
a ̸=s

∑
i: si=s,ri=a

f
(
t, ti,α

)

In-degree a s
∑
a̸=s

Nas (t− )

In-intensity a s 1
in-degrees (t )

∑
a ̸=s

∑
i: si=a,ri=s

f
(
t, ti,α

)

Repetition s r Nsr(t−)

Reciprocation s r Nrs(t−)

Transitive closure

s r

a ∑
a ̸=s,r

Nsa(t− )Nra(t− )

Cyclic closure

s r

a ∑
a ̸=s,r

Nas (t− )Nra(t− )

Sending balance

s r

a ∑
a ̸=s,r

Nsa(t− )Nra(t− )

Receiving balance

s r

a ∑
a ̸=s,r

Nas (t− )Nar (t− )

Node attribute s, r xsr(t)

Node matching s r dist{xs(t) = xr(t)}

Out-/in-degree/intensity statistics can refer to both senders and receivers. Node a is a third (alter) trading counterpart of the sender–receiver pair (s, r). The
term Nsr(t−) is the number of relational events flowing from sender s to receiver r right before time t, while f (t, ti, α) = (t − ti)−α is the decay function
accounting for the temporal relevance of previous relational events. In depicting network covariates, solid arrows (→) refer to past relational events, while
dashed arrows (99K) indicate current relational events. Thicker arrows indicate a higher intensity in the flow of relational events. Darker blue nodes indicate
the presence of certain nodal exogenous statistics, while light blue nodes denote their absence.

The second type of heterogeneity, extrinsic variation, is either observed, such as the prestige
of the institutions of the authors of a paper, or latent, such as the quality of the work the paper
represents. Latent extrinsic heterogeneity in the REM can be expressed by means of random ef-
fects. Juozaitienė &Wit (2022a) and Uzaheta et al. (2023) proposed mixed effect extensions of the
REM, i.e.,

λsr (t ) = 1{(s,r)∈R(t )} λ0(t ) exp
{
β⊤xsr (t ) + γ ⊤zsr (t )

}
,
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with dyadic covariates zrs(t) and γ ∼N(0,6) the random effects. Estimation of the random effects
variance can be done via expectation maximization (Dempster et al. 1977); Laplace approxima-
tions of the likelihood (Pinheiro & Bates 2006); or, in certain cases, a penalized zero-order spline
approach (Wood 2017).

DuBois et al. (2013a) suggested a model that accounted for sender and receiver heterogeneity
bymeans of a stochastic block structure.More recently, in an analysis of a communication network,
Juozaitienė & Wit (2022a) showed that incorporating random effects for both the sender and
receiver enhances themodel fit compared withmodel specifications that solely rely on endogenous
degree-based statistics. Therefore, the inherent differences between individuals in the network
drive part of the heterogeneity in the interactions.

4.2.3. Stratification. Conceptually, stratification can be introduced either to model event
streams in multiplex networks or to account for heterogeneity by specifying different baseline in-
tensity functions for individual sets of dyads. Perry&Wolfe (2013) and Bianchi&Lomi (2023), for
example, use sender-based stratification, effectively allowing each sender to have its own individual
baseline hazard, i.e.,

λsr (t ) = λ0s(t ) exp
{
β⊤
0 xsr (t )

}
1{(s,r)∈R(t )}.

Receiver-based stratification is defined in a similar fashion and usually occurs when there is
heterogeneity in those nodes that are repeatedly targeted as receivers. In citation networks, for
example, groundbreaking articles or patents have very distinct, individual citation profiles, which
makes receiver-based baseline hazards an attractive option, given that they do not have to be
estimated individually (Filippi-Mazzola & Wit 2023).

Juozaitienė &Wit (2022b) proposed a stratified version of the REM in which distinct baseline
hazards are associated with distinct families of temporal network effects, such as reciprocity in its
direct and generalized forms. Subsequent baseline hazard estimation reveals the tendency of some
endogenous covariates to have very specific temporal effect profiles.

