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Abstract

This article provides an overview of tensors, their properties, and their ap-
plications in statistics. Tensors, also known as multidimensional arrays, are
generalizations of matrices to higher orders and are useful data representa-
tion architectures.We first review basic tensor concepts and decompositions,
and then we elaborate traditional and recent applications of tensors in the
fields of recommender systems and imaging analysis. We also illustrate ten-
sors for network data and explore the relations among interacting units in a
complex network system. Some canonical tensor computational algorithms
and available software libraries are provided for various tensor decomposi-
tions. Future research directions, including tensors in deep learning, are also
discussed.
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1. INTRODUCTION

In this article, we provide a review of tensors in statistics and its applications. Tensors are general-
izations of matrices for higher-order data and provide useful data representation formats. Tensors
originally appeared in 1927 (Hitchcock 1927). Fueled by increased computing capacity during
the past decade, tensors have expanded to many domains, including statistics, data science, and
machine learning (Kolda & Bader 2009). For example, in context-aware recommender systems
(CARS), users tend to interact with different items (e.g., movies or products) with various prefer-
ences depending on different contexts (e.g., time or promotion strategies). Such events represent
different behavior patterns of users under different situations and can be effectively modeled by a
third-order tensor as users × items × context; modeling could be challenging using traditional data
formats.

In this article, we first introduce basic tensor concepts and notations, which provide a
foundation for the upcoming sections. Specifically, we introduce some of the most widely used
tensor decompositions, including canonical decomposition/parallel factor analysis (CANDE-
COMP/PARAFAC; hereafter, CP) decomposition (Kiers 2000) and Tucker decomposition
(Tucker 1966), and their important properties and applications. Then, we elaborate on dynamic
tensors, their modeling, and their key properties. Commonly used algorithms for CP and
Tucker decompositions are illustrated, and relevant software is summarized in the Supplemental
Appendix.

Next, we provide traditional and recent applications of tensors in the field of recommender sys-
tems. As a personalization marketing strategy that has been successfully implemented in the retail
and entertainment industries for about 20 years, recommender systems are now relied upon by
companies and individual customers. Tensors, as flexible tools for data storage, arrangement, and
analyses, are considered one of the most important techniques for modern recommender systems.
We review the utilization of tensors mainly from two aspects: tensors in CARS (Adomavicius &
Tuzhilin 2011) and tensor completion as a theoretical and fundamental statistical framework.

Imaging analysis is another major area in which tensor-based models have successful and
widespread applications. This is because imaging data, such as magnetic resonance imaging (MRI)
and functional magnetic resonance imaging (fMRI), are naturally stored in a multidimensional ar-
ray such as a matrix (e.g., a two-dimensional MRI image), a cube (e.g., a three-dimensional MRI
image), or a fourth-order tensor (e.g., a three-dimensional fMRI image over time). In biomedical
studies, imaging data can be utilized to better understand human physiology, such as brain activity
and tumor development, associated with biological, psychological, and clinical traits.However, the
sheer size and complexity of medical imaging data pose unprecedented challenges to classical sta-
tistical methods, which are mostly based on vectorized data. Therefore, tensor-based models that
preserve the higher-order structure of imaging data have received increasing interest and gained
success in recent years. In this article, we review various applications and recent developments of
tensor-based models in biomedical imaging analysis.

Another area of tensor application is in network data, which has arisen as one of the most
common forms of information collection due to the high demand for collecting relations or as-
sociations among interacting units from observations. In many applications, the relations to be
considered are complex in the sense that they are typically high order, multitype, and multirela-
tional. For example, a biological interaction or process in biological networks involves multiple
participating units, such as proteins or genes. Also, in social networks, there usually exist multiple
types of social relations among people. The primary challenge in network data analyses is to infer
specific network relations through modeling and learning based on observed complex relational
data.
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Figure 1

Arrays with different dimensions corresponding to a scalar, a vector, a matrix, and a third-order tensor, where different colors represent
different values.

In traditional network analyses, the network is generally formulated as an adjacency matrix,
which is mainly applicable for homogeneous or pairwise relations. Tensors, viewed as high-order
generalizations of adjacency matrices, offer a more flexible framework to represent high-order re-
lations inmodeling network data.More importantly, the tensor technique provides great flexibility
in modeling the heterogeneous relations with various types and orders on relations. In this article,
we review the tensor applications of two important tasks on complex networks: link prediction
and node clustering.

This article is organized as follows. Section 2 introduces the notation and background of ten-
sors. Section 3 presents tensor applications in recommender systems. Section 4 reviews cutting-
edge tensor applications in biomedical imaging analyses. Section 5 illustrates tensor applications
in networks. In Section 6, we provide principal algorithms for tensor computations. Concluding
remarks and discussions of future directions are summarized in Section 7.

2. NOTATION AND BACKGROUND

Tensors can be regarded as multiway collections of data. For example, the simplest tensor that
would be a three-dimensional array can be considered as a data cube. In this section, we introduce
the notation and different concepts about tensors.

2.1. Basics

A tensor is defined as a multidimensional array; specifically, a dth-order tensor is an array with d
dimensions, denoted by Euler script letter X ∈ R

n1×n2×···×nd , which is an extension of a matrix to
higher order. Here, d is the number of dimensions of the array X representing the tensor’s order,
also known as ways or modes. The nk is the marginal dimension of the kth mode (k= 1, 2, . . . , d ).
Figure 1 shows the arrays from a scalar to a third-order tensor.The (i1, i2, . . . , id)th element of the
tensor X is denoted by xi1i2 ···id for ik = 1, 2, . . . , nk and k = 1, 2, . . . , d.We can create subarrays by
fixing some of the given tensor’s indices. A fiber of a tensor is a vector created by fixing all but one
index of a particular mode. A third-order tensor X has column, row, and tube fibers, denoted by
x:i2i3 , xi1:i3 , and xi1i2:, respectively. A slice of a tensor is a two-dimensional matrix, defined by fixing
all but the indices of two particular modes. Figure 2 shows the horizontal, lateral, and frontal
slides of a third-order tensor X , denoted by Xi1::,X:i2:, and X::i3, respectively.
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Figure 2

Slices of a third-order tensor X : (a) horizontal slices Xi1::, (b) lateral slices X:i2:, and (c) frontal slices X::i3.

The norm of a tensor X ∈ R
n1×n2×···×nd is the square root of the sum of the squares of all ele-

ments, i.e.,

‖X‖ =
√√√√ n1∑

i1=1

n2∑
i2=1

· · ·
nd∑
id=1

(xi1i2···id )2.

