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1 INTRODUCTION 

x8641 

In this age of increasing specialization it is comforting to realize that 
basic physical concepts apply to a wide range of seemingly diverse 
problems. Progress made in understanding one area may often be applied 
in many other fields. This is true not only for various fields of materials 
science but for the structure of matter in general. As examples we 
illustrate how concepts developed to understand magnetism, superfluid 
helium, and superconductivity have been extended and applied to such 
diverse fields as nuclear matter, weak and electromagnetic interactions, 
quark structure of the particles of high energy physics, and phases of 
liquid crystals. 

Theoretical methods used in quantum field theory and in many-body 
problems of condensed-matter theory have much in common. For 
example, Greens function methods, Feynman diagrams, and renor
malization group methods introduced for quantum electrodynamics 
have also been used in many problems in condensed-matter physics. 
The concept of spontaneously broken symmetry and associated phase 
transitions derived for condensed matter are now being widely used for 
problems of high energy physics. The commonality of physical concepts 
and methods extending over a broad range of problems is one of the 
main reasons that the National Science Foundation recently established 
an Institute for Theoretical Physics at the University of California, Santa 
Barbara. It is hoped that exchange of ideas between theorists in different 
disciplines will be mutually beneficial. 

In this article we are not concerned with mathematical methods but 
with broad physical concepts useful for a wide variety of problems. One 
concept of great generality is the method of elementary excitations. 
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2 BARDEEN 

Although it originated much earlier, the method in its modern form was 
developed in large part by Landau and co-workers. One tries to under
stand the ground-state and low-lying excitations that are approximate 
eigenstates of the system. The interactions between excitations generally 
are such that at low temperatures one may treat the system as a 
dilute gas of noninteracting excitations. At higher temperatures, inter
actions must be taken into account. In homogeneous systems, because of 
translational symmetry, excitations are waves and may be characterized 
by a wave vector, k. Examples are quasiparticle excitations and phonons 
in metals and spin waves in ferromagnets. When applied to particle 
physics, the ground state is the vacuum and the particles the excitations 
of the system. 

When there is a phase transition, the ordered ground state and the 
low temperature phase may have lower symmetry than the Hamiltonian 
describing the system. Further, the ground state may be degenerate. A 
familiar example is the Heisenberg model of ferromagnetism in which at 
T = 0 K the spins are aligned along any one of several preferred 
directions, or, in the isotropic case, along any direction in space. The low 
temperature phase may be characterized by an order parameter that in 
this case is taken to be the average magnetization, specified by its three 
components. Elementary excitations are spin waves in which the 
magnetization precesses about the direction in the ground state. With 
increasing temperature, the magnetization decreases and goes to zero at 
the Curie temperature, Te, where there is a phase transition to the 
paramagnetic state. 

It is not always easy to recognize the nature of the order that character
izes the broken symmetry of the low temperature phase. As first suggested 
on phenomenological grounds by Ginzburg & Landau, superconductors, 
as well as superfluid helium, are characterized by a complex order 
parameter with amplitude and phase. In the two-fluid model, the ampli
tude is proportional to the superfluid density and the gradient of phase 
to the superfluid velocity. At the nematic-smectic-A phase transition in 
liquid crystals, a density wave develops with oscillations along the 
axis parallel to which the molecules are aligned. A complex order 
parameter may be used to define the amplitude and phase of the wave. 

Landau (1) suggested that properties in the vicinity of a second-order 
phase transition may be treated by expanding the free energy in powers 
of the order parameter. This implies a similarity of properties between 
different systems that are characterized by similar order parameters. Later 
we discuss analogies between superconductors and liquid crystals in the 
smectic-A phase. 

In phases characterized by order parameters, there are excitations 
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corresponding to space and time variations of the parameters. Small 
amplitude oscillations again may be described by a wave vector, k. If the 
forces are of short range, the frequency goes to zero with increasing 
wavelength, or as k --+ o. Spin waves in ferro magnets are an example. 
The quanta of such oscillations are known in high energy physics as 
Goldstone bosons and correspond to particles of zero mass. 

With long-range forces, such as Coulomb forces between electrons, the 
frequency may remain large as k --+ O. An example is plasma oscillations 
from longitudinal density tluctuations of the electron gas in metals. In 
this case the frequency is very large, corresponding to the order of 
10 eV. The quanta, plasmons, are not normally excited. In high energy 
physics, the corresponding particles are massive and are known as Higgs 
bosons. With Higgs bosons, spontaneously broken symmetry may be 
introduced through an order parameter without getting unwanted mass
less Goldstone bosons. 