5. ESTIMATION AND COMPUTATION

The fundamental information about a sequence of relational events {(ti, si, ri) : i = 1, . . . , n} is
contained in its likelihood function. For a REM, this function can be expressed as the product
of the conditional generalized exponential event time densities and their associated multinomial
relational event probabilities, i.e.,

L(β ) =
n∏
i=1

∑
(s,r)∈R(ti )

λsr (ti ) exp

−
∑

(s,r)∈R(ti )

∫ ti

ti−1

λsr (τ )dτ

 λsiri (ti )∑
(s,r)∈R(ti )

λsr (ti )
, 7.

where λ is a function of β andR(t ) is the risk set, i.e., the set of all possible events that could have
occurred at time t.

Estimating the parameters of REMs by maximizing the full likelihood poses several challenges.
The likelihood function is indeed a complex object that involves explicit integration across the
unknown hazard function and sums over large risk sets. In this section, we explore computational
alternatives proposed to overcome the complexity of the full likelihood approach.

5.1. Partial Likelihood Estimation

The proportional hazards model (Cox &Oakes 1984) offers an attractive alternative to fully para-
metric models due to its absence of distributional assumptions regarding activity rates, which are
then treated as nuisance parameters. It offers an effective simplification of the full REM likelihood
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Figure 1

Example of a relational event process among three subjects {A, B, C} based on the hazard function
λsr(ti) = λ0(ti)exp{βx(ti)}, with β = 1, whereby the event rate is influenced by the reciprocation statistic x(ti).
The left side of the figure outlines the unfolding of the sequence of relational events according to the true
probabilities Prob, mirrored in the graphical representation in the upper right. At each time point, the risk set
R(t ) consists of all six possible interactions between pairs of individuals. The red arrows correspond to the
red relational event dyads that actually occurred. At time t1, an interaction from A to C is observed, while all
reciprocation covariates are zero, as no interaction has occurred yet. The probability of each event is
determined using Equation 8, with partial likelihood L1(β). At time t2, an interaction from B to A occurs.
This event has partial likelihood L2(β), with one reciprocal nonevent in the denominator. At t3, the
reciprocal interaction from C to A is observed, with partial likelihood L3(β). The overall partial likelihood
LP(β ) = ∏3

i=1 Li (β ) is maximized at β̂ = 0.45, as shown on the lower right side of the figure, close to the
actual effect size β = 1.

through the application of the partial likelihood LP (Cox 1975) to counting processes (Andersen
& Gill 1982) on network edges, which only involves multinomial event probabilities, i.e.,

LP(β ) =
n∏
i=1

(
exp

{
β⊤xsiri (ti )

}∑
(s,r)∈R(ti )

exp
{
β⊤xsr (ti )

}) . 8.

This expression eliminates the unknown baseline hazard, resulting in a more adaptive repre-
sentation of the underlying network dynamics, while being able to estimate the parameters in
a straightforward way by maximizing LP(β). An example is given in Figure 1.
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As Butts (2008) noted, the partial likelihood corresponds to the full likelihood only when the
event orderings are known, but not the exact timings. However, the partial likelihood approach
faces a limitation in large networks, as the risk set in its denominator tends to expand quadratically
with the number of nodes.

5.1.1. Risk set sampling. The primary constraints in modeling the partial likelihood from
Equation 8 are found in the risk set size. The idea of adopting subsampling strategies to approx-
imate the partial likelihood was already noted by Butts (2008). Later, Vu et al. (2015) introduced
a more efficient nested case-control sampling strategy (Borgan & Keogh 2015) to mitigate the
computational complexity involved in estimating the partial likelihood.

Nested case-control sampling consists of sampling from the current risk set R(t ), according
to some probability π{· | R(t )}, a set of nonevents, or controls, for each event, or case. The sam-
pled nonevents together with the events are called the sampled risk set R̃(t ). Borgan et al. (1995)
showed that the sampled partial likelihood L̃P accounting for the sampling probabilities is a valid
likelihood.When this probability is assumed to be random, i.e., π{· | R(t )} = 1/|R(t ) − 1|, L̃P(β )
reduces to the simplified form, i.e.,

L̃P(β )=
n∏
i=1

(
π ((si, ri )|R(ti )) exp{β⊤xsiri (ti )}∑

(s,r)∈R̃(t ) π ((s, r) | R(ti )) exp{β⊤xsr (ti )}

)

=
n∏
i=1

(
exp{β⊤xsiri (ti )}∑

(s,r)∈R̃(t ) exp{β⊤xsr (ti )}

)
, 9.

where R̃(t ) is the sampled risk set.Lerner&Lomi (2020b) employed nested case-control sampling
to empirically showcase the efficiency of estimates on large networks, even when a limited number
of nonevents is sampled.

