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Abstract

Patterns of brain activity contain meaningful information about the per-
ceived world. Recent decades have welcomed a new era in neural analyses,
with computational techniques from machine learning applied to neural data
to decode information represented in the brain. In this article, we review
how decoding approaches have advanced our understanding of visual rep-
resentations and discuss efforts to characterize both the complexity and the
behavioral relevance of these representations. We outline the current con-
sensus regarding the spatiotemporal structure of visual representations and
review recent findings that suggest that visual representations are at once
robust to perturbations, yet sensitive to different mental states. Beyond rep-
resentations of the physical world, recent decoding work has shone a light
on how the brain instantiates internally generated states, for example, during
imagery and prediction. Going forward, decoding has remarkable potential
to assess the functional relevance of visual representations for human be-
havior, reveal how representations change across development and during
aging, and uncover their presentation in various mental disorders.
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Neural
representations:
neural activity patterns
that encode
information about
external input (e.g.,
visual features or
objects) or internally
generated states (e.g.,
preparatory templates)

Multivariate pattern
analysis (MVPA): also
known as decoding;
method for
quantifying the
discriminability of
neural activity patterns
corresponding to
different conditions,
with separable patterns
indicating
condition-related
representations

DECODING NEURAL RESPONSES
What Are Neural Representations?

The study of neural representations is predicated on the concepts that distributed, population-
level neural activity plays an important role in the functioning of the brain, and that neural
activation patterns can be characterized by their relationship to both perception and mental states.
In this way, neural representations are understood to be patterns of brain activity that encode infor-
mation about both the internal and the external world—a neural code for the features of perceptual
input, as well as internally generated cognitive states. An important aspect of representations is
that they can be used by the brain to guide behavior; indeed, some have argued that behavioral
relevance is a nonnegotiable criterion of using the term representation (Baker et al. 2022). In this
review, however, we use the term in a broader sense to mean a neural pattern associated with a
given state (see the section titled Linking Neural Representations to Behavior).

Over the past several decades, characteristic neural patterns of varying levels of abstraction
have been reported in the literature, arising in response to high-level visual categories such as
faces and objects (Haxby et al. 2001) and basic visual features such as orientation (Kamitani &
Tong 2005) and color (Brouwer & Heeger 2009), as well as in the context of higher cognitive
states such as preparatory attention (Gayet & Peelen 2022). These representations are at once both
reliable and complex: Representational formats can vary according to the mental state or process
under inspection, the neural imaging method used, the brain region considered, the amount of
processing time devoted to a stimulus, or the task performed (Bracci & Op de Beeck 2022). Thus,
neural representations are necessarily specific to modality, time, space, and context.

Although a host of methods exist to measure and interpret neural representations, includ-
ing repetition suppression (Barron et al. 2016, Grill-Spector & Malach 2001) and adaptation
(Webster 2011), multivariate pattern analysis (MVPA) methods that use decoding and encoding
models to correlate neural patterns with conditions have enjoyed wide uptake in recent years (for
a brief comparison, see the sidebar titled Encoding Models). In this review, we focus on the utility
of multivariate decoding as a sensitive yet flexible method for contrasting different neural repre-
sentations and characterize how neural decoding methods have advanced our knowledge of visual
representations in the brain. In particular, we highlight the recent uptake of decoding methods for
studying the temporal dynamics of visual processing and the organization or structure of infor-
mation representation in the brain and point to the transition of neural decoding from a method
used to index core representations to a technique now being used to index transient state spaces,
giving insight into mechanisms of attention, prediction, and imagery.

ENCODING MODELS

Taking multivariate analyses a step further, newer work has focused on predicting neural activity from stimuli us-
ing encoding models. Encoding and decoding are complementary techniques, but encoding explicitly models how
information is represented in patterns of neural activity (Naselaris et al. 2011). An extension of encoding models,

forward encoding, is used to reconstruct neural activity for stimuli never used to train the model (Brouwer & Heeger

2009). Such methods can be powerful for characterizing the neural coding of continuous stimulus attributes (e.g.,

orientation). For complex scenes and objects, techniques have to be applied to extract continuous or linear features
from the images (Kay et al. 2008) or linearize the stimulus space (Gifford et al. 2022), which limits interpretability
about the representations. We see enormous potential in encoding models, with their increased explanatory power,

but think that decoding still has its place for now, particularly for classes of stimuli with no clear linear relationships

that evoke abstract representations, such as objects.
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What Is Neural Decoding?

Whereas it was once standard practice to quantify conditional differences at the level of
individual voxels or electrodes, the mass-univariate approach has now been firmly eclipsed
by multivariate analyses of brain activity, which characterize neural representations by re-
lating perceptual and cognitive conditions to their associated neural patterns of activity
(Hebart & Baker 2018, Kragel et al. 2018). Broadly described, neural decoding methods aim to
dissociate patterns of neural responses across different conditions or labels: When the patterns
for two conditions are separable (e.g., for horizontally and vertically oriented gabors), the neu-
ral response is considered to contain information about the stimulus dimension under inspection
(i.e., an orientation representation). The unifying element of multivariate decoding methods is
their assessment of information jointly represented across individual voxels or sensors, achieved by
considering the spatial or temporal distribution of activation from neuroimaging methods such as
functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG), and electroen-
cephalography (EEG) (Figure 1). The much-discussed advantage of this pattern-based approach
over univariate methods is its increased sensitivity: Whereas the strength of activation on any in-
dividual neuron, sensor, or voxel may be indistinguishable for two conditions, the pattern reflected
in jointly considered sensors may give near-perfect separability.