The inner product of two tensorsX ,Y ∈ R
n1×n2×···×nd with the same size is the sum of the products

of their entries, i.e.,

〈X ,Y〉 =
n1∑
i1=1

n2∑
i2=1

· · ·
nd∑
id=1

xi1i2···id yi1i2 ···id ,

implying that 〈X ,X 〉 = ‖X‖2. Moreover, an outer product, °, operating on multiple vectors pk ∈
R
nk (k = 1, 2, . . . , d ) creates a dth-order tensor X = ∑r

j=1 p
1
j ° p

2
j ° · · · ° pdj , where r is the rank of

the tensorX .When r= 1, the tensorX is a rank-1 tensor, that is,X = p1
° p

2
° · · · ° pd , where pk =

(pk1, . . . , p
k
nk
)�. Each element of the tensor X is the product of the corresponding vector elements:

xi1i2···id = p1i1 p
2
i2

· · · pdid for ik = 1, 2, . . . , nk and k = 1, 2, . . . , d, and pk = (pk1, . . . , p
k
nk
)� is the factor

vector at the kth mode.The nt-mode product of a tensorX ∈ R
n1×n2×···×nd with a matrixA ∈ R

nt×m

is denoted by X ×t A and is of size n1 × ��� × nt − 1 × m × nt + 1 × ��� nd. Elementwise, we have
(X ×t A)i1···it−1 jit+1···id = ∑nt

it=1 xi1 ···it−1it it+1···id a jit for j = 1, 2, . . . ,m.
We can also transform a tensor into a matrix via reordering the elements of a dth-order ten-

sor, known as matricization, unfolding or flattening. There are many methods of reordering
the elements into a matrix. Here, we introduce a special case of mode-k matricization. More
details can be found in Kolda (2006). The mode-k matricization of a tensor X ∈ R

n1×n2×···×nd

is denoted by X(k) for k = 1, 2, . . . , d and arranges the mode-k fibers to be the columns of
X(k). The element (i1, i2, . . . , id) of tensor X corresponds to the element (ik, j) of X(k), where
j = 1 +∑d

t=1,t �=k(it − 1)Jt with Jt = ∏t−1
m=1,m �=k nm. Here, we present an example of the matriciza-

tion of a third-order tensor from Kolda & Bader (2009) for illustration. Let the frontal slices of
X ∈ R

2×3×2 be

X::1 =
(
1 3 5
2 4 6

)
and X::2 =

(
7 9 11
8 10 12

)
.
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Canonical decomposition/parallel factor analysis (CANDECOMP/PARAFAC, or CP) decomposition for a third-order tensor:
X ≈ ∑r

j=1 p
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j ° p

2
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Then the three mode-k matricizations are

X(1) =
(
1 3 5 7 9 11
2 4 6 8 10 12

)
, X(2) =

⎛⎜⎝1 2 7 8
3 4 9 10
5 6 11 12

⎞⎟⎠, and X(3) =
(
1 2 3 4 5 6
7 8 9 10 11 12

)
.

2.2. Tensor Decomposition

Tensor decomposition refers to expressing a tensor as a sequence of elementary operations on
other simple arrays, which has applications in many areas, such as signal processing, recom-
mender systems, neuroimaging, and network analysis. Two major tensor decompositions are CP
decomposition (Kiers 2000) and Tucker decomposition (Tucker 1966). There are many other ten-
sor decompositions, including CANDELINC (canonical decomposition with linear constraints)
(Carroll et al. 1980), DEDICOM (decomposition into direct components) (Harshman 1978), and
PARATUCK2 (parallel factor analysis and Tucker 2 decomposition) (Harshman & Lundy 1996),
as well as nonnegative variants of these. We introduce CP decomposition and Tucker decompo-
sition as follows. Extensive references can be found in the review articles by McCullagh (1987),
Kolda (2006), and Kolda & Bader (2009).

2.2.1. CANDECOMP/PARAFAC decomposition. The CP decomposition is a type of rank
decomposition and approximates a tensor into a sum of component rank-1 tensors. That is,

X ≈
r∑
j=1

p1
j ° p

2
j ° · · · ° pdj ≡ [[P1,P2, . . . ,Pd ]], 1.

where the pkjs ( j = 1, 2, . . . , r) are nk-dimensional vectors (k = 1, 2, . . . , d ), and the factor matri-
ces Pk = (pk1,p

k
2, . . . ,p

k
r ) (k= 1, 2, . . . , d ). That is, rank(X ) = min{r : X ≈ ∑r

j=1 p
1
j ° p

2
j ° · · · ° pdj }.

Equation 1 is illustrated in Figure 3. An element of X is written according to the CP decompo-
sition as xi1i2···id ≈ ∑r

j=1 p
1
i1 j
p2i2 j · · · pdid j.

The CP decomposition is unique under certain conditions, where uniqueness of the CP de-
composition provides an only possible combination of rank-1 tensors that sums to X , with the
exception of the elementary indeterminacies of scaling and permutation. The permutation in-
determinacy means that the rank-1 component tensors can be reordered arbitrarily. That is,
X = [[P1,P2, . . . ,Pd ]] = [[P1�,P2�, . . . ,Pd�]] for any r× r permutationmatrix�.The scaling in-
determinacy refers to scaling the individual vectors, that is,X = ∑r

j=1(α
1
jp

1
j ) ° (α

2
jp2

j ) ° · · · ° (αd
j p

d
j )
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Rating of movies provided by users at different time points as data in a tensor X ; for example, the rating score of the movie (or item) i
provided by the user u at the time point t can be used as the (u, i, t)th element xuit of the tensor X .

as long as
∏d

k=1 αk
j = 1 for j = 1, . . . , r. A sufficient condition for uniqueness (Kruskal 1977, 1989;

Sidiropoulos & Bro 2000) is
d∑

k=1

KPk � 2r + (d − 1),

where KPk is the K-rank of the matrix Pk, satisfying KPk = max{K : any K columns of Pk

are linearly independent}. Ten Berge & Sidiropoulos (2002) show that the sufficient condition
is also necessary for tensors with rank r = 2 and r = 3, but not for tensors with rank r > 3. More
general necessary conditions for uniqueness of CP decomposition can be found in the framework
of Liu & Sidiropoulos (2001).

The CP decomposition has been widely used in many fields, such as recommender systems
(Xiong et al. 2010, Bi et al. 2018), medical imaging (Karahan et al. 2015, Li et al. 2018, Tang et al.
2019), and networks (Mahyari et al. 2016). For example, movie recommender systems often deal
with rating data provided by users or audiences for different movies watched at different time
points as tensor data (see Figure 4).