In addition to the small-amplitude oscillations, there may be large
amplitude nonlinear excitations that maintain their identity through 
collisions. They are now often called solitons, the term originating from 
the solitary water wave observed to flow down a canal following a 
sudden change in level. Examples are vacancies and interstitials as point 
defects in crystals, quantized vortex lines in supertluids as line defects, 
and Bloch walls between magnetic domains in ferro magnets as sheet 
defects. These play analogous roles in quite different systems. In three
dimensional crystals, point defects may exist in thermal equilibrium. In 
two-dimensional systems, dislocations and vortex lines become point 
defects. And in quasi-one-dimensional systems, walls between domains 
become point defects. 

The Landau mean field theory does not apply to critical phenomena at 
temperatures very close to Te. In this region tluctuations are large and 
important ones have wavelengths large compared with the lattice or 
interparticle spacing. It turns out that critical phenomena depend mainly 
on the number of space dimensions, d, and on the number of parameters, 
n, required to specify the order parameter. For example, in the Heisenberg 
ferromagnet, d = 3 and n = 3. For a supertluid or the smectic-A phase, 
d = 3 and n = 2. Fluctuations are greater in systems of lower dimension
ality. In strictly one-dimensional systems they are so large that they 
prevent a phase transition above T = O. We discuss later a number of 
closely related one- and two-dimensional systems. 

In systems with many identical particles, the statistics of the particles 
(Einstein-Bose or Fermi-Dirac) plays an essential role in determining 
both the ground state and elementary excitations. The helium liquids 
composed of isotopes of mass three and mass four, and mixtures of the 
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two, provide rich systems for studying the striking differences in behavior 
that follow from the statistics. One might expect that helium would form 
the simplest of liquids, but at very low temperatures it exhibits remarkably 
complex behavior. The Bose liquid, 4He, becomes superfluid below the 
A.-transition (2.2 K), while 3He is a normal Fermi liquid down to about 
10 - 3 K where it undergoes a pairing transition analogous to that of 
electrons in a superconductor. 

In the following we give some examples illustrating common features 
between magnetic systems, liquid helium, helium films, superconductors, 
and liquid crystals. We then indicate how concepts developed to under
stand these systems have been applied to the structure of nuclei, nuclear 
matter, and the particles of high energy physics. In these latter applications 
the concept of spontaneously broken symmetry plays a key role. 

2 MAGNETIC SYSTEMS 

The study of magnetic systems has yielded a great deal of information 
about phase transitions in general. The Heisenberg model has been 
studied for lattices in one, two, and three dimensions (d = 1,2, 3) and for 
spin orientations in one, two, or three dimensions (n = 1, 2,3) with all 
combinations possible (2, 3). In the Ising model (n = 1), only two spin 
orientations are possible. In analogous systems, up and down spin may 
be replaced by presence or absence of an atom (lattice gas model) or 
presence of an atom of type A or B (order-disorder systems in alloys). 
The case n = 2, for which the spin orientations are confined to a plane, 
gives systems analogous to superfluids with a complex order parameter. 

As mentioned in the introduction, the Heisenberg model in three 
dimensions (d = 3) provides a good example of the method of elementary 
excitations. Depending on the sign of the interaction between neighboring 
spins, the ground state may be ferromagnetic or antiferromagnetic. The 
elementary excitations are spin waves, specified by a wave vector, k, in 
which the spins precess about the direction in the ground state. In the 
ferromagnetic case the energy for small k is proportional to k2, as it 
would be for a free particle (momentum p = lik). 

The low temperature specific heat is proportional to T3/2 as in a 
classical monatomic gas. The interaction between spin waves is small; it 
gives a leading term in the expansion of specific heat in powers of the 
temperature that goes as T3. 

In the paramagnetic phase above the Curie temperature, Te, the 
spins become increasingly free to orient; as T ..... 00 the magnetic sus
ceptibility approaches that of a system of free spins. For T> Te, one 
may start from a system of free spins and treat the spin-spin interaction 
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energy, J, by a perturbation expansion in powers of J jkBT. Just above Te, 
fluctuations are large and the expansion converges slowly, diverging as 
T --t Te. The low temperature expansion in terms of spin waves is in half
integral powers of kBTjJ, or in inverse powers of the coupling constant. 

Two-dimensional (2D) Heisenberg systems are of particular interest. In 
1944 Onsager gave an exact solution of the 2D Ising model (d = 2, n = 1) 
that played a very important role not only for this and analogous systems 
but also for testing approximate methods required for more difficult 
problems. 

