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Abstract

Virus infection is an intricate process that requires the concerted action of
both viral and host cell components. Entry of viruses into cells is initiated by
interactions between viral proteins and cell-surface receptors. Various cell-
surface glycans function as initial, usually low-affinity attachment factors,
providing a first anchor of the virus to the cell surface, and further facili-
tate high-affinity binding to virus-specific cell-surface receptors, while other
glycans function as specific entry receptors themselves. It is now possible to
rapidly identify specific glycan receptors using different techniques, define
atomic-level structures of virus-glycan complexes, and study these interac-
tions at the single-virion level. This review provides a detailed overview of
the role of glycans in viral infection and highlights experimental approaches
to study virus-glycan binding along with specific examples. In particular, we
highlight the development of the atomic force microscope to investigate
interactions with glycans at the single-virion level directly on living mam-
malian cells, which offers new perspectives to better understand virus-glycan
interactions in physiologically relevant conditions.
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Glycan: carbohydrate
structure made of
mono- or
polysaccharides that
can be free or
covalently linked to a
core molecule

Attachment factor:
cell-surface structure
that allows virus
attachment and
promotes binding to
specific entry receptors

Entry receptor: cell
membrane structure
that triggers virus
entry inside permissive
cells upon virus
binding

INTRODUCTION

Viruses are obligate intracellular parasites. Therefore, viruses must bind to and enter permis-
sive host cells in order to hijack their host cellular machinery. Viruses can be seen as passive and
metabolically inactive entities with limited available strategies to cross the plasma membrane of
their target cells. However, mammalian cells are dynamic and provide various structures and pro-
cesses allowing the uptake of macromolecular assemblies. Throughout evolution, viruses devel-
oped various strategies to take advantage of numerous cellular functions (e.g., genome replica-
tion, transcription) and uptake mechanisms such as endocytosis (1). Cellular membranes consist
of complex assemblies of three of the four building blocks of life: proteins, carbohydrates, and
lipids. While carbohydrates (or glycans) have so far been the most understudied, the rise of gly-
comics has highlighted their complexity and their faceted roles in physiology. They play a crucial
role in many fundamental cellular processes including signal transduction, extracellular matrix
formation, protein folding, cellular identity, and host-pathogen interactions.

Cellular glycans play a crucial role in virus infection. In this review, we describe the role of gly-
cans during the initial step of virus-cell binding.We discuss different techniques available to study
virus-glycan binding as well as recent advances to understand the function of glycan engagement
during virus infection of living cells.

THE ROLE OF GLYCANS IN VIRAL INFECTION

To replicate and avoid immune recognition within the extracellular medium, viral particles must
enter susceptible cells. Furthermore, conditions within the extracellular medium can be hostile
for certain virus types. Therefore, to limit free diffusion in an unfavorable environment, viral par-
ticles should initiate entry into cells relatively rapidly (2). To do so, the most efficient strategy
is to bind the first cellular structure encountered while approaching the plasma membrane: the
glycocalyx. This dense, 50- to 200-nm thick layer of carbohydrates coats the surface of almost
every mammalian cell and plays both structural and functional roles to ensure physical integrity,
cellular signaling, and cell-to-cell communication (3). The glycocalyx is composed of various sug-
ars linked to lipids or proteins, such as glycoproteins, glycolipids, and proteoglycans (4). Binding
to sugar moieties is of critical importance to gain access to target cells covered by carbohydrates
(e.g., within the mucus). Using cell-surface oligosaccharides as initial attachment factors enhances
viral infectivity (5), mainly by concentrating viral particles on the cell surface and facilitating the
subsequent binding of specific virus receptors for internalization (6). In addition to that, some
cell-surface carbohydrates also can be used by viruses directly as entry receptors (7). The dis-
tinction between attachment factors and entry receptors is however not as clear in practice. As
knowledge about virus entry increases, it becomes evident that attachment to cell surfaces is more
complex than initially thought. Functions of attachment, internalization, and uncoating are medi-
ated by several host factors, which can be cellular glycans or proteins depending on the cell type.
Therefore, the definitions of attachment factors and entry receptors can somehow overlap, as both
functions can be mediated by similar glycan or protein moieties.

Glycans are abundant on cell surfaces, where they are covalently associated with proteins and
lipids, which confers additional structural and functional features to these molecules (6). Glycans
found on the surface of animal cells display a wide diversity of constituents and structures (8).Gly-
coconjugates can therefore be classified based on their core structure, the type of macromolecule
they are attached to, and the type of linkage to which they attach. Glycoconjugates consisting
of cell-surface proteins with covalently attached oligosaccharides are called glycoproteins. The
type of linkage by which the proteins are glycosylated allows discriminating N- and O-glycans,
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depending on whether the glycans are linked to amino acids through nitrogen (9) or oxygen atoms
(10). The second type of branched glycoconjugate is composed of oligosaccharides attached to
lipid molecules. Two main classes of glycolipids can be distinguished: the glycosphingolipids (8,
11) and the glycophospholipid anchors or glycosylphosphatidylinositol (GPI) anchors (8). Finally,
a third type of glycoconjugate molecule exists, consisting of linear chains of sugars attached to
a core protein. These structures are called proteoglycans, in which the glycan moieties are long
chains of repeating disaccharide units called glycosaminoglycans (GAGs) (11).

The cellular tropism of a virus is, among other aspects, influenced by its initial binding step,
which frequently involves glycans present at the surface of susceptible cells (2). Therefore, the
tropism of a virus for a tissue or a particular cell type is primarily affected by the type of glycans
displayed on their surfaces and the capacity of viral proteins to recognize them. In addition to
the presence of a specific glycan, the type of glycosidic linkage also can influence the host range
specificity, as is the case for influenza viruses (12, 13).