Broadly speaking, multivariate decoding methods aim to discriminate population-level neural
activity between conditions or stimuli of interest, even if mean activity levels do not vary. In prac-
tice, this involves training machine learning algorithms (e.g., linear discriminant analysis, support
vector machines) to associate patterns of neural activation across voxels or sensors with labels that
capture the manipulation of interest (e.g., experimental conditions, stimulus classes). The classifier
is then tested on held-out neural data that it has never encountered before, with above-chance clas-
sification accuracy taken as evidence that the neural patterns encode the dimension along which
the stimuli or conditions vary (see the sidebar titled How High Is High Enough?). As the acces-
sibility of these powerful methods has improved with the proliferation of open source toolboxes
(Bode et al. 2019, Hebart et al. 2015, Oosterhof et al. 2016), multivariate decoding has begun to
burgeon out of basic vision science and into other areas such as developmental research (Ashton
et al. 2022). Rather than providing an in-depth tutorial on variations in the mechanistic imple-
mentation of multivariate decoding (extensively covered elsewhere; see Grootswagers et al. 2017,
Pereira et al. 2009), we focus on how such methods have provided insight into visual perception
at many different levels, from low-level visual features, to conceptual representations of objects,
all the way through to internally generated representations evoked by imagery.

Spatial and Temporal Dynamics

Within visual cognitive neuroscience, the multivariate framework has had a substantial impact
on understanding both the spatial and temporal dynamics of neural representations. In the years
since Haxby and colleagues’ (2001) seminal paper, which used pattern classification to investigate
face and object representations in the ventral temporal cortex, fMRI research has witnessed a
shift away from asking which brain region is activated by a particular visual stimulus and toward
questions about how a given stimulus is encoded at a population level. With the majority of fMRI
studies of high-level vision published in the past decade now including MVPA of some type, the
language of interpreting neuroimaging data has evolved such that the dominant parlance is now
one of information and representation, rather than the historic notion of activation (Hebart &
Baker 2018, Kragel et al. 2018, Kriegeskorte et al. 2006).

Although the origins of multivariate methods can be found in fMRI research, neural decod-
ing methods have since taken root in the temporal domain, with a proliferation of studies that
use time-resolved decoding (e.g., Carlson et al. 2011, Cichy et al. 2014, Dijkstra et al. 2018,
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Time-resolved
decoding: a variant
that captures
representational
dynamics by
inspecting the
dissociability of neural
activity patterns at
sequential time points
in MEG or EEG data
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Figure 1

Multivariate decoding relies on discriminating patterns of activity evoked by one condition (e.g., an image of a strawberry) from those
evoked by another condition (e.g., an image of a giraffe). The activation patterns for discrimination can take many forms, for example,
activation across voxels (fMRI), channels/time (MEG, EEG), sensor positions (single unit recordings), or even behavioral metrics.
Activation patterns are vectorized to form features for classification. A classifier is trained to discriminate the neural patterns across
conditions using multiple trials per condition and tested on held-out data. If the classifier reliably performs above chance for this novel
data, then information in the neural signal is understood to discriminate between the conditions, providing an index of the neural
representation of the dimension along which the conditions vary. Abbreviations: EEG, electroencephalography; tMRI, functional
magnetic resonance imaging; MEG, magnetoencephalography.

Hebart et al. 2018, Kaiser et al. 2016, Philiastides & Sajda 2006). In the context of continuous
data (e.g., MEG or EEG), brain states corresponding to different conditions or stimuli are stud-
ied as dynamic, unfolding processes, with a classification algorithm implemented at each individual
time point or time window to yield a decoding accuracy time series (Grootswagers et al. 2017).
This is an important development of multivariate methods—equally as important as knowing
where information is represented in the brain is understanding the time course over which the
representations emerge and decay. Time-resolved decoding has provided unprecedented insights
into the temporal dynamics of visual processing, for example, by revealing that representations
associated with different levels of category abstraction are staged in time (Contini et al. 2017).
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HOW HIGH IS HIGH ENOUGH?

A common criticism leveled at decoding studies concerns low classification accuracy values. In time-resolved de-
coding, for instance, it is common to achieve reliable above-chance decoding with classification of approximately
60%, relative to the chance level of 50%. We and others argue that reliability is key to interpretation over value;
decoding accuracy is not an effect size (Carlson et al. 2020, Hebart & Baker 2018). Classification accuracy is con-
siderably influenced by data processing (filtering, artifact correction or rejection, trial averaging), the number of
classification features (voxels, electrodes, time points), feature selection methods (e.g., choosing time points or re-
gions guided by literature, applying principal component analysis, t-values), and classification methods (classifier
choice, cross-validation schemes), as well as factors such as the underlying effect size and the number of trials per
class (Grootswagers et al. 2017, Hebart & Baker 2018). Importantly, most of these factors do not seem to influence
the statistical reliability of the effects, just the magnitude (Grootswagers et al. 2017). Of course, higher versus lower
decoding magnitude can reflect the strength of the neural signal or noise, but reliable above-chance decoding is

indicative of condition-relevant information contained in the neural signal, regardless of decoding magnitude.

Adding the temporal dimension has also given rise to more complex and informative variations
of the method—for example, temporal generalization, in which a classifier trained on the spatial
distribution of activation at one particular timepoint is tested on a range of different timepoints
(King & Dehaene 2014, Stokes et al. 2013). This form of cross-decoding is relevant for revealing
the temporal stability of neural activation patterns and speaks to the stationarity (or lack thereof)
of various representational spaces (King & Dehaene 2014). However, neural decoding for contin-
uous data suffers from the same challenge common to all time-series analyses—namely, multiple
comparisons. How should decoding accuracy be evaluated against chance when there are 1,000+
accuracies to inspect? Current proponents of multivariate methods applied to MEG and EEG
data favor Bayesian methods that quantify cumulative evidence, rather than frequentist corrections
(Teichmann et al. 2021).

MULTIFACETED VISUAL REPRESENTATIONS IN THE BRAIN

Multivariate decoding methods have been instrumental in moving the needle on understanding
the functional architecture of the visual system. A great deal has been learned about the spatiotem-
poral characteristics of brain processes supporting the extraction of low-, mid-, and high-level
properties of visual input. In this section, we describe insights from decoding studies that charac-
terize visual perception as a set of increasingly complex representations that span from features
through to concepts, ultimately focused on deriving meaning from visual stimuli.