An interesting system that has attracted a great deal of attention and 
for which the exact solution is not known is the 2DXY model, correspond
ing to d = 2, with classical spins, in which the spin-spin interactions 
include only the components in the plane of the lattice (3). There is a 
transition temperature, Te, at which the susceptibility diverges and there 
is an essential singularity in the specific heat, but the anomaly in specific 
heat is so small that it is practically unobservable. Although there is 
local order, there appears to be no long-range order in the magnetization 
below Te. 

This model is analogous to several other models, including the 2D 
Coulomb plasma. Presumably a soliton-like excitation in which the 
spins tend to align along concentric circles surrounding a point defect 
plays an important role. A mathematically similar system with no long
range order in magnetization is the IDXYZ model (d = 1, n = 3). 

3 QUANTUM FLUIDS 

In this section we briefly review the differences in the ground state and 
elementary excitations of liquid 3He and 4He that result from the 
difference in statistics (4). The gross structure of the liquids, as given, for 
example, by the pair distribution function, is very similar but the low 
temperature properties are strikingly different. The Bose liquid 4He 
becomes superfluid in the phase He II at temperatures below the ,1-
transition at T). = 2.2 K, while 3He remains a normal Fermi liquid down 
to temperatures of the order of lO - 3 K. 

The properties of He II can be accounted for in quantitative detail by 
a two-fluid model derived from a spectrum of elementary excitations 
proposed by Landau. Landau also first gave the correct description of 
normal Fermi liquiQs of interacting particles in terms of quasiparticle 
excitations and interactions between them. Liquid 3He and 3 He-4He 
mixtures have served as model systems for testing predictions of the 
Fermi liquid theory. First proposed on phenomenological grounds, both 
of Landau's theories have since been derived from microscopic theory. 
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The A-transition is generally attributed to an Einstein-Bose con
densation of helium atoms in the liquid. In the ground state of a 
noninteracting Bose gas, the particles are all in the ground state of 
zero momentum. At finite temperatures, particles are thermally excited 
to states of higher momenta, but up to the Einstein-Bose transition 
temperature (3. 13 K for a gas of the density of 4He), a finite fraction 
remain in the state p = O. If the ground-state wave function of the 
interacting system is expanded in terms of the momenta, the number, 
np, in states of momentum p > 0 graduaIly decreases with increasIng p 
from a maximum at p = 0 to near zero as p --+ CXJ. However, a finite 
fraction, estimated to be about 10%, remain at the state p = O. Thus in 
the liquid at rest, the state p = 0 is macroscopically occupied. If the 
liquid is flowing with a velocity vs' the state of macroscopic occupation 
is Ps = mvs rather than p = O. The fraction decreases from 10% at T = 0 
to zero at TA, above which the liquid is normal. 

In contrast, in the ground state of a Fermi system of noninteracting 
particles, each state of momentum p is doubly occupied by particles of 
opposite spin up to the Fermi momentum, PF, and those above are un
occupied. Thus np = 2 for P < PF and np = 0 for P > PF' In the interacting 
system, np decreases from a maximum at p = 0 to zero as p -+ 00, but a 
discontinuity in occupancy remains at p = PF. In a strongly interacting 
system such as 3He, the discontinuity is smaIl. In fact, for the same 
density a plot of the momentum distribution of the particles of 3He 
is very much like that of 4He, the differences being the discontinuity at 
PF in 3He and the finite fraction of particles in the state p = 0 in 4He. 

The spectra of elementary excitations are quite different. In 3He, there 
are quasiparticle excitations in one-to-one correspondence with those of 
the noninteracting system, specified by occupancy of a state of momentum 
P and spin (J above PF or a missing particle or hole below PF' Excitations 
in 4He may be specified by a momentum p or wave vector k = p/h. As 
proposed by Landau, the energy is linear in k for small k, goes over a 
maximum to the roton minimum at k = kr and increases again beyond. 
For small k, the excitations correspond to the quanta of longitudinal 
sound waves and are the most important ones at very low temperatures. 
Rotons with k-values near the minimum of the excitation spectrum at 
kr are the most important for temperatures above about 1 K. 

The existence of a state of macroscopic occupation Ps = mvs in the 
Bose liquid specifies a particular reference frame and breaks Galilean 
in variance in the same way that crystalline order does. In a normal 
liquid, the states available to the system are independent of the reference 
frame in which they are described, but in the superfluid the states 
depend on the state of macroscopic occupation. Of course Ps may 
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take on different values in different reference frames, but it must be 
specified in order to specify the system. 