Glycan Types

Viruses mainly bind three different glycoepitopes: sialic acids on N- and O-glycans and glyco-
lipids (e.g., orthomyxoviruses and reoviruses), GAGs within proteoglycans (e.g., herpesviruses
and retroviruses), and neutral carbohydrate moieties such as histo-blood group antigens (HBGAs)
on N- and O-glycans (e.g., caliciviruses) (3).

N- and O-glycans.Viruses use two main protein glycan modification types during cellular at-
tachment. The first type, N-glycan, is initiated in the endoplasmic reticulum on an asparagine
residue and further processed in the Golgi apparatus.N-glycosylations are often highly branched.
O-glycosylation occurs in the Golgi apparatus at serine or threonine residues by an O-linkage
to the free hydroxyl group of the amino acid. O-glycans tend to be smaller and less branched
than N-glycans. Sialic acids are often found at the terminal branches of N-glycans and O-glycans
(14) (Figure 1a). The most common form of sialic acid in humans is α5-N-acetylneuraminic
acid (Neu5Ac), which consists of a nine-carbon backbone that can be extensively modified by
acetylation, methylation, hydroxylation, and sulfation (3). Those modifications can be crucial in
the context of virus tropism. For example, the preferred attachment factor for influenza A and B
viruses is Neu5Ac not 9-O-acetyl-Neu5Ac residues, whereas the reverse is true for influenza C
virus (15). In addition, various types of glycosidic linkages can be used to connect sialic acid to the
subsequent carbohydrate unit of the glycan chain (16). Therefore, more than 50 variants of sialic
acids exist and account for a high level of diversity. Sialic acids are usually attached by α2,3- or
α2,6-glycosidic linkages to galactose orN-acetylgalactosamine at the tail end of glycan chains (16).
This arrangement allows the protruding functional groups (hydroxyl, glycerol, carboxylate, andN-
acetyl) to be accessible for interactions with viral particles (17). Several viruses exploit these struc-
tural properties of sialylated glycans as species-specific attachment factors. Influenza A virus is a
well-studied example for which the presence of α2,3- or α2,6-linked sialylated glycans is suggested
to function as a species barrier between avian and human hosts. While these specific glycans are
certainly important, recent glycomics studies have yielded a more complex diversity of sialylated
attachment factors and sialic acid derivatives (18–20).Additional examples of sialic acid–dependent
viruses are parainfluenza viruses (12), reoviruses (21), polyomaviruses (22), and coronaviruses (23)
(Figure 1b).

HBGAs are neutral carbohydrate moieties present on N- and O-glycans from the surface of
red blood cells as well as on most epithelial cells (24) (Figure 1a). These terminal structures on
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Binding affinity:
strength at which a
ligand binds its
receptor; expressed as
the ligand
concentration that
occupies half the
receptors at
equilibrium

Figure 1 (Figure appears on preceding page)

Glycans used as attachment factors or entry receptors by different viral species. (a) The most-used glycoconjugates from the cell surface
are sialic acid terminated N- and O-glycans, glycosaminoglycans (heparan sulfate, chondroitin sulfate, hyaluronan, and keratan sulfate),
and histo-blood group antigens (HBGAs). (b) Viruses from different families use one or two types of glycans as attachment factors or
receptors depending on the virus type. Examples of viruses are provided in italics. For some viruses, it is still not clear whether binding
to sialylated glycans is sufficient to induce virus internalization (e.g., influenza A virus for which other specific receptors were identified,
such as epidermal growth factor receptor).

glycan chains are used as attachment factors by human noroviruses (25) and some rotavirus strains,
switching specificity from sialylated glycans (26) (Figure 1b).

Glycolipids containing terminal sialic acids also can function as attachment factors or receptors
for viruses binding to sialylated moieties, as exemplified by simian virus 40 binding to ganglioside
GM1 (27).

Glycosaminoglycans.GAGs are linear chains of polysaccharides attached to a core protein em-
bedded in the plasma membrane. These proteins, called proteoglycans, are highly glycosylated, as
they can bear multiple extended chains of carbohydrate moieties. GAGs are abundant on the sur-
face of most mammalian cells (28) and constitute the main form of glycans within the glycocalyx
(Figure 1a). The carbohydrates constituting the GAG chains are repeating units of disaccharides,
one being either uronic acid (glucuronic acid or iduronic acid) or galactose, while the second sugar
is N-acetylglucosamine or N-acetylgalactosamine (28). One or both of the sugars bear negative
charges inherent to the carboxylate side groups of uronic acid or the sulfation of the sugar moieties
(16). Therefore, GAG chains have a high overall negative charge density. Although their structure
consists of repeating disaccharide units, GAG chains are highly heterogeneous. This is mainly
due to the post-synthetic addition of sulfate groups to the constituents of the chains. The sulfa-
tion patterns on the GAG chains are of main importance and interest, as sulfation motifs and their
location on the chains are tissue specific and related to the developmental state of the cell as well
as disease-induced physiological conditions (29). The sulfation pattern of GAG chains influences
their interactions with viruses (30). For example, the degree of GAG sulfation directly influences
the binding affinity of herpes simplex virus 1 (HSV-1) (31).

