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Abstract

Selectivity for many basic properties of visual stimuli, such as orientation,
is thought to be organized at the scale of cortical columns, making it diffi-
cult or impossible to measure directly with noninvasive human neuroscience
measurement. However, computational analyses of neuroimaging data
have shown that selectivity for orientation can be recovered by considering
the pattern of response across a region of cortex. This suggests that com-
putational analyses can reveal representation encoded at a finer spatial scale
than is implied by the spatial resolution limits of measurement techniques.
This potentially opens up the possibility to study a much wider range of
neural phenomena that are otherwise inaccessible through noninvasive mea-
surement. However, as we review in this article, a large body of evidence
suggests an alternative hypothesis to this superresolution account: that ori-
entation information is available at the spatial scale of cortical maps and
thus easily measurable at the spatial resolution of standard techniques. In
fact, a population model shows that this orientation information need not
even come from single-unit selectivity for orientation tuning, but instead
can result from population selectivity for spatial frequency. Thus, a categor-
ical error of interpretation can result whereby orientation selectivity can be
confused with spatial frequency selectivity. This is similarly problematic for
the interpretation of results from numerous studies of more complex repre-
sentations and cognitive functions that have built upon the computational
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techniques used to reveal stimulus orientation. We suggest in this review that these interpreta-
tional ambiguities can be avoided by treating computational analyses as models of the neural pro-
cesses that give rise to measurement. Building upon the modeling tradition in vision science using
considerations of whether population models meet a set of core criteria is important for creating
the foundation for a cumulative and replicable approach to making valid inferences from human
neuroscience measurements.

1. INTRODUCTION

Sophisticated computational analyses of human neuroscience measurements have seemingly pro-
vided a means of peering past spatial resolution limits to provide a superresolution view of corti-
cal function. Noninvasive measurement of cortical function using blood oxygen level-dependent
(BOLD) imaging (Ogawa et al. 1990) is a mainstay of human neuroscience. For vision scientists,
it is inarguably the best tool that we have to measure fundamental properties of human cortical
function such as retinotopy (Engel et al. 1994) and visual field (Wandell & Winawer 2011) and
categorical (Cohen et al. 2000, Downing et al. 2001, Epstein & Kanwisher 1998, Grill-Spector
& Weiner 2014, Kanwisher et al. 1997) representation on the scale of millimeters to centimeters.
Nonetheless, extending the spatial resolution below the scale of millimeters has been an endur-
ing goal (Dumoulin et al. 2018, Lawrence et al. 2019, Martino et al. 2018, Ugurbil 2016), as this
would allow for measurement of cortical columns (de No & Fulton 1938, Mountcastle 1957),
long thought to be fundamental units of cortical computation (but see Horton & Adams 2005).
While some success has been achieved in this endeavor (Cheng et al. 2001; Sun et al. 2007; Yacoub
et al. 2007, 2008), routine and replicable measurement of cortical columns in humans has proven
elusive. Instead, a remarkable development in using linear classification analyses to decode orien-
tation of a visual stimulus from the human visual cortex (Kamitani & Tong 2005) suggested that
computational analyses could overcome spatial resolution limits without the hard work required
to directly measure cortical columns.

However, nothing magical need be attributed to such computational analyses; instead, ex-
tensions of traditional single-unit models of visual receptive fields to population responses can
account for orientation decoding at a spatial scale matched to BOLD measurement. Models of
orientation tuning are foundational to cortical visual neurophysiology; Hubel & Wiesel (1962)
initially described orientation tuning in computational terms. They proposed that simple cells
have receptive fields composed of excitatory and inhibitory regions that exhibit properties of
summation and antagonism; thereby, the responses of cells to any stimulus can be predicted
by a set of simple computational rules. This formulation of a linear receptive field triggered an
entire field of study with the aim of formalizing, refining, and extending computational models
of cortical visual function (Heeger et al. 1996). Such models of single-unit receptive fields are
now so ingrained in the field that it is tempting to apply them directly to population measures
of human brain activity. However, models of population activity can behave in unexpectedly
different ways than those of single units (Hara et al. 2014, Mante & Carandini 2005). In this
article, we review work that has argued against a superresolution view of orientation decoding.
We describe evidence indicating that, when an appropriate model of population, rather than
single-unit, receptive fields is applied, orientation decoding at the spatial scale of cortical maps is
explained. Notably, these population models need not even be composed of any single units with
orientation selectivity to exhibit cortical signals that can be used to decode orientation.

Orientation decoding has been used extensively throughout human neuroscience, so proper
interpretation has consequences for a broad array of results. Decoding of orientation and other
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Figure 1

Tuning curves for neurons are not the same as channel response functions. (#) Measurement of the response of a simple cell from the
cat striate cortex to grating stimuli of different orientations, plotting spike rate as a function of stimulus orientation. Panel adapted with
permission from Campbell et al. (1968). (b)) Channel response function of an inverted encoding model recovered from blood oxygen
level-dependent (BOLD) imaging data from the human primary visual cortex. While the image in panel # may appear visually similar
to that in panel 4, it is not a tuning function because it does not plot response as a function of variations of the stimulus. Instead, it plots
inferred model responses as a function of their stimulus preference, where the recovered shape of the function is an arbitrary
assumption of the model (Gardner & Liu 2019). Panel adapted with permission from Liu et al. (2018).

basic visual properties has spurred countless applications to the study of a wide array of cognitive
function, from perception to attention, memory, decision making, and beyond (Tong & Pratte
2012). Moreover, computational techniques routinely introduce many analysis steps in between
measurement and data presentation, which can cause interpretational problems. For example,
analyses of human visual cortex activity can produce a result (Figure 15) that visually resem-
bles a classic tuning function (Figure 14). One might be forgiven for ascribing properties of the
function, such as its width, to properties of the population response, such as selectivity, or for
ascribing changes in the function to particular changes in memory representation or effects of
attention. However, as we review in this article, the function in Figure 15 is not a tuning function,
and such interpretations are not warranted (Gardner & Liu 2019). Indeed, population models
suggest that these functions can result from populations of neurons that are not even tuned for
orientation.

As machine learning propagates as a powerful tool to make sense of increasingly large and com-
plex neuroscience data, its application to orientation decoding suggests broad implications for the
development of models, rather than blind application of computer and data science analyses to
understanding neural measurement. Data are not simply numbers in the rows and columns of a
matrix as seen through the lens of a data science analysis. They are generated by a set of processes,
and proper inferences can be made by treating the computational steps applied to data as mod-
els of one’s best hypotheses about those processes. Thus, we describe in this review a consensus
model for orientation decoding that can be used to test general hypotheses about the source of
the orientation signal, as well as being applied to the study of cognitive function. The way out of
the interpretational problems that have arisen around orientation decoding is through building
and sharing such models. More generally, the approach that we advocate for in this review can be
widely applied across neuroscience measurements that capture population responses in humans
and animals. Building and testing such population models form the foundation of a replicable
and cumulative science and provide means of drawing inferences from human neuroscience
measurements.
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2. DECODING AND ORIENTATION COLUMNS

Is the mismatch between the scale of BOLD measurements and the smaller spatial scale of corti-
cal columnar computation an insurmountable limit? Diverse patterns of neural selectivity within
a voxel might be expected to partially or fully cancel each other out, resulting in BOLD re-
sponses that exhibit diminished feature selectivity. The problem of heterogeneous neural pop-
ulations within a voxel is demonstrated by the case of orientation selectivity in the primary visual
cortex. The orientations of visual features are represented in an orderly pinwheel-like progres-
sion within each hypercolumn across the cortical surface (Das & Gilbert 1997, Grinvald et al.
1986, Ohki et al. 2006). Based on measurements of ocular dominance columns in humans (Adams
etal. 2007, Horton & Hedley-Whyte 1984), orientation columns are likely to be at a submillime-
ter scale when viewed from the surface of the cortex. This well-established neural architecture is
considerably smaller than the spatial point spread function for BOLD measurements at conven-
tional resolution (Engel et al. 1997, Parkes et al. 2005). At first glance, it seems totally infeasible
to study orientation selectivity with BOLD imaging. Indeed, the spatial scale of BOLD measure-
ments seems inappropriate for studying a wide range of neural computations that are instantiated
by cortical circuits smaller than the point spread function.