The superfluid properties and the two-fluid model may be accounted 
for in terms of this picture. If the superfluid is flowing with velocity v s in 
a narrow channel the excitations come into equilibrium with the walls. 
These thermal excitations decrease the flow from pVs to PsV., where p is 
the total density and Ps is defined to be the superfluid density, equal to 
P at T = 0 and decreasing to zero at T = TA• If the walls are moving 
with velocity Vo> the total flow is PV=Pnvn+PsV., where Pn=P-Ps is 
the normal component. This is the basis for the two-fluid model. 

In quantum mechanics, Galilean in variance is related to the fact that 
the wave functions of a particle have an arbitrary phase factor. One may 
replace 1./1 by 1./1' = 1./1 exp [ix(r)] if one replaces p by p' = p- h grad x. The 
local gauge group corresponding to this transformation is the unitary 
group U(1). Macroscopic occupation of the state p = Ps gives a spon
taneous breaking of this gauge group. 

One may describe a vs(r) that varies slowly in space by taking 
p.(r) = mvs(r) = h grad ¢(r). Then except for a factor, ¢(r) is the velocity 
potential for potential flow of the superfluid. This implies no vorticity 
in the flow, or curl v s = O. 

Vorticity may be introduced in the form of quantized vortex lines. On 
the axis of a line, the fluid is normal, Ps = O. Superfluid may circulate 
around the axis, but the circulation is quantized to be an integral 
multiple of him. This follows from the requirement that ¢(r) change by a 
multiple of 2n on a circuit of the axis so that the wave function is 
single valued. Vortex lines play an important role in the flow properties of 
superfluid helium. For a given total vorticity, the free energy is lowest if it 

-is divided into an array of vortex lines of unit circulation, him. 

Superfluidity is also observed in helium films only a few atoms thick. 
These may be regarded as essentially two dimensional. In two dimensions 
there is no reason to expect an Einstein-Bose condensation. Nevertheless, 
there must be an ordering that breaks gauge symmetry in such a way 
that the states available to the system depend on the superfluid velocity. 
Likewise, in the three-dimensional case the order may not be an exact 
Bose condensation into a momentum state but onc to a related ordered 
state that also involves broken symmetry. In two dimensions as well as in 
three, the local superfluid velocity is given by the gradient of a phase. 

4 METALS, SUPERCONDUCTIVITY 

Various ground states are possible for electrons in metals. In normal 
metals, the ground state is the Fermi sea in which quasiparticle states 
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below the Fermi surface are occupied by electrons of both spin directions 
and those above the surface are unoccupied. In the ferromagnetic ground 
state of the band model, the spins are aligned so that there is only one 
electron in each orbital in the expanded Fermi sea. In an antiferro
magnetic alignment, orbitals for one spin may be different from those of 
the opposite spin, again requiring twice the number of orbitals required 
by normal metals. In both of these magnetic systems there are spin 
wave as well as quasiparticle excitations. 

In another possible ground state, the electrons may form a lattice 
(Wigner lattice) and the excitations are vibrational modes of the lattice. 
If, as is quite possible, there is an antiferromagnetic spin ordering in the 
lattice, there will also be spin wave excitations. A Wigner lattice has 
not been confirmed in three dimensions, but it has been in systems of 
lower dimensions. 

As emphasized by Overhauser (5), there may be macroscopic occupation 
of one or more spin density wave (SOW) states or charge density wave 
(COW) states. In charge density waves, the ions oscillate and their charges 
are partially screened by associated motion of the conduction electrons. 
A COW may be regarded as macroscopic occupation of a phonon 
state. A spin density wave exists in the ground state of chromium metal. 
Both SDWs and COWs have been observed in layer structures (quasi
two-dimensional) (6) and in linear chain structures (quasi-one-dimen
sional (7). 

In this section, we shall be concerned mainly with the superconducting 
phase in which pairing of electrons gives rise to a superfluid condensate 
with an energy gap for quasiparticle excitations at the Fermi surface. As 
early as 1950, Ginzburg & Landau (see 8) phenomenologically described 
the superconducting phase just below the transition temperature in terms 
of a complex order parameter given by an effective wave function, \{I(r), 
for the condensate. Both the superftuid density, p" and superftuid 
velocity, v., of the two-fluid model are given by the function 
\{I(r) = I \{I(r) I exp [i¢(r)], with the density, p., of the condensate pro
portional to the square of the amplitude. A canonical momentum, p, is 
given by the gradient of the phase, ¢(r). If the electrons are coupled 
to a magnetic field through a vector potential, A, the canonical momentum 
differs from the kinetic momentum, m*vs• Ginzburg & Landau use the 
usual expression relating p and Vs: 

m*vs = p-(e*/c)A, 

where m* and e* are masses and charges of the basic units involved. 
It is now known from microscopic theory that because of pairing of 
electrons in the superconducting phase, m* = 2m and e* = 2e. 
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The free energy density, F(r), is obtained from 'I'(r) by expanding in 
powers of 1 'I'(r) 12 and keeping terms to the fourth order. In addition there 
are kinetic energy terms proportional to v;, giving 