Visual Features

Representations of basic low-level units of visual information (e.g., orientation, position, spatial
frequency) form the basis for all subsequent processing and are thus the foundation of visual
perception. As a sensitive framework through which to investigate fine-tuned representations,
decoding has confirmed and progressed our knowledge of how the visual system implements
the first computations to result in perception. For example, fMRI decoding has shown that
early visual cortex represents fundamental visual features such as orientation (Haynes & Rees
2005, Kamitani & Tong 2005), color (Brouwer & Heeger 2009), and motion direction (Kamitani
& Tong 2006), as well as conjunctions of color and motion direction (Seymour et al. 2009).
Different feature representations have distinct but overlapping temporal profiles. The earliest
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Temporal
generalization:
assesses the stability of
neural representations
over time by
quantifying how well
models trained at one
time point generalize
to others

Cross-decoding:

a variant of MVPA
that examines the
generalizability of
representations
between stimuli or
states by training and
testing classification
models on different
conditions
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EEG and MEG responses, beginning at 50-70 ms after stimulus onset, reflect representations of
stimulus position (Blom et al. 2020, Carlson et al. 2011, Robinson et al. 2021), spatial frequency
(Ramkumar et al. 2013, Robinson et al. 2017), orientation (Cichy et al. 2015, Moerel et al. 2022b),
and color (Rosenthal et al. 2021, Teichmann et al. 2020). While it is difficult to directly contrast
time course information across studies employing different methods, comparisons of different
features within the same study can shine a light on the differential dynamics of feature processing.
For example, one study showed that shape decoding (evident from 60 ms onward) preceded color
decoding (evident from 70 ms), whereas shape—color congruency was not evident until as late
as 200 ms after stimulus onset (Teichmann et al. 2020). These results highlight the distinction
between low-level feature coding and higher-level knowledge-based feature interactions.

Objects and Categories

A major contribution of decoding methods applied to neuroimaging data has been to unlock
the neural code within brain regions already identified via univariate methods as specialized for
processing different object categories. In the field of face perception, for example, univariate
fMRI studies had already revealed a network of regions in occipitotemporal cortex with face-
selective properties (i.e., stronger responses to face versus nonface stimuli) (Kanwisher et al. 1997,
McCarthy et al. 1997, Puce et al. 1996). Other studies established further organizational princi-
ples in visual cortex, showing modular regions that respond more strongly to specific categories
of visual stimuli, such as bodies (Downing et al. 2001) and scenes (Epstein & Kanwisher 1998);
retinotopic organization within object-selective areas (Levy et al. 2001); and a coarse scale orga-
nization based on object size across ventral temporal cortex (Konkle & Oliva 2012). Multivariate
approaches to fMRI data have drilled further into these striking findings, revealing overlapping
representations of various high-level categories such that the very same face-selective regions
noted above have been shown to also contain relevant information about other object categories
(Haxby et al. 2001). In this way, neural decoding studies have led to the development of a more
tempered or graded set of linguistic terms than the older notions of selectivity or domain specificity
encouraged.

In the temporal domain, decoding techniques applied to MEG and EEG data have character-
ized the emergence of increasingly abstract categorical representations as processing proceeds
from early visual cortex to high-level ventral visual areas (Cichy et al. 2014, 2016). Whereas
image-related differences in the low-level features of different objects are decodable as soon
as 60 ms after stimulus onset (Carlson et al. 2011), higher-level information about basic cate-
gories (e.g., dog, boat) and overarching categories (animate or inanimate) arises comparatively
later in time (Carlson et al. 2013, Cichy et al. 2014, Grootswagers et al. 2019a), more than 100 ms
after image presentation. Notably, representations of different category levels do not arise and
decay in nonoverlapping windows, but instead appear to cascade through time, highlighting the
multifaceted nature of object recognition processes (Grootswagers et al. 2019a).

Features Versus Objects: An Untenable Distinction

The overlapping temporal profiles of different category labels characterize the complexity of the
brain processes involved in extracting high-level meaning from visual images. Indeed, since all
objects are a conjunction of features, and since object categories comprise exemplars with similar
featural profiles (e.g., bananas tend to be curved, leaves tend to be green), it is necessarily the
case that object categories differ from one another on low- and mid-level features, as well as in
terms of high-level abstract meaning. As can be seen in Figure 2, some of the categories of a large

Robinson o Quek o Carlson



Mean animate

Human body

Human face

Animal body

Animal face

Mean inanimate

Natural
object

SIO|®B) 1} |0

Manmade
object

Figure 2

Images from a large stimulus set show consistent visual features for some categories. For example, the category mean of human face is

very representative of a human face, and the mean animate images have face-like attributes. Figure reproduced from Grootswagers &
Robinson (2021) (CC BY 4.0).

and prolific stimulus set (Kriegeskorte et al. 2008b) can be distinguished by consistent features
even when the images within a category are averaged (Grootswagers & Robinson 2021). The
inherent contribution of visual features to category representations is exemplified in the computer
vision literature, where deep neural networks can reliably label objects based purely on featural
covariance reflected in the training image set (e.g., He et al. 2015).

That high-level information about semantic categories is necessarily confounded with percep-
tual or featural differences gives rise to interpretational challenges in decoding studies. Such is
the sensitivity of these methods that even small differences between stimuli or conditions can
drive classifier performance (see the sidebar titled Decoding Traps for New Players). Does above-
chance decoding reflect true appreciation of the high-level distinction between categories, or does

DECODING TRAPS FOR NEW PLAYERS

Decoding is a very sensitive measure for distinguishing between neural responses associated with different condi-
tions, but it also has its downsides. Decoding can be useful in distinguishing subtle differences in object-related
representations (e.g., cat versus dog) and the relationships among many different objects. For this reason, decod-
ing results have enhanced knowledge about how representations are structured in the brain. Yet decoding can be
considered a kind of black box in terms of interpretation (Carlson et al. 2018). A decodable contrast means that
there is a difference in the patterns of activity across conditions, but it does not tell you what drives the difference.
Moreover, machine learning approaches can pick up on any information that distinguishes between classes, so it
is extremely important to remove potential confounds. For example, eye movements can contribute to the decod-
ability of stimulus position from MEG signals (Quax et al. 2019). As is true of any type of analysis, very careful
experimental design and interpretation are essential in decoding analyses.
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it merely arise due to the brain’s sensitivity to low-level featural differences between the categories
under inspection, such as image contrast or luminance (Harrison 2022)? Elucidating the relation-
ships among image features, category-level representations, and conceptual meaning has thus been
a major challenge in object decoding studies over the past decade, with several tactics proposed to
tackle the issue.