One approach to accessing fine-spatial-scale patterns of neural selectivity is a straightforward
attempt to match the scale of the measurement to the scale of the underlying neural architec-
ture. Advances along these lines using ultrahigh-field-strength scanners and pulse sequences that
are sensitive to signals originating in small capillaries, which are more spatially colocalized with
changes in neural activity (Kay et al. 2019, Markuerkiaga et al. 2016), have led to impressive
demonstrations characterizing responses in cortical columns (Cheng et al. 2001; Kim & Fukuda
2008; Sun et al. 2007; Yacoub et al. 2007, 2008) and layers (Finn et al. 2019, Huber et al. 2017,
Yu et al. 2019). However, achieving the necessary resolution is technically challenging, and po-
tential sources of confounds and artifacts, such as head motion and spatial distortions, remain a
hindrance. Moreover, the long scanning sessions needed to achieve the necessary signal-to-noise
ratio make achieving columnar resolution difficult for experiments that require routine and repli-
cable measurements across experimental conditions.

An alternative approach is to pair conventional, low-resolution BOLD measurements with
paradigms and data analysis strategies that attempt to peer past spatial resolution limits. An early
attempt at such a strategy relied on adaptation. In an adaptation protocol, subjects are presented
with an adaptor stimulus followed by a probe stimulus. If the probe stimulus differs from the
adaptor along a particular stimulus dimension and fails to produce a reduced response, then this
is interpreted to mean that a different nonadapted population of neurons has responded to the
probe. If, however, changing the features of the probe stimulus results in the same amount of
adaptation as repeating the adaptor stimulus, then this is interpreted to mean that the underlying
neural population has homogeneous selectivity (Grill-Spector et al. 1999). Adaptation analysis
has been used as a tool to investigate neural selectivity in a wide range of domains in many brain
regions, including early visual cortical areas (Cavina-Pratesi et al. 2010, Fang et al. 2005, Gardner
et al. 2005, Hallum et al. 2011, Larsson et al. 2006, Lingnau et al. 2009, Sapountzis et al. 2010),
higher-order visual areas (Henson 2016, Weiner et al. 2010, Winston et al. 2004), and motor
systems (Chong et al. 2008, Dinstein et al. 2007). However, using adaptation as a tool to evaluate
selectivity is subject to several interpretational ambiguities. Adaptation studies typically focus on
the reduced response to the probe stimulus, but neural responses to adaptor stimuli are frequently
enhanced due to the increased salience of novel stimuli (Summerfield et al. 2008), so it is necessary
to develop additional controls to distinguish an enhanced adaptor from an adapted probe (Larsson
& Smith 2012). Observing an adapted response does not necessarily indicate which neurons
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exhibit stimulus selectivity, as the adaptation could have occurred at an earlier stage of processing
and then been carried forward (Larsson & Harrison 2015). The reduced response to the probe
stimulus can also reflect response learning, rather than a change in the stimulus representation
(Dobbins et al. 2004, Schacter et al. 2007). Thus, the adaptation protocol does not offer a simple
and direct means of studying neural selectivity (Grill-Spector et al. 2006, Larsson et al. 2016).

Decoding analyses have been widely heralded as a solution for studying selectivity (Haynes
& Rees 2006). Decoding refers to a broad class of statistical procedures borrowed from machine
learning. Unlike the adaptation protocol, which relies on the average response within a particular
brain area, decoding exploits the distributed pattern of response.

In a landmark study, Kamitani & Tong (2005) demonstrated that it is possible to use a linear
classifier to decode the orientation of a grating presented to the subject in an individual trial. This
was a major conceptual breakthrough and suggested that it is possible to directly study neural
representations in the human brain that are instantiated at a finer spatial scale than a typical
BOLD voxel measurement. The reasoning behind this is illustrated in Figure 2. Subjects were
presented with a set of oriented grating stimuli, each of which evoked responses from orientation-
tuned neurons in the primary visual cortex. Each voxel (at a conventional resolution of 2.5 x
2.5 x 2.5 mm) samples from a patch of cortical tissue containing roughly 750,000 neurons and
a similar number of glia. If neural selectivity for orientation were randomly organized, forming
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a salt-and-pepper pattern in the cortex, then the response of that large population of neurons
would cancel out, and the net response of the voxel would not be orientation tuned. However,
the distribution of orientation-selective V1 neurons is not random. In many species (presumably
including humans), orientation-tuned neurons are organized into columns along the cortical
surface, and a voxel likely samples from approximately 25 columns (Gardner 2010). Again, if
the pattern of orientation-selective columns formed a perfectly organized repeating motif across
the cortical surface in register with the voxel grid, then pooling responses across columns might
also cancel out, as all orientations would be sampled by a voxel. However, columnar patterns are
irregular. They vary in shape and size across the cortical surface (Das & Gilbert 1997, Grinvald
et al. 1986, Ohki et al. 2006). It is unlikely that the columnar pattern would be in alignment
with the voxel grid. Any given voxel likely samples an uneven distribution of columns, with some
orientations being represented more frequently than others. This uneven sampling could, in
principle, produce a small bias in the voxel’s response for a particular orientation.

The conjecture that orientation preferences arise from random spatial irregularities in the
fine-spatial-scale columnar architecture is attractive for several reasons. An analysis method pro-
vides a window into subvoxel columnar structure—a sort of superresolution account—without
the immense technical challenges associated with ultrahigh-resolution magnetic resonance imag-
ing (MRI). This notion places the burden of technical development on the data analysis pipeline,
rather than on the MRI data acquisition. It also opens up the possibility of applying these analysis
methods to other brain areas outside of the visual cortex. Indeed, the logic of superresolution rests
on the assumption of a columnar organization. Following this logic, does successful application
of decoding for a stimulus feature or task imply the existence of columnar organization for that
feature? As we review below, an abundance of evidence argues against this superresolution view.

3. DECODING AND TOPOGRAPHIC MAP-LIKE ORIENTATION BIASES

An alternative account to superresolution has emerged over the years, demonstrating that
orientation decoding depends on a topographic map-like representation of orientation, which is
distinct from the more familiar fine-spatial-scale columnar neural architecture (Freeman et al.
2011, Sasaki et al. 2006). Studies in human subjects have shown that each voxel in V1 exhibits an
orientation preference that depends on the region of space that it represents (Freeman et al. 2011).
This map-like structure is most pronounced as a radial bias in the peripheral representation of
V1 that s closely matched to the angular component of the retinotopic map (compare Figure 32
and Figure 3b). Voxels that respond to peripheral locations near the vertical meridian tend to
respond most strongly to vertical orientations, and voxels along the peripheral horizontal merid-
ian respond most strongly to horizontal orientations; the same is true for oblique orientations
(Figure 3¢).