Proteoglycans can be classified based on their cellular and subcellular localization as well as
genetic homologies (32). Among those localized at the cell surface, the two main proteoglycans
involved in virus attachment to cell surfaces are syndecans and glypicans. Syndecans are transmem-
brane proteins containing an intracellular domain, a transmembrane region, and an ectodomain
bearing the GAGs (33). Some syndecans are responsible for the receptor-mediated endocytosis of
ligands (e.g., low-density lipoprotein and transferrin, growth factors). Therefore, virus binding to
these receptors serves as an entry ticket to the interior of the cell by endocytosis (34). For exam-
ple, human rhinovirus 2 undergoes receptor-mediated endocytosis after interaction with the low-
density lipoprotein (35). Glypicans are proteoglycans attached to the plasma membrane through a
C-terminal lipid moiety GPI. Glypicans are exclusively extracellular proteins that take a globular
shape (6). In contrast to syndecans, the anchorage region of the GAG chains on the proteogly-
can is located near the juxtamembrane domain (32), bringing virus particles in close proximity
to their cognate receptor. GAG chains can themselves be classified into four different categories,
depending on the nature of the disaccharide repeating units. Hyaluronan has the highest number
of repeating units and is the only GAG that is not sulfated, while keratan sulfate has the shortest
GAG chain. The other two GAGs, heparan sulfate (HS) and chondroitin sulfate (CS), have a high
net negative charge and are the main GAGs used by viruses as attachment factors (2). HS and
CS are composed of 10 to 100 repeating units (36) but differ in the type of disaccharides, sulfa-
tion pattern, and location on the cell surface. HS chains are mainly attached to syndecans and are
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therefore situated relatively close to the cell surface. However, while CS chains also can be found
attached to syndecans, the vast majority are attached to another family of proteoglycans, aggre-
cans, which are carried by hyaluronan within the extracellular matrix and are thus located further
away from the cell membrane (28). Proteoglycans and syndecans in particular serve as receptors
for several viruses, including human immunodeficiency virus type 1 (HIV-1) (37), HSV (38), and
human papillomavirus (39) (Figure 1b).

As viral membrane proteins are synthesized using the host cell machinery and traverse the se-
cretory pathway, they are modified with host-dependent glycans. Depending on their location,
these glycans can influence viral replication and pathogenicity. Besides affecting immune recogni-
tion (40), protein folding, and protein conformation (41, 42), glycosylation is an important modu-
lator for virus-cell binding. Glycosylation of the influenza virus hemagglutinin affects folding and
pH stability when near the stalk and cleavage site of the protein (41, 42). When near the binding
site, glycosylation alters the affinity for sialylated attachment factors (43), as is also the case for
avian coronaviruses (44).

Virus-Cell Binding and Entry

Due to the ubiquity of glycans on cell surfaces, viruses have evolved to use glycans as attachment
factors. Examples include hepatitis C virus (6), influenza virus (12), HIV (45), Ebola virus (46),
human papillomavirus (47), and viruses from the herpesvirus family (48). In order to take advantage
of glycans to gain access to cellular membranes, viral attachment proteins recognize specific glycan
patterns on the surface of target cells. As the constituents of the glycocalyx bear a substantial
amount of negative charge, electrostatic interactions are of primary importance for virus binding,
as positively charged domains of viral proteins can readily attach to negatively charged glycans.
However, a high degree of binding specificity is often reached, implemented by precise hydrogen
bonding or hydrophobic interactions between viral proteins and glycoepitopes (49, 50).

Interactions between viral proteins and cellular glycans are usually of low affinity, with dissoci-
ation constants in the millimolar range (51–53). However, the surface of virus particles is covered
with several hundred copies of the glycan-binding proteins (54), which allows viruses to form
multiple simultaneous interactions with cell-surface sugars, i.e., multivalent interactions (55). En-
gaging simultaneously with multiple viral proteins allows compensation for the inherently weak
affinity of the glycan-protein interactions and strengthens the binding of viral particles to cell
surfaces. The strength of such a multivalent interaction depends on the number of connections
(i.e., the number of simultaneously interacting pairs of viral protein-glycan moieties), which it-
self mainly depends on the density and spatial arrangement of the interacting molecules on both
surfaces. Therefore, the number of available binding partners on viral particles directly controls
and modulates the interactions taking place with cell surfaces. Multivalent binding is a property
of a wide variety of viruses, indicating a principal mode of cell attachment (55, 56). The affinity
of adenovirus serotype 37 (Ad37) binding to sialic acid is increased 250-fold when bivalent in-
teractions are involved, relative to monovalent binding (51, 57). As another example, trimers of
recombinant influenza A hemagglutinin bind to multiple glycans depending on the host origin
(58). Thus, a dense glycan organization on the cell surface appears to be required for functional
binding. Interestingly, super-resolution microscopy has visualized the presence of dense submi-
crometer glycan nanodomains, which provide a multivalent virus-binding platform. Following
this hypothesis, single-virus tracking supports the idea of a compartmentalized organization of
sialylated glycans (59).

Once attached to the cell surface, viral particles mostly show two types of behavior that can
be depicted as land-and-stick and land-and-seek approaches (60). In the former, virus particles
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Random diffusion:
random movement of
a particle driven by a
concentration gradient
that depends on
particle random walk
mechanisms

Directional
displacement:
constrained movement
of a particle along
specific cellular
structures or pathways

Multivalent
inhibitor: molecule
interfering with virus
binding to cell surfaces
using structures
displaying multiple
copies of glycans

interacting with attachment factors or receptors are internalized at the location of the initial
interaction. This involves spatial confinement of the virions waiting on the cell surface for
endocytosis or the recruitment of a coreceptor (60). In the latter, virions undergo a complex
mobility process at the cell surface in order to find a suitable location to be internalized. In
that case, after binding to their attachment factors or primary receptors, viral particles undergo
random diffusion or directional displacement on the cell surface to reach a specific location on
the plasma membrane enabling virus internalization (61, 62). This strategy is used by influenza A
virus, mouse polyomavirus, and simian virus 40 (63–65). The structural basis for this explorative
motion often is elusive due to the nanoscale size of the virus-cell interface. Here, super-resolution
microscopy can be used to visualize the organization of viral proteins and virus-binding factors
(discussed below). While virus displacement on the cell surface can be achieved by diffusion
of a virus-bound protein within the plasma membrane, it also can be achieved by cell-surface
glycans. For example, stable binding of simian virus 40 to cell surfaces is highly dependent on the
motion of virions bound to the glycosphingolipid GM1 to gather a sufficient number of receptors
(66). The motion of influenza A virus is highly dependent on the modulation of the number
of sialylated receptors engaged by hemagglutinin proteins as well as the action of the cleaving
enzyme neuraminidase (67, 68). The polarized intravirion organization of hemagglutinin and
neuraminidase is thought to be important for viruses to avoid immobilization and provide the
opportunity for directional virus movement (69).