5.1.2. Computational aspects of stratified relational event models. Perry & Wolfe (2013)
proposed the first REM that introduced sender stratification to expedite calculations and com-
bined it with a customized method for maximizing the log partial likelihood. Vu et al. (2015)
introduced a flexible stratification method allowing for data structures with many types of nodes
and events, then showed the scalability of their approach to large data sets. Combining the
two approaches, Bianchi & Lomi (2023) suggested a sender-stratified REM for high-frequency
data, using nested case-control sampling to update the risk set at each new event. This model
specification has been tested in empirical applications using millions of financial transactions.
Filippi-Mazzola & Wit (2023) presented a receiver-stratified REM for the analysis of millions
of patent citations, in which the hazard is modeled via smooth functions of the covariates using a
spline approach.

5.2. Baseline Hazard Estimation

The prevailing method for the estimation of REMs is based on the partial likelihood method (Cox
1975), which treats the baseline hazard as a nuisance parameter. However, gaining insights into
the temporal variations of the underlying event rates can be valuable for visualizing the baseline
hazard.

Two common approaches to estimating the baseline hazard are the Breslow estimator (Breslow
1972) and the Nelson–Aalen estimator (Nelson 1972, Aalen 1978). Both estimate the cumulative
hazard function only at the observed event times and so do not capture the continuous nature of
the underlying baseline hazard function. Meijerink-Bosman et al. (2022a) estimated the baseline
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hazard by assuming fixed baseline hazard rates within expanding windows. Juozaitienė & Wit
(2022a) and Juozaitienė et al. (2023) improved smooth baseline hazard recovery by using a spline-
based approximation.

5.3. Model Comparison and Diagnostic Tools

Traditional approaches, such as likelihood ratio tests, the Akaike information criterion, and the
Bayesian information criterion, are widely adopted for comparing REMs (Foucault Welles et al.
2014, Pilny et al. 2016). Although model comparison methods are able to identify the best-fitting
model in a set of competing models, they do not indicate whether the fit is adequate.

Butts & Marcum (2017) proposed an approach to model adequacy assessment based on
deviance residuals and so-called surprise metrics. Similarly, Meijerink-Bosman et al. (2022a) sug-
gested recall-based adequacy checking based on whether the observed events are in the top 5% of
dyads with the highest predicted rates. Brandenberger (2019) introduced a procedure for model-
based simulations of relational events. This method involves making predictions based on survival
probabilities, which can then be used to generate new event sequences. In turn, comparing the
simulated event sequences with the original data makes it possible to assess whether the model
can accurately replicate network characteristics.

Measures borrowed from survival analysis can also be used to assess the goodness of fit of
REMs. Juozaitienė et al. (2023) suggested using scaled Schoenfeld residuals to assess the pro-
portional hazards assumption, deviance residuals to check for outliers and potential influential
observations, and trends in martingale residuals to check for nonlinear effects of the covari-
ates. Different model specifications are compared according to their deviance explained through
pseudo R2 measures (Cox& Snell 1989). Boschi et al. (2023) extended themartingale score process
to evaluate the goodness of fit for fixed, smooth, and random effects.

Guidelines on the statistical accuracy and precision of the REM (summarized by Schecter
& Quintane 2021) are defined by conducting experiments on simulated sequences of relational
events, to which different sampling and scaling procedures have been applied. Meijerink-Bosman
et al. (2022b) showed that the accuracy and precision of REM estimates depend on the width of
the selected temporal window.

5.4. Bayesian Estimation of the Relational Event Model

REMs can be fitted also using Bayesian approaches (Butts 2008). DuBois et al. (2013b) extended
the standard REM to incorporate multiple sequences, proposing a hierarchical model. Mulder
& Leenders (2019) modeled multiple event sequences, estimating parameters that capture both
within-sequence and between-sequence variations. This is particularly useful in multiplex net-
works,wheremultiple relational event sequencesmay be observed within the same network.Vieira
et al. (2022) introduced a Bayesian hierarchical model that enables inference at the actor level,
providing valuable insights into the drivers influencing actors’ preferences in social interactions.
Arena et al. (2022, 2023) proposed different solutions for studying memory decay in REMs, show-
ing that the Bayesian approach allows the estimation of short- and long-term memory effects on
the model parameters in relational event sequences.