F(r) = Re {'I'*(im*)(p-(e* Ic)A?'I'} + a I 'I' 12 +ib 1 'I' 14. 
A nonlinear Schrodinger-like equation determines the function 'I'(r) 
that minimizes the total free energy. When there is no flow (vs = 0), a 
transition from the normal to superconducting phase occurs when a(T) 
changes from positive to negative with decreasing temperature. Below 
Te, the minimum 1'1' 12 = - alb and, above Te, 'I' = O. Nonvanishing 
values of 'Pimply a broken symmetry in the superconducting phase. 

The expression for F(r) is gauge invariant, corresponding to the possi
bility of the gauge transformation: 

p -4 pi + n grad X 

A -4 A' - (licle*) grad x. 

However, there is broken gauge symmetry because one must transform 
p along with A. Thus Vs picks out a particular frame to which excitations 
of the systems must be referred, as in He II. 

The Ginzburg-Landau equations apply to static rather than time
dependent problems. They apply only to the motion of the condensate, 
not the excitations of the system. And further, they do not include the 
effect of non equilibrium distributions of excitations on the condensate. 
Time-dependent generalizations have been derived in which such effects 
can be included under appropriate conditions. 

Although quantitatively correct only near Te, the Ginzburg-Landau 
equations give a good qualitative description of many superconductive 
phenomena at all temperatures. Generalizations of the equations have 
been used for a wide variety of problems in condensed-matter and high 
energy physics: charge density waves, liquid crystals, the Weinberg
Salam theory of electrons and neutrinos, and many others. 

Superconductors may be divided into two types, I and II, according 
to their behavior in a magnetic field (9). Those of type I exhibit a perfect 
Meissner effect; magnetic flux is excluded except for a small penetration 
depth, .Ie, near the surface. When the applied field exceeds the critical field, 
He, a transition to the normal phase occurs. In type II superconductors, 
flux penetrates in the form of an array of quantized flux lines when the 
field is above a lower critical field, Hcl < He. The flux lines are analogous 
to the vortex lines in He II. Along the axis, 'I' -4 O. Currents of electrons 
circulating about the axis give a magnetic field parallel with the axis. A 
change of phase of 2n in 'I'(r) in a circuit around the axis corresponds 
to a total of one unit of magnetic flux, hcle*. 
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According to the microscopic theory (BCS) (10), the wave function for 
the superconducting ground state may be regarded as a superposition of 
functions for low-lying normal configurations in which quasiparticle 
states of opposite spin and exactly the same total momentum are either 
both occupied or both empty. A wave function of this form takes 
advantage of an effective attractive interaction between electrons result
ing from the electron-phonon interaction. The common momentum 
Ps = Pl + P2 of the paired states (Ph (J; P2, - (J) corresponds to the Ps of 
the Ginzburg-Landau theory. The momentum ps(r) may vary slowly in 
space as described in that theory. 

Quasiparticle excitations of the superconducting phase are in one-to
one correspondence with those of the normal phase but have an energy 
gap, 2d, for excitation of a pair of quasiparticles (excited particle and 
hole left behind) from the condensate. Not long after the first papers on 
the microscopic theory appeared Gor'kov showed that near To the 
Ginzburg-Landau equations do indeed follow from the microscopic 
theory with a complex �(r) playing the role of the order parameter, 'I'(r). 

When flux penetrates a type II superconductor, it is energetically 
favorable for it to divide into singly quantized flux lines. Normally, the 
lines start and end at the surface of the specimen, but they may also form 
closed loops in the interior. If magnetic monopoles existed, flux lines 
could presumably terminate on a monopole or carry flux from a positive 
to a negative monopole. The total flux carried by a flux line is that 
emanating from a monopole of magnetic charge J1* = hcI4ne*. This is the 
Dirac unit for a basic electric charge e*. For a superconductor, e* == 2e, 
so that J1* would be one half that for the basic charge e assumed by 
Dirac. While there is no evidence for magnetic monopoles, there are 
analogies in color gauge theories of quark matter, as we discuss later. 