2.2.2. Tucker decomposition. The Tucker decomposition is a higher-order form of principal
component analysis (PCA) and decomposes a tensor into a core tensor multiplied by a matrix
along each mode. That is, a tensor X ∈ R

n1×n2×···×nd is expressed as

X ≈ C ×1 Q1 ×2 Q2 · · · ×d Qd =
m1∑
j1=1

m2∑
j2=1

· · ·
md∑
jd=1

c j1 j2... jdq
1
j1 ° q

2
j2 ° · · ·qdjd ≡ [[C;Q1,Q2, . . . ,Qd ]],

2.
where Qk ∈ R

nk×mk (k = 1, . . . , d ) are the factor matrix and are usually orthogonal, and qkjk ∈
R
nk can be treated as the principal components in each mode. All c j1 j2... jd s form a tensor C ∈

R
m1×m2×···×md , which is called the core tensor and is illustrated in Figure 5. An element of X

is represented by the Tucker decomposition as

xi1 i2···id ≈
m1∑
j1=1

m2∑
j2=1

· · ·
md∑
jd=1

c j1 j2... jd q
1
i1 j1
q2i2 j2 · · · qdid jd .
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Tucker decomposition for a third-order tensor X , where C ∈ R
m1×m2×m3 is the core tensor, and Qk ∈ R

nk×mk (k = 1, 2, 3) are the factor
matrices.

In contrast to the CP decomposition, the Tucker decomposition is generally not unique. This
is because the core tensor C can be structured arbitrarily and might allow interactions between
any components; that is, X ≈ [[C ×1 U1 · · · ×d Ud;Q1U−1

1 , . . . ,QdU−1
d ]], where Uk ∈ R

mk is any
nonsingular matrices for k = 1, . . . , d. Imposing additional constraints on the structure of C can
generally lead to more relaxed uniqueness properties.

There are many applications for Tucker decompositions—for example, facial image recogni-
tion (Vasilescu & Terzopoulos 2002) and human motion signatures recognition (Vasilescu 2002).
A concrete application of Tucker decomposition is analyzing the multifactor structure of facial
image ensembles (Vasilescu & Terzopoulos 2002). In this example, there is a face database of 28
male subjects photographed in 5 different poses, 3 illuminations, and 3 expressions, where each
original image has 512 × 352 pixels. Using a global rigid optical flow algorithm (Vasilescu &
Terzopoulos 2002), the original images are aligned to one reference image and then cropped as
a total of 7,943 pixels per image within an elliptical cropping window (illustrated in Figure 6).
Hence, the database can be constructed as a fifth-order tensor X , e.g., X is a 28 × 5 × 3 ×
3 × 7,943 tensor. Tucker decomposition is able to capture the important features in a compact
form, that is, X ≈ C ×1 Qpeople ×2 Qposes ×3 Qil lum ×4 Qexpress ×5 Qpixel s, where illum indicates illu-
minations, and express indicates expressions. The mode matrices Qpeople, Qposes, Qillum, Qexpress, and
Qpixels can be interpreted as principal components. By the core tensor C, the eigenimages present
in Qpixels can be transformed into eigenmodes representing the principal axes of variations across
the various factors (people, poses, illuminations, expressions) by forming C ×5 Qpixel s.

2.3. Dynamic Tensors

In many applications, one particular tensor of interest is the dynamic tensor. For example, in rec-
ommender systems, it measures users’ taste on items over time; in brain imaging, it may represent
functional magnetic resonance imaging; also, in network analysis, it may formulate the dynamic
relations among entities.
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An illustration of Tucker decomposition for facial image ensembles. Adapted with permission from Vasilescu & Terzopoulos (2002, p. 8).

To the best of our knowledge, there are two types of formulations for dynamic tensors. The
first is dynamic tensors with slice-wise updates, also known as tensor streams and incremental
tensors (Sun et al. 2006, 2008). The dynamic tensors assume that one particular mode (say, the
dth mode) of the tensor X represents time. One application of such a formulation is forecasting.
Suppose we are interested in h-point ahead forecasting. Then, ultimately, Xn1×n2×·×nd is extended
to X̃n1×n2×·×(nd+h). For example, we may consider sales forecasting in this framework, where X
is a third-order tensor with three modes being customer, product, and season, and entries of X
represent sales volumes (Xiong et al. 2010).

Specifically, one way to achieve forecasting is through tensor factorization followed by extrapo-
lating time-specific latent factors via time series models. Through applying the CP decomposition
in Section 2.2, the (nd × r)-dimensional time-specific latent factor matrix Pd can be considered
as r time series. Existing techniques to extrapolate Pd include kernel methods (Koren 2010), the
Holt-Winters method (Dunlavy et al. 2011), and autoregression (Wang et al. 2016, Yu et al. 2016).
Once an extended [(nd + h) × r]-dimensional P̃d is acquired, the extended X can be estimated as
X̃ ≈ [[P1,P2, . . . , P̃d ]].

There are two major advantages associated with forecasting after tensor decomposition, com-
pared with a single time series analysis for each individual. First is scalability (Yu et al. 2016). If
time series models are directly applied to X , then we expect n1 × n2 × · × nd − 1 time series, which
could be extremely huge. For the sales forecasting example, this implies thousands of stores and
millions of products, leading to billions of time series. After tensor decomposition, the number of
time series is dropped down to r, which is usually less than 100. Second, the tensor decomposi-
tion incorporates information across all time series simultaneously. This allows each time series
to borrow information from other time series to improve forecasting accuracy.

However, one drawback of estimating time as a tensor mode is a fixed granularity—that is,
simply discretizing time into time intervals such as weeks or months, which do not update ten-
sor values at every instance and are unable to capture intricate, nonlinear relationships in data.
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Alternatively, one could consider dynamical data streams, which are tensors with element-wise
updates (Zhou et al. 2017), or a tensor-valued function (Padovani 2000,Mahyari et al. 2016, Lund
2020, Zhang et al. 2020). In other words, X = X (t ), where each element is a function of time
xi1i2...id (t ). For example, we can consider new sales volumes at a given time point t as a tensor-
value function X (t ) ∈ R

n1×n2×n3 with three modes of stores, products, and promotion strategies.
The element xi1 i2i3 (t ) represents a new sale volume record, that is, the i1th store sale volume for
the i2th product given the i3th promotion strategy at time t (Zhang et al. 2020).

