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Abstract

When assessing causal effects, determining the target population to which
the results are intended to generalize is a critical decision. Randomized
and observational studies each have strengths and limitations for estimating
causal effects in a target population. Estimates from randomized data may
have internal validity but are often not representative of the target popula-
tion. Observational data may better reflect the target population, and hence
be more likely to have external validity, but are subject to potential bias due
to unmeasured confounding. While much of the causal inference literature
has focused on addressing internal validity bias, both internal and external
validity are necessary for unbiased estimates in a target population. This ar-
ticle presents a framework for addressing external validity bias, including a
synthesis of approaches for generalizability and transportability, and the as-
sumptions they require, as well as tests for the heterogeneity of treatment
effects and differences between study and target populations.
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1. INTRODUCTION

The goal of causal inference is often to gain understanding of a particular target population based
on study findings. The true underlying causal effect typically varies with the definition of the
chosen target population. However, samples unrepresentative of the target population arise fre-
quently in studies ranging from randomized controlled trials (RCTS) in clinical medicine to policy
research (Bell et al. 2016). In a clinical trial setting, physicians may be left interpreting evidence
from RCTSs with patients who have demographics and comorbidities that are quite different from
those of their patients. For example, within cancer RCTs, African Americans are widely under-
represented despite being at an increased risk for many cancers. Failing to address this lack of
representation can lead to inappropriate conclusions and harm (Chen et al. 2021). In health, ed-
ucation, disability, or other policy settings, considering effects for the eventual target population
sets expectations for anticipated results and determines groups that should be targeted for an inter-
vention. In tech, marketing campaign A/B tests (randomized studies) that do not reflect eventual
users lead to inaccurate estimates of sales revenue. Across disciplines, obtaining estimates for the
target population of substantive interest, which may not align with the one in the study, better
informs decision-making.

The relationships between target, study, and analysis populations are visualized in Figure 1.
The target sample is a representative sample of the target population, whereas the study popula-
tion is defined by enrollment processes and inclusion or exclusion criteria. Due to this, the study
population may differ from the target population. Correspondingly, the enrolled participants who
form the study sample may have different characteristics from those of the target sample. In the
cancer RCT example, while a physician cares about the target population of patients that may
come in to be treated at their clinic (where the clinic’s current patients are a target sample), the
study sample they are basing their treatment recommendations on may not include any African
Americans. The study population is the hypothetical population that the study sample represents,
which likewise may include no African Americans. Post-enrollment, further dropout and missing-
ness may occur that create the observed analysis sample. In this case, patients who experienced
severe adverse events may have dropped out such that the analysis sample consists of patients who
did not experience severe side effects. There then exists a hypothetical analysis population from
which the analysis sample data are a random sample. Hereafter, for simplicity and consistency with
the literature, we use the terms study sample and study population to be inclusive of the analysis
sample and analysis populations, respectively.

External validity: —>» Sampling
Dealing with
differences between populations » Inference
( ................ - [

Internal validity:
[ Target population ] [ Study population ] [ Analysis population ] Dealing with how

: treatment groups
¢ A \ ¢ A ¢ A are assigned
[ Target sample ] [ Study sample ]—)[ Analysis sample ] i
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Figure 1

Internal versus external validity biases as they relate to target, study, and analysis populations.
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Several key concepts underpin extending causal inferences beyond a study sample. General-
izability focuses on the setting in which the study population is a subset of the target population
of interest (e.g., generalizing from a limited geography nationwide), while for transportability,
the study population is (at least partly) external to the target population (e.g., transporting from
one county to another). Internal validity is defined as an effect estimate being unbiased for the
causal treatment effect in the population from which the sample is a simple random sample (i.e.,
moving vertically from a sample to its corresponding population in Figure 1). External validity
is concerned with how well results generalize or transport to other contexts, specifically that the
(internally valid) effect estimate is unbiased for the causal treatment effect in a different setting,
such as a target population of interest (moving laterally between populations in Figure 1). Ex-
ternal validity bias has also been referred to as sample selection bias (Heckman 1979, Imai et al.
2008, Bareinboim et al. 2014).

External validity bias arises from differences between the study and target populations in
(@) subject characteristics; (b) setting, such as geography or type of health center; (¢) treatment,
such as timing, dosage, or staff training; and (d) outcomes, such as length of follow-up or timing
of measurements (Cronbach & Shapiro 1982, Attanasio et al. 2003, Rothwell 2005). The focus of
most generalizability and transportability methods is on addressing differences in subject charac-
teristics. Hence, these methods assume the remaining threats to external validity are not present
in the data sources they are looking to generalize across, e.g., in our cancer RCT example, that
the clinic and teaching hospitals where the oncology trial was conducted have similar standards
of cancer care and care coordination as they relate to patient outcomes, and that these outcome
measures are similarly defined. Namely, external validity bias then arises solely from (#) variation
in the probability of enrollment in the study, () heterogeneity in treatment effects, and (c) the
correlation between items # and # (Olsen et al. 2013). We therefore distinguish between factors
differentiating the target population from the study population (external validity bias) and those
that create differences between treatment groups (internal validity bias), e.g., confounders. RCTs
are frequently performed in a nonrepresentative subset of the target population and may have im-
perfect follow-up (challenging their external validity) and baseline imbalances (leading to internal
validity bias). Observational studies may be susceptible to unmeasured confounding (threatening
their internal validity) but may be more representative of the target population (hence having bet-
ter external validity). Lack of representation in an RCT can lead to external validity bias that is
larger than the internal validity bias of an observational study (Bell et al. 2016).

The optimal solution to external validity bias centers on study design, which we review only
briefly here. One ideal design would randomly sample subjects from the target population and
then randomly assign treatment to the selected individuals. However, this is usually infeasible. Al-
ternative study designs for improving study generalizability and transportability include purposive
sampling, in which investigators deliberately select individuals for reasons such as representation
or heterogeneity (Shadish et al. 2001, Allcott & Mullainathan 2012); pragmatic or practical clin-
ical trials, which aim to be representative of clinical practice (Schwartz & Lellouch 1967, Ford
& Norrie 2016); stratified selection based on effect modifiers or propensity scores for selection
(Allcott & Mullainathan 2012, Tipton 2013a); and balanced sampling designs for site selection that
select representative sites through stratified ranked sampling (Tipton et al. 2017). In lieu of or in
addition to study designs that address external validity bias, generalizability and transportability
methods can improve the external validity of effect estimates after data collection.

This article provides a review of generalizability and transportability research, synthesizing
across the statistics, epidemiology, computer science, and economics literature in a more complete
manner than has been done to date. Existing review literature has examined narrower subsets of the
topic: generalizing or transporting to a target population from only RCT data (Stuart et al. 2015,
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Generalizability:
extending causal
knowledge from a
study to a target
population when the
study population is a
subset of the target
population

Transportability:
extending causal
knowledge from a
study to a target
population when the
study population is (at
least partly) external to
the target population

Confounder: factor
associated with both
the treatment and the
outcome, which causes
spurious
treatment-outcome
associations

Effect modifier:
factor whose levels
associate with different
treatment effects

Propensity score:
probability (of
treatment assignment,
study selection, etc.)
conditional on
measured covariates
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Estimand: consider study and target populations,
and with them the estimand of interest

Y
[ Assumptions: assess validity of assumptions necessary ]

for generalizability or transportability approaches

Y
Evaluating generalizability and transportability: evaluate the extent to which
external validity bias is a concern by examining whether treatment effect modification exists
and whether effect modifiers differ in distribution between study and target populations

Y

Generalizability and transportability methods: apply methods for
addressing external validity bias

\ J

Figure 2

Framework for assessing and addressing external validity bias after data collection.