While the glycoepitopes on sialylated glycoproteins are usually a terminal unit of a large gly-
coconjugate molecule, GAG molecules provide multiple glycoepitopes, as they can be internal
sequences of the chain (6). This structure provides a powerful diffusion platform for viral parti-
cles, as the long chains of repeating glycans allow sequential binding and unbinding of ligands to
neighbor binding sites or from one GAG chain to another (70, 71). Virus mobility on GAG chains
was demonstrated for HSV-1, which displays different diffusion coefficients depending on the
GAG sulfation pattern (31). In this context, the number of physical bonds between viral particles
and receptors directly influences the virus diffusion potential. While multiple parallel interac-
tions allow strong virus attachment, a low number of bonds could be preferred to allow diffusion
to specific entry receptors.

Glycan-Based Antiviral Strategies

Because attachment of viral particles to glycans is usually the first step of infection for many
virus families, interfering with this process could limit viral spread and block the development of
virus-related diseases. An attractive strategy of impeding virus attachment to cell-surface glycans
is to make use of those molecules to physically interfere with virus-cell interactions (72). There-
fore, antiviral compounds that compete with cell-surface glycans for virus binding have potential
as therapeutic agents (73). The overall strength of virus attachment to cell surfaces is usually
enhanced by engaging multiple glycans simultaneously. Therefore, to mimic virus-cell interac-
tion, compounds capable of forming multivalent interactions with virions are of primary interest
to block viral attachment. Consequently, several multivalent inhibitors have been developed to
interfere with attachment of different viral families.Various polyvalent assemblies targeting the in-
fluenza virus hemagglutinin protein inhibit attachment, with dramatic enhancement of efficiency
relative to their monovalent counterparts. These structures include functionalized polymers (74),
liposomes (75), and solid or soft nanostructures (76, 77) to obtain glycoconjugates carrying multi-
ple sialic acid residues. In addition to that, GAG-mimicking macromolecules such as heparin (78),
sulfated polysaccharides (79), or functionalized polymers, dendrimers, or nanoparticles decrease
GAG-mediated virus attachment in vitro.HS-coated nanoparticle structures also display virucidal
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Glycofullerene:
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macromolecular
carbonaceous structure
capped with glycan
moieities

Antiviral drug:
medication used to
treat viral infections by
blocking the viral cycle
at a specific step (cell
binding, genome
replication)

Cryo–electron
microscopy: electron
microscopy technique
applied to frozen
samples allowing
high-resolution
imaging of
biomolecules

Atomic force
microscopy (AFM):
microscopy technique
using a fine tip
attached to a cantilever
to image various
surfaces and
force-probe their
constituents

activities in vivo (80). Moreover, giant multivalent glycofullerene structures inhibit infection by
pseudotyped Ebola virus particles (81). Unfortunately, despite these promising results, antiviral
effects are rarely observed in vivo (82, 83), which often correlates with low biocompatibility
and high cytotoxicity. Some of these problems have been successfully addressed, revealing that
an optimal scaffold size and geometry play important roles in modulating the efficacy and host
compatibility of synthetic compounds in vivo (76, 84). Currently, a few glycan-based antiviral
drugs involved in clinical trials include carrageenan-, dextran-, and alginate-based assemblies
(85). Two sialic acid analogs are licensed and effectively used to fight influenza virus infection:
zanamivir and oseltamivir. Their action mechanisms involve inhibition of the neuraminidase
enzyme and therefore prevention of virus release from infected cells and cell-to-cell spread (85).

Despite the great potential of inhibiting viral attachment by targeting virus-glycan interactions
and the numerous molecules that show positive effects, only a few such antiviral drugs are licensed
and effectively used.Therefore, gaining new insights into themolecular details of virus attachment
to cell-surface glycoconjugates is of prime interest to foster development of antiviral strategies
based on glycan-binding inhibitors.

EXPERIMENTAL APPROACHES TO STUDY VIRUS BINDING

There are many techniques available to study virus binding to cell-surface glycans as purified in-
teractants. The current challenge is to address this fundamental question using physiologically
relevant conditions. New developments include imaging and tracking techniques, such as cryo–
electron microscopy (cryo-EM), fluorescence-based techniques, and biophysical approaches, in-
cluding optical tweezers and atomic force microscopy (AFM). We provide an overview of these
techniques and discuss their strengths and weaknesses.

Virus-Binding Assays

Early virus-binding assays relied on the capacity of a virus to agglutinate (i.e., clump) cells such as
heavily glycosylated erythrocytes [i.e., hemagglutination (86)].While this type of assay is still used
to quantify viruses and probe their specificity (e.g., for influenza virus), more recent approaches
take advantage of synthetic glycans. In general, a virus-binding assay relies on monitoring viral
adsorption to a knownmolecule of interest (i.e., specific receptor, antibody, or glycan). A detection
method is used to quantify the presence and extent of virus binding to the molecule of choice.
Many virus-binding assays follow this principle but differ in the presentation of the molecule and
the detection method used to monitor virus binding (e.g., liquid- or solid-phase, radioactive, or
fluorescence assays).