One viable approach to fit the tensor function for forecasting is through the CP decompo-
sition with time-varying coefficients using the spline approximation method. Then, forecasting
can be obtained via estimating tensor function X̂ (t ) given a future point t. Specifically, each
component of X (t ) is approximated via the CP decomposition, with time-varying coefficients
as follows: xi1i2···id (t ) ≈ ∑r

j=1 hj (t )p
1
i1 j
p2i2 j · · · pdid j. The time-varying coefficient hj(t) can be esti-

mated by spline approximation, that is, ĥ j (t ) = ∑M
i=1 α jiB ji(t ), where Bji(t)s are spline functions.

Once the estimators p̂kik j and ĥ j (t ) at given time points t are acquired, the forecasting estimator
x̂i1i2···id (t ) ≈ ∑r

j=1 ĥ j (t ) p̂
1
i1 j
p̂2i2 j · · · p̂did j can be achieved at a given time point t.

There are two major advantages associated with using tensor-valued functions. First, the
tensor-valued function can forecast tensor values at any point of time intervals, not just discrete
time points with a fixed granularity. The tensor-valued function regards every element of a ten-
sor as a function of time. The forecasting is achieved via fitting functions of time, which ensures
that the number of parameters after tensor factorization does not increase as time moves for-
ward and that the computational complexity would be reasonable, while the extended tensors
X̃n1×n2×···×(nd+h) have the dimension at time mode increasing over time. Second, nonparametric
estimation methods after tensor decomposition are able to capture intricate relationships from
observed data without any model assumption like in time series models. This ensures the robust-
ness of forecasting values.

3. TENSOR ANALYSIS IN RECOMMENDER SYSTEMS

In this section, we discuss tensor applications in recommender systems. A recommender system is
one type of information filtering system that tracks user preferences and recommends personalized
items to each user. Usually a recommender system can be formulated into a matrix of user-item
interactions, for example, movie rating, or online purchasing, denoted by X ∈ R

n1×n2 , where the
(i1, i2)th element represents the interaction between user i1 and item i2. In practice, X can be
extremely large and sparse. The goal of a recommender system is to complete the matrix and
recommend personalized items to each user.Amongmany existing works, one promising approach
is matrix completion (e.g., Candès & Recht 2012, Mazumder et al. 2010, Mao et al. 2019).

3.1. Context-Aware Recommender Systems

Modern recommender systems also collect other useful information in addition to user-item inter-
actions. One type of information to collect is the context of such interactions, for example, time,
location, device, companions, networks, or even combinations of these contexts. Recommender
systems with contextual information are usually called CARS ( Adomavicius & Tuzhilin 2011).
Instead of having a single utility matrix X to represent all user-item interactions, CARS formu-
lates a utility matrix Xi3 for each context i3 = 1, . . . , n3, as illustrated in Figure 7. For example, we
may formulate users’ preferences as dynamic and changing over time, or shopping behaviors at
different locations or with different devices. In Figure 4, each t = 1, . . . , n3 is a time point (e.g., a
week, a season, a year, etc.) and eachXt represents a utility matrix at time t, corresponding to users’
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Mode 1: User

Mode 2: Item

Mode 3: Context

User i’s response on
Item j, given
Context k

Figure 7

An illustration of a third-order tensor for recommender systems.

preference over movies at time t. In other words, all of the X1, . . . ,Xn3 matrices form a tensor X .
And the traditional matrix completion problem can be converted to a tensor completion problem
for CARS.

For a dth-order tensor X , let � = {(i1, i2, . . . , id ) : xi1i2···id is observed} be a set of indices cor-
responding to observed tensor entries. Then a criterion function for tensor completion can be
described as:

L(P1, . . . ,Pd ) =
∑

(i1,··· ,id )∈�

(xi1···id − x̂i1 ···id )
2 + λ f (P1, . . . ,Pd ),

where x̂i1 ···id is the estimated version of xi1···id , f is a regularization function, and λ is a tuning
parameter. For example, one may adopt the L2 regularization function. And we can achieve the
estimation of x̂i1 ···id via either the CP decomposition or the Tucker decomposition, as illustrated in
Section 6. In contrast to tensor decompositions as introduced in Section 2.2, one difference is that
tensors in CARS could be very sparse; that is, |�| could be very small compared with n1n2���nd.
For example, users may not be able to watch all movies on a platform, and the more contexts
we collect, the sparser a tensor representation could be. Meanwhile, the tensor entries are not
necessarily uniformly or independently drawn, as users have their own preferences and may refer
to friends or online reviews for suggestions. To address these issues, Bi et al. (2018) propose a
multilayer tensor factorization to accommodate dependency structures at each mode, such that
decisions of users, or patterns of items and contexts, are correlated if they are in the same group.
Tarzanagh&Michailidis (2019) propose a double core tensor factorization model, which incorpo-
rates smoothing loss functions and can accommodate heterogeneity across observation groups. An
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alternative approach is to collect additional scalar, matrix, or tensor information (e.g., Li & Zhang
2017, Lock 2018). Another possible extension is to allow a low-rank plus sparse tensor, where the
addition of the sparse tensor facilitates high-rank tensors without imposing much computational
complexity. This line of work follows the low-rank plus sparse matrices approaches (e.g., Candès
et al. 2011, Hao et al. 2020). Because of sparsity, the convergence properties may behave quite
differently as well. At the algorithm level, Chen et al. (2012) propose a maximum block improve-
ment algorithm that iteratively updates only the block with the maximum improvement, which
guarantees convergence to a stationary point.

Once tensor is decomposed and recovered, CARS indicates not only which user is going to
click, purchase, or interact with which item, but also when, where, or even how such clicks, pur-
chases, or interactions would happen. This provides critical strategies to business decision making
in personalized advertising, sales forecasting,marketing campaigns, or social networks’ friend rec-
ommendations, regarding what product to introduce, what movies to be displayed on whose front
page, and so on.

3.2. Tensor Completion

Many effective and powerful methods are proposed to achieve tensor completion, and some of
these methods also have broad applications beyond the CARS settings (e.g., Zhang 2019). For ex-
ample,Gandy et al. (2011) consider a tractable convex relaxationmethod for the low-n-rank tensor
recovery, and Mu et al. (2014) introduce a new convex relaxation to reduce sample complexity and
exploit several tensor structures jointly. Kressner et al. (2014) propose a nonlinear conjugate gra-
dient method to perform Riemannian optimization techniques. Moreover, Yuan & Zhang (2016)
achieve tensor completion via minimizing nuclear norm. And Shah et al. (2015) focus on separable
measurement mechanisms to identify a random set of tensor entries.