5 SYSTEMS OF LOW DIMENSIONALITY 

There are many seemingly diverse one- and two-dimensional problems 
that are mathematically equivalent or are closely related. In two 
dimensions, quantized vortex lines with axes normal to the plane play 
the role of point defects. The energy of a single line is proportional to 
In (Lla), where L is a cutoff distance dependent on the size of the system 
and a is the size of the core. Two vortices of opposite circulation 
attract one another with an energy varying as the logarithm of the 
distance between them, and the terms in the total energy proportional to 
In (II a) cancel. Similar laws apply in two dimensions to magnetic systems 
with point defects in which the spins orient in concentric circles 
surrounding the point, to edge and screw dislocations, and to point 
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Coulomb charges. The analogies between these 2D systems and the 
important role that the vortex-like defects have on their properties were 
pointed out by Kosterlitz & Thouless in 1973 (11). They introduced the 
concept of a long-range order called topological order, a concept that 
has had very broad implications in other areas. 

The physics involved is perhaps most easily understood in terms of a 
theory of melting in a 2D solid, as suggested by Kosterlitz & Thouless (11) 
based on a dislocation model suggested by Nabarro. The long-range 
order in the solid is broken up by free dislocations present in thermal 
equilibrium. Below the melting point they are bound in pairs with 
Burgers vectors of opposite signs, but above they dissociate so that they 
can move independently. Thus they respond to an infinitesimal shearing 
stress. 

Bound pairs may exist in thermal equilibrium below the melting 
point because each pair has a finite energy independent of the size of the 
system. In the expression for the free energy of free dislocations, 
F = E- TS, both the energy Wo In (Lla) and the entropy, kn In (L2Ia2) 
per dislocation are proportional to In (Lla). Thus there will be a critical 
temperature given by 2kBTe = Wo above which the contribution of the 
dislocations to the free energy becomes negative and the number of 
dislocations increases rapidly. This corresponds to the melting tempera
ture. The theory of 2D melting has been greatly refined in the past few 
years, but the basic ideas of Kosterlitz & Thouless have been con
firmed (12). 

Analogous considerations apply to superfluid flow in helium films. The 
energy of an isolated vortex in a film of thickness d given by an 
integral of Psv;dl2 in the region outside of the core of radius a is 
Wo In (Lla) with Wo = nh2npjmp, where n is the number of atoms per 
unit area and m is the atomic mass. The surface density of superfluid 
atoms, npjp, at the transition is then given by the universal relation, 
ns = npJp = 2mkBTe/nh2. This prediction has bees confirmed by experi
ment (l3). In this case the critical temperature, Te, is that at which the 
order in the film breaks up and there is destruction of superfluid flow. 
The critical temperature is below that corresponding to T" and accounts 
for observations that pjp is finite, of the order of 0.5, when superfluid 
flow in the film is destroyed. At lower temperatures, persistent currents 
have been observed to flow for long periods in loops of thin He films 
in capillary tubes, indicating that there is indeed some sort of long-range 
order. 

The critical temperature for the planar classical-spin model in two 
dimensions (the 2DXY model) is kBTe = nJ, where J is the spin-spin 
coupling constant. The theory we have given applies only to the vortex 
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excitations, which are of the soliton type. At low temperatures, spin wave 
excitations are the most important ones. 

One can perhaps get a better physical understanding from the analogous 
Coulomb problem. Below Te, there are bound pairs with charges of 
opposite sign interacting by the 2D logarithmic Coulomb potential. 
Above Te, they break up into free charges that can move under the 
influence of a field. Thus the change is from an insulator into a con
ducting plasma of charges. To allow for a variable number of charges, 
one may treat systems in which there is a fixed chemical potential. 

Note that to avoid large energies which increase with the size of the 
system, below Te there must be equal numbers of positive and negative 
charges (or of vortices wi th opposite directions of circula tion). Kosterlitz & 
Thouless (11) introduced the concept of topological order determined by 
the boundary values. In the Coulomb case the order is given by the net 
number of charges, N = N + - N _, and there are corresponding numbers 
for dislocations or vortices. One cannot change N without introducing 
energies of the order of Wo In (Lla) that increase with the size of the 
system. It is the stability of the topological order that gives the long
range order required for elastic response of a 2D solid and for superfluid 
flow in helium films. 

It is remarkable that these 2D problems are mathematically equivalent 
not only to a number of other 20 problems but also to several important 
problems in one dimension, including the 10XYZ spin--} Heisenberg 
chain, the time-dependent (1 + 10) Sine-Gordon model used for 10 
solitons, and the 1 + ID Thirring model used as a model problem in 
high energy physics. S6lyom (14) has reviewed the relations between 
these closely related one- and two-dimensional problems. 