Solid-phase binding assays are widely used to study interactions in vitro and have the advan-
tages of speed and simplicity. These assays are based on the binding of virions in solution to an
immobilized receptor on a solid phase (e.g., protein or glycan). Binding is usually monitored us-
ing fluorescence-based detectionmethods (immunofluorescence analysis or ELISA) or radioactive
methods (87). Although solid-phase binding assays with purified receptors lack the complexity
of biological samples, this method is useful as a primary screen of a virus-receptor interaction.
In the context of virus-glycan binding, glycan arrays can be used to better define differences in
virus-glycan interactions by enabling fast, high-throughput screening of several glycans as po-
tential virus-binding molecules (88). In such screens, recombinant viral proteins, either alone or
immobilized on nanoparticles, as well as whole virions are analyzed for binding to a wide array
(>600) of synthetic glycans that have been robotically printed on glass slides (89). Glycan arrays
differ in their glycan composition (90) and mode of glycan immobilization (91), which have been
previously reviewed (92). Glycan arrays have become the standard for many virus-glycan studies,
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X-ray
crystallography:
technique to
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macromolecules down
to atomic resolution

e.g., for adenovirus (57), influenza virus (93), polyomavirus (94), and reovirus (21). However, a
requirement for the use of synthetic glycan libraries is structural knowledge of cellular glycans in
a respective host tissue. Glycomics approaches now allow determination of glycan structure and
composition of native tissues, revealing a much more complex picture than previously assumed
(18, 19). Some studies have already begun to adapt these technologies to employ natural glycan
libraries by harvesting glycans from cells or tissues and imprinting them in a glycan array format
(95).

To better mimic physiologically relevant conditions, virus-binding assays also can be conducted
using living cells. In these assays, viruses are incubated with a confluent layer of cells (preferably
at 4°C to avoid endocytosis), and virus binding is monitored by fluorescently labeled viruses (96).
Labeled viruses are usually obtained in vitro by incorporating radioactive nucleotides (97), ra-
dioactive lipids for enveloped viruses (98), or chemical modification of exposed surface proteins
with fluorescent dyes (99).However, in the latter case, the labeling of the virus can alter its binding
due to changes in the intrinsic nature of a particular protein responsible for virus-cell interaction.

Thanks to their simplicity, virus-binding assays are widely used as screening tools. However,
they lack quantitative and dynamic information.

Structural Insights into Virus-Glycan Interactions

Structural studies provide detailed knowledge of the structure of viral proteins involved in binding
to host attachment factors as well as insights into their entry mechanisms such as snapshots of
membrane fusion mechanisms. A wide variety of methods are used to obtain structural insights,
ranging from electronmicroscopy (EM) or cryo-EM techniques tomore classical approaches such
as nuclear magnetic resonance and X-ray crystallography.

EM is an important tool in virology. The first images of viruses date from the late 1930s
(100) thanks to the transmission electron microscope (TEM). The high resolving power of the
TEM permits studies at the nanometer scale, providing direct images of viruses for diagnosis and
research. Since then, many improvements in structural techniques yielded enhanced resolution
and maintenance of the biological sample in near-native conditions. In this context, the devel-
opment of cryo-EM has been particularly important, with resolution approaching that of X-ray
crystallography without a requirement for crystallization, fixation, or large amounts of biological
material. Single-particle cryo-EM reconstruction is often used for studies of purified viral
proteins, macromolecular complexes, or whole virions with the aim to resolve the organization of
multicomponent assemblies. Being mostly applied to resolve structures of a variety of viruses in
the subnanometer range (reviewed in 101), this technique also has been used to study viral particles
in complex with glycans. Some elegant examples include the study of Eastern equine encephalitis
virus host cell interactions revealing a binding site for the cellular attachment factor heparin
sulfate as well as describing the mechanism for the nucleocapsid core release (102), the discovery
of a glycan shield of a coronavirus spike protein together with its epitope masking (103), and
the description of the structural basis for human coronavirus attachment to sialic acid receptors
(104).

To gain insights into complex specimens or viruses undergoing dynamic processes, we can use
cryo–electron tomography (cryo-ET), another electron beam–based method. Cryo-ET extends
imaging in two to three dimensions in which specimens are tilted usually by 1° or 2° from about
−70° to +70° along an axis perpendicular to the electron beam. A series of two-dimensional (2D)-
projection images are collected, aligned with each other, and then back-projected to form 3D
images (105). This technique has been applied to study a variety of viruses (reviewed in 106)
and has provided structures of glycoproteins in situ on the surface of virions, including HIV-1
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Env (reviewed in 107) and influenza virus hemagglutinin (54). Because these approaches depend
on detection of morphologically recognizable structures or on crystals of purified material, the
application of these techniques is mainly restricted to the analysis of free extracellular virions or
particles attached to or being released from a host cell.

At the atomic level, interactions between viral proteins and glycans have been captured in
numerous X-ray crystal structures of such complexes. While not a new technique, X-ray crys-
tallography has improved in nearly every step of the crystallographic and protein purification
process, accelerating structural determination (108). As examples of the application of X-ray crys-
tallography to studies of virus-glycan interactions, X-ray crystal structures reveal that the reovirus
σ1 capsid protein binds differently to sialylated glycans depending on the serotype (type 1 or
type 3) (21, 109) and the influenza virus hemagglutinin varies in its binding to differently linked
sialic acids (110, 111). Other examples include identifying the structural basis of adenovirus (51,
57), coronavirus (104), and rotavirus (112) binding to glycans. An interesting application of crys-
tallographic data is their use in simulated force spectroscopy experiments (113, 114). Knowing
the exact molecular coordinates of a protein-ligand complex allows for the application of a spe-
cific pulling force and visualization of the complex coming unbound. By recording structural and
quantitative data, this method enables studies of unbinding pathways bond by bond. As applied
to an influenza hemagglutinin-glycan complex, simulated force spectroscopy revealed a variety
of unbinding pathways and dynamic binding/unbinding behavior of the interaction (115). How-
ever, X-ray crystallography requires studies of isolated proteins and thus can provide only a single
picture of many conformations accessible to the protein.