Given the fact that sparsity is one of the key characteristics of CARS, a related and important
topic is estimating the sample size requirement for tensor completion problems under various
situations. For d= 3, Jain &Oh (2014) propose an alternating minimization–based method. Barak
& Moitra (2016) investigate the noisy tensor completion problem and propose a sum-of-squares
hierarchy method to achieve tensor completion given n3/2r randomly sampled entries where n :=
max {n1, n2, n3} is the largest dimension across all modes, and r is the tensor rank. More generally,
Krishnamurthy & Singh (2013) and Yuan & Zhang (2017) investigate the sample size requirement
for higher-order tensor completion problems, both under the scenario when d � 3 and n := n1 =
n2 = ��� = nd. Specifically, Krishnamurthy & Singh (2013) incorporate adaptive sampling in the
absence of noise. And Yuan & Zhang (2017) show that the underlying dth-order tensor can be
recovered perfectly via an incoherent nuclear norm minimization. These results are summarized
in Table 1. We notice that Yuan & Zhang (2017) generalize the result of Jain & Oh (2014)
and achieve a smaller number of required entries. For the case of d = 3, Yuan & Zhang (2017)
require a smaller sample size when the tensor rank r is large. Meanwhile, the method proposed
by Krishnamurthy & Singh (2013) is more advantageous when d and r are small but n is large.

Table 1 The requirement of uniformly random entries to recover a dth-order tensor of rank
r and equal size n at each mode

Method reference Tensor order Number of required entries

Jain & Oh (2014) d = 3 O(n3/2r5log4n)

Krishnamurthy & Singh (2013) d � 3 O(r2(d − 1)d2nlog r)

Yuan & Zhang (2017) d � 3 O((r(d − 1)/2n3/2 + rd − 1n)log2n)
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4. TENSOR ANALYSIS IN BIOMEDICAL IMAGING APPLICATIONS

In this section, we review two types of tensor applications in biomedical imaging analysis: su-
pervised predictive models and unsupervised feature learning models. Unlike the tensor data for
recommender systems, the imaging data in biomedical studies are typically completely observed,
and each entry of the tensor corresponds to an image pixel/voxel.

4.1. Tensor-Based Supervised Learning Models

One of the primary scientific goals in biomedical imaging analysis is to establish the associa-
tions between the imaging data and other variables such as clinical assessments, demographic
factors, and genetic information. Under such a supervised learning framework, the imaging data
are treated as either a covariate or a response.

Conventional statistical and machine learning approaches in imaging analysis are mostly based
on the vectorized data, either by summarizing the imaging data through a small number of prei-
dentified regions of interest (ROIs) or by unfolding the entire image into a long vector.The former
highly depends on existing domain knowledge and does not fully utilize the raw imaging infor-
mation, while the latter could become rather restrictive due to the ultrahigh dimensionality of the
voxels involved in a high-resolution image. For instance, in a regression model taking each voxel
as a variable, a three-dimensional imaging covariate with a size of 256 × 256 × 256 is associated
with 2563 = 16,777,216 parameters, which could be infeasible to estimate even with additional
regularization techniques. More importantly, some key information, such as the spatial pattern, is
likely to be lost while transferring the multidimensional imaging array to a vector form.

To address the limitations of vectorization-based approaches, a family of scalar-on-tensor re-
gression models has been developed to preserve the tensor structure of imaging data (Guo et al.
2012, Zhou et al. 2013). Specifically, a univariate response Y (e.g., disease status) is linked with a
vectorized predictor z ∈ R

p0 (e.g., age and sex) and a tensor-valued predictor X ∈ R
p1×···×pd (e.g.,

medical images, as in Figure 8) through a generalized linear model

g
{
E(Y )

} = α + γT z + 〈B,X 〉, 3.

where g(·) is a link function, and 〈· , ·〉 denotes the point-wise inner product between two tensors
(Figure 9). For dimension reduction purposes, the coefficient tensor B is assumed to preserve a

Lung Brain Bone

a b c

Figure 8

Illustrations of tensor-valued imaging data: (a) a 3D CT scan of a lung, (b) a 3D MRI of a brain, and (c) a 3D MRI of bone.
Abbreviations: 3D, three-dimensional; CT, computerized tomography; MRI, magnetic resonance imaging.
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βijk : voxelwise coefficient

βijk • X ijk

i, j,k

X ijk : image voxel

=

X : (p1 ×  p2 ×  p3) image predictor B : (p1 ×  p2 ×  p3) coefficients tensor

〈B,X 〉: pointwise tensor product

Σ
Figure 9

Tensor regression with a three-dimensional MRI brain image predictor. Abbreviation: MRI, magnetic resonance imaging. The left
panel was adapted with permission from Amunts et al. (2013).

low-rank structure based on certain tensor decompositions (Zhou et al. 2013, Li et al. 2018). For
example, a rank-R CP decomposition significantly reduces the number of model parameters from
(1 + p0 + p1p2���pd) to {1 + p0 + R(p1 + p2 + ��� + pd)}. Meanwhile, some regularizations can also
be imposed to allow additional structure such as sparsity.

This tensor regression approach can be further extended to model a multivariate response
Y = (Y1, Y2, . . . , Yq)T, where each marginal response Yk (1� k � q) is associated with a coefficient
tensor Bk ∈ R

p1×···×pd . In addition to reducing the parameter dimension, the individual coefficients
are also believed to share some common structures. Hence, the coefficient tensors are formulated
in a stack B = [B1, . . . ,Bq] ∈ R

p1×···×pd×q, which is assumed to be low rank, either based on tensor
decomposition techniques (Li et al. 2016, Zhang & Li 2017, Miranda et al. 2018) or achieved by
penalizing the tensor nuclear norm (Raskutti et al. 2019).

In some imaging analyses, it is also of great interest to investigate the effects of other fac-
tors on an image response, for example, to compare the MRI scans of brains between subjects
with attention deficit hyperactivity disorder and normal controls (Li et al. 2016). In contrast to
conventional statistical models that mostly focus on a limited number of ROIs, the novel tensor-
based approaches enable us to investigate the covariates’ effects on all imaging voxels jointly. One
prevalent technique is to represent the image response in terms of a linear combination of some
multiway feature arrays, and the associated weights could depend on other covariates (Li & Zhang
2017, Sun & Li 2017). In a similar fashion, Lock (2018) further extends it to a tensor-on-tensor
regression model allowing a predictor with an arbitrary order.