One approach to disentangling the contribution of image features and semantic meaning to the
neural response to objects relies on eliminating the low-level featural differences between the to-
be-decoded categories to the greatest extent possible (Bracci et al. 2017). For example, studies have
carefully matched the perceptual similarity of stimuli belonging to different semantic categories
by orthogonalizing object shape and category (e.g., a human hand and a glove have a near-identical
shape). Using this approach, Bracci & Op de Beeck (2016) found a dissociation between shape and
category within the ventral and dorsal visual streams, with a progression from shape to category
information along the visual hierarchy. A further study found that ventral occipitotemporal cortex
responses reflected object appearance rather than category (Bracci et al. 2019). Cross-decoding
methods have extended this approach even further, showing that where intermediate visual repre-
sentations emphasize shape information (independent of category), later representations encode
information about object category that generalizes across different object shapes (Kaiser et al.
2016). In the field of face processing, mechanisms underlying face detection have been elucidated
by studying face pareidolia, the perception of illusory faces in objects (Taubert et al. 2020). Illusory
face stimuli have features more similar to objects yet show striking face-like neural responses in
the brain at early stages of processing, indicating the existence of a rapid yet imprecise mechanism
for face detection (Wardle et al. 2020). Together, such work shows that categorical representations
are partially, but not entirely, influenced by underlying features common to the category.

Elsewhere, others have tried to dissociate perceptual and conceptual aspects of object category
by examining the neural response to stimuli that preserve object features while disrupting rec-
ognizability (i.e., high-level category information). So-called texform stimuli achieve this goal by
obscuring the basic category labels of objects while maintaining the mid-level visual features (e.g.,
shape or curvature). Studies using these control stimuli, first introduced by Long et al. (2017), have
shown that key organizing principles in object-selective cortex (e.g., animacy and real world size)
are atleast partly accounted for by mid-level featural differences between objects along dimensions
such as curvature. Similar effects have been reported in the time domain, where texforms evoke
neural responses containing information about both animacy and real-world size during the same
time windows as real objects do (Wang et al. 2022), although it appears that these representations
are more susceptible to masking effects than real objects are (Grootswagers et al. 2019b).

A final approach to tackling low-level confounds between object categories relies on increasing
featural variation both within and across categories. Image sets such as THINGS (Hebart et al.
2019) and ECOSET (Mehrer et al. 2021) contain thousands of highly variable natural images. In-
creasing the variation within each category serves to dampen the low-level confounds that might
otherwise dominate measurements of neural representations (Grootswagers & Robinson 2021).
Studying object-specific neural responses with such large stimulus sets has the advantage of more
closely mimicking natural vision, as well as allowing more fine-grained analyses of visual features,
categories, and semantics (Chang et al. 2019, Grootswagers et al. 2022, Hebart et al. 2023). For
example, models of image statistics and object category can be compared with the neural data
to assess how much each model accounts for the variance in neural information (Grootswagers
et al. 2019a, Moerel et al. 2022a). Work in this space is undoubtedly the future in characteriz-
ing the relationship among image features, categories, conceptual representations, and ultimately
perceptual experience.
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REPRESENTATIONAL GEOMETRY
From “What” to “How”

Beyond straightforward demonstrations of distinguishable brain states, multivariate methods
are now also in wide use as a means for characterizing the organizational structure of visual
representations—the representational geometry of vision. This endeavor has deep roots; indeed,
understanding the format of how the brain encodes information has been a core challenge in cog-
nitive neuroscience for decades (see the sidebar titled Representational Geometry: New Solutions
to Old Ideas). In this case, the underlying premise is that characterizing the relationships between
different perceptual and conceptual conditions serves to elucidate how the brain represents in-
formation along different dimensions—that is, the structure of informational representation in a
brain area or brain state. When considered in terms of their relationships with one another, neu-
ral representations give rise to a mapping or geometry in which certain types of perceptual or
cognitive information are made explicit, and other types of information are abstracted away.

For example, a hypothetical tMRI experiment concerned with how shape and color are encoded
in brain areas X, Y, and Z (Figure 34) might find that neural responses to stimuli group by shape in
brain area X, group by color in area Y, and have no observable organization in area Z, even though
all three areas have equivalent univariate activation. Thus, brain areas X and Y explicitly code
for some stimulus properties (shape and color, respectively) while abstracting away from others
(color and shape, respectively). From this, we can deduce that area X represents shape, area Y
represents color, and area Z is not critical for either. A key idea in this case is that the format of
representation should enable information to be “read out” by a biologically plausible process (for
further discussion, see the section titled Linking Neural Representations to Behavior). Extending
the example above, we can add a decision boundary (Figure 34) that divides the representation
in area X into wider and taller shapes and the representation in area Y into warmer and cooler
colors. Understanding how information is structured in a representation thus informs both what
kind of information is being represented and how this information might be accessed or read out
(Ritchie & Carlson 2016).