6 LIQUID CRYSTALS 

Generalizations of the Ginzburg-Landau theory have been used success
fully to account for a number of phase transitions in liquid crystals. 
We shall discuss here just one example, the smectic-A phase mentioned 
in the introduction, which, as shown independently by de Gennes (15) 
and McMillan (16), bears a striking analogy to superconductivity. In 
both cases there is a complex order parameter; in superconductors it is 
the effective wave function, tJ'(r), in the smectic-A phase it is the 
amplitude and phase of the density wave. A bending stress corresponds 
to an applied magnetic field. 

When there is a bend, there is a change in direction of the directrix, 
n(x, y), a unit vector along which molecules are aligned and normal to 
the layers of high density. For small stresses, the bend is confined to a 
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penetration region, depth A, near the surface. As in superconductors, 
there is a coherence distance, �, and the ratio K = A/� determines whether 
the liquid crystal behaves like a type I or a type II superconductor. In 
type II (K > 1), it is favorable for dislocations to enter and thereby reduce 
the strain when the applied stress exceeds a critical value. 

If the bend is in the XY plane, nx and ny change, but the spacing 
between the layers remains fixed. This requires that Sn' dt around a 
closed loop be a multiple of the spacing between layers, d. For a dis
location with a unit Burgers vector the integral is ±d. This is analogous 
in the superconductor to a flux line of unit strength. 

When the applied stress is small, the liquid crystal corresponds to a 
type I superconductor and stress and strain are confined to a penetration 
at the surface. For larger stresses corresponding to type II, dislocations 
enter the bulk and stress and strain are uniformly distributed through 
the bulk by means of an array of dislocation lines. 

Liquid crystals have textures defined by patterns of the directrix lines. 
The boundary condition is that n be normal to the surface so that the 
surface is parallel to a layer of high density. One may have line and 
point singularities in the pattern of directrix lines called disclinations. A 
point singularity from which directrix lines radiate out to the surface is 
unstable; the singular point would move out to the surface. There are 
several types of line disclinations. We have discussed line singularities 
analogous to edge dislocations; screw disclinations are also possible and 
enter when there is a torque rather than a bending stress. Surface 
singularities form at a boundary region between two domains in which 
there is a difference in direction of the directrix lines. 

7 SUPERFLUID HELIUM THREE 

At very low temperatures 3He undergoes a pamng transition to an 
ordered phase with a very complex structure (17, 17a). Two phases exist 
in the P-T diagram, 3He-A and 3He-B, which are. well described by a 
pairing in the 3p state rather than the lS state characteristic of super
conducting metals. The order parameter has several components described 
by two unit vectors, I for orbital motion and d for the spin. In 3He-A 
the energy gap is anisotropic and vanishes on the equator of a Fermi 
sphere oriented with the I-axis the polar axis. Only parallel spin pairing 
is included, so the gap parameter, Ll(8), has two components, Ll+ + and 
Ll _ _  , corresponding to ms = 1 and Ins = -1 respectively. In 3He-B the 
third component, ms = 0, corresponding to the spin combination 
( + - ) + ( - + ), is included and the energy gap is isotropic. 

There is a weak magnetic dipolar interaction between nuclear spins 
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which connects orbital and spin degrees of freedom. The lowest energy 
for 3He-A is obtained when I and d are parallel. If as described in the 
preceding paragraph, the spin components refer to the z-direction, the 
d-vector lies in the x- y plane. The lowest energy for 3He-B is found for 
the I-vector rotated through an angle in the x- y plane relative to the 
d-vector. 

The fluids 3He-A and 3He-B have textures like a liquid crystal with 
properties dependent on the orientations of the vectors I and d. There are 
soliton modes, in which the d-vector rotates about the I-vector, that can 
be excited by applying a static magnetic field and then switching it off. 
The I-vector does not stay fixed but also oscillates in space. Such modes 
can be detected by observing damped oscillations in magnetization that 
occur after the applied field is reduced to zero. 

8 NUCLEAR MATTER 

The concept of pairing energy in nuclei existed for a long time, but it 
was only after the microscopic theory of superconductivity was derived 
that similar paired wave functions were applied to nuclei (18). It takes 
more energy to remove a neutron from the paired condensate than it does 
to remove an odd neutron that does not take part in the pairing. The 
odd particle goes into a state above the energy gap. Methods of 
superconductivity theory have been applied with great success to account 
for a wide variety of phenomena. The main difference is that one must 
take into account the finite and relatively small number of particles in a 
nucleus as well as the shell structure. 

The centrifugal force of a rotating nucleus is equivalent in first order 
to the force of a magnetic field on a charged particle. The analogue of 
the Meissner effect is a decrease in moment of inertia to a value well 
below that corresponding to a rigid body. The outermost layers of the 
nucleus rotate while the inner part remains fixed. 