2018; Kern et al. 2016; Tipton & Olsen 2018; Ackerman et al. 2019), identifiability or concepts
rather than estimation (Bareinboim & Pearl 2016; Keiding & Louis 2016, 2018), or meta-analysis
approaches for combining summary-level information (Kaizar 2015, Verde & Ohmann 2015). A
recent review (Colnet et al. 2021) examined combining randomized and observational data, and
another (Raudenbush & Schwartz 2020) focused on approaches in education research. However,
these previous reviews have not summarized the full range of generalizability and transportability
methods developed across diverse disciplines that incorporate data from randomized, observa-
tional, or a combination of randomized and observational studies, nor techniques for evaluating
generalizability, as we do here. Additionally, although the importance of describing generalizabil-
ity and transportability is recognized by different trial reporting guidelines (e.g., CONSORT,
RECORD, and STROBE), they provide no clear guidance on tests or estimation procedures (von
Elm et al. 2008, Schulz et al. 2010, Benchimol et al. 2015). We also contribute recommendations
for methodologists and applied researchers.

The remainder of the article synthesizes considerations for assessing and addressing exter-
nal validity bias after data collection (presented as a framework in Figure 2) and is organized as
follows. Section 2 defines the estimand of interest, the average treatment effect in a target popula-
tion, as well as alternatives. Section 3 presents key assumptions underlying many of the methods.
Section 4 reviews methods for assessing the extent to which external validity bias will pose a con-
cern for the study. Namely, it reviews methods for assessing treatment effect heterogeneity, further
motivating the need for methods that extend results to a target population. Section 5 then sum-
marizes the analytic methods available for external validity bias correction that generate treatment
effect estimates for a target population of interest. These techniques include weighting and match-
ing, outcome regressions, and doubly robust approaches. Section 6 concludes with guidance for
both applied and methods researchers.

2. ESTIMAND

Assume, for one or more studies, the existence of outcome Y, treatment A € {0, 1}, and baseline
covariates X € R?. For simplicity of notation, we define X to represent all potential treatment
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effect confounders and effect modifiers that differ between the study and target populations. Such
a simplification reflects that often, researchers assume each variable in X could potentially both
confound and moderate effects. Within the cancer RCT setting, these could be factors such as
age, previous lines of therapy, or cancer stage. Without loss of generality, we focus on the single
study setting, with S = 1 indicating selection into it. The observational unit for the study sample
is Ogudy = (X, 4,7, S = 1). Oguay has probability distribution Pyuay € Miudy, where Mgy is our
collection of possible probability distributions (i.e., statistical model). We observe #, realizations of
Osuudy, indexed by j. The observational unit for a representative sample from the target population
is given by O = (X, 4,Y,S) ~ P € M. We have #n realizations of O, indexed by i. Target sample
subjects who do not appear in the study sample will have S = 0. In some studies, ¥ and A are not
observed for the target sample. We use the terminology “selected” or “sampled” throughout the
article for simplicity, although, for transportability, subjects are not directly sampled into the study
from the target population. For generalizability, we have that Oyygy € O, while for transportability,
the two are disjoint sets, Oyygy & O. In our cancer RCT example, if the RCT occurred in the
physician’s clinic, we would be generalizing results, while if the RCT were conducted elsewhere,
we would be transporting results to the clinic.

Biases are defined with respect to an estimand. We focus on the average treatment effect in
a well-defined population of interest: the target population average treatment effect (PATE).
Namely, we are interested in the average outcome had everyone in the target population been
assigned to treatment 4 = 1 compared to if everyone had been assigned to treatment 4 = 0.
We write thisas t = Ex[EV|S=1,4=1,X) - E¥|S=1,4=0,X)] = EQ'!' = V), where I'!
and Y are the potential outcomes under treatment and no treatment, respectively, and required
identifiability assumptions are as delineated in the next section. The corresponding estimator is
t=1/n Y0, (F;' = I%). We also write Y'* to represent the potential outcome under #, with lower-
case « representing a specific value for random variable 4. Potential outcomes either are explicitly
assumed in the potential outcomes framework or are a consequence of the structural causal model
(Rubin 1974, Pearl 2000). Different target populations correspond to alternative PATEs because
the expectation is taken with respect to alternative distributions of covariates X. For example, if
our clinic physician worked in both pediatrics and geriatrics, these two populations would cor-
respond to two different PATEs. However, necessarily, we only observe outcomes in the study
sample. A study therefore directly estimates the sample average treatment effect (SATE): ¢, =
E(' = Y°|S = 1) with estimator &, = 1/n, 37 ('} = I'").

When the distributions of treatment effect modifiers differ between study and target pop-
ulations, the true study average effect will not equal the true target population average effect
(SATE # PATE) due to external validity bias. Sampling variability as well as internal validity bi-
ases can also drive estimates of SATE further from the truth. Biases may differ in magnitude and
may make the SATE either larger or smaller than the PATE. We may also be interested in estimat-
ing other target parameters. For example, some estimation methods examine the target population
conditional average treatment effects (PCATEs), 7, = E(Y'! — Y°|X), or the target population av-
erage treatment effects among the treated, t; = E(Y'! — Y|4 = 1). Similar generalizability and
transportability considerations presented in the following sections apply to these and other causal
estimands.

3. ASSUMPTIONS

Under the potential outcomes framework, the assumptions below are sufficient to identify the
PATE using the observed study data. A corresponding set of assumptions under the structural
equation model (SEM) framework has also been derived (Pearl & Bareinboim 2011, 2014,
Bareinboim & Pearl 2014, 2016; Bareinboim & Tian 2015; Pearl 2015; Correa et al. 2018).
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Additional assumptions include that there are no missing data or measurement error in outcome,
treatment, or covariate measurements. Other target parameters of interest necessitate a similar
set of assumptions.

3.1. Internal Validity

Sufficient assumptions for identifying the PATE (and SATE) with respect to internal validity are
as follows.

Assumption 1 (Conditional treatment exchangeability). Y* 1 4 |X,S = 1 foralla € A,
the set of all possible treatments.

This assumption requires no unmeasured confounding of the treatment-outcome relationship in
the study. It is satisfied by perfectly randomized trials (e.g., no loss to follow-up, other informative
missingness or censoring, etc.) and by observational studies that have all confounders measured.
While this condition is sufficient, it is not always necessary. When estimating the PATE, it can be
replaced by the weaker condition of the mean conditional exchangeability of the treatment effect,
EXY'-Y%X,4,S=1)=EX"' —Y°X,S = 1) (Kern et al. 2016, Dahabreh et al. 2019b).

Assumption 2 (Positivity of treatment assignment). PX =x|S=1)>0 = P4 =
alX =x,S =1) > 0, with probability 1 for all z € A.

This assumption entails that each subject in the study has a positive probability of receiving each
version of the treatment. In combination with the conditional treatment exchangeability assump-
tion above, this assumption is also known as strongly ignorable treatment assignment (Varadhan
etal. 2016).