In reality, of course, it is unlikely that the brain utilizes such a low-dimensional format as in
this example. That is, individual brain regions, brain states, or behavioral metrics likely describe
more than one single dimension concurrently (Kriegeskorte & Kievit 2013). Figure 34 charac-
terizes this complexity clearly; in the figure, observer ratings of the emotional content of images

REPRESENTATIONAL GEOMETRY: NEW SOLUTIONS TO OLD IDEAS

The question of how objects are represented in the brain has been pondered since at least the 1970s. Shepard &
Chipman (1970) showed that the shape similarity judgments from active viewing closely resembled those from vi-
sual imagery. This seminal paper suggested that both judgments were guided by the same internal representation of
shape. Interestingly, one of the earliest MVPA studies was similarly motivated. Edelman (1998) found a correspon-
dence between the brain’s internal representation of shape in ventral temporal cortex and behavioral judgments of
shape. While a handful of later studies took an interest in this approach (Hanson et al. 2004, O’ Toole et al. 2005),
most MVPA work in the 2000s focused on what could be decoded from brain recordings, as opposed to how MVPA
could be used to measure representational structure. Prominent publications shifted the focus from what could be
decoded to studying how information is structured in brain representations (Kiani et al. 2007, Kriegeskorte et al.
2008b). This work developed an accessible framework (Kriegeskorte et al. 2008a) and ignited a body of research

studying representational structure in the brain.
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(Grootswagers et al. 2020) capture information about various aspects important for emotion cat-
egorization in the brain—such that a representational mapping built from these ratings clearly
reflects two dimensions of organization roughly corresponding to the valence and strength of
the emotional content depicted. This shift toward examining the fine-grained structure of neural
representations has shone a light on key organizational principles of object vision. Representa-
tional similarity analysis (RSA) (Kriegeskorte et al. 2008a) has emerged as the method of choice
for quantitatively studying representational geometry by indexing the degree to which pairwise
combinations of neural patterns for a set of stimuli or conditions resemble one another (i.e., their
similarity) (for comprehensive reviews of RSA, see Kriegeskorte & Kievit 2013, Kriegeskorte et al.
2008a). Similarity between conditions or stimuli is readily quantified through a variety of methods
(e.g., correlation, univariate differences); however, the most common method is to use decoding
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to index (dis)similarity, with higher decoding accuracy indexing higher dissimilarity. The result-
ing representational similarity structure elicited in a given brain region or time window can then
be compared to different theoretical models of stimulus relationships (e.g., based on similarity of
stimulus features or category), effectively disentangling the distinctions and relationships between
different image dimensions.

Beyond Animacy: Curvature, Agency, and Capacity for Movement

One domain in which the representational structure framework has made a significant impact
concerns the high-level categorical distinction between animate and inanimate objects. With ani-
macy already long understood to be an important organizing principle for the visual system, RSA
methods have refined our understanding of how objects within these overarching categories are
represented within the visual system (Kriegeskorte et al. 2008b). For example, a large body of work
has used RSA to quantify the degree to which mid-level featural differences between animate and
inanimate objects (e.g., in curvature) account for the discriminability of the neural responses to
these categories (Grootswagers et al. 2019b, Long et al. 2018, Wang et al. 2022). At the same time,
however, the representational framework has also provided insights into how covarying conceptual
attributes of objects contribute to the animate—inanimate dichotomy. For example, distinct face
and body representations appear to be major contributors to the animacy division (Grill-Spector
& Weiner 2014, Ritchie et al. 2021). Some have suggested that animacy can be better described
as a continuum (Sha et al. 2015) that incorporates other organizing principles such as capacity for
agency (Thorat et al. 2019) and humanness (Contini et al. 2021, Ritchie et al. 2021). More gener-
ally, RSA methods have also shown that movement-related representations account for variance in
object representations over and above the variance accounted for by aliveness (Shatek et al. 2022).
Perhaps owing to their complex and multifaceted nature, animacy representations appear to be
widely distributed throughout visual cortex, with MEG-fMRI fusion showing that information
about objects” animacy and real-world size is evident from 150 ms after image presentation and
associated with representations in parahippocampal cortex (Khaligh-Razavi et al. 2018). Together,
this work highlights how investigating fine-grained relationships between stimuli has shone new
light on some of the most important organizing principles of the visual system.

Representational Fusion

One important advantage of the RSA framework is that the representational geometries it gives
rise to are abstracted away from specific measurement units (e.g., blood-oxygen-level-dependent
activation, amplitude) and thus directly comparable across neuroimaging modalities, behavioral
metrics, brain regions, samples, people, and even species (Kriegeskorte & Kievit 2013, Mur et al.
2013). Among the most exciting extensions in the neurocognitive decoding toolkit, this type of
representational fusion has enabled increasingly complex overlay between modalities in vision
science, marrying object representations between fMRI and MEG or EEG data to recover the
spatiotemporal extent of visual representations (Cichy et al. 2014, 2016). This approach has also
advanced our understanding of more abstract, conceptual representations of visual categories, for
example, showing representational alignment between the organization of object representations
ininferior temporal cortex and word usage patterns in human speech evaluated by natural language
processing models (Carlson et al. 2014). More recently, an elegant study incorporating encod-
ing models (see the sidebar titled Encoding Models) showed that visual and linguistic semantic
representations align with one another at the border of the human visual cortex (Popham et al.
2021). These studies highlight the utility of studying fine-grained representational structure to tap
into the richness of conceptual representations within the brain and the capacity of multivariate
methods to uncover so-far unobserved organizational principles within the visual system.
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LINKING NEURAL REPRESENTATIONS TO BEHAVIOR

Decades of neuroimaging research has pursued the neural correlates of human behaviors, yet
determining whether patterns of activity have a causal role in behavior has been a significant
challenge. Decoding approaches have proven to be a fruitful framework for linking neural repre-
sentations to behavior in many ways. Exciting techniques have been used to assess whether neural
responses are necessary for behavior, for example, by comparing classifier accuracy with behavioral
accuracy (Moshel et al. 2022), correlating trial-by-trial reaction times with classifier confidence
or distance to the boundary (Ritchie & Carlson 2016, Ritchie et al. 2015), and analyses of neu-
ral representations during behavioral errors (Robinson et al. 2022, Williams et al. 2007). RSA, in
particular, provides a useful way to test the supposition that conditions that evoke more similar rep-
resentations in one domain (e.g., responses in lateral occipital cortex) should also be more similar
in other domains (e.g., reaction time on object classification tasks). Comparisons of behaviorally
derived models and neural data serve to identify candidate neural substrates underlying certain
behaviors. For example, Wardle et al. (2016) showed that intermediate visual responses (approxi-
mately 100-300 ms post stimulus onset) could almost entirely be explained by human judgments
of perceptual similarity, a result that aligns with the idea that intermediate visual representations
encode the perceptual form of the stimulus.