The relationship between preferred orientation and receptive field location varies with posi-
tion in the visual field. In addition to the radial bias in the periphery, there is a near-vertical bias
closer to the fovea (Freeman et al. 2013). This near-vertical bias is evident for voxels that respond
to stimuli at either the vertical or horizontal meridians (Freeman et al. 2013); however, others
have reported a mix of vertical and horizontal biases (Sun et al. 2013), perhaps corresponding
to earlier studies of the oblique effect (Furmanski & Engel 2000). The map-like orientation bias
has gone mostly unnoticed by the field until recently, despite decades of research on orientation
selectivity with electrophysiology and optical imaging. The spatial coverage of BOLD imaging
makes it ideally suited to comparing preferred orientation and receptive field position throughout
the visual cortex. Indeed, early studies in the rodent visual cortex reported only a salt-and-pepper
organization for orientation selectivity (Ohki et al. 2005). However, a wide-field calcium imaging
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Figure 3

Map-like topography for orientation. (#) Retinotopic responses to a rotating wedge from a single subject,
illustrating the angular component of the retinotopic map. Colors indicate preferred angular position. Gray
scale represents a flattened representation of a patch of the occipital cortex. (5) Responses to oriented
gratings restricted to an annular aperture. Colors indicate preferred orientation. (¢) Radial bias. Each voxel is
represented by a line indicating its population receptive field (pRF) location, preferred orientation, and
response amplitude (color and size). Inward-pointing lines indicate a radial bias. Figure adapted with
permission from Freeman et al. (2011).

study in mice, which affords wide coverage at single-cell resolution, has now reported what may be
a map-like representation for orientation (Fahey et al. 2019) analogous to that found in humans.
"This highlights the need for the scale of the imaging modality to match the scale of the underlying
neural architecture.

While the map-like pattern of orientation selectivity in humans and mice does not confirm the
presence (or absence) of orientation columns in either species, these results do offer an alternative
mechanism by which orientation information may be decoded. When orientation decoding was
first introduced, it was natural to assume that the decoded signal was somehow related to colum-
nar structure (Boynton 2005, Haynes & Rees 2005, Kamitani & Tong 2005, Peelen et al. 2006).
An early indication that this was not the case came from a study showing that spatially smoothing
(i.e., blurring) the BOLD data had no impact on decoding performance (de Beeck 2010). This ob-
servation runs contrary to the intuition that smoothing should degrade information arising from
columns. However, this notion was soon challenged by others who took issue with the particular
way in which spatial smoothing was implemented, noting that smoothing simply spreads informa-
tion spatially across voxels, rather than actually removing information from the signal (Kamitani
& Sawahata 2010). This was followed by another study that estimated the bandwidth of informa-
tion used by decoding by filtering the data with low-pass and high-pass spatial filters with different
cutoff frequencies (Swisher et al. 2010). The problem with all of these approaches is that any ac-
tivation pattern in BOLD imaging is spatially broadband, with prominent high- and low-spatial-
frequency components. The same critical bandwidth observed for orientation is also observed for
retinotopy (Freeman et al. 2011), which is known to be mapped topographically across the cortex.
In conclusion, these smoothing analyses do not support the superresolution account.

The map-like orientation bias has a strong radial component that is especially prominent in
the periphery. Removing this radial component from the BOLD signal through projection makes
orientation decoding impossible. This observation suggests that the orientation map is necessary
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for decoding and argues against superresolution (Freeman et al. 2011). However, these results have
been challenged by Pratte et al. (2015), who repeated the same analyses described above but with
a slightly different set of assumptions regarding the shape and time course of the hemodynamic
response. In their analysis, orientation decoding was mostly, but not completely, explained by the
radial bias, leaving open the possibility that some columnar-scale signals remain.

If orientation is mapped in the cortex as a radial bias, then it should not be possible to decode
the sense of spiral stimuli because local orientation information in spirals with respect to the radial
direction are balanced across clockwise and counterclockwise spirals (Mannion et al. 2009). How-
ever, itis indeed possible to decode spiral sense (Alink et al. 2013, 2017; Clifford & Mannion 2014
Mannion & Clifford 2011; Mannion et al. 2009). Is this evidence for superresolution (Carlson &
Wardle 2015, Maloney 2015)? The map-like topography for orientation is not perfectly radial
in all parts of the map. As discussed above, responses are strongest for near-vertical orientations
at locations closer to the fovea (Freeman et al. 2011). Such a near-vertical bias does enable the
decoding of spiral sense (Freeman et al. 2013), suggesting that the ability to decode spiral stimuli
does not require a superresolution account.

Perhaps the most compelling argument against superresolution comes from experiments in
which the position of slice acquisition was shifted by half of a voxel (1 mm) in the slice acquisition
direction on half of the runs (Freeman et al. 2013). Such a shift would maximally disrupt the
relationship between the voxel grid and the underlying columnar architecture. Yet shifting slices
between training and testing data sets has no discernible impact on orientation decoding accuracy.
However, even this result has been challenged by others, who have found that translating (i.e.,
spatially interpolating) the slices in postprocessing results in a significant decrement in decoding
accuracy (Alink et al. 2017, Vizioli et al. 2020).

Another coarse-spatial-scale signal for orientation could come from the vasculature if it is
organized in such a way as to pool orientation-specific signals (Gardner 2010, Kriegeskorte et al.
2010). Indeed, at a large spatial scale on the order of centimeters, some evidence suggests that vas-
culature boundaries can follow functional areas (Harrison et al. 2002). Moreover, sinuses have been
suggested to distort large-spatial-scale representations such as topographic maps (Winawer et al.
2010). If vasculature is organized around functional boundaries such as cortical columns, then it
could pool orientation-dependent signals, giving rise to an orientation bias at a larger scale. How-
ever, more recent evidence suggests that vasculature is not organized around ocular dominance
columns (Adams et al. 2015) or barrels in the rodent somatosensory cortex (Blinder et al. 2013).

The debate on whether orientation decoding is due to a superresolution or cortical map-like
representation has produced a dizzying, and seemingly contradictory, array of results. Why has
this debate attracted so much attention? If orientation decoding depends entirely on a map-like
bias, and not at all on a fine-spatial-scale columnar bias, then this would imply that superresolu-
tion decoding is not possible. If superresolution decoding does not work in the visual cortex for
orientation, then it is not likely to work for other brain areas and functions for which columnar
structure is less well understood, limiting the use of decoding. While this back-and-forth in the
field has certainly been productive, we argue that resolving these issues and building a stronger
foundation for the use of decoding requires treating decoding as a model of the neural processes
that give rise to measurement, and not simply as an analysis of data.