Assumption 3 (Stable unit treatment value assumption (SUTVA) for treatment
assignment). If 4 = 4, then Y = V.

This assumption requires no interference between subjects and treatment version irrelevance
(i.e., consistency/well-defined interventions) in the study and target populations, respectively
(Dahabreh et al. 2017, Kallus et al. 2018).

3.2. External Validity

In addition to the assumptions above, identifying the PATE involves the following parallel set of
assumptions for external validity.

Assumption 4 (Conditional exchangeability for study selection). Y“1S |X for all
ae A

This assumption is also known as exchangeability over selection and the generalizability assump-
tion. It requires that the outcomes among individuals with the same treatment and covariate values
in the study and target populations are the same (Stuart et al. 2011). All effect modifiers that dif-
fer between study and target populations must therefore be measured. This assumption would be
satisfied by a study sample that is a random sample from the target population or a nonproba-
bility study sample in which all effect modifiers are measured. In our cancer example, if cancer
stage was unmeasured but modified treatment effect and the proportion of patients with stage III
cancer differed between the RCT and clinic, this assumption would be violated. A weaker con-
dition, the mean conditional exchangeability of selection, EY'! =YX, S =1) = E(Y'! — Y9|X),
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can replace conditional exchangeability for study selection when focusing on the PATE (Kern
et al. 2016, Dahabreh et al. 2019b).

Assumption 5 (Positivity of selection). PX =x)>0 = P(S=1X=x) >0 with
probability 1.

This assumption requires common support with respect to study selection; in every stratum of
effect modifiers, there is a positive probability of being in the study sample or being represented by
study participants (Dahabreh et al. 2017). This can be replaced by smoothing assumptions under
a parametric model, for example, that the propensity score distribution for study selection has
sufficient overlap or common support between the study sample and target population (Tipton &
Peck 2017, Westreich et al. 2017). Thus, with conditional positivity of selection, we assume that
all members of the target population are represented by individuals in the study. In our cancer
RCT example, if, unlike in the clinic, there were no African American patients in the RCT, and if
race was an effect modifier, this positivity assumption would be violated. However, if race was not
an effect modifier, the assumption would hold. The positivity assumption in combination with the
no unmeasured effect modification assumption above is also known as strongly ignorable sample
selection, given the observed covariates (Chan 2017).

Assumption 6 (Stable unit treatment value assumption for study selection). If S =5
(and A = 4), then Y =Y".

This assumption encompasses no interference between subjects selected into the study versus
those not selected and treatment version irrelevance between study and target samples (the same
treatment is given to both) (Tipton 2013b, Tipton & Peck 2017). It necessitates that there is no
difference across study and target samples in how outcomes are measured or in how the interven-
tion is applied, that there is a common data-generating function for the outcome across individuals
in the study and target populations (i.e., that being in the study does not change treatment effects),
and that the potential outcomes are not a function of the proportion of individuals selected for
the study. For example, this assumption would be violated if, due to differential adherence, the
clinic’s patients received different treatment doses from those in the study or if, for an intravenous
therapy, the clinic staff’s training differed from that of the trial staff. Treatment version irrelevance
in SUTVA can be replaced by having the same distribution of treatment versions between study
and target populations when estimating the PATE (Lesko et al. 2017).

3.3. Transportability

Similar internal and external validity assumptions are needed for transportability, with the fol-
lowing modifications. For generalizability, the study sample is a subset of the target population;
therefore, the positivity assumption for selection will need to be bounded away from 0. For trans-
portability, the study sample is not a subset of the target population; thus, the propensity to be in
the study population will need to be bounded away from 0 and 1 (Tipton 2013b). Furthermore,
for transportability, the set of covariates, X, required for conditional exchangeability for study
selection cannot include those that separate the study sample from the target population (e.g.,
hospital type if transporting results from teaching hospitals to community clinics or geographic
location if transporting between states) (Tipton 2013b). Further distinctions are discussed by Pearl
(2015) using the SEM framework. Under this framework, Pearl & Bareinboim (2014) formalize
the assumptions necessary for using different transport formulas to reweight randomized data,
providing graphical conditions for identifiability as well as transport formulas for randomized
studies (Pearl 2015), observational studies (Pearl & Bareinboim 2011, Bareinboim & Tian 2015,
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Pearl 2015, Bareinboim & Pearl 2016, Correa et al. 2018), and a combination of heterogeneous
studies (Bareinboim & Pearl 2014, 2016).

4. EVALUATING GENERALIZABILITY AND TRANSPORTABILITY

Numerous quantitative approaches can help evaluate the extent to which study results may be
expected to extend to the target population, i.e., the extent to which external validity bias poses
a concern. External validity bias exists when study and target populations differ in their distribu-
tion of effect modifiers; these assessments therefore examine population differences and whether
treatment effect heterogeneity exists. Methods for assessing the similarity of study and target pop-
ulations can broadly be categorized into those that compare baseline patient characteristics and
those that compare outcomes for groups on the same treatment. For the former, many make use of
the propensity score for selection, which also serves the purpose of assessing the extent to which
propensity score adjustment using measured covariates can sufficiently remove baseline differ-
ences between study and target samples. However, most of these methods do not emphasize effect
modifiers; hence, they should be combined with an assessment of whether the noted population
differences correspond to heterogeneity of treatment effects. To test for heterogeneity of effects,
one must first identify effect modifiers. Effect modifiers are often prespecified by the investigator,
but data-driven approaches exist as well and are discussed in this section.

4.1. Assessing Dissimilarity Between Populations with Baseline Characteristics

When only summary-level study data are available, it is possible to examine differences in
univariate covariate metrics between study and target samples. Cahan et al. (2017) propose a gen-
eralization score for evaluating clinical trials that incorporates baseline patient characteristics, the
trial setting, protocol, and patient selection: It takes ratios of the mean or median values of these
characteristics in the study and target samples and then averages across categories for an overall
score. However, this approach does not account for any measures of dispersion, which may re-
flect the exclusion of more heterogeneous individuals from the study. When only baseline patient
characteristics, and not other aspects of the study, are responsible for relevant study versus target
population differences, one can perform multiplicity-adjusted univariate tests for differences in
effect modifiers between study and target samples (Greenhouse et al. 2008) or examine absolute
standardized mean differences (SMDs) for each covariate, (}_(Study —X)/ox, where )_(Study and X are
the means of baseline covariates in the study and target samples, respectively, and oy is the stan-
dard deviation of X (Tipton & Peck 2017). High values indicate heavy extrapolation and reliance
on correct model specification; in smaller samples, imbalances often occur by chance (Tipton &
Peck 2017). Furthermore, these multiple comparisons can suffer from limited power. With one or
more RCTS, generalizability across categorical eligibility criteria can be assessed by the percent of
the target sample that would have been eligible for the study or set of studies (Weng et al. 2014);
however, lack of generalizability/transportability can extend beyond eligibility.