At the same time, another important takeaway from studies using a decoding framework to link
brain and behavior is that not all decoded information is relevant for behavior (Grootswagers et al.
2018). Indeed, it seems likely that the strict correspondence between neural and measures of per-
ceptual dissimilarity should depend on the relevant processing stage required for the classification
task in question. Searchlight fMRI has shown that animacy representations are evident through-
out the entire ventral stream but that correlations between the distance to classifier boundary and
reaction time are only evident for higher areas along the ventral stream (Grootswagers et al. 2018).
Other work has failed to find any correlation between neural representations and behavior. This
raises an interesting question: If there is information in the brain, why can we not access it? In one
EEG study, for instance, Moshel et al. (2022) found that neural responses could distinguish be-
tween very realistic computer-generated fake faces and real faces approximately 170 ms after the
faces were presented, but behaviorally, participants could not distinguish which faces were real.
Perhaps in such situations, more sustained processing is required before representations become
relevant for behavior.

ROBUST BUT PERMEABLE VISUAL REPRESENTATIONS

The increasing focus on representation over activation has brought with it questions about the
stability or reliability of visual representations. On the one hand, we know that meaningful visual
representations are reliably elicited despite varying circumstances—for example, in response to
different exemplars of the same stimulus class, in the context of highly degraded stimuli, or in the
presence of an orthogonal task. On the other hand, however, there can be no doubt that higher-
order cognitive states are capable of modulating, and even generating, decodable representations
in the brain—as is the case in visual imagery. In this section, we review findings that contrast the
robust nature of visual representations with their capacity for modulation by top-down factors
such as attention, expectation, and prediction.

Visual Representations Are Remarkably Robust

Decoding studies have provided striking insight into the robust nature of visual representations.
For example, work in the temporal domain has shown that relevant information about stim-
ulus features and categories persists in the brain well after the stimulus has disappeared (e.g.,
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approximately 500 ms; Contini et al. 2017) and is evident even when visual processing is disrupted
via masking (Grootswagers et al. 2019a, King & Wyart 2021, Robinson et al. 2019). Results from
these rapid image sequence designs indicate that multiple successive visual events can be decoded
in the same time window, suggesting that multiple representations can be online concurrently.
This is consistent with findings that visual representations of objects remain decodable even when
visual competition is high, for example, when stimuli are presented simultaneously (Grootswagers
etal. 2021, Macevoy & Epstein 2009); when the stimulus presentation rate is very high, e.g., 60 Hz
(Grootswagers et al. 2019b); or when attention is diverted away from the stimulus (Grootswagers
etal. 2021, Macevoy & Epstein 2009, Moerel et al. 2022b).

Relatedly, featural and categorical representations elicited by object or scene images appear to
be largely robust to the participant’s task (Grootswagers et al. 2019a, Harel et al. 2014, Hebart et al.
2018, Shatek et al. 2022) such that most decoding work that examines object representations does
so only in the context of orthogonal task designs (Cichy et al. 2014, Kriegeskorte et al. 2008b).
That said, the task does exert an influence on representations, particularly in higher visual areas
and later time periods (Harel et al. 2014, Hebart et al. 2018), suggesting that current goals have
a role to play during recurrent or feedback-related processing. Together, the findings that object
representations are reliably evident despite compromised viewing conditions and under a variety
of task circumstances suggest that the feedforward sweep of information through the visual system
is quite robust (DiCarlo & Cox 2007).

Modulating Visual Representations

While representations of images and categories are undeniably robust, they are nonetheless sub-
ject to modulation by a host of top-down factors. Traditional analysis methods have focused on
detailing the neural correlates of different cognitive states, revealing the extent to which neural
activity is enhanced or reduced under different conditions (e.g., attended, unattended). In contrast,
decoding (and encoding; see the sidebar titled Encoding Models) assesses how the representational
format of information encoded in the brain changes under different mental states—reflected as
subtle changes in the discriminability of conditions or stimuli. In doing so, decoding can offer
complementary insights into top-down influences on vision by elucidating the underlying mecha-
nisms of these effects. In this section, we review some of the most intriguing multivariate findings
in the areas of visual selective attention, imagery, and prediction and discuss how these methods
are shaping our understanding of top-down influences on vision.

Selective attention. In the domain of selective attention—the process by which a stimulus is se-
lected for subsequent processing among competing distractors—multivariate decoding has been
instrumental in revealing how attending to a visual stimulus influences the quality of its repre-
sentation, extending and complementing the many decades of research showing that attention
enhances neural responses at early stages of processing in the extrastriate cortex (Desimone &
Duncan 1995, Kastner et al. 1998, Mangun 1995). Time-resolved decoding studies using object
stimuli in rapid presentation designs have provided evidence for multiple attentional stages. First,
core visual representations are readily observed in response to visual stimuli from approximately
70 ms onward, arising regardless of task relevance and when presented for very brief durations
(Grootswagers et al. 2019a, King & Wyart 2021, Marti & Dehaene 2017, Mohsenzadeh et al.
2018, Robinson et al. 2019). Such core representations seem to reflect an automatic or preatten-
tive stage of visual processing, insofar as the discriminability of the neural responses during this
period is not improved by attention, even if the amplitude of the neural response is increased
(Hillyard & Anllo-Vento 1998). Second, in contrast, representational content during later stages
of visual processing (e.g., 150-250 ms post stimulus presentation) seems to be highly sensitive to

www.annualreviews.org o Decoding Visual Representations

325



326

attentional influence, such that object representations become more distinct (i.e., discriminable)
when observers monitor the visual sequence for potential targets (Grootswagers et al. 2021, Marti
& Dehaene 2017, Moerel et al. 2022b). Finally, targets elicit more prolonged representations rel-
ative to distractors; target selection itself is associated with a later, discrete stage of processing,
as indexed by above-chance decoding from 300 ms that is not evident in distractors (Marti &
Dehaene 2017).