4. POPULATION MODEL OF V1 EXPLAINS MAP-LIKE TOPOGRAPHY
FOR ORIENTATION

Perhaps the most fundamental and widely used model in visual neuroscience is that of a linear
time-invariant system, which is simple and completely predictable but provides an unexpected
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answer to where map-like orientation biases might actually come from. A linear time-invariant
system is one in which the relationship between stimulus and response does not change over time
and obeys the superposition principle (response to the sum of inputs is equal to the sum of the
responses to each). The receptive field of a neuron or population that is linear time invariant
can be characterized with incredible efficiency, since responses to combinations of visual inputs
need not be directly measured, but instead can be predicted from the response to those inputs pre-
sented alone. Of course, neural (or any) systems are rarely, if ever, completely linear time invariant.
Neural responses break time invariance when they are found to be subject to adaptation effects
(Cavina-Pratesi et al. 2010, Fang et al. 2005, Gardner et al. 2005, Hallum et al. 2011, Larsson
et al. 2006, Lingnau et al. 2009), and a long tradition within visual neuroscience has explored vi-
olations of superposition (Albrecht & Geisler 1991, Bonds 1989, Movshon et al. 1978, Reid et al.
1987) and how to fix them with simple forms of static nonlinearities such as exponentiation and
through normalization (Carandini & Heeger 2012; Carandini et al. 1997; Heeger 1992, 1993).
Despite being an oversimplification that is demonstrably wrong, linear time-invariant models still
can provide incredibly useful insight because they make concrete predictions that are not always
immediately obvious. One such counterintuitive prediction is that a set of linear receptive fields
whose orientation preference is completely isotropic at any given location of the visual field will
give rise to radial orientation bias when a sinusoidal-oriented stimulus is presented in a circular
aperture (Carlson 2014).

For single units, map-like orientation biases result from considerations of how the stimulus
border that is in the receptive field of a neuron depends on the retinotopic location of the re-
ceptive field. For a linear time-invariant receptive field (Figure 4b), the response to a stimulus
(Figure 44) can be appreciated either in the space domain or in the frequency domain by deter-
mining the projection of the stimulus onto the receptive field. For these oriented stimuli, the fre-
quency domain representation is convenient, as the response (ignoring the stimulus phase) can be
visually appreciated as the amount of overlap of the frequency domain representations of the stim-
ulus and the receptive field. When the stimulus is very large (Figure 4c) compared to the receptive
field of a neuron, as is typical for human neuroscience experiments, depending on the retinotopic
location of each neuron’s receptive field, different borders of the stimulus will overlap the neuron’s
receptive field. For example, a neuron whose receptive field is selective for the grating orientation
and is at the top-right portion of the stimulus would see a vignette nearly aligned in orientation
with the underlying grating (Figure 4c, top right). The vignette would then have a frequency do-
main representation with energy largely along the orientation of the grating stimulus. Thus, the
frequency domain representation of the stimulus at this location (being the convolution of the
grating and the vignette) would have a profile that smears stimulus energy best into the recep-
tive field of a neuron with an elongated receptive field (compare the receptive field profile and the
stimulus energy in Figure 4c, top right). This can equivalently be thought of as giving the strongest
response because both the grating and the vignette are oriented in the preferred orientation for
the neuron. Thus, receptive fields selective for the orientation of the stimulus with a receptive
field location at exactly the location where the vignette aligns with the orientation of the stimulus
will respond the most, and all other locations will respond less. Importantly, this is a consequence
of the elongated shape of the receptive field, a property known from physiological measurements
(Gardner et al. 1999, Jones & Palmer 1987, Ringach 2002, Watkins & Berkley 1974).

While this single-unit model gives an explanation for map-like orientation bias, the bias pre-
dicted is exactly opposite to what has been observed in humans. Because of the receptive field’s
elongated shape, a single unit should respond most strongly to the antiradial orientation (i.e.,
the tangential orientation parallel to the vignette edge) (Figure 4c, top right). Thus, the single-
unit model prediction runs counter to the maps of radial orientation bias (Freeman et al. 2011,
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Figure 4 (Figure appears on preceding page)

Stimulus vignetting and responses of an individual V1 neuron. (#) The stimulus in a typical experiment
consists of an infinite grating multiplied by an aperture (top). In the frequency domain, the grating is
represented as a pair of delta functions at the corresponding orientation (polar angle) and spatial frequency
(radius). Vignetting in the frequency domain corresponds to convolution in the frequency domain, which
simply creates copies of the Fourier transform of the vignette (bottom middle) centered at the orientation and
spatial frequency of the grating stimulus (bottom right). (b)) The RF of a V1 simple cell can be represented by
a Gabor filter created by multiplying an infinite grating and an elongated two-dimensional Gaussian. The
long axis of the Gaussian is typically aligned with the preferred orientation. In the frequency domain, this
elongation produces an RF that is elongated along the orientation axis, making it selective for orientation at
multiple spatial frequencies. (c) Bias in orientation preference results when the RF overlaps the edge of the
stimulus aperture. The RF depicted (green contour, right) has a preferred orientation that matches the
stimulus. The amount of orientation energy in the stimulus (black contours) that overlaps the RF is highest
when the stimulus vignette (top right, middle) is approximately aligned with the orientation of the stimulus
causing the RF to have the strongest response. Thus, this cell responds most strongly to the vignette
depicted in the upper right panel, and least strongly to the vignette in the lower right panel, creating
antiradial bias (i.e., largest response to the orientation tangential to the RF location relative to the fovea).
Abbreviations: RE, receptive field; SE, spatial frequency.

Sasaki et al. 2006). What is wrong with this logic? Perhaps the assumption about the aspect ratio
of the receptive fields of V1 neurons, namely, that they are elongated along their orientation axis,
is incorrect. Indeed, if receptive fields had the opposite aspect ratio (fatter in the direction along
the bars), then this would give rise to the expected radial orientation bias. However, single-unit
measurements suggest that this is not the case (Gardner et al. 1999, Jones & Palmer 1987, Ringach
2002, Watkins & Berkley 1974). Moreover, for this to be true, human V1 neurons would be ex-
pected to have broad spatial frequency tuning, as their receptive field in the frequency domain
would be elongated along spatial frequency instead of orientation (opposite of what is shown in
Figure 4b, bottom right), which does not appear to be the case (Aghajari et al. 2020, Broderick
etal. 2018, Keliris et al. 2019).

An explanation of the apparent contradiction between the single-unit prediction and the
BOLD results comes from remembering that the BOLD measurement reflects a neural pop-
ulation. Thus, a single-unit model is not appropriate. Each voxel samples from a population
of neurons with different orientation selectivities. An appropriate population model will thus
have a population of receptive fields, which together form an annulus in the frequency domain
(Figure 5a). The population receptive field will respond equally to all orientations, but only to
a range of spatial frequencies. Following the same logic outlined above for individual neurons
(Figure 4¢), this annulus intersects with the spread in Fourier energy produced by the stimulus
vignette (Figure 5¢) to produce the observed radial orientation bias. The smear of stimulus energy
for the radial orientation (Figure 5c, bottom right) has the highest overlap with the population
receptive field, and the least overlap for the antiradial orientation (Figure 5c, top right). Thus,
consideration of the population, rather than the single-unit, receptive field explains the radial
orientation bias. If this account is true, then the population model should be able to generate
predictions of responses to novel stimuli. For example, stimuli with the same underlying orien-
tation could be shown through different vignettes tailor-made to reverse orientation selectivity
along the map. Indeed, in an experiment using a similar population receptive field model to that
of Simoncelli & Freeman (1995), these predictions were borne out (Roth et al. 2018).