Examining the joint (rather than the univariate) distributions of patient characteristics, such as
the SMD in propensity scores for selection, more comprehensively assesses overlap (Stuart et al.
2011). When the propensity score is not symmetrically distributed, summarizing mean differ-
ences is insufficient. Tipton (2014) developed a generalizability index that bins propensity scores
and is bounded between 0 and 1: Z;;l VT, s, with j = 1,..., k bins, each with target sample
proportions w,, and study sample proportions w;;. It is based on the distributions of propensity
scores rather than only the averages, thus requiring patient-level study and target sample data. A
generalizability index score of <0.5 suggests a study being very challenging to generalize from,
and a score of >0.9 suggests high generalizability (Tipton 2014). Other propensity score distance
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measures can be used, such as Q-Q plots and the Kolmogorov-Smirnov distance, Levy distance,
overlapping coefficient, and C statistic; these largely focus on comparing cumulative densities
(Tipton 2014, Ding et al. 2016). To assess the degree of extrapolation, one can examine overlap in
the propensity of selection distributions, such as the proportion of target sample individuals with
propensity scores outside the 5th and 95th percentiles of the sample propensity scores (Tipton
& Peck 2017). For example, Tipton (2014) uses the generalizability index to demonstrate that an
educational intervention could be reasonably generalized to the United States as a whole as well
as three states individually, but generalization to other states may be problematic.

The machine learning literature provides an alternative approach: detecting covariate shift—a
change in the distribution of covariates between training and test data (here, the study and tar-
get data) (Glauner et al. 2017). After creating a joint data set with target and study sample data,
a classification algorithm predicts whether the data came from the study. A dissimilarity metric
surpassing a threshold of acceptability then suggests sizable dissimilarity between data sets. How-
ever, an inability to accurately predict study versus target data origin does not rule out differences
in effect modifiers. A low score might furthermore indicate an incorrect model specification or
insufficient model tuning.

These tests assess differences between populations; however, they require knowledge of which
characteristics moderate the treatment effect (or are correlated with unmeasured effect modifiers)
and what level of differences are substantively relevant. Many covariates are often tested or in-
cluded in a propensity score regression for study selection. This approach prioritizes predictors
that are strongly associated with study selection rather than those that exhibit strong effect mod-
ification. Investigators should aim to identify relevant effect modifiers for testing or inclusion in
the propensity score regression and test this subset.

4.2. Assessing Dissimilarity Between Populations with Outcomes

When individual-level outcome data or joint distributions of group-level outcome data are avail-
able in both the study and target samples for at least one of the treatment groups, the following
methods can assess the extent to which measured effect modifiers account for population differ-
ences. One can compare the observed outcomes in the target sample to predicted outcomes using
study controls (Stuart etal. 2011) or, more generally, study individuals who received the same treat-
ment (Hotz et al. 2005): 1/x, Zz\:l 1(A4; = a)Y; versus 1/n;, Z,es,-:1 1(4; = a)w;Y;, with weights w;
defined by weighting and matching methods discussed in Section 5.1. Hartman et al. (2015) for-
malize this comparison with equivalence tests. Alternatively, conditional outcomes for study and
nonstudy target sample individuals receiving the same treatment, conditioning on measured ef-
fect modifiers, can be compared to detect unmeasured effect modification: E Y X,A=a,S=1)
versus EY X, A = a,S = 0), although other identifiability assumption violations might also be at
fault. Possible tests include analysis of covariance, Mantel-Haenszel, U-statistic-based tests, strat-
ified log-rank, or stratified rank-sum, depending on the outcome (Marcus 1997, Hotz et al. 2005,
Luedtke et al. 2019). For example, study controls could be compared to subgroups of the target
population that were known to be excluded from the study (e.g., patients who declined participa-
tion in our cancer RCT example). Relatedly, unmeasured effect modification can be imperfectly
tested for by disaggregating a characteristic that differentiates the study from the target sam-
ple (Allcott & Mullainathan 2012). These outcome differences should not exceed those observed
between study treatment groups (Begg 1992).

Rather than testing for outcome differences, to assess the sufficiency of the estimation ap-
proach, one can test for differences between study and target regression coefficients or between
baseline hazards in a Cox regression (Pan & Schaubel 2009). Any identified differences in
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outcomes or effects will reflect sample differences unaccounted for by the outcome or weighting
method, indicating unmeasured effect modification or an ineffective modeling approach. To have
this comparison reflect relevant differences, study controls must be representative of the target
population after weighting or regression adjustment. Hartman et al. (2015) provide a more formal
set of identifiability assumptions that may be violated when each equivalence test is rejected. If
unmeasured effect modification is suspected, one can perform sensitivity analysis to assess the ex-
tent to which it can impact results (Marcus 1997, Nguyen et al. 2017, Dahabreh et al. 2019¢) or to
generate bounds on the treatment effect when only partial identification is possible (Chan 2017).

4.3. Identifying Treatment Effect Heterogeneity

Identified population differences are relevant insofar as they correspond to differences in treat-
ment effect modifiers. The following tests enable an investigator to assess whether treatment
effects vary substantially across measured covariates. Many are suitable for use in observational
or RCT data, although they have largely been demonstrated in RCT data to date. While some
tests require a priori specification of subgroups, others can discover them in data-driven ways and
most require individual-level data. A straightforward but often overlooked issue is that for stud-
ies whose participants are homogeneous with respect to effect modifiers, investigators will have
difficulty identifying heterogeneity of effects. These approaches are therefore best applied to data
representative of the target populations (Gunter et al. 2011).

Tests of prespecified subgroups should focus on target population subgroups under- or over-
represented in the study, or any other substantively relevant subgroup expected to exhibit effect
heterogeneity. Methods for testing treatment effect heterogeneity of a priori specified subgroups
largely exhibit limited power. Those testing several effect modifiers individually are particularly
underpowered to detect significant effects after incorporating multiple testing adjustments, e.g.,
testing the interaction terms of treatment assignment with effect modifiers in a linear model,
which also requires modeling assumptions regarding the linearity and additivity of effects (Gabler
et al. 2009, Fang 2017). To address this lack of power, sequential tests for identifying treatment-
covariate interactions can be used with either randomized or observational data (Qian et al. 2019).
Alternative approaches, each addressing slightly different goals, include testing whether the condi-
tional average treatment effect is identical across predefined subgroups (Crump et al. 2008, Green
& Kern 2012), comparing subgroup effects to average effects (Simon 1982), and identifying qual-
itative interactions or treatment differences exceeding a prespecified relevant threshold (Gail &
Simon 1985).

When effect modifiers are not known a priori, a variety of techniques identify subgroups with
heterogeneous effects. These include those that identify variables that qualitatively interact with
treatment (i.e., for which the optimal treatment differs by subgroup) (Gunter et al. 2011) as well
as determine the magnitude of interaction (Tian et al. 2014, Chen et al. 2017). Various machine
learning approaches also identify subgroups with heterogeneous treatment effects while mini-
mizing modeling assumptions. Approaches that also present tests for treatment effect differences
between subgroups include Bayesian additive regression trees (BARTS) and other classification
and regression tree (CART) variants (Su et al. 2008, 2009; Green & Kern 2012; Athey & Imbens
2016). Tree-based methods develop partitions in the covariate space recursively to grow toward
terminal nodes with homogeneity for the outcome. These approaches may be particularly useful
when heterogeneity may be a function of a more complex combination of factors. This could be
the case in our cancer RCT example if we consider social determinants of health.