5.5. Tools for Analyzing Relational Event Models

Limited specialized software tools are available for fitting REMs.The R-based packages relevent
and informR (Marcum& Butts 2015) have been widely adopted and include all the REM features
discussed by Butts (2008). Another R-based option is the rem package (Brandenberger 2018a),
which allows the computation of endogenous statistics in signed one-, two-, and multi-mode

www.annualreviews.org • Relational Event Modeling 309



ST11CH13_Lomi ARjats.cls February 10, 2024 13:38

event networks. The remstats package (Meijerink-Bosman et al. 2022b) also assists empirical re-
searchers in computing network covariates. It is typically used in combination with the relevent
or remstimate package formodel estimation.A further R-based option is goldfish,whichmainly
supports the DyNAM and is currently undergoing further development.

eventnet (Lerner & Lomi 2020b) offers a reliable and scalable Java-based interface for the
computation of endogenous and exogenous statistics that serve as inputs of proportional hazards
regressions. Bauer et al. (2021) and Fritz et al. (2021) showed that time-stamped relational data
can be fitted through the well-established R package mgcv (Wood 2017) for generalized additive
models with penalized likelihoods after a proper data reorganization.

One potential challenge for future studies is the development of a comprehensive package
capable of computing network covariates under different sampling schemes while accommodating
different model assumptions. Ideally, such a tool should be integrated within a suite of packages
encompassing different estimation techniques and diagnostic tools as well.

6. APPLICATIONS OF RELATIONAL EVENT MODELS

Empirical studies adopting REMs span a wide range of disciplines. In this section,we classify these
studies into established subjects, presented below in alphabetical order. Within each category,
we offer an illustrative, rather than exhaustive, collection of research questions that have been
investigated using REMs.

6.1. Communication

Within the field of communication studies, broadly construed, REMs have been adopted to
analyze conversational processes within and between organizations and teams as well as in
computer-mediated communication.

Butts (2008) and Renshaw et al. (2022) demonstrated the practical value of REMs in studies of
organizational communication in the context of emergency management. REMs make it possible
to specify covariates that capture basic conversational norms (Gibson 2003, 2005), such as the
expectations of reciprocity in turn-taking.

Leenders et al. (2016) and Quintane & Carnabuci (2016) identified a number of challenges
that hinder the identification of team dynamics and elaborate a REM-based analytic framework
that supports a time-sensitive understanding of communication processes within teams. Similarly,
Quintane et al. (2013), Pilny et al. (2016), and Schecter et al. (2018) revealed how REMs could be
applied for studying the association between communication patterns and common indicators of
process quality, coordination, and information sharing.

Computer-mediated communication is typically analyzed via two-modeREMs,which establish
links between individuals and the situations they are involved in, such as the questions they answer
in online question and answer communities (Stadtfeld & Geyer-Schulz 2011), or problems they
attempt to resolve in open-source online projects (Quintane et al. 2014, Tonellato et al. 2023). In
their study of communication instances in an online friendship network, Foucault Welles et al.
(2014) adopted REMs to identify patterns of time dependence in data produced by online chats,
focusing on how heterogeneous communication processes influence the creation, maintenance,
and dissolution of communication ties over time.

6.2. Ecology

Studying behavior as sequences of relational events among animals promises to improve the
understanding of key issues in behavioral ecology, such as how reciprocal giving and prosocial
behavior emerge in small animal communities. Examples of this line of research include the study
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of Tranmer et al. (2015) on group interactions among captive jackdaws, with a focus on their food
sharing habits, and among cows struggling with the introduction of unfamiliar members in their
community (Patison et al. 2015).

REMs have been adopted for studying ecological niche invasions ( Juozaitienė et al. 2023)
through the analysis of two-mode event networks linking invading species to territories. The rela-
tional event framework adopted in this study sheds light on potential risks associated with invasive
species and provides insights into the ecological factors that may attract nonnative species.

6.3. Health and Healthcare

In health and healthcare research, REMs have been adopted in the study of social interaction in
surgery rooms and interhospital patient transfers, with the aim of understanding how collabora-
tions among healthcare units may or may not improve the quality of care. Pallotti et al. (2022)
examined audio-visual recordings of task-related interactions among members of surgical teams
to make sense of patterns of interpersonal communication among doctors and nurses organized
around objects and technologies in the surgery room.