This population model suggests that the apparent orientation selectivity of BOLD mea-
surements comes about not because of orientation selectivity, but because of spatial frequency
selectivity. Perfectly circularly symmetric center-surround receptive fields such as those of retinal
ganglion cells and the lateral geniculate nucleus (LGN) (Barlow 1953, Kuffler 1953, Rodieck 1965)
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Figure 5 (Figure appears on preceding page)

Stimulus vignetting and responses of populations of neurons. (#) Neurons in V1 with a range of orientation
preferences (Jeft) contribute to the activity of a magnetic resonance imaging (MRI) voxel in V1, creating a
population receptive field (pRF) (right). The orientation tuning of the pRF is different from that of any
individual neuron in the population (green contours, right). The Fourier representation of the pRF has a
characteristic ring due to the fact that neurons contributing to the pRF have a range of orientation
preferences but similar spatial frequency preferences. (5) pRF created by a population of circularly symmetric
center-surround lateral geniculate nucleus (LGN) cells. Note that the population response creates a ring in
the Fourier domain that is similar to the ring created by the population of V1 cells, even though the LGN
neurons differ from V1 neurons in that they are not orientation selective. (¢) Bias in orientation preference of
the pRF created by different combinations of aperture edge and stimulus, following the same conventions as
in Figure 4. While individual V1 neurons may have an antiradial bias, and individual LGN neurons may
have no orientation preference, the pRFs of both populations exhibit a radial bias.

would have a population response with the same required annular shape in the frequency domain
(Figure 5b), which would lead to the ability to decode orientation from areas that do not exhibit
orientation selectivity in single units. Indeed, the orientation of a visual stimulus can be decoded
from the LGN (Ling et al. 2015). Thus, according to the population model, ascribing orientation
selectivity to the ability to decode orientation from population responses is a categorical error.
That is, decoding orientations is evidence of spatial frequency tuning, not orientation tuning.

5. A CONSENSUS POPULATION MODEL

While a simple population model and considerations of the effect of stimulus vignetting can ac-
count for the ability to decode orientation without invoking a superresolution account, this is not
to say that other sources of orientation information are not at play. Certainly, there is the possi-
bility that columnar organization could contribute to BOLD measurements at high spatial reso-
lution. Biases in organization from earlier stages of the early visual system, including the retina
and LGN (Levick & Thibos 1980, 1982; Ling et al. 2015; Ringach 2007; Rodieck et al. 1985;
Schall et al. 1986; Shou et al. 1986; Smith et al. 1990), might contribute to cortical organization.
An over-representation of cardinal orientations (Sun et al. 2013) that might match the statistical
distribution of local orientation in natural images (Girshick et al. 2011) may also contribute. At-
tention (Ling et al. 2015), working memory (Harrison & Tong 2009), and other cognitive factors
may change the gain of response or leave a trace of previously encountered stimuli. A model like
the one in Figure 5, which does not include these factors, offers no possibility to test for these
types of effects. We need to generate a consensus model that incorporates multiple sources of ori-
entation bias, from fine spatial scale to coarse spatial scale, and permits inferences regarding the
relative contribution of each.

Beyond stimulus vignetting, what are the most likely contributions to orientation selectivity in
population measures of V1? One possibility is that there are differences in orientation tuning that
depend on position in the cortex. The impact of cortical position on orientation selectivity can be
included in the population model by applying a gain to the orientation-selective filters. Specifi-
cally, the output of the orientation-selective filters is multiplied by a cortical gain field in which the
amplitude of the gain depends on the location in the cortex (Figure 65). The columnar architec-
ture is itself an example of a cortical gain field. However, there could be many factors that result in
an interaction between orientation selectivity and position in the cortex, such as differences across
cortical layers or even between cell types. Another possible source of orientation selectivity, other
than stimulus vignetting, is related to coarse-scale anisotropies in preferred orientation across the
population, for example, a more prominent representation of vertical and/or horizontal orienta-
tions. Such effects can be included in the model we propose by incorporating a feature gain field
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in which each simulated neuron’s response is multiplied by an orientation-dependent modulator,
which could produce, for example, larger responses to vertical and/or horizontal orientations, re-
sulting in an oblique effect across the population (Figure 6¢). Of course, it is also likely the case
that each of these potential sources of orientation selectivity—stimulus vignetting, cortical gain
field, and feature gain field—all contribute to some degree to orientation bias and that any pop-
ulation measurement reflects a combined contribution of each. Our goal in this review is not to

a Stimulus vignetting alone
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(Caption appears on following page)
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Figure 6 (Figure appears on preceding page)

Consensus model of orientation selectivity. Several distinct factors in addition to stimulus vignetting can, in
principle, contribute to orientation preferences in population measurements. The consensus model provides
a flexible, modular platform for testing predictions of each of these factors. (#) Stimulus vignetting, in the
absence of any additional factors, creates a radial bias most pronounced in voxels with population receptive
fields overlapping the aperture edge. Colors indicate the preferred orientation of each voxel, as in Figure 3,
and opacity indicates the strength of the response. (b)) Cortical location gain depends on position in the
cortex, creating a bias in the population measurement. The most notable source of cortical gain arises from
the columnar architecture. (c) Feature-specific gain, such as an enhanced response to vertical orientations,
creates a map with an over-representation of vertical orientations. Responses to orientations other than
vertical are shown with decreased opacity.

provide an exhaustive list of factors that could give rise to an orientation bias, but rather to provide
the framework for building a flexible and modular model in which features can be added or taken
away, fit to experimental data with novel stimuli across a range of measurement modalities, and
refined over time to produce a more complete model of the visual cortex.

A consensus model provides a framework for testing the impact of each of the computations
that link the stimulus with the measured response (Figure 7). A consensus model is abstracted
from physiological and anatomical implementation, but those considerations can be built in as
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Figure 7

Consensus model comparison approach. The consensus model provides a framework for testing the impact of each of the computations
that link the stimulus (/ef?) with the measured response. The population model (center) represents different hypotheses about neural
function that will give rise to different measurements, as predicted through measurement models (right). Population models gain
experimental support by making testable and falsifiable predictions for different measurement modalities. For example, illustrated are
receptive field models with varying degrees of complexity, ranging from a simple Gaussian model to a deep convolutional neural
network. The consensus model incorporates various forms of gain field modulation, which can account for different sources of bias such
as columnar architecture (cortical position gain) or cardinal orientation bias (feature gain). Sources of population noise also should be
explicitly modeled. The responses of the population models will manifest in different ways for different measurements, for example,
when measured with different functional MRI contrast mechanisms (BOLD or CBV) or via different physiological signals such as Ca?*
or electrophysiological signals (EEG, MEG, ECoG, or neuropixels). Thus, measurement models that also incorporate assumptions
about different sources of measurement noise are required to make explicit predictions for each population model. The goal of bridging
across measurement modalities is met by a population model with gain modulation, which can best account for responses measured
across a wide array of different measurement techniques. Abbreviations: BOLD, blood oxygen level-dependent; CBV, cerebral blood
volume; ECoG, electrocorticography; EEG, electroencephalogram; MEG, magnetoencephalography; MRI, magnetic resonance
imaging.
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well. For example, a feature gain field could be instantiated in the cortex in several ways, including
a bias in the strength of feedforward stimulus drive inherited from earlier stages or fed back from
higher-order cortical areas (Nasr & Tootell 2012). A feature gain field could also be intrinsic to V1,
instantiated by differences in the proportion of cells preferring a particular stimulus orientation,
differences in response amplitude, or differences in tuning bandwidth. In addition, existing models
of the optics of the eye and retinal processing (Cottaris et al. 2019) could be leveraged as a first
stage of processing the stimulus, before transforming through receptive field models, and such
front-end mechanisms could themselves lead to orientation biases.

The consensus model (Figure 7) is also agnostic to the particular receptive field model used,
with possibilities ranging from very simple (elongated Gaussian V1-like receptive fields and cir-
cular center-surround LGN-like receptive fields) to much more complex models. More complex
receptive field models may be useful for characterizing the impact of computations such as divi-
sive normalization (Carandini & Heeger 2012) and asymmetric surround suppression (Cavanaugh
et al. 2002a,b; Tanaka & Ohzawa 2009; Walker et al. 1999), both of which could themselves con-
tribute to an orientation bias across the population.