Beyond the regression framework, similar techniques can be extended to other supervised
learning models with tensor predictors, for example, discriminant analysis for tensor classification
(Wimalawarne et al. 2016, Yang &Dunson 2016, Lyu et al. 2017, Pan et al. 2019) and multivariate
point process models for analyzing the calcium imaging data (Tang & Li 2020). In most existing
tensor-based supervised learning approaches, formulating the model parameters into an appro-
priate tensor plays a pivotal role. In addition to substantial dimension reduction, the imposed
low-rank structure also makes it feasible to utilize the high-order information from imaging data
and leads to more efficient estimations, as the voxel-wise parameters are jointly estimated through
a small number of latent factors from the tensor decomposition.
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Figure 10

Higher-order image tensors with special modes. (a) Four-modality optical imaging data, where different
modalities are generated by photons with different wavelengths. (b) fMRI data of brain activity, where
different modalities correspond to imaging over time. Abbreviation: fMRI, functional magnetic resonance
imaging.

4.2. Unsupervised Tensor Feature Learning

Most aforementioned supervised learning approaches focus on the structure of coefficients rather
than on the image itself. In many other applications, such as cancer imaging analysis, it is crucial
to process signals from images directly for effective feature learning and extraction. Nevertheless,
due to the extremely large volume of individual images compared with the limited number of
subjects, directly applying conventional techniques such as PCA to the vectorized imaging data
could be infeasible in both model estimation and computation.

To tackle these challenges, multiple individual images are aligned into an integrated tensor
using tensor decompositions. Consequently, each individual tensor can be represented as a linear
combination of some basis features (Mørup et al. 2006, Cong et al. 2012, Karahan et al. 2015). In
contrast to the vectorization-based methods, the obtained basis feature here is a layer of rank-1
tensors that can effectively preserve the higher-order structure information.

In addition to regular tensor decomposition methods, a variety of new decomposition tech-
niques have been developed to accommodate specific structures of different tensor data. The clas-
sic tensor decomposition method assuming population-shared bases and discrete factors can be
restrictive for more complex imaging data involving special modes, such as time (e.g., fMRI data)
and modalities (e.g., multimodality imaging data), as in Figure 10.

To account for the heterogeneity along different modes of tensor data, Tang et al. (2019) pro-
pose an individualized multilayer tensor decomposition incorporating orthogonal mode-specific
layers. For example, for multimodality imaging data, each single image tensor for the ith subject
and the mth modality is formulated as

X (m)
i =

R∑
r=1

w
(m)
ir A(m)

r + νiSi, s.t.
〈A(m)

r ,Si
〉 = 0, for 1 � r � R, 4.

whereA(m)
r is a population-shared,modality-specific basis feature, and Si is an individualized layer

shared by different imaging modalities capturing the cross-subject variations. Meanwhile, in the
spirit of functional data analysis, some dynamic tensor decomposition methods are developed to
model time-dependent tensor data. Section 2.3 provides more details.

Another important question in unsupervised learning is clustering. In imaging analysis, directly
applying a clustering algorithm to the vectorized tensor data may suffer from poor clustering
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accuracy and heavy computational burden. One option is to carry out the clustering based on the
extracted low-dimensional features of tensors (Cao et al. 2013); however, this could be ineffective
due to the two-stage estimation. Another, more appealing approach is to embed clustering into
the decomposition for the integrated higher-order tensor (Madrid-Padilla & Scott 2017, Sun &
Li 2019). For example, a fusion penalty,

∑R
r=1
∑

i,i′ |wir − wi′r|, can be incorporated on the latent
factors in the corresponding CP decomposition:

∑R
r=1 b

1
r ° b

2
r ° · · · ° bdr °wr , yielding an estimated

clustering structure along with specified tensor modes simultaneously.

5. TENSOR ANALYSIS IN NETWORK

Network data are collections of entities and measured relations between them. A network
G(V, E) is defined on a set of nodes V and a set of edges or links between nodes E. In a social
network, each node represents an individual, and an edge encodes the existence of a relationship
between two individuals. In a biological network, the node set V can represent a group of proteins,
and the interactions between proteins are associated with edges in E.

In this section, we review tensor applications on multirelational networks and multiway
relational networks. A multirelational network G1(V, E ) consists of a set of networks {G1(V, E1),
G2(V, E2), . . . , Gm(V, Em)} on the same node set V, where the edge set E = {Ei}mi=1 consists of
edges givenm different relation types. Specifically, each element in Ei is an edge connecting a pair
of nodes based on the ith relation. In contrast, a multiway relational network G2(V, E ) consists of
a node set V and an edge set E where each element in E connects multiple nodes from V.

Traditionally, an ordinary network can be represented as a matrix with the rows and columns
labeled as the nodes and binary entries indicating the presence or absence of an edge between
two nodes. However, the matrix is incapable of representing multiway or multitype relations. In
contrast, both multiway relational networks and multirelational networks can be formulated as a
tensor to provide complex network structures. In the former case, each mode indicates a partic-
ipating entity in a multiway relation, while an additional mode provides types of relations in the
latter case. For example, we can utilize an mth-order tensor X = {0, 1}nm to represent a set of m-
way relations among n nodes where the binary element xi1i2···im indicates the presence or absence
of m-way relations among nodes i1, i2, . . . im. In addition, a third-order tensor X = {0, 1}n×n×m
represents m types of relations among n nodes where element xijk indicates whether a kth-type
relation exists or not between nodes i and j.

5.1. Multirelational Modeling in Tensors

Applications for multirelational networks include knowledge graphs where factual information is
represented as different types of relations among the entities in a database, and social networks
where the relationships between people are characterized through their connections in terms of
different social relations.

Specifically, let V be a set of users in a social network where the size of node set |V| is n,
and let E = {Ei}mi=1 be a set of friendships from m different social media. Therefore, the mul-
tirelational social network illustrated in Figure 11 can be formulated as a third-order tensor
X = {xi jk} ∈ {0, 1}n×n×m. A common tensor structure in multirelational modeling is termed par-
tially symmetric in two specific modes if its tensor slices are symmetric. For example, a third-order
tensor X ∈ R

p1×p2×p3 is partially symmetric in the first two modes if p1 = p2 and X::i3 = X T
::i3
, and

the corresponding CP decomposition can be formulated as X = ∑r
j=1 p̄ j ° p̄ j ° p

3
j . Given that the

relationships aremutual, a multirelational social network consists of a stack of undirected networks
and is partially symmetric in the two modes regarding users.
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Figure 11

An illustration of a tensor formulation for multirelational social networks, where {A, B, C,D, E, F,G} denote seven social media users.