With many effect modifiers, or when effect modifiers are unknown, global tests for heterogene-
ity can be used. Pearl (2015) provides conditions for identifying treatment effect heterogeneity
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(including heterogeneity due to unmeasured effect modifiers) for randomized trials with binary
treatments, situations with no unobserved confounders, and studies using mediating instruments.
Effect heterogeneity can be tested for using the baseline risk of the outcome as an effect modi-
fier; interaction-based tests assess for differences in baseline risk between study and target control
groups (Weiss et al. 2012, Varadhan et al. 2016). These tests avoid multiple testing but require tar-
get sample outcome data and modeling assumptions. A consistent nonparametric test also exists
that assesses for constant conditional average treatment effects, 7, = 7 Vx € X' (Crump et al. 2008).
Additional methods, which suffer from limited power and rely on estimates of SATEs, include
testing whether potential outcomes across treatment groups have equal variances and whether
cumulative distribution functions of treatment and control outcomes differ by a constant shift
(Fang 2017). Global tests do not identify effect modifiers, although if a global test is rejected, one
can then compare individual subgroups to determine which demonstrate effect heterogeneity.

If these assessments of generalizability fail and the target population is not well-represented by
the study population (specifically, when strong ignorability fails), Tipton (2013b) provides several
recommended paths forward. Investigators can change the target population to one represented
by the study, that is, change the estimand of interest by aligning inclusion and exclusion criteria,
outcome time points, or treatment doses (Herndn et al. 2008, Weisberg et al. 2009). A population
coverage percentage can then summarize the percent overlap between the new and original target
sample propensity scores and describe relevant differences from the original target population.
Investigators can alternatively retain the original target population and note the limitations of
extrapolated results and likelihood of remnant bias. However, a different study may need to be
conducted instead.

5. METHODS FOR ESTIMATING POPULATION AVERAGE
TREATMENT EFFECTS

Following the application of the methods in the previous sections, including assessing the
plausibility of relevant assumptions, an analytic method is typically needed to generalize or
transport results from randomized or observational data to a target population. These approaches
have many parallels to those used to address internal validity bias. We revisit matching- and
weighting-based methods and outcome regressions in depth while additionally examining tech-
niques that use both propensity and outcome regressions (these are often doubly robust). To
mitigate external validity bias, generalizability and transportability methods address differences in
the distribution of effect modifiers between study and target populations. To do so, for matching-
and weighting-based approaches, these methods account for the probability of selection into the
study rather than the probability of treatment assignment. Outcome regressions require that the
treatment effect is allowed to vary across all effect modifiers in addition to all confounders being
correctly included in the regression.

Most generalizability and transportability methods have been developed for randomized data.
When outcome data are available from both randomized studies and an observational study rep-
resentative of the target population, their combination has the potential to overcome sensitivity
to positivity violations for selection into the study (an issue that RCT data commonly face) as well
as to unmeasured confounding (which may afflict observational studies). Incorporating observa-
tional data in a principled manner can also shrink the mean squared error. However, many such
approaches do not leverage the internal validity of RCT data. The following sections highlight
some exceptions. While most approaches require individual-level study and target sample data,
we also highlight approaches that use only summary-level data for either the study or the target
sample.
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5.1. Matching and Weighting Methods

Methods that adjust for differing baseline covariate distributions between study and target sam-
ples via matching or weighting are particularly effective when effect modifiers strongly predict
selection into the study. While including unnecessary covariates can decrease precision, increase
the chance of extreme weights and difficult-to-match subjects, and provide no bias reduction (Nie
et al. 2013), failing to include an effect modifier is typically of greater concern than including
unnecessary covariates (Stuart 2010, Dahabreh et al. 2020). Matching and reweighting methods
strongly rely on common covariate support between study and target populations and perform
poorly when a portion of the target population is not well-represented in the study sample or when
empirical positivity violations occur. Investigators should use the estimation approach that leads
to the best effect modifier balance for their study (Stuart 2010) and strive for fewer assumptions.

5.1.1. Matching. Full matching and fine balance of covariate means have been used in the gen-
eralizability context (Stuart et al. 2011, Bennett et al. 2020). Stuart et al. (2011) fully match study
and target sample individuals based on propensity scores to form sets, each with at least one study
and target individual. Individuals’ outcomes are then reweighted by the number of target indi-
viduals in their matched set. This approach relies heavily on the distance metric, which can be
misled by covariates that do not affect the outcome. Matching with fine balance is a computation-
ally efficient nonparametric approach that accommodates multivalued treatments (Bennett et al.
2020). This approach matches samples to a target population to achieve fine balance on covari-
ate means rather than working with the propensity score. For our cancer therapy example, each
clinic patient would be matched to a treated and a control patient in the RCT to attain balance on
the marginal distributions of Xs. Some implementations of these methods only match a subset of
study individuals (and hence show areas of the covariate distribution without common support),
while others ensure all study and target sample individuals are matched. Matching methods re-
quire calibration for bias-variance trade-off such as via a caliper or by choosing the ratio of study
to target individuals to match. A variety of distance metrics exist; however, none specifically target
effect modifiers.

5.1.2. Weighting. In alow-dimensional setting with categorical or binary covariates, nonpara-
metric poststratification (also known as direct adjustment or subclassification) has been used with
randomized data (Miettinen 1972, Prentice et al. 2005) and with observational data in the context
of instrumental variables (Angrist & Fernidndez-Val 2013). Poststratification obtains estimates for
each stratum of effect modifiers, then reweights these estimates to the effect modifier distribution
in the target population, i.e., E(Y”) =1/n ZLI n;fl”, where L is the number of strata; #; is the
target sample size in stratum /, 7 = Y~ m;; and T* is an estimate from study sample data of the
potential outcome on treatment «# in stratum /, commonly the stratum-specific sample mean for
subjects on treatment # (Miettinen 1972, Prentice et al. 2005). For example, one would obtain
separate cancer therapy impact estimates for each combination of cancer stage, age category, and
previous lines of therapy, then take a weighted average, with weights corresponding to the propor-
tion of clinic patients falling into each stratum. Poststratification only requires stratum-specific
summary data, and closed-form variance formulas are often available. However, empty strata are
an issue with continuous variables or many stratifying variables. Conversely, if insufficient strata
are used, residual external validity bias remains, which is particularly problematic in small samples
(Tipton & Peck 2017). To combat this, inference can be pooled across strata using multilevel re-
gression with poststratification (Pool et al. 1964, Gelman & Little 1997). For higher-dimensional
settings or with continuous covariates, flexible nonparametric approaches can be applied, such
as maximum entropy weighting, which reweights study data to the target sample distribution
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(Hartman et al. 2015). When target and study populations differ on posttreatment variables
such as adherence, principal stratification can be used by classifying subjects into never-taker,
always-taker, and complier categories (Frangakis 2009).

Most weighting approaches use a propensity of study selection regression to construct weights.
They rely on correct specification of the propensity score regression and sufficient propensity
score overlap between study subjects and target sample individuals not in the study. These ap-
proaches have the advantage of allowing one set of weights to be used for treatment effects related
to multiple outcomes. The most straightforward weighting approaches tend to have large vari-
ances in the presence of extreme weights, give disproportionate weight to outlier observations,
and produce outcome estimates outside the support of the outcome variable. Weight standardiza-
tion can address these issues, as can weight trimming, although the latter induces bias by changing
the target population of interest, hence requiring a careful bias-variance trade-off.