Computational methods such as decoding have a particular advantage in elucidating top-down
effects on visual processing thanks to their ability to examine the representational format of mul-
tiple stimuli presented concurrently. For example, studies have used decoding to understand how
attending to one of two overlaid objects influences the neural representations of each: While both
object identities appear to be represented in the neural response to the display, the representation
of the attended object becomes more distinct from 100 ms when participants direct their attention
to it (Grootswagers et al. 2021). Furthermore, these attention-related refinements of the repre-
sentational code appear sooner in time for the smaller item at the fovea than for the larger item
that extended further into the periphery, suggesting a difference in attentional effects on local
and global neural representations. Similar effects have been reported using fMRI, where direct-
ing attention to one of two overlaid objects improves the discriminability of that category from
others in occipitotemporal regions of the brain (Keller et al. 2022). Importantly, in this study, cate-
gory representations were most facilitated when residual correlations between category-selective
regions of the ventral temporal cortex and higher-order regions were highest, suggesting that
attentional enhancement of visual information is instigated by top-down sharing of information
(Keller et al. 2022). In accordance with this, using MEG, Goddard and colleagues (2022) found
that stimulus coding in frontal brain regions preceded attentional effects in the occipital cortex
and that these effects occurred earlier for spatial than for feature-based attention. These findings
extend previous work by showing that both attended and unattended stimuli are represented in
visual responses, and that top-down attention enhances the basic visual representations of stimuli,
rather than involving a fundamental change in how stimuli are represented during attentive tasks.

A technique called cross-decoding has been particularly useful for elucidating how mechanisms
underlying high-level vision are implemented during other cognitive processes. For example,
Gayet & Peelen (2022) investigated preparatory attention mechanisms in a visual search paradigm
in which participants were cued to search for a melon or a box. Of key interest was the neural re-
sponse to target-absent displays, where a cross-decoding approach showed that neural activation
patterns within object selective cortex, but not early visual cortex, corresponded specifically to the
target object that observers were holding in mind. Furthermore, they found that preparatory ob-
ject templates were size specific, such that search representations for objects at further distances
(i.e., smaller expected retinal size) did not generalize to search when the object was expected to
be closer and thus larger. These findings provide a model of how efficient visual search might
proceed in the real world, where the observer might construct an internal representation of the
search item as it is likely to look in this context (i.e., smaller or larger depending on where it is
likely to be relative to the viewer).

Mental imagery. As a top-down process, visual imagery is an intriguing space in which both de-
coding and encoding models have made substantive progress (see the sidebar titled Encoding
Models). In classic retro-cue imagery paradigms, participants see two candidate images in succes-
sive intervals, followed by a postcue that indicates which of these two images they should imagine
in a subsequent test phase (Dijkstra et al. 2017a, Harrison & Tong 2009). Applied to the imag-
ined stimulus, neural decoding offers the unique possibility to assess similarities in the neural
instantiation of real and imagined stimuli, in effect revealing the mechanistic overlap in imagery
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and perception. The most compelling analyses in these designs are those in which a classifier
is trained on the neural response evoked by (real) visual images and tested on the neural data
during the period in which participants must imagine the same images (and vice versa). Classifi-
cation performance for this cross-decoding directly assesses the degree to which representations
that underlie perceiving and imagining something overlap. Considerable evidence for such shared
mechanisms between mental imagery and perception now exists in both the spatial and temporal
domain (Breedlove et al. 2020; Dijkstra et al. 2017b, 2018, 2020; Naselaris et al. 2015; Robinson
et al. 2021). Imagery representations are position specific (Robinson et al. 2021), object specific
(Dijkstra et al. 2018), and distinctive for complex scenes (Breedlove et al. 2020). Additionally, there
is greater similarity between visual and imagined representations in higher-level visual brain re-
gions than in lower-level ones (Breedlove et al. 2020, Ragni et al. 2020) and for later temporal
processes than for earlier ones (Dijkstra et al. 2018, Robinson et al. 2021). Furthermore, time-
resolved decoding has shown that the dynamics of imagery differ from that of visual perception,
with increased variability in the timing of imagery (Dijkstra et al. 2018), to the extent that im-
agery representations cannot always be decoded using time-resolved methods that assume similar
timing from trial to trial (Shatek et al. 2019). Theories of mental imagery have progressed from
this imagery-decoding literature, and the current status of the field depicts imagery as a reversal
of perception (Dijkstra et al. 2020), relying on generative feedback from high-level brain regions
(Breedlove et al. 2020). These proposed mechanisms of imagery have raised the possibility that
there is inherent interference between bottom-up perception and top-down imagery that can
account for individual differences in the quality of imagery (Sulfaro et al. 2022).

Prediction and expectation. Another high-level influence on visual processing is prediction,
which serves to guide the interpretation of incoming sensory input (Summerfield & de Lange
2014)—for example, cue-based (Posner et al. 1980) or context-based (Bar 2004) expectations about
what is (or is not) likely to occur can influence representations of visual stimuli. Decoding has
been instrumental in elucidating the neural basis of how predictions influence our perception of
the world, showing that the earliest stages of perception are subject to influence by what we expect
to see. Remarkably, in another example of internally generated representations, early visual cor-
tex has been shown to reflect feature-specific patterns of expected (but omitted) stimuli (Ekman
et al. 2017, Kok et al. 2014). Relatedly, expected stimuli can be decoded even prior to stimulus
presentation (Blom et al. 2020, Kok et al. 2017). In a different line of work, expectations engen-
dered by scene information have been shown to facilitate decoding of degraded object stimuli
whose identity is hard to perceive in isolation but readily apparent when presented in the context
(Brandman & Peelen 2017). Such expectation-based disambiguation of object representations has
subsequently been shown to be causally related to feedback connections from scene-selective to
object-selective regions of visual cortex (Wischnewski & Peelen 2021). Similarly, representations
of occluded objects seem to necessarily rely on our knowledge and expectations, requiring an inter-
nal reconstruction of image features that are not visible due to an occluder. That object decoding
is both reduced and delayed under partial occlusion suggests that these representations may rely
on recurrent processes (Rajaei et al. 2019). These results highlight that prediction plays a role in
neural processing at different time scales and add to the growing body of evidence that contextual
expectations enhance representations in the visual system.