We model the observed relation as a Bernoulli distribution: P(xi jk ) = [σ
(
fi jk
)
]xi jk [1 −

σ
(
fi jk
)
]1−xi jk , where σ (·) is the logistic link function. This differs from the existing methods via

a partially symmetric score tensor { fijk} � Rn × n × m. The tensor decomposition is adopted here to
infer latent factor representations of { fijk}. Under this line of work, Kolda et al. (2005) and Franz
et al. (2009) propose to factorize the score tensor through the CP decomposition to capture the
heterogeneous interaction among entities.Nickel et al. (2011) propose a bilinear tensor decompo-
sition to capture the interactions between two entities using a multiplicative term with a relation-
related weighting matrix. This type of formulation generalizes the CP decomposition in the sense
that it degenerates to CP decomposition given diagonal weighting matrices. Noticing that the
CP decomposition considers three-way interactions among entities and relations, Jenatton et al.
(2012) propose a saturated interaction model to include intercepts and two-way interaction. Un-
der a similar data structure, Zhang et al. (2019) propose a decomposition to extract the network
features shared by all individual networks and their loadings on the base networks. Specifically, the
tensor network is decomposed as follows: X ≈ ∑r

j=1 λ jp1
j ° p

1
j ° p

2
j , where {p1

j ° p
1
j }rj=1 are the base

networks that are the counterpart of principle components in PCA, and the ith row of {p2
1, . . . ,p

2
r }

is the loadings for the individual networks X··i.
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Figure 12

A hypergraph consists of a set of nodes and a set of multiway links among nodes. A hypergraph can be represented as a tensor with
modes labeled as the nodes and binary entries indicating the presence or absence of a multiway link. (a) A 3-uniform hypergraph is
formulated as a third-order tensor. (b) Clustering within a hypergraph tensor: Group nodes into sets such that each set of nodes is
densely connected internally.

5.2. Multiway Relation Modeling in Tensors

In many applications of complex relational data, the system involves not only pairwise relations
between entities but also multiway or high-order interactions among a group of entities. For ex-
ample, in a protein-protein interaction network (Klamt et al. 2009), it is important to model and
capture the collaborative high-order interactions among a subgroup of proteins, which is func-
tionally associated with a protein complex.

A hypergraph tensor (Bretto 2013, Corsini & Leoreanu 2013, Pearson & Zhang 2014) is pro-
posed to generalize the two-way links represented by elements in a matrix to multiway hyperlinks
represented by elements in a tensor. Specifically, a multiway network with n nodes, where each
relation involves m entities, is formulated as a mth-order adjacency tensor X = {0, 1}nm . The en-
coding procedure is illustrated in Figure 12a.

In an application such as protein-protein interactions, the order among entities could be in-
different within a hyperlink, which represents a subgroup of entities. The corresponding tensor is
referred as supersymmetric (Kolda 2006), such that all elements remain constant under any per-
mutation of the indices. For example, a rank-r m-order adjacency tensor is supersymmetric if all
elements in {xσ (i1 )···σ (im )|σ (·) is any index permutation} are equal to xi1···im , and this imposes the CP
representation in the form X = ∑r

j=1 p j ° p j ° · · · ° p j .
One of the fundamental problems in multiway network analysis is link-based clustering (see

Figure 12b). This is also equivalent to identifying the block structure in an adjacency tensor. Due
to the nature of unsupervised learning of clustering algorithms,Ghoshdastidar&Dukkipati (2014)
introduce a planted partition model to enable performance comparison and theoretical analysis,
and to characterize the randomness of the block structure in a hypergraph tensor. Consider an
m-order hypergraph tensor containing n nodes and k communities; let Z � {0, 1}n × k be the as-
signment matrix of the nodes’ membership. The generating probability of a hyperlink is governed
by E(Xi1i2...im ) = ∑k

j1,..., jm=1 B j1 j2 ... jmZi1 j1 . . .Zim jm , where B ∈ [0, 1]km indicates the block-wise con-
nectivity probabilities. This model generalizes the stochastic block model (Holland et al. 1983)
from a simple graphical model to a hypergraph model. Specifically, a hypergraph tensor is treated
as a random realization from the mixture model, and therefore, specific properties of a clustering
algorithm can be established under this model assumption.

The general solution for hypergraph tensor clustering is first projecting each node into a latent
factor vector and then performing a heuristic clustering algorithm on the latent space. However,
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existing methods differ on the procedure used to project the tensor into a low-dimension repre-
sentation. The first category of method (e.g., Ghoshdastidar & Dukkipati 2014, Lin et al. 2017,
Kim et al. 2018) is to reconstruct a similarity matrix through the original hypergraph tensor and
then apply node clustering methods to the graph.

The second line of works follows the idea of performing clustering on the node-wise latent
factors obtained through the tensor decomposition introduced in Section 2.2. Ghoshdastidar
& Dukkipati (2015) propose a method for partitioning uniform hypergraphs by higher-order
singular value decomposition (HOSVD) of hypergraph tensors. In their subsequent work
(Ghoshdastidar & Dukkipati 2017), the assumption of uniform hyperedge size can be relaxed,
and a more general hypergraph model with mixing edge orders is considered. To overcome the
suboptimality of HOSVD, Ke et al. (2019) propose a penalized higher-order orthogonal iteration
to obtain the low-rank Tucker decomposition, where large entries are truncated at each iteration.
This method extends the higher-order orthogonal iteration (HOOI) for tensors with Gaussian
entities to a binary tensor and is able to handle the sparsity in hypergraph tensors. Related to the
hypergraph clustering problem, it is often reasonable to investigate whether communities exist or
not in an observed hypergraph prior to identifying these communities. Yuan et al. (2018) study the
phase transition condition for differentiating between a tensor generated by a block model and
one generated by a complete random process and propose the corresponding test statistic based
on hypergraph cycles when the community structure is detectable.

6. ALGORITHMS FOR TENSOR COMPUTATION

In this section, we introduce some canonical and commonly used tensor computation algorithms.
Available software packages are listed in the Supplemental Appendix.