Inverse probability of participation weighting (IPPW), a Horvitz-Thompson-like approach
(Horvitz & Thompson 1952), is the most common weighting technique for generalizability
(Flores & Mitnik 2013; Lesko et al. 2017; Westreich et al. 2017; Correa et al. 2018; Dahabreh etal.
2019b, 2020). Most simply, IPPW weights the outcome for each study individual on treatment #
by the inverse probability (propensity) of being in the study. Weights have been developed for es-
timating PATEs, including those that incorporate treatment assignment to account for covariate
imbalances in an RCT or for confounding in an observational study. The observed outcomes are
reweighted to obtain the potential outcomes for each treatment group a: EX*) = 1 3" w,Y;,
with

L1, = DI, = )

w; =

for random treatment assignment (Lesko et al. 2017) and

1

ns,i T, a,i

w; =

I(S; = DIA; = a)

more generally (Stuart et al. 2011, Dahabreh et al. 2019b). Here I(S; = 1) is the indicator for being
in the study, I(4; = 4) is for being assigned treatment #, 75, = P(S; = 1|X;) is the propensity score
for selection into the study, and 7,; = P(4; = 4|S; = 1, X;) is the propensity score for assignment
to treatment « in the study.

Individual-level data are typically required, although one can also use joint covariate distri-
butions from group-level data (Cole & Stuart 2010) or univariate moments (e.g., means and
variances) with additional assumptions (Signorovitch et al. 2010, Phillippo et al. 2018). For ex-
ample, Cole & Stuart (2010) use the cross-classification of sex, race, and age groups in a human
immunodeficiency virus trial and in the US population to fit a propensity for selection into the
trial. Because IPPW only uses study individuals on a given treatment to estimate potential out-
comes for that treatment, power can become an issue, particularly for multilevel treatments. These
methods also perform poorly when study selection probabilities are small, a common occurrence
for generalizability (Tipton 2013b). IPPW has also been developed for regression parameters in
a generalized linear model (Haneuse et al. 2009).

For transportability to the target population S = 0, odds of participation weights are used
rather than inverse probability of participation weights (Westreich et al. 2017, Dahabreh et al.
2020). This corresponds to the estimator E(Y*|S = 0) = % le w;Y; with N = n + n, and weights
p———ty (S; = 1)I(A; = a) (Dahabreh et al. 2020). To address potentially unbounded outcome

T0s,i i

estimates, standardization then replaces z by the sum of the weights, which normalizes the weights
to sum to 1 (Dahabreh et al. 2019b, 2020). The resulting estimator is more stable, is bounded by
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the range of the observed outcomes, and performs better when the target sample is much larger
than the study.

Under regularity conditions, estimates derived using IPPW are consistent and asymptotically
normal (Lunceford & Davidian 2004, Cole & Stuart 2010, Buchanan et al. 2018, Correa et al.
2018). Variance can be obtained through either a bootstrap approach or robust sandwich esti-
mators. The latter may be difficult to calculate (Haneuse et al. 2009), and bootstrap methods for
IPPW have been shown to perform better when there is substantial treatment effect heterogeneity
or smaller sample sizes (Tipton & Peck 2017).

Propensity scores can also be used in the context of poststratification, weighting or match-
ing individuals within strata. RCT individuals are divided into strata defined by their propensity
scores; quintiles are commonly used, based on results showing that this approach may remove
over 90% of bias (O’Muircheartaigh & Hedges 2014). Effects are estimated using sample data
within each subgroup, such as through separate regressions or a joint parametric regression with
fixed effects for subgroups and interaction terms for subgroups by RCT status. Results can then be
reweighted based on the number of target sample individuals in each subgroup (O’Muircheartaigh
& Hedges 2014). Alternatively, the target sample can be matched to RCT individuals within the
same propensity score stratum (Tipton 2013b).

The poststratification estimator is asymptotically normal and closed-form variance estimates
exist for independent strata (Lunceford & Davidian 2004, O’Muircheartaigh & Hedges 2014).
Compared to IPPW, strata reweighting is more likely to be numerically stable and easily imple-
mentable when treatment assignment is done at the group level (e.g., cluster-randomized trials).
However, stratification implicitly assumes that treatment effects are identical for study and tar-
get patients in the same stratum; this assumption is rarely met, resulting in residual confounding
and inconsistent estimates (Lunceford & Davidian 2004). It also relies on the assumptions that
treatment effect heterogeneity is fully captured by the propensity score for treatment and that
outcomes are continuous and bounded. With too few strata, bias reduction will be insufficient;
conversely, too many strata can lead to small strata counts and unstable estimates (Stuart 2010,
Tipton & Peck 2017).

5.2. Outcome Regression Methods

Outcome regressions, also known as response surface modeling, have not been as extensively
developed for generalizability and transportability compared to propensity-based approaches.
We highlight approaches that combine outcome data from one or multiple studies.

5.2.1. Outcome data from one study. Outcome regression approaches fit an outcome regres-
sion in study sample data to estimate conditional means, then obtain PATEs by marginalizing
over (i.e., standardizing to) the target sample covariate distribution via predicting counterfactuals
for the target sample: Ey" = IS Ei|S; = 1,4; = a,X;). If the target sample is not a simple
random sample from the target population, this would be a weighted average using sampling
weights (Kim et al. 2018).

Outcome regression approaches are particularly effective when effect modifiers strongly pre-
dict the outcome and when the outcome is common but selection into the study is rare. They are
also convenient for exploring PCATEs. These methods can yield better precision than weighting-
or matching-based methods because they can adjust for confounders, effect modifiers, and factors
only predictive of the outcome, thus decreasing variance in the estimate. They are simple to imple-
ment when an outcome regression for confounding adjustment has already been fit and accounts
for all relevant effect modifiers. The same regression that was used to estimate impacts within
the study can then be used to predict counterfactuals in the target sample. Outcome regression
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methods can be used with either randomized or observational study data but have been used most
frequently in RCTs. In the presence of significant lack of overlap between the target and study sam-
ples, outcome regressions rely on heavy extrapolation (Attanasio etal. 2003, Kern et al. 2016), often
with no corresponding inflation of the variance to reflect uncertainty in the resulting estimates.

The simplest approach is ordinary least squares regression (Flores & Mitnik 2013; Kern et al.
2016; Dahabreh et al. 2019b, 2020). An outcome regression is fit with interaction terms between
treatment and all effect modifiers before predicting counterfactual outcomes for the target sam-
ple. Dahabreh et al. (2020) show the consistency of this type of outcome regression for the PATE.
For RCTS5, separate regressions are recommended for each treatment group to better capture
treatment effect heterogeneity (Dahabreh et al. 2019b), although this approach precludes bor-
rowing information across treatment groups, which is possible with machine learning methods
that discover treatment effect heterogeneity. Among these machine learning techniques is BART,
which is the most commonly used data-adaptive outcome regression approach for generalizabil-
ity and transportability (Chipman et al. 2007, 2010; Hill 2011; Kern et al. 2016). BART models
the outcome as a sum of trees with linear additive terms and a regularization prior. It addresses
external validity bias via its data-driven discovery of treatment effect heterogeneity; strengths
of the method include its ability to obtain confidence intervals from the posterior distribution
(Hill 2011, Green & Kern 2012). However, BART credible intervals show undercoverage when
the target population differs substantially from the RCT (Hill 2011). Data availability may chal-
lenge these outcome regression approaches. When the covariates in the target sample are not
available in the study sample, or vice versa, but the SATE is expected to be approximately unbiased
for the PATE, the SATE estimates’ credible intervals can be expanded to account for uncertainty
in the target population covariate distribution (Hill 2011).