Lomi et al. (2014) studied interhospital mobility in a small community of hospitals and found
that decentralized patient sharing decisions ensure patients’ access to higher-quality healthcare
services. Vu et al. (2017) showed that patient transfers are usually organized around small clusters
of hospitals and include reciprocated patient exchange. Studying collaborations among hospitals
in a regional community in southern Italy, Amati et al. (2019) explained that the generative mech-
anisms controlling change in event networks do not operate homogeneously and synchronously
over time but instead vary systematically over different days of the week. Similarly, Zachrison et al.
(2022) investigated the influence of characteristics such as reputation and institutional affiliation
on the choice of destination hospital for emergency patients in the state of Massachusetts.

6.4. Political Science

Within the field of political science, REMs are frequently employed in their two-mode version.
In the typical application, political actors are linked to social activities such as participation in
cosponsoring events or support expressed for claims. Brandenberger (2018b) studied favor trad-
ing in congressional collaborations by examining the temporal dynamic of reciprocity, finding that
the emergence of new collaboration clusters depends on the timing of mutual cosponsorship.Due
to the variety of actors involved in the political debate, Haunss & Hollway (2022) adopted a mul-
timodal extension of the DyNAM framework to study the political discourse around Germany’s
nuclear energy phase-out. This work identifies the potential discursive mechanisms that may have
influenced the debate and when they may have operated.

REMs have occasionally been employed in criminology studies to investigate various aspects of
offending behavior among individuals (Niezink & Campana 2022). These studies have explored
phenomena such as illegal drug exchange in online markets (Duxbury & Haynie 2021, 2023)
and the replication tendency of gang violence (Gravel et al. 2023). Overall, these analyses have
demonstrated that criminal networks and personal attributes exert a substantial and temporally
contingent influence on individual criminal acts.

6.5. Sociology

Because of the social science origin of REMs, sociology is perhaps the field where REMs have
found the most extensive application. Restricting the focus to reciprocity, Kitts et al. (2017) and
Lomi & Bianchi (2021) found that the mutual exchange of resources does not operate uniformly
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across different exchange regimes, time frames, and material settings defined, for instance, by the
value of resources being exchanged (Zappa & Vu 2021, Lomi & Bianchi 2021).

Lerner & Lomi (2017, 2020a) analyzed the emergence of status and hierarchies under con-
ditions of extreme decentralization characterizing the Wikipedia crowdsourced project, in which
independent volunteers interact by editing pages. In a study of individual editing behavior and
collaboration/contention among Wikipedia editors, Lerner & Lomi (2019) examine the relation
between team diversity, polarization, and productivity.

In the sociology of education, REMs have been applied to study how the nature of learning
environments affects students’ outcomes. Vu et al. (2015) studied educational experiences in mas-
sive open online courses by analyzing interactions between students with, and through, an online
learning interface. DuBois et al. (2013b) investigated the social dynamics of high school class-
rooms by considering how the individual propensity to share information is affected by factors
such as seating arrangements, teaching style, and sequences of participation shifts in conversation
among students and teachers.

7. OPEN ISSUES AND CHALLENGES

In this section we describe a number of open challenges in the context of relational event model-
ing. Although not exhaustive, it points to a number of interesting directions in which we expect
significant progress in the near future.

7.1. Procedures for Assessing Goodness of Fit

A pressing issue in relational event modeling involves the absence of a comprehensive procedure
for assessing goodness of fit. Methods have been proposed involving recall adequacy and tradi-
tional residuals approaches.However, there exists no general consensus regarding a formal testing
paradigm.

In general, what seems to be missing is an approach to testing goodness of fit of REMs con-
sistent with established auxiliary variable approaches developed for ERGMs (Hunter et al. 2008)
and SAOMs (Lospinoso & Snijders 2019).

7.2. Relational Big Data

Inference for REMs encounters a computational bottleneck as the number of relational events
and, specifically, the number of actors increases.This presents practical implications, as it limits the
applicability of REMs to large-scale networks. Addressing this limitation is an essential unresolved
matter for REMs.