6. WHY DOES THIS MATTER? AN EXAMPLE FROM VISUAL
ATTENTION

Why does all of this matter? If one can decode orientation from imaging measurements, and if
we know that the visual cortex is orientation selective, then does the underlying mechanism really
matter? Even if it is imperfect, why not use decoding to discover new principles of cognitive func-
tions? Indeed, orientation decoding has been used as a means to investigate a variety of cognitive
processes such as attention (Ester et al. 2016, Garcia et al. 2013, Jehee et al. 2011, Ling et al. 2015,
Scolari & Serences 2009, Scolari et al. 2012) and working memory (Bettencourt & Xu 2016; Ester
etal. 2013, 2015a,b; Harrison & Tong 2009; Lorenc et al. 2018; Yu & Shim 2017), among many
others (Tong & Pratte 2012). However, without clearly identifying how the stimulus is being de-
coded, what might seem like innocuous changes to an experimental design could give unexpected
results. For example, asking subjects to match orientations but changing among circular, oval,
and square gratings will give rise to different decoded cortical signals unrelated to orientation.
Manipulations in working memory might lead to subtle changes in the spatial frequency of the
represented stimulus that could wreak havoc on the interpretation of results.

An even more fundamental issue concerns what inferences about neural mechanisms can
be made from orientation decoding. Consider, for example, the question of whether sensory
responses change their selectivity or their gain with selective attention (Carrasco 2011). These
are fundamentally different ways in which sensory codes could adapt to behavioral demands, as
changes in selectivity imply that the population code for sensory stimuli has changed, while gain
changes are akin to turning up the volume knob on the most informative neural populations.
While at first glance it might appear that an analysis that retrieves a curve such as the one shown in
Figure 15 would be perfectly suited to address this question for human population responses, it
is not.

The curve in Figure 15, which visually shares the features of an orientation tuning curve
measured in single units, is the result of an inverted encoding model analysis (Sprague et al.
2018). A forward encoding model can encode visual stimuli in a lower-dimensional representation
(Brouwer & Heeger 2009), for example, by taking an image and encoding it as the output of a
small number of orientation-tuned filters. Population responses are then fit as weighted sums
of these filter outputs. This approach has been used for basic features such as color (Brouwer &
Heeger 2009, Yu & Shim 2017), orientation (Brouwer & Heeger 2011; Byers & Serences 2014;
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Chong et al. 2016; Ester et al. 2013, 2015b, 2016; Garcia et al. 2013; Ho et al. 2012; Liu et al.
2018; Lorenc et al. 2018; Scolari et al. 2012; Yu & Shim 2017), and direction of motion (Chen
et al. 2015, Saproo & Serences 2014) and is an example of the type of population model that we
advocate for above. An inverted encoding model goes one step further by using matrix inversion
of the weights on a left-out set of data to try to infer how the model behaves.

Such an inverted encoding model representation should not be confused for a tuning function,
as it cannot be interpreted as a unique representation of population selectivity (Gardner & Liu
2019). Indeed, this representation may not be due to orientation selectivity at all. The inverted
encoding model analysis is simply a linear regression problem thatis designed to produce whatever
shape of function was assumed in the creation of the model. That is, the forward model encoding
functions form a basis set for the responses of voxels, and inversion recovers this basis set. Any
rotation of the basis set axes will not change the ability of the analysis to account for variance in
the data. Thus, rather than an emergent property of the analysis that discovers the orientation
selectivity of the population, the shape of the basis set functions is a basic assumption baked into
the analysis. The shape of the resulting function, be it unimodal, bimodal, skinny, skewed, or
wide, is a consequence of that analysis choice, and the degree to which that functional shape is
recovered is a reflection of the signal-to-noise ratio of the data. Examination of the recovered
function thus cannot tell us what stimuli give what population response, the way that a tuning
function does (Figure 84). Even more problematic is the fact that, if orientation selectivity is
a consequence of stimulus vignetting and the spatial frequency tuning of the population, then
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different neuronal tuning functions. Tuning of single units or populations of units could take any of the shapes depicted at the left and
still give rise to a channel response function that looks perfectly unimodal because the channel response function is simply a
reconstruction of the assumed form of model tuning and not reflective of any tuning function in the neural system (Gardner & Liu
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tuning functions (/ef?), cannot be distinguished through examining channel response functions, as they will all manifest in a better

ability to reconstruct the assumed form of the model tuning function (right).
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the recovered function, though nominally described in terms of orientation, is not even due to
orientation selectivity itself.

Even if the inverted encoding model were due to orientation selectivity, sensory gain or se-
lectivity change would not be distinguishable (Liu et al. 2018). That is, imagine a case in which
one obtains a change in inverted encoding model output with attention (Figure 8b, right). Vi-
sually, this invites the interpretation of a tuning function with changed selectivity. However, this
interpretation is not warranted, as the same result would have been obtained if there was a gain
change. Moreover, changes in population selectivity, for example, if a subset of the population
of neurons were inhibited to achieve stronger selectivity for the attended orientation, would have
similar results. These possibilities and many others would result in the same outcome because they
all change signal-to-noise ratio. A more appropriate representation of the analysis is provided by
stimulus-, rather than model-, referred representation (van Bergen et al. 2015), which displays
what one could infer about the stimulus given the responses, rather than the state of an arbitrary
model (Gardner & Liu 2019).

The way out of this ambiguous state of affairs is to make model comparison central to the
approach. If one wants to determine whether a change in gain or a change in selectivity occurred,
then one should model those effects and see which best explains the data. Then, model compar-
ison statistics can determine if there is a discriminable difference in ability to predict the data. If
there is, then one has evidence of one mechanism over another. If there is not, then one cannot
make that conclusion. Sometimes, subtleties of the analysis, such as how one uses cross-validation
to build and test models, can make a difference in what one can conclude. For example, fitting
a model to two conditions that only vary in signal-to-noise ratio and then testing each condition
separately may result in an average model that reduces the effect of signal-to-noise differences,
whereas fitting two different models might accentuate those effects. However, model comparison
again comes to the rescue, as it makes clear what can and cannot be differentiated from the whole
analysis.

7. BEYOND ORIENTATION

To what extent is the need to have the right population model and proper consideration of the
stimulus applicable to other stimulus features beyond orientation? Decoding of other basic visual
stimulus features, such as direction of motion (Beckett et al. 2012, Kamitani & Tong 2006, Sterzer
et al. 2006, Wang et al. 2014), speed and temporal frequency (Hammett et al. 2013, Nishimoto
etal. 2011, Vintch & Gardner 2014), color (Bannert & Bartels 2018, Brouwer & Heeger 2009),
spatial frequency (Kay et al. 2008), and eye of origin (Larsson et al. 2017), has been found; are
these results evidence for superresolution decoding? Several results strongly suggest against a
superresolution account.