5.2.2. Outcome data from multiple studies. Here, we consider meta-analytic approaches for
summary-level data as well as studies that combine individual-level data from more than one study
(for example, one randomized and one observational study). Much of the literature has focused on
meta-analytic techniques using summary-level study data and no target sample covariate informa-
tion. This body of bias-adjusted meta-analysis methods largely does not explicitly define a target
population for whom inference is desired but rather relies on subjective investigator judgments
of each study’s levels of bias, specified using bias functions or priors in a Bayesian framework.
Eddy (1989) presents the first such approach, which adjusts each study for (investigator-specified)
internal and external validity biases. Subsequent Bayesian hierarchical models include Prevost
et al’s (2000) three-level model, which addresses variability between studies, study types (ran-
domized versus observational), and effect heterogeneity but does not explicitly consider internal
and external validity biases (Kaizar 2011).

Other meta-analysis studies leveraging summary-level data separately specify and subjectively
quantify internal and external validity bias parameters for an explicit target population, down-
weighting studies with higher risk of bias [e.g., Turner et al.’s (2009) bias-adjusted meta-analysis
checklist approach or Greenland’s (2005) Bayesian meta-sensitivity model with bias parameters
for misclassification, nonresponse, and unmeasured confounding]. In the intermediate setting in
which individual-level data are available in the study but only covariate moments (e.g., means,
variances) are available in the target setting, Phillippo et al. (2018) present an outcome regression
approach for indirect treatment comparison across RCTs.

When individual-level outcome data are available in the target sample or from multiple stud-
ies, data can be combined into one joint data set for outcome regression analysis (Kern et al.
2016). Such an approach can be preferential to IPPW, which uses only study and not target sample
outcome data (Kern et al. 2016). However, it will be dominated by observational data results (and
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their potential biases) when observational subjects constitute the majority of the joint data set,
effectively resulting in a weighted average across studies.

Hierarchical Bayesian evidence synthesis is the only outcome regression approach we identified
that attempts to empirically adjust for unobserved confounding when estimating effects for ob-
servational patients who are not well-represented in the RCTs (Verde et al. 2016). Summary-level
RCT data are combined with individual-level observational data through a weighting approach in
which the control group event rate is assumed to be similar across all studies and a study quality
bias term is added to the observational studies’ outcome regression to account for unmeasured
confounding or other uncontrolled biases and to inflate variance. Verde et al. (2016) apply this
approach to extrapolate results from six RCTS to a cohort study of a diabetic foot ulcer therapy.
Alternatively, Gechter (2015) derives bounds on the PATE and PCATE when transporting from
an RCT to a target sample with outcome data (all untreated).

5.3. Combined Propensity Score and Outcome Regression Methods

Double robust methods for generalizability and transportability typically combine outcome
and propensity of selection regressions. They are asymptotically unbiased when at least one
of these regression functions is consistently estimated, and if both are consistently estimated,
asymptotically efficient. Incorporating flexible modeling approaches can help mitigate regression
misspecification.

5.3.1. Outcome data from one study. Three asymptotically locally efficient double robust
approaches have been developed in randomized data: a targeted maximum likelihood estimator
(TMLE) for instrumental variables (Rudolph & van Der Laan 2017), which is a semiparametric
substitution estimator, the estimating equation-based augmented inverse probability of participa-
tion weighting (A-IPPW) (Dahabreh et al. 2019b, 2020), and an augmented calibration weighting
estimator that can also incorporate outcome information from the target sample when it is
available (Dong et al. 2020).

The TMLE was developed for transportability in an encouragement design setting (i.e.,
intervention focused on encouraging individuals in the treatment group to participate in the in-
tervention) with instrumental variables (Rudolph & van Der Laan 2017) and has also been used
for generalizability (Schmid et al. 2020). Three different PATE estimators were developed: intent
to treat, complier, and as treated. All use an outcome regression to obtain an initial estimate then
adjust that estimate with a fluctuation function using a clever covariate C, which is derived from
the efficient influence curve and incorporates the propensity of selection information in a bias-
reduction step. For example, for the intent to treat PATE, the fluctuation function takes the form
logitE(Y'|S = 1,4, Z,X) + €C), where
_ IS=1,A=a) P(Z =2|S=0,4=a,X)PX|S =0)

T PA=4aS=1,X)PS=1)P(Z=2S=1,A=a,X)PX|S=1)’

Z is the intervention taken, and A is the assigned intervention.

C

A-TPPW has been developed for generalizing results to estimate PATEs for all trial-eligible
individuals (Dahabreh et al. 2019a,b) and transporting results to estimate PATEs for trial-eligible
individuals not included in a trial (Dahabreh et al. 2020). Three estimating equation-based estima-
tors are presented: A-IPPW, A-IPPW with normalized weights to ensure bounded estimates, and
a weighted outcome regression estimator using participation weights. With w; defined as before,
the nonnormalized A-IPPW estimators are

! > (will; - EQiIS; = 1,4; = 4, X)) + EQHIS; = 1,4; = 4,X7))
/3
=1
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for generalizability and
1 & - A
- Z{wi{Yi —EXiS; = 1,4, = a,X)} + {1 = I(S; = DIEWIS; = 1,4; = 2, X))}
n
i=1

for transportability. Variance can be derived using empirical sandwich estimates or using a non-
parametric bootstrap. As these estimators are partial M-estimators, they can produce estimates
outside bounds if the outcome regression is not well chosen, and they may have multiple solutions.

Several other double robust estimators for transportability resemble the IPPW estimator, with
sampling weights derived through alternative approaches that do not rely on propensity scores
(Dong et al. 2020, Josey et al. 2021). For example, the semiparametric and efficient augmented
weighting estimator by Dong et al. (2020) calibrates the RCT covariate distribution to match that
of the sampling-weighted target sample.

An alternative reweighted outcome regression method for observational data does not claim
double robustness; this regularized neural network estimator for PCATE parameters jointly learns
representations from the data and a reweighting function (Johansson etal. 2018). Representational
learning creates balance between the study and target covariate distributions and between treated
and control distributions in a representational space so that predictors use information common
across these distributions and focus on covariates predictive of the outcome. In this learned repre-
sentational space, results are then reweighted to minimize an upper bound on the expected value
of the loss function under the target covariate distribution.

5.3.2. Outcome data from multiple studies. Several methods have combined randomized and
observational data sources such that they retain internal and external validity. These approaches
broadly rely on the assumption that the relationship between unmeasured confounders and po-
tential outcomes is the same in the RCT as in the target sample, which is a weaker assumption
than that of no unmeasured confounding required by most of the methods described thus far.
One study combined individual-level data from several RCTs to transport results to the target
sample, extending the A-IPPW estimator (as well as corresponding IPPW and outcome regres-
sion estimators) to the multistudy setting (Dahabreh et al. 2022). The remaining estimators in this
section combine randomized and observational data.