Building upon the risk set sampling concepts introduced by Vu et al. (2015) and Lerner&Lomi
(2020b), Filippi-Mazzola & Wit (2023) proposed a stochastic gradient relational event additive
model to analyze the network of patent citations in a dataset consisting of over 100 million events
and 8 million nodes. By integrating case-control sampling with deep learning techniques, they
have successfully achieved significant computational efficiency and real-time estimation of the
model parameters.

7.3. Current Developments of Relational Event Models

Fritz et al. (2023) introduced a REM for spurious events (REMSE) to address the issue of events
recorded through machine-coding errors, which can give rise to false positives and false negatives.
The REMSE is presented as a robust tool suitable for studying relational events generated in po-
tentially error-prone contexts. Its intensity is decomposed into two components: one associated
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with true events and the other with spurious events. This decomposition allows for a more accu-
rate representation and understanding of the underlying dynamics in the presence of potentially
erroneous data.

Within the realm of coauthorship networks, Lerner & Hâncean (2023) adapted the RHEM
(Lerner et al. 2021) to settings where events have a measurable outcome, such as a performance
measure. These outcomes can serve as additional explanatory variables in the RHEM or can be
used as response variables. This extension, known as the relational hyperevent outcome model,
implies that event rates and relational outcomes are determined by the same explanatory variables
utilized in the RHEM.

Incorporating relational event dynamics into a latent space or latent clustering allows for
novel hypotheses about drivers of network formation. DuBois et al. (2013a) combined ideas from
stochastic block modeling and REMs by partitioning the node set, where event dynamics within
and between blocks evolve in distinct ways.Matias et al. (2018) developed a variational expectation-
maximizationmethod to estimate the latent groups.Moreover, combining REMswith latent space
modeling allows the representation of actors as points in space, whose mutual distances drive the
relational event process. Artico & Wit (2023) proposed a Kalman filter–based approach to esti-
mate the trajectories of an actor in a latent space. An alternative approach is discussed by Rastelli
& Corneli (2021), where the likelihood of an event given the current latent positions is maximized
by stochastic gradient descent.

8. CONCLUDING REMARKS

Since their introduction fifteen years ago (Butts 2008), REMs have undergone considerable re-
finement (Brandes et al. 2009, Perry &Wolfe 2013), encouraged important extensions (Lerner &
Lomi 2023), and enabled development of substantive applications (Vu et al. 2015, 2017, Lerner
& Lomi 2020a). Progress on these various fronts contributed to establishing relational event
modeling as one of the most promising frameworks for the analysis of dynamic network data.

REMs add to the existing set of statistical models for the analysis of dynamic networks the
possibility of using the information contained in the sequential order of social interaction events
when social interaction events used to be transformed into network ties defined at more ag-
gregate timescales. Conversation (Gibson 2003), financial transactions (Bianchi & Lomi 2023),
technology-mediated communication (Butts 2008), problem-solving (Tonellato et al. 2023), dis-
aster management (Renshaw et al. 2022), and medical emergencies (Zachrison et al. 2022) are
only a few examples of processes where the sequential timing of relational events is essential for
understanding the underlying observation-generating mechanisms. In situations characterized by
comparable sequential constraints on social interaction, statistical models that assume the con-
currency of network ties leave unresolved problems related to the fact that network mechanisms
operate over different time frameworks and are regulated by different time clocks (Bianchi et al.
2022).

This review outlined the core properties and the mathematical underpinnings of REMs by
tracking the development of the original model since its appearance in 2008. We devoted special
attention to the challenges posed by the estimation of REMs, and discussed the computational
approaches proposed to address the complexities of the original model and its successive variants.
We emphasized the flexibility of the relational event modeling framework, which allows empirical
specification to account for endogenous as well as exogenous statistics that may affect observed
patterns of interaction.We discussed the various ways in which timemay influence the impact that
past events may have on future events—an issue that may be considered an empirical feature of the
data that should be accounted for, or an opportunity to develop theoretically inspired hypotheses
about how time affects social interaction.
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We intended our review to appeal to a broad audience comprising both empirically minded
researchers confronting problems posed by the analysis of relational event data with complex
temporal dependencies, and statisticians interested in the analytical opportunities offered by re-
cent advances in dynamic stochastic models for social interaction.We expect that future progress
in the modeling of relational events, and social networks more generally, will depend on the extent
to which members of these communities will continue to discover areas of intersection for their
interests.
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