Assuming the number of components is fixed, existing algorithms to compute a CP decompo-
sition include the alternating least squares (ALS) method (Carroll & Chang 1970) and the tensor
power method (Anandkumar et al. 2017). The key idea for the ALS algorithm is to estimate each
Pk cyclically, k= 1, . . . , d, while fixing Pk′ s until a stopping criterion is satisfied. A commonly used
criterion function for tensor CP decomposition (with L2-penalty to guarantee convergence) is as
follows:

L(P1, . . . ,Pd |X ) =
∑
i1,...,id

(xi1···id − x̂i1 ···id )
2 + λ

d∑
k=1

‖Pk‖2F ,

where x̂i1 i2···id = ∑r
j=1 p

1
i1 j
p2i2 j · · · pdid j is an estimate of the tensor element xi1i2···id , λ is a tuning pa-

rameter to control the magnitude of the penalty, and ‖ · ‖F represents the Frobenius norm. Then
the ikth row of Pk can be estimated as

p̂kik = argmin
pkik

∑
i1,...,ik−1,ik+1,...,id

(xi1···id − x̂i1 ···id )
2 + λ‖pkik‖22, ik = 1, . . . , nk,

which is essentially a ridge regression. Each iteration of the ALS algorithm consists of cyclically
updating each row of Pk, for k = 1, . . . , d. The algorithm is considered converged if the improve-
ment of the criterion function L(·|X ) is smaller than a certain threshold (e.g., 10−4). Other penalty
functions can also be considered, such as L1- or L0-penalty for sparsity pursuit (Zhu et al. 2016).

We provide more details for the case d = 2 (matrix) as an illustration, where we have x̂i1i2 =
(p1

i1
)T (p2

i2
) in the loss function. We first initialize P1 and P2 as independent and identically dis-

tributed random normal variables with zero mean and small standard deviation.Then,minimizing
L(·|X ) can be achieved via iteratively updating the following two equations:

p2
i1

= {
(P2)T (P2) + λIr

}−1
(P2)T xi1,·, and p2

i2
= {

(P1)T (P1) + λIr
}−1

(P1)T x·,i2.
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The ALS algorithm for d= 2 converges to a stationary point. For tensors with d� 3, the ALS can
be conducted in a similar fashion. However, it may converge only to a point where the criterion
function ceases to decrease (Chen et al. 2012), and the performance of this algorithm is influenced
by its initialization (Rabanser et al. 2017).

Algorithms to compute a Tucker decomposition mainly include HOSVD (De Lathauwer et al.
2000a),HOOI (DeLathauwer et al. 2000b), andNewton-Grassmann optimization (Eldén&Savas
2009). The key idea behind HOSVD (Tucker 1966) is to find the components that best capture
the variation in a mode, while not considering the other modes at this point in time. This directly
corresponds to the basic PCA concept. Specifically, computing a Tucker decomposition of a tensor
X ∈ R

n1×n2···×nd is done by solving the following optimization problem:

min
C,Q1,...,Qd

∥∥X − [[C;Q1,Q2, . . . ,Qd ]]
∥∥, 5.

subject to C ∈ R
m1×m2×...×md , Qk ∈ R

nk×mk and columnwise orthogonal for k = 1, . . . , d. The de-
tailed HOSVD algorithm is provided in the Supplemental Appendix.

HOOI is essentially an ALS algorithm, which uses the outcome of performing HOSVD on a
tensor as a starting point for initializing the factor matrices (Kolda & Bader 2009). This algorithm
is especially helpful in cases where we only have access to a truncatedHOSVD, since the successive
application of the ALS algorithm allows for more accurate decompositions. Since the core ten-
sor C must satisfy C = X ×1 Q1� ×2 Q2�· · · ×d Qd�, we can then rewrite the square of the above
objective function as ‖X − [[C;Q1,Q2, . . . ,Qd ]]‖2 = ‖X‖2 − ‖X ×1 Q1� ×2 · · · ×d Qd�‖2. There-
fore, solving the above minimization problem is equivalent to solving a series of the maximization
problems,where the kth step solves for the kth componentmatrix: maxQk ‖X ×1 Q1� ×2 Q2�· · · ×d

Qd�‖ subject to Qk ∈ R
nk×mk and columnwise orthogonal. The solution can be determined using

the SVD. The detailed HOOI algorithm is provided in the Supplemental Appendix.

7. CONCLUSION AND FUTURE DIRECTIONS

In this article, we provide a review of the basic properties of tensors; important developments
of tensor-based models in statistics; and various applications in recommender systems, medical
imaging analyses, andmultiwaymultirelational network data. In addition,we also summarize some
canonical tensor computation algorithms.

We summarize the tensormethods and tools through parametricmodeling based on a low-rank
decomposition; however, nonparametric tensor modeling has also been proposed. One possible
approach to nonparametric tensors is based on the reproducing kernel Hilbert space. The ten-
sor is formulated using a tensor product kernel, and tensor completion and regression can be
implemented based on the kernel-based interpolation. Another line of nonparametric tensors fol-
lows nonparametric Bayesian modeling via utilizing a Gaussian process to capture the interactions
among tensor entities. In general, nonparametric modeling is able to characterize nonlinear rela-
tionships among data entities and is robust for noisy observations, but with the price of increasing
computational cost.

The existing work on tensor completion also opens up several potential future directions. One
of the most important areas is the relaxation of the uniformly sampled entries assumed in existing
tensor completion approaches. One possible extension is to treat the unobserved tensor entries as
not missing completely at random (Rubin 1976). Such models have been widely studied under the
longitudinal or survival data framework.

In addition, there are also several unsolved problems for tensor applications in imaging anal-
yses. One of the most challenging topics is how to effectively integrate tensor-value imaging
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covariates with other predictors, such as demographic characteristics, treatments, and genetic
information—for example, how to combine both imaging and genetic data.One possible direction
is to borrow the idea of sufficient dimension reduction or partial least squares methods and project
the data onto specifically designed subspaces. In addition, a hierarchal model could be useful to
embed the additional factors into a tensor regression model.

Tensor decompositions have also been studied in research on deep learning architectures. For
example, studies show that a shallow network is equivalent to rank-1 CP decomposition (Cohen
et al. 2015), whereas a deep network corresponds to a hierarchical Tucker decomposition. In ad-
dition, tensor decomposition can be used to represent the weighting matrix of a fully-connected
layer, and the core of the Tucker decomposition is used for reparameterizing the deep network
layer (Novikov et al. 2015). Furthermore, tensors have been applied in clustering analyses via lin-
ear tensor discriminant analyses (Baudat & Anouar 2000) and tensor stack networks (Hutchinson
et al. 2013). Both schemes have been successfully implemented in speech and facial recognition.
These methodologies require a relatively large amount of data in order to construct indirect par-
titions of these data sets. Thus, new schemes or extensions of existing tensor clustering methods
need to be further developed for deep learning.

Furthermore, complex network structures also motivate us to develop multiple-order tensors.
One potential direction is clustering or link predictions for heterogeneous hypergraphs with vary-
ing sizes of hyperlinks, which would require a generalization of stacking tensors with different
orders.
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