Nuclear magnetic resonance (NMR) spectroscopy provides an approach to map virus-glycan
interactions in real time and in solution.This technique provides additional information about the
dynamics of glycan motion in free and protein-bound states. In its basic form, saturation transfer
difference NMR, experiments require no isotope labeling and only relatively small amounts of
virus or viral receptor-binding protein.However, the virus (or protein)-glycan complex must have
a clear and detectable chemical shift distinct from the unbound material, and often NMR tech-
niques work best for relatively low-affinity interactions. In studies of virus-glycan interactions,
NMR analyses of different glycan receptors bound to different viral attachment proteins can give
information about glycan-protein contacts that is complementary to X-ray structures (21, 51, 111)
or serve as a standalone technique to reveal the molecular basis of glycan recognition, as is the case
for calicivirus-glycan interactions (116).

Finally, modern mass spectrometry (MS) techniques enable studies using native conditions,
opening avenues to explore the dependence of glycan binding on virus assembly (117). Confor-
mational changes also can be mapped with hydrogen/deuterium exchange MS, as exemplified for
hepatitis B virus (118). These techniques lack insights into dynamics, yielding snapshots rather
than capturing the whole dynamic process essential for a full understanding of binding and sub-
sequent infection.

Insight into the Thermodynamics and Kinetics of Virus Binding

In addition to structural studies of virus-glycan interactions, there is a crucial need to examine the
thermodynamic and kinetic parameters regulating virus binding to receptors. Especially in the
context of drug design and protein mutability, a better understanding of the interplay between
thermodynamics and kinetics will enable improved decision-making for selecting drug candidates
(119). Several techniques are discussed below that allow studies of the kinetics and thermodynam-
ics of virus-glycan interactions.

Surface plasmon resonance (SPR) is a label-free biosensor technique to study ligand-receptor
interactions in real time. SPR exploits the fact that the binding of biomolecules on the sensor
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surface will result in a change in refractive index, which is measured as a change in resonance
angle or resonance wavelength. The change in the refractive index on the surface is directly
proportional to the number of bound molecules. In the context of virus-glycan interactions, this
instrument allows determination of association and dissociation kinetics. SPR methodology has
been used to explore engagement of many viruses with glycans, including influenza virus–glycan
interactions (120) and inhibition of influenza virus infection by sialic acids (121). The main
limitation of this method is the poor control of glycan density and orientation, which may affect
binding (76).Moreover, if the affinity of the virus for the glycan is low, relatively large amounts of
the binding partners are required. Finally, for multivalent interactions, SPR could underestimate
the dissociation rate due to the formation of multiple parallel bonds.

In addition to SPR, isothermal titration calorimetry (ITC) is a rigorous means to define the
equilibrium-binding constant of a glycan and a viral binding partner. ITC is based on the detection
of the heat released or absorbed during a biomolecular binding interaction and extends to the
nanomolar range. ITC has been used to determine the binding stoichiometry and equilibrium
dissociation constant of HIV-1 and different glycoproteins (122) and to identify a trisaccharide
containing α2,3-linked sialic acid as a receptor for mumps virus (123).

Biolayer interferometry (BLI) and microscale thermophoresis (MST) are additional affinity-
based techniques increasingly used to analyze virus-glycan interactions. BLI is a label-free optical
and analytical technique that can be used to study interactions between biomolecules on a 2D
biosensor surface. This technique analyzes the interference pattern of white light reflected from
two surfaces: a layer of immobilized molecules on the biosensor tip and an internal reference layer.
Any change in the number ofmolecules bound to the biosensor tip causes a shift in the interference
pattern that can be measured. In contrast, MST measures the diffusion of an analyte in solution
following laser-induced heating (124). Both techniques allow monitoring of the interactions of
intact virions or isolated viral proteins with receptors in real time, allowing assessment of bind-
ing specificity, rates of association and dissociation, and concentration with high precision and
accuracy. BLI has been used to analyze the kinetics of the interactions of influenza A virus hemag-
glutinin and neuraminidase during infection (125) and validate the glycan-mediated enhancement
of reovirus-receptor binding (126).

Optical Microscopy and Spectroscopy Toward Dynamic Studies

When defining glycan organization and dynamic processes on living cells, fluorescence mi-
croscopy is amethod of choice.Different fluorescence-based techniques are available to determine
how glycans are organized within the plasma membrane and how virions interact with cell-surface
attachment factors or receptors leading to virus entry. Studies of post-entry steps using fluores-
cence microscopy have revealed how the cytoskeleton and its motors support virion trafficking
and uncoating, leading to the delivery of its genetic cargo into the cytoplasm (127).

High-resolution optical techniques such as confocal laser scanning microscopy (CLSM) and
spinning-disc confocal microscopy enable localization of virions during their initial interactions
with cells. CLSM revealed that influenza A virus colocalizes with GM1-based lipid rafts during
virus attachment to the cell surface (128). Furthermore, dynamic studies at high temporal reso-
lution (∼millisecond) allow single-virus tracking, as has been done to image early infection steps
of influenza A virus (130), murine leukemia virus (131), and Sindbis virus (129), as well as many
other viruses (reviewed in 77). For an in-depth review of the different microscopy methods, see
Reference 132; on imaging, tracking, and computational analyses of different viruses and their
attachment, entry, and replication, see References 133 and 134.

With its high sensitivity, total internal reflection microscopy (TIRF) yields high-contrast im-
ages at low background, reduced cellular photodamage, and rapid exposure times. Due to the
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intrinsic properties of the evanescent field, the TIRF excitation of fluorophores decreases expo-
nentially with distance from the coverslip, such that only fluorophores close to the coverslip (e.g.,
within ∼100 nm) are selectively illuminated. Thus, TIRF is a useful technique to track movement
of single virions on artificial surfaces and cell membranes. TIRF has been used to study influenza
A virus interacting with specific glycans, which has improved our understanding of virus binding,
infectivity, transmissibly, pathogenicity, and host specificity (67, 68).