For example, motion stimuli presented with an aperture appear to induce larger responses at
the leading edge of the motion (Beckett et al. 2012, Wang et al. 2014), an effect that has been
described as consistent with predictive coding (Schellekens et al. 2016) and that could be the basis
for slight changes in retinotopic mapping (Whitney et al. 2003) with moving stimuli. Evidence
exists that there are retinotopic differences in the distribution of color-selective responses in
the cortex (Vanni et al. 2006), which could arise from differences in the density of short-wave
cones (Curcio et al. 1991) and intrinsically sensitive retinal ganglion cells (Horiguchi et al. 2013)
between the foveal and peripheral retina. Chromatic aberration effects from the lens could also
distort the retinotopic position of different wavelengths. Spatial frequency selectivity (Aghajari
etal. 2020) covaries with receptive field size, and thus, at more eccentric locations where receptive
fields are larger (Broderick et al. 2018), spatial frequency selectivity should shift toward lower
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spatial frequencies (Kay et al. 2008). Indeed, spatial frequency sensitivity has been used to infer
receptive field size (Keliris et al. 2019). The temporal frequency response of two channels can
be determined across visual areas (Horiguchi et al. 2009, Stigliani et al. 2017); thus, temporal
frequency selectivity can be determined at a coarse spatial scale. Differences in distribution of
magnocellular and parvocellular types in the foveal compared to the peripheral retina could give
rise to cortical retinotopic distribution of spatial and temporal frequency selectivity. Astigmatism
in some subjects could cause different amounts of spatial blur at different places in the retina.
Eye of origin can be decoded not only from the primary visual cortex, but also from higher-order
visual areas that are not thought to have strongly monocular responses (Larsson et al. 2017).
Features such as image contrast (Avidan et al. 2002, Birman & Gardner 2018, Kastner & Pinsk
2004, Logothetis et al. 2001, Tootell et al. 1995) and motion coherence (Birman & Gardner 2018,
Costagli et al. 2014), which affect the visibility of stimuli, give rise to monotonic responses that
can be measured in the average response within a cortical area. All of these effects suggest that,
rather than superresolution decoding, basic visual features are available to BOLD measurement
through coarse-spatial-scale representations in the cortex.

Categorical representation has long been known to be encoded on a large spatial scale in hu-
mans, and while decoding analyses show that more can be learned by examining the fine pat-
tern of responses, these results do not require superresolution explanation. Selectivities for faces
(Kanwisher et al. 1997), places (Epstein & Kanwisher 1998), body parts (Downing et al. 2001), vi-
sual word forms (Cohen et al. 2000), and other visual categories have been found and are grouped
into cortical areas along the ventral temporal cortex. Larger-scale groups are separated by the mid-
fusiform sulcus into representations for animate and inanimate and other proposed large-scale
categories (Chao et al. 1999, Kriegeskorte et al. 2008, Grill-Spector & Weiner 2014). Examining
more than just the category that elicits the strongest response shows that category can be decoded
from distributed response patterns (Haxby et al. 2001). However, this does not require superres-
olution. It can simply result from reliable differences in response to the nonpreferred category.
Classification analysis can also decode position from the ventral visual cortex (Carlson et al. 2011,
Schwarzlose et al. 2008), which is thought to be position invariant (Ito et al. 1995, Rust & DiCarlo
2010). While these results show that more fine-grained visual information can be inferred from
examination of fine-scaled patterns of responses, they do not necessarily require a superresolu-
tion account. Indeed, a foveal bias for faces compared to other stimuli has long been known (Levy
et al. 2001), and topographic response preference within areas at a coarse spatial scale could ac-
count for decoding results. Moreover, it has been suggested that representation of some complex
properties of visual stimuli, such as numerosity (Eger et al. 2009), is mapped along the cortical
surface (Harvey et al. 2013) at a scale easily accessible through imaging.

8. BROADER CONCLUSIONS ON COMPUTATIONAL MODELING
FOR HUMAN NEUROSCIENCE

What general lessons can be learned for human neuroscience from this effort to understand the
basis of the orientation signal for decoding? The goal of making models that can explain measure-
ments of the human visual cortex should not be minimized. After all, visual neuroscience has long
sought better models of the properties of single neurons. Models of single units, such as contrast
or motion energy models (Adelson & Bergen 1985, Watson & Ahumada 1985), have been refined
and expanded to include computational motifs such as static output nonlinearities and normaliza-
tion that can account for a wide range of phenomena. The ubiquity of the computations that have
been found has led to the idea that some computations such as divisive normalization should be
considered canonical because they occur in many different systems (Carandini & Heeger 2012).
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PROPERTIES OF A POPULATION MODEL

Explicitly referenced: Is it clear what the population model is a model of?

Generality: Does the model generalize easily to a new situation?
Goodness-of-fit: Does the population model explain a sizable amount of the explainable variance of the data?
Reasonable alternatives: Has the population model been compared to reasonable alternatives?

Validation: Has the population model been validated through simulation?

Interpretable: Does the population model provide insight into the phenomenon that it is modeling?

Robust: Is the population model robust to small perturbations of parameters?
Specific: Is the population model matched in complexity to the phenomenon that it is modeling?
Bridging: Can the model bridge across different measurement modalities and species?
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Extending and developing new models that can account for population responses rather than just
single units is important, as the predictions can be substantially different (Hara et al. 2014, Mante
& Carandini 2005), and principles of computation viewed from the perspective of populations can
demonstrate that properties of the world need not be encoded in each individual neuron. Indeed,
significant advances have been made in understanding how mixed selectivity (Rigotti et al. 2013)
and dynamically changing activity across populations of neurons (Mante et al. 2013) can encode
aspects of the world. Building explicit models of populations should be a goal in and of itself to
further understand the human visual cortex.

As with any modeling endeavor, there are a few key ingredients that make for a rigorous ap-
proach (see sidebar titled Properties of a Population Model); many of them stem from basic mod-
eling considerations, but they come up frequently and thus deserve attention.

8.1. Explicitly Referenced

Perhaps the most salient problems for population models occur when they are not explicitly refer-
enced to the phenomenon that they are modeling. This is fundamentally the difference between
an analysis and a model. Consider the difference between a support vector machine (SVM) anal-
ysis and the population model in Figure 7. Both are mathematical models of the data, but the
SVM does not reference any properties of the visual system. Instead, it treats the data as generic
matrices and obtains an analytic result. As with any analytic approach, there is danger in blindly
trying algorithms until one obtains a desired result (Botvinik-Nezer et al. 2020). Explicitly refer-
encing the model to the processes that one is trying to explain provides guidance as to the choice
of model and makes for cumulative science. That is, one chooses to model the phenomenon, for
example, the receptive field structure, based on the cumulative knowledge of visual responses and
notas an arbitrary choice, subject to the lack of specificity for the phenomenon. Building explicitly
referenced population models, rather than analyzing, is a mindset. While an SVM is technically a
model of the data, are any biological processes well modeled by the assumptions of an SVM?

8.2. Generality

Making visual models general by making them image computable can easily resolve issues that
might otherwise engender endless debate. Consider the methods of mitigating the impact of the
edge of the aperture to evaluate actual orientation selectivity with population measurements. One
might consider smoothing or blurring the edge of the aperture (Warren et al. 2014); however, this
simply spreads the aperture across a larger region of space, causing a more pronounced vignetting
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effect (Carlson 2014). Alternatively, one might use a larger stimulus aperture and characterize
orientation selectivity in voxels with receptive fields farther away from the aperture edge (Wardle
etal. 2017). However, population receptive fields are large, and identifying responses that are truly
not affected by the aperture is difficult. Indeed, with sufficient averaging and improved signal-
to-noise ratio, many more voxels are modulated by stimuli and tasks than is typically revealed
by statistical thresholding (Gonzalez-Castillo et al. 2012). Moreover, vignetting effects are also
expected near the fovea, and because of cortical magnification, such effects may be evident in many
voxels. Rather than arguing about whether any of these methods of removing vignetting effects
reveals true orientation selectivity, one can use a concrete population model, which makes concrete
predictions. Passing a proposed stimulus through an image-computable population model enables
one to make explicit predictions, rather than proposing an endless array of ad hoc changes to
stimuli that may or may not have the desired effect.