Elsewhere, decoding approaches have also been valuable in revealing the visual system’s sensi-
tivity to the statistical regularities of real-world environments (for a review, see Kaiser et al. 2019).
Basic perceptual analysis of objects can be affected both by their typical absolute location in space
(e.g., planes in the upper visual field, shoes in the lower visual field) (de Haas et al. 2016, Kaiser
& Cichy 2018) and by their typical positioning with respect to other objects (e.g., cup over saucer
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versus saucer over cup) (Kaiser & Peelen 2018). This line of research suggests that learned asso-
ciations between objects’ identities and their typical spatial positions can (interactively) influence
visual processing of high-level stimuli (Quek & Peelen 2020), a potential mechanism for reduc-
ing visual competition to support efficient object representation in the face of limited cortical
resources (Kaiser et al. 2019).

Representational Stability: Dependent on Feedforward, Feedback,
and Recurrent Processing?

Prior to sensitive pattern-based methods, it was difficult to deduce the quality of representational
content in the visual system under conditions of stimulus competition or the absence of stim-
uli. Now we have abundant evidence that neural representations are reliably elicited under many
different circumstances, indicating a robust feedforward sweep of information yielding consistent
pattern-based responses (DiCarlo & Cox 2007). Representational modulation, by contrast, appears
to involve recurrent processing within the visual system (Rajaei et al. 2019) and feedback process-
ing from high-level frontoparietal regions that enhance or instantiate visual representations in a
top-down manner (Dijkstra et al. 2017b, Keller et al. 2022). A converging line of research shows
that perception-like stimulus representations can be induced in the absence of that stimulus under
different circumstances, for example, in expectancy (Blom et al. 2020; Kok etal. 2014, 2017), work-
ing memory (Albers et al. 2013), attentional preparation (Gayet & Peelen 2022), imagery (Dijkstra
et al. 2018, 2020), and occlusion (Teichmann et al. 2022). Efforts to understand the instantia-
tions and changes in representational content associated with different internal states constitute
an emerging field with great potential to elucidate how visual processing produces perception.

NEW DIRECTIONS

Although most work to date has focused on neural decoding in healthy adults, decoding ap-
proaches have enormous potential to provide new insights into visual processing in other
populations. For example, understanding how visual stimuli are represented during development
can lead to greater understanding of the architecture of the visual system. EEG decoding in
particular is useful as it has higher tolerance to the movement typically exhibited by children
(Ashton et al. 2022). Recent research in this emerging field has shown that time-resolved neural
responses to visual objects in infants are distinct from those in adults, suggesting a reorganiza-
tion of representational structure during development (Bayet et al. 2020). Other work has shown
that the distinction of faces from houses is similar in 6-11-year-olds and adults, although face in-
version decoding is much more robust in adults, suggesting that visual experience shapes neural
representations even in later stages of development (Mares et al. 2020).

At the same time, neural decoding also lends itself well to single-participant analyses and can
therefore provide insights into how visual representations are altered in cases of visual deficits (i.e.,
case studies). Various work has found neural correlates of representational differences in disorders
such as prosopagnosia, a deficit in face recognition (Rivolta et al. 2014), and visual object agnosia,
a deficit in object recognition (Haigh et al. 2018). There is almost endless possibility in this space,
and future work will likely tackle in greater detail how representations vary during development,
after brain injury, during healthy aging, and in clinical populations, among other circumstances.

CONCLUSION

The past several decades have revealed the vast utility of multivariate analyses of neural responses
for the study of visual processing. Great strides have been made in understanding and modeling
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neural responses in the brain by investigating the brain regions and dynamics associated with vi-
sual representations (Cichy et al. 2014), the way that these representations generalize over time
(King & Dehaene 2014), and how they change with different tasks (Hebart et al. 2018). Decod-
ing approaches have improved our understanding about the spatial and temporal extent of visual
processing related to both low-level image features and high-level categorical understanding and
have shone a light on how these representations relate to behavior. Furthermore, we know now
that representations can be evoked within the visual system in the absence of visual input, for
example, during imagery, yielding insights into the processes and purposes underlying these in-
ternally generated representations. The sensitivity of decoding analyses is their greatest power,
and in combination with clever paradigms, multivariate methods have the potential to continue
to elucidate how neural populations function for visual perception.

1. Multivariate decoding is an information-based framework that assesses the similarity
and discriminability of neural activation patterns associated with perceptual inputs or
cognitive states.

2. Decoding methods have advanced our understanding of the spatiotemporal character-
istics of visual processing, revealing how representational content varies across different
stages of processing and regions of visual cortex.

3. Representations of objects’ perceptual and conceptual features show overlapping tempo-
ral profiles; the covarying nature of these features presents a challenge for disentangling
the unique contribution of each to visual representations elicited by object images.

4. Decoding has provided new insight into both the stability and permeability of visual rep-
resentations. However, robust visual representations are subject to modulation by aspects
like attention and expectation, and can even be generated by top-down mechanisms in
the absence of perceptual input (e.g., visual imagery, search templates).

5. Great strides have been made in relating neural representations to behavior; the impor-
tance of this link for interpreting representations remains a point of contention in the
literature.

6. Fine-grained assessment of the representational overlap in the neural responses to dif-
ferent stimuli gives rise to representational geometries that reveal latent principles of
the ways in which information is encoded in the brain.
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