Super-resolution microscopy techniques such as structured illumination microscopy, single-
molecule localization microscopy techniques such as PALM/(d)STORM, and stimulated emission
depletion nanoscopy have lowered the effective resolution of fluorescence microscopy to enable
visualization of subviral structures (135). Thus, these approaches have greatly expanded the pos-
sibilities for detailed investigation of virus-cell interactions. Although cellular glycans are difficult
to label, traditional labeling using lectins or click chemistry has enabled a close-up view of the
glycocalyx. Plant lectins provide an easy way to determine the presence and nanoscale organiza-
tion of a specific glycan on cultured cells or tissue (59, 136). On A549 cells, sialylated influenza
virus attachment factors form nanoscale clusters, which are linked to viral movement and receptor
activation (59). As an alternative, feeding cells with a modified glycan precursor can lead to synthe-
sis of fluorescently modified glycans without the need of an additional high-affinity probe (137).
Combined with super-resolution microscopy, such bio-orthogonal labeling was used to study the
lateral organization of glycans as well as the thickness of the cellular glycocalyx (138).

Spectroscopy based on fluorescence resonance energy transfer (FRET) allows studies of inter-
actions in virus infection at a very small spatial scale (<10 nm). FRET is based on the capacity
of the near-field energy transfer (low nanometer range) between two light-sensitive molecules
(chromophores). This spectroscopy technique has been used to study virus-glycan interactions
for HIV-1 (139) and norovirus (140). Fluorescence correlation spectroscopy correlates fluctua-
tions of the fluorescence intensity of fluorescent particles or complexes (virus-glycan) in solution
and has been used to demonstrate that the envelope glycoprotein mobility of HIV-1 depends on
the viral maturation state (141).

Together these methods provide deep insights into the first binding steps of viruses to cell-
surface glycans at high temporal and spatial resolution. Nevertheless, they have several disad-
vantages compared with other methods—for example, (a) a fluorophore must be attached to the
molecule of interest, which can alter the structure of the molecule and in turn influence the bind-
ing behavior; (b) phototoxicity and photobleaching can cause difficulties in the interpretation of
the data; and (c) there is a requirement for extensive processing of the experimental data sets.

Single-Virus Force Spectroscopy Techniques

Compared with conventional ensemble methods (i.e., methods evaluating the average behavior of
an ensemble of particles), single-virus techniques offer distinct advantages. First, conductingmany
sequential measurements allows determination of the distribution of molecular properties of non-
homogeneous systems. Second, because they represent direct records of the stochastic fluctuations
of the system, single-molecule trajectories provide dynamic and statistical information, which is
often hidden in ensemble-averaged results. Finally, these techniques allow real-time observation
of rarely populated transients, which are difficult to capture using conventional methods (142).
In this context, AFM (Figure 2a) and optical/magnetic tweezers (Figure 2b) enable measure-
ment of binding forces at the single-molecule level and with high temporal resolution (143, 144).
Thanks to grafting protocols, single virions can be attached to an AFM tip apex or on beads, which
allows probing of virus interactions with specific receptors and glycans (115, 145, 146). Such ap-
proaches allowed studies of the binding behavior of intact virions with receptors to be conducted
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Figure 2

Single-virus force spectroscopy using AFM (a–d) and optical tweezers (e–g). (a) AFM-based force
spectroscopy used to monitor HIV-1 interactions with cell-surface CD4 receptors. (b) Representative
force-distance curves during retraction of the cantilever. Rupture events between a single virion and
cell-surface receptors are marked by an arrow. (c) Probability of bond formation between a virion and a host
cell receptor. (d) DFS plot showing binding forces as a function of the loading rate (i.e., velocity at which the
force is applied). The fit of this curve using Bell’s model yields the kinetic parameters describing the energy
landscape of this interaction. (e–g) Optical tweezers used to analyze the attachment of influenza A virus to
host cell receptors. (e) Schematic of the experiment showing virions adsorbed to a polystyrene bead and
trapped in an optical field. Confocal microscopy image is shown to validate the virion adsorption (right, scale
bar: 0.5 μm). ( f ) Binding forces measured between viruses on beads and adherent cells grown in
glass-bottom Petri dishes. (g) DFS plot of a virus-receptor interaction on the surface of CHO cells.
Abbreviations: AFM, atomic force microscopy; CHO, Chinese hamster ovary; DFS, dynamic force
spectroscopy; HIV-1, human immunodeficiency virus type 1. Panels a–d adapted with permission from
Reference 149. Panels e–g adapted with permission from Reference 115.
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using purified receptors in vitro or in living cells (reviewed in 147). These technologies have been
applied to characterize virus-host interactions for many viruses including herpesvirus, HIV-1, in-
fluenza virus, rhinovirus, and reovirus (115, 126, 145, 148–151). In terms of unraveling the first
virus-binding steps to cell-surface exposed glycans, Chang et al. (148) and Dobrowsky et al. (149)
performed single-molecule analysis of HIV-1 interacting with glycoprotein receptors on living
cells and were able to monitor early fusion dynamics (Figure 2a–d). In another study, Sieben
et al. (115) elegantly combined optical tweezers, AFM-based single-virus force spectroscopy, and
molecular dynamics simulations to study the binding of influenza virus to cells with varying surface
distributions of α2,3- and α2,6-linked sialic acids (Figure 2e–g).

Mapping Virus Binding Sites Using Atomic Force Microscopy
and Fluorescence Microscopy

Although AFM alone is an effective strategy for quantitatively defining the forces of virus-cell
interactions, it lacks optical correlation to identify the cell-surface receptors involved. To address
this challenge, correlative approaches using AFM and fluorescence microscopy have opened new
avenues in the analysis of the first binding steps of viruses to cells.