8.3. Validation

Ground-truth simulation should be performed before a conclusion is drawn about the outcome of
a model. Model fitting will sometimes be unable to distinguish certain parameters because of the
ambiguity of the fit. For example, the size or aspect ratio of population receptive field models may
not be well determined (Lerma-Usabiaga et al. 2020a, Silson et al. 2018). These model parameters
cannot then be meaningfully interpreted. The solution is to simulate data with realistic amounts
of noise to see if the model can recover ground-truth (Lerma-Usabiaga et al. 2020b). If the model
cannot recover simulated ground-truth, or if different models that one wishes to compare fit the
data equally well, then testing on real data is hopeless.

8.4. Goodness-of-Fit

A particularly important issue for population models is whether they can account for a substantial
amount of variance. Goodness-of-fit can be evaluated by using cross-validation and reporting the
amount of variance that can be accounted for in data that the model was not built to predict.
Typically, one examines the amount of explainable variance by considering how well the data
can predict itself through splitting up the data and computing the correlation between different
portions of the data, sometimes scaling this value. While this is a sensible metric, it can be abused
if the amount of explainable variance is small. Often, the values are not reported or are unscaled,
and it is impossible to know how repeatable response patterns are. Building inferences about how
models explain data, for example, finding evidence for spatiotopic representations for responses
that are not well fit by any model (Gardner et al. 2008), can lead to unwarranted conclusions.

8.5. Robustness

Some models can be sensitive to the choice of parameters, and thus, their predictions are not
robust. If a model is brittle in this way, then the inferences may not be strongly constrained. For
example, if a slight change in the parameters of a model can cause predictions to qualitatively flip
(Alink et al. 2018, Ramirez & Merriam 2020), then the model may not be meaningful interpreted.
In such cases, it is important that these parameters be constrained by empirical measurements.
For example, a model may make an interesting prediction, but only if the signal-to-noise ratio
in the simulation is set to levels that cannot be achieved experimentally (Ramirez & Merriam
2020). Robustness is also important when comparing models. One model may account for more
variance than another, assuming a given set of parameters. However, it makes little difference if
the parameters required to differentiate models are not biologically plausible.
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8.6. Reasonable Alternatives

Even when a population model can account for a significant amount of variance, this does not im-
ply that the model is a good model (Pitt & Myung 2002). Significance is typically determined by
testing against a null model, for example, by permuting labels on the data and determining whether
the model captures more variance than is expected by chance. However, this approach does not
guarantee that the model is a good model. Instead, one should provide alternative, plausible models
and compare them using model comparison statistics. For example, a complex population model
with orientation, spatial frequency, and spatial tuning, like a Gabor wavelet pyramid, can account
for a statistically significant proportion of variance. However, if removing specificity for orienta-
tion and spatial frequency yields a model that performs just as well, given the number of fit param-
eters needed, then the data may only need to account for the position and size of the receptive field.

8.7. Interpretability

A model that explains more of the data variance is not necessarily one that has the most explana-
tory power. While complex models like deep convolutional networks may provide a better ability
to squeeze out a few more percentage points of explained variance, they may do so with little added
interpretability. Indeed, the effort to understand how deep learning models arrive at their predic-
tions has become a growing subfield called explainable AI (Krishnapuram et al. 2016, Lundberg
& Lee 2017, Molnar 2020, Owen & Prieur 2017). A related issue is that highly parameterized
models may not have one-to-one correspondence between model features and neural responses;
a deep neural network model for a single neuron may require a linear combination of many con-
volutional filters to reach high explainable variance (Yamins et al. 2014). Seeking models with
one-to-one correspondence (Higgins et al. 2020) between model features and neural responses
can provide models that are more interpretable. Interpretability may be at odds with some of the
other criteria listed in this section, such as goodness-of-fit. A more complex model may fit the data
better, but interpretability is itself a goal, and in many cases, we should choose the simpler model.

8.8. Bridging

A population model should be adaptable to a range of neuroimaging modalities, including coarse-
scale methods like BOLD MRI and magnetoencephalography (Hermes et al. 2019, Kupers et al.
2020), as well as intrinsic signal optical imaging, calcium imaging, and neuropixels (Figure 7),
thus providing a mechanism for bridging different measurement modalities and even species.

8.9. Conclusion

Not all population models need to possess all of these properties. For example, an engineering
application for brain machine interfaces may be less interested in interpretability and more in-
terested in generality, i.e., being able to predict the correct output. Nonetheless, even for such
applications, how well-behaved the models will be in new situations is heavily constrained by how
well we understand the system that we are modeling, and thus, it is perilous to ignore other consid-
erations of good population modeling. The best model might not have the highest goodness-of-fit,
for example, but might offer some other of these criteria (such as bridging across measurement
modalities) that are particularly important for addressing the scientific question of interest.

9. CONCLUSIONS

The discovery that linear classification analysis could decode basic visual stimulus properties
(Kamitani & Tong 2005, 2006) without painstaking high-spatial-resolution imaging is clearly a
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landmark finding that propelled the analysis of patterns of activity (Haxby et al. 2001) into a
powerful way to learn about the human brain. While some may consider the subsequent effort
investigating whether the analysis retrieves superresolution information about cortical columns
an affront to this achievement, it was not. In fact, this effort has led to a better foundation for our
understanding of how pattern analysis reveals the orientation of a stimulus by showing that map-
like topographic signals at a spatial scale easily measurable with BOLD imaging can be formed
by population responses that need only be selective for spatial frequency. This provides a frame-
work for building population models (Dumoulin & Wandell 2008, Kay et al. 2008) that form a
foundation for the many uses that pattern analysis has been put to in the study of the human
brain (Kriegeskorte et al. 2008, Tong & Pratte 2012). Consensus models of the type that we pro-
pose in this review (Figure 7) can be used to quantitatively adjudicate between different proposed
mechanisms for decoding. Use of these models builds on the strong tradition of computational
modeling in visual neuroscience and thus forms a foundation for cumulative and replicable use
and interpretation of the analysis of patterns of activity in the human brain.

1. Decoding of orientation is explained by a population model that shows that stimulus
vignetting can give rise to stronger responses for radial orientations.

2. Computational analysis can thus capitalize on information encoded in maps, but not
because they are able to retrieve superresolution information.

3. Models based on single-unit receptive fields only are not appropriate for modeling pop-
ulation responses; instead, the population of neurons needs to be taken into account.

4. Population models without selectivity to orientation can still give rise to an orientation-
selective signal.

5. If categorical errors of interpretation can occur for orientation, then other, more com-

plex features and cognitive responses that rely on similar techniques may be based on
incorrect inferences.

6. Population models, rather than blind analyses, provide a way to make valid interpreta-
tions of human neuroscience measurements.

7. Population models should be explicitly referenced, general, validated, interpretable,
robust, and specific; be compared against reasonable alternatives; and display high
goodness-of-fit so that they can form the basis for a cumulative and replicable approach
to making valid inferences from human neuroscience measurements.

8. Population models need to be developed to explain decoding of basic stimulus features
beyond orientation, such as motion direction.
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