When differences in effect modifiers between the RCT and target population are known (e.g.,
by inclusion and exclusion criteria), cross-design synthesis meta-analysis is a method for com-
bining randomized and observational study data while capitalizing on the internal validity of the
randomized data and the external validity of the observational data (Begg 1992, Greenhouse et al.
2017).It provides a means for estimating treatment effects for patients excluded from the RCT and
can use summary-level RCT data if outcomes are available by relevant patient subgroups, although
it can only accommodate a limited number of strata of relevant effect modifiers. Cross-design
synthesis meta-analysis assumes a constant amount of unmeasured confounding across patients
eligible and ineligible for the RCTs (Kaizar 2011).

When differences between RCT and target populations are less well understood, there are con-
tinuous effect modifiers, or a higher-dimensional set of effect modifiers exists, one can use Bayesian
calibrated risk-adjusted regressions (Varadhan et al. 2016). This parametric approach requires
individual-level information from observational and randomized studies, leveraging outcome re-
gressions and calibration using the propensity of selection. The target population is assumed to
be represented by a subset of the observational data; the RCT data are likewise assumed to be
represented by a (potentially different) subset of the observational data. The method relies on the
observational data set having substantial effect modifier overlap with both the target sample and
the RCT.
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A two-step frequentist approach for consistently estimating PCATE parameters has also been
developed (Kallus et al. 2018). It begins with outcome regressions for each treatment group of
the observational data, or a flexible regression that captures effect heterogeneity. Observational
data are then standardized to the RCT population before so-called debiasing their estimates using
RCT data by including a correction term that can depend on measured covariates. This method
relies on the assumption that calibrating internal validity bias in the subset of the observational
data distribution overlapping with RCT data appropriately calibrates the bias for the entire target
sample. The approach would therefore not necessarily decrease bias if the covariate distribution
is highly imbalanced, resulting in average biases that are different between the RCT overlapping
versus nonoverlapping subsets of the target sample. Degtiar et al. (2021) overcome this limita-
tion by standardizing to the observational data itself when debiasing observational data estimates.
The approach accommodates outcome regression, propensity weighting, and double robust esti-
mators. Lu et al. (2019) present a semiparametric double robust approach that, unlike the above
methods, assumes no unmeasured confounding in the observational data when combining RCT
and comprehensive cohort study data (in which patients who decline randomization are enrolled
in a parallel observational study).

6. DISCUSSION

Obtaining unbiased estimates for a relevant target population requires applying generalizability
or transportability methods in studies that meet required identifiability assumptions. The internal
validity of randomized trials is not sufficient to obtain unbiased causal effects—external validity
also needs to be considered. In this synthesis, we have discussed (#) sources of external validity
bias and study designs to address it; (b)) the definition of an estimand in a target population of
interest; (¢) the identifiability assumptions underpinning generalizability and transportability ap-
proaches; (d) a variety of approaches for quantifying the relevant dissimilarity between study and
target samples and assessing treatment effect heterogeneity; and (¢) a variety of matching
and weighting methods, outcome regression approaches, and techniques that use both outcome
and propensity regressions that generalize or transport from randomized and observational stud-
ies to a target population. These approaches have been applied across diverse settings from RCT
results transported to patients represented in registries to cluster-randomized educational inter-
vention trials generalized to broader geographic areas. Across a variety of settings, it is important to
estimate results for populations that go beyond the study population, and we suggest the following
considerations.

m Make efforts to explicitly define target population(s) and identify the study population from
which the study sample is a random sample. While describing the study population may
be difficult, and there may not be a practically meaningful population representative of
the study sample data, this clarity will allow one to compare and, when feasible, better
align the study sample to the target population. Discussion regarding target population(s)
should be guided by ensuing decisions the study aims to inform as well as practical con-
siderations (e.g., lack of certain subgroups in the study). These considerations may require
iteration between feasibility and desired study aims. When combining studies, meta-analyses
should likewise carefully specify target population(s) for inference and incorporate consid-
erations of treatment effect heterogeneity or demonstrate that it is not a concern. Without
transparency in the target population(s), a study cannot estimate well-defined treatment ef-
fects, nor can readers judge the generalizability of study results to any other population of
interest.
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m Plan for generalization in the study design, when feasible including writing generalizabil-
ity considerations into grant or study objectives. Enroll randomized study participants or
design observational study inclusion and exclusion criteria to have the study sample be rep-
resentative of the target population or fully capture the heterogeneity of effect modifiers.
Collect data on likely treatment effect modifiers that are associated with study participa-
tion. Attempt to identify and mitigate potential sources of missingness or selection bias. If
possible, collect baseline characteristics and outcome data on study nonparticipants who are
part of the target population. Otherwise, identify external sources of data that might inform
the composition of the target population with respect to effect modifiers and work toward
aligning variables between these target sample data sources and the study.

m Clearly describe the internal and external validity assumptions needed to identify the treat-
ment effect as they relate to the study. Substantively assess the justifiability of these internal
and external validity assumptions. To the extent possible, test the validity of the assumptions
and perform sensitivity analyses to assess the impact of assumption violations.

m Quantify the dissimilarity between the study and target populations using at least one
method. Ideally, use multiple methods, as they each tell different parts of the story: Examine
univariate and joint distributions of effect modifiers, differences in the propensity to partici-
pate in the study, and (if outcome information is available in the target sample) differences in
outcomes between study and target subjects on the same treatment. If differences are identi-
fied, one should investigate which subpopulations drive those differences and assess whether
they have heterogeneous treatment effects. In addition to examining subject characteristics,
assess whether differences exist in the setting, treatment, or outcome measure.

m To obtain causal estimates when the target and study populations differ with respect to effect
modifiers, incorporate at least one generalizability or transportability estimator. Alterna-
tively, at the minimum, assess and describe sources of effect heterogeneity and whether they
are likely to differ for the target population. Derive estimates using as much data as possible
(e.g., when outcome data are available, use them in a principled way). The choice of method
for external validity bias adjustment may be restricted by data availability (e.g., summary-
level versus individual-level data) but should be driven by similar principles as those that
guide the choice between outcome regressions, matching and weighting methods, and dou-
ble robust approaches for confounding adjustment. Flexible nonparametric estimators that
use ensemble machine learning have the potential to perform the best.

For both methods developers and applied researchers, we recommend releasing publicly
available code alongside the paper and providing details for implementation. Published code
facilitates replicability and accessibility of methods for future research and applied use. A sub-
stantial barrier to the adoption of new statistical methods, including advances in generalizability
and transportability, is the lack of available computational tools.

While much of the causal inference literature has focused on issues of internal validity, both in-
ternal and external validity are necessary for valid inference. When treatment effect heterogeneity
exists, as is often the case, study results may not hold for a target population of interest. Approaches
to address internal validity biases can be borrowed to improve upon methods for addressing ex-
ternal validity bias. This review presents a framework for such analysis and summarizes different
choices for estimators that can be used to generalize or transport results to a population differ-
ent from the one under study. It brings together diverse cross-disciplinary literature to provide
guidance for both applied and methods researchers. Improving the incorporation of results from
observational studies can lead to better inference for decision-relevant populations with reduced
bias and improved precision.
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