As a proof-of-concept, we recently developed a versatile platform combining AFM and con-
focal microscopy enabling the mapping of single-virus binding sites on living cells using AFM
while monitoring the cell-surface receptor distribution with confocal microscopy (96). Applied to
a model virus [engineered rabies virus with the envelope glycoprotein of avian sarcoma leucosis
virus (EnvA)], specific interactions with cells expressing viral cognate receptors [avian tumor virus
receptor A (TVA)] were mapped on living cells, which allowed localization of the binding site
at high resolution and quantification of the kinetic and thermodynamic parameters of the bind-
ing interactions. Simultaneously, confocal microscopy enabled differentiation between cocultured
control cells and cells expressing fluorescently labeled TVA. This study demonstrated that the
EnvA-pseudotyped rabies virus quickly (≤1 ms) establishes specific interactions with single TVA
receptors. The results also suggest that one TVA receptor on the cell surface binds one subunit of
the trimeric EnvA glycoprotein with an intrinsic low affinity and that the affinity increases con-
siderably with the binding of other TVA receptors to the same EnvA glycoprotein, suggesting a
positive allosteric modulation of the EnvA-TVA bonds.

The same approach has been used to elucidate important aspects of the multivalent binding of
a gammaherpesvirus to GAGs expressed on living cells during early steps of the infection (150).
Using AFM, Delguste et al. (150) showed that gp150, the major envelope glycoprotein of murid
herpesvirus-4, regulates GAG binding by other viral glycoproteins. By combining experiments
using purified GAGs and living cells, they extracted quantitative information about the binding
force of single viral particles to GAGs, and unprecedented insights were made about the tight
regulation of virus attachment to cell surfaces (Figure 3). Defining the force of virus binding to
GAGs revealed that interactions with a lower valency are preferred by wild-type virus particles,
while gp150-deficient virions display a higher tendency to engage simultaneous, multiple inter-
actions, suggesting a regulatory role of the glycoprotein gp150 in GAG binding. By minimizing
multivalency between GAGs and viral glycoproteins, gp150 might facilitate lateral diffusion of
the virus on the cell membrane, allowing the virus to search for its specific entry receptor. More-
over, by controlling the number of virus interactions with GAGmoieties, gp150 also facilitates the
release of newly assembled viral particles, as low valency interactions are more likely overcome
during viral egress.

An important question in virology is the role of attachment factors in the context of virus in-
fection. Using AFM-based single-virus force spectroscopy, reovirus binding to cell surfaces was
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Figure 3

Murid herpesvirus-4 binding to heparin studied by AFM. (a) Wild-type virions and virions lacking glycoprotein gp150 were attached to
AFM tips to probe the interactions with surfaces functionalized with heparin. (b) Comparison of DFS plots obtained for both virions
(wild-type and gp150-negative) revealed no difference, suggesting that gp150 does not play a direct role in heparin binding. (c) Force
distribution analysis reveals that single bonds occur more frequently with wild-type particles, while multiple bonds are more probable
for gp150-negative virions, suggesting a regulatory role for the number of bonds established between the virions and GAGs.
Abbreviations: AFM, atomic force microscopy; DFS, dynamic force spectroscopy; GAG, glycosaminoglycan. Figure adapted with
permission from Reference 150.

investigated with a focus on the engagement of the σ1 viral attachment protein to α-linked sialic
acid (α-SA) and junction-associated molecule ( JAM)-A receptors (126). Combining in vitro ap-
proaches using both purified receptors and living cells, the respective contributions of the α-SA
and JAM-A receptors were quantified. Based on the results obtained in experiments using purified
receptors, the number of bonds established on living cells was determined for the early binding
step. Surprisingly, the initial σ1 binding to α-SA was found to act as a trigger to enhance the over-
all avidity of σ1 for JAM-A (Figure 4). Additional experiments comparing binding properties of
reovirus infectious subvirion particles, which have an altered conformer of σ1, and intact reovirus
virions in the presence and absence of α-SA suggest that α-SA binding to reovirus virions triggers
a conformational change in σ1 to a more extended form, underlying a direct interplay between
attachment factors and specific receptors.

As described in this review, low-affinity interactions with glycans are essential for numerous
viruses to ensure initiation of the viral life cycle. Identifying the binding partners involved together
with the binding characteristics increases the opportunities to inhibit infection.New techniques to
study virus attachment to receptors allow insights to be made about the molecular nature of these
interactions and provide crucial information to develop new therapeutic approaches or identify
new targets for vaccination.
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Interplay of glycan and proteinaceous receptors during reovirus binding to cells. (a) Schematic of probing reovirus binding to
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from Reference 126.

SUMMARY POINTS

1. The glycocalyx is a dense network of glycans attached to lipids and proteins on cell
surfaces, to which a wide variety of viruses bind to either enhance infectivity (attachment
factors) or directly gain access to the cytoplasm (receptors).

2. Viruses mainly bind three types of cell-surface glycans: sialic acids, glycosaminoglycans,
and histo-blood group antigens.

3. Interactions between single viral proteins and glycans are usually of low affinity, which
allows viruses to diffuse on the plasma membrane, while the simultaneous engagement
of multiple viral proteins stabilizes the binding interaction by enhancing the binding
strength.
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4. Synthetic compounds capable of forming multivalent interactions with virions have the
potential to serve as antiviral drugs by blocking viral attachment to cell surfaces.

5. Virus-binding assays are relatively simple techniques tomonitor the binding of viruses to
specificmolecules, while EM,X-ray crystallography, and nuclear magnetic resonance are
methods that determine the fine structure of viral proteins involved in glycan binding,
often in complex with the glycan.

6. Surface plasmon resonance and biolayer interferometry are simple yet powerful tech-
niques to study the thermodynamic and kinetic parameters describing the binding prop-
erties of virions to their target molecules on cell surfaces, thus enhancing an understand-
ing of interaction dynamics.

7. Fluorescence microscopy techniques provide insights into virus-binding events on cell
surfaces at high temporal and spatial resolution as well as dynamic information about
virus uptake.

8. Single-virus force spectroscopy techniques such as optical/magnetic tweezers and atomic
force microscopy enable measurement of glycan-virion binding forces at the single-
molecule level, providing unprecedented information about the dynamics of virus
binding.
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