The largest superftuid objects in the universe are neutron stars. There 
is strong evidence that the neutrons in the interior are in a paired 
superftuid state (19). It is thought that the pairing is in a 1D state, 
although this is not certain. The superfluidity manifests itself by the long 
time required to spin down to a steady-state period, which follows a 
sudden change jump due presumably to a quake in the crust. We 
observe the rotation of the crust and it takes a long time for the crust to 
share its motion with the interior. 

In the layer between the neutron core and the crust there are protons 
as well as neutrons, with the charge of the protons compensated by 
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electrons. The protons presumably form a superconducting condensate 
through which the very large magnetic fields are carried by quantized flux 
lines as in a type II superconductor. 

9 BROKEN SYMMETRY IN HIGH ENERGY PHYSICS 

The two most successful theories of high energy physics are the 
Weinberg-Salam theory of leptons and the theory of mesons and 
baryons based on quantum chromo dynamics (QCD). The latter theory 
is one of colored quarks held together by gluons. Gluons are massive 
bosons of non-Abelian gauge fields. One of the major problems is to 
understand confinement, why free quarks are not observed and why 
they appear only in color singlets. In both theories, the vacuum state is 
one of spontaneously broken symmetry. 

Weinberg (20) (and independently Salam) constructed a model for 
leptons (electrons and neutrinos) based on interactions with gauge fields 
(with bosons as quanta) and a two-component field, ¢, analogous to the 
order paramater field in superconductivity. In the initial Hamiltonian, 
electrons and neutrinos as well as the bosons of the gauge fields have 
zero mass. The leptons as well as the gauge bosons enter the theory 
symmetrically. Symmetry is broken by the field ¢ taking a vacuum 
expectation value. In a suitable gauge it may be written <¢1> = A, 
< ¢z > = O. As a result, the electron acquires a mass while the neutrino 
remains massless. Of the gauge fields, the charged spin-l bosons and one 
of the two neutral spin-l bosons acquire mass. The second neutral 
boson remains massless and is identified with the photon. 

The theory is modeled after a relativistic generalization of the 
Ginzburg-Landau theory introduced by Higgs (21). The field ¢ is the 
order parameter field and the bosons of the field are presumed to be 
massive (Higgs bosons). A number of predictions of the theory, including 
the existence of the neutral massive boson, have been confirmed by 
experiments done since the theory was proposed in 1967. 

In the theory of quantum chromo dynamics, quarks have quantum 
numbers designated by flavor and color. There is evidence for five 
flavors, and it is thought that there may be as many as six. There are 
three color quantum numbers, usually called red, green, and blue. Color 
singlets composed of equal amounts of the three colors are then called 
white. From experiments on electron-proton and electron-neutron 
scattering, quarks inside a nucleon behave as if they are essentially free 
(asymptotic freedom). Yet they are confined, implying that the energy 
increases with the distance to which they are separated. One picture is 
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that a quark-antiquark pair is tied together by a string and that as the 
length of the string increases it is favorable for the string to break 
with a quark and an antiquark appearing at the two broken ends. 

Considerable use has been made of analogy with superconductivity to 
try to understand the nature of the strings (22). Strong forces are 
carried by vector gauge fields analogous to the electric and magnetic 
fields of electrodynamics, with color charges taking the place of the 
electric and magnetic charges. In electrodynamics, there are no magnetic 
monopoles, but the analogue may exist in the non-Abelian gauge theories 
used for strong forces. In an influential paper, Nielson & Olesen (23) 
pointed out the analogy between the string model and flux lines in type 
II superconductors. If the strings carry the analogue of magnetic flux, 
color charges would be analogous to Dirac magnetic monopoles, as 
suggested by Nambu (24). 

Mandelstam (25) suggested that if magnetic monopoles exist, circulating 
currents of magnetic charge could give rise to electric flux along the 
axis of a flux line, and the color charges would then be the analogue of 
electric rather than magnetic charges. The vacuum would correspond to 
a superconducting phase for magnetic charges that excludes electric 
fields. 

Mesons consist of quark-antiquark pairs tied together by a string. 
Baryons consist of three quarks in a color singlet. In this case the 
strings from the quarks could terminate at a monopole singularity. 
Another possibility is that the presence of the quarks reduces the 
magnitude of the order of parameters so as to give a small region of 
normal phase in the superconducting vacuum. This would justify the 
MIT bag model in which the quarks are assumed to move freely in a 
small volume of space occupied by the meson or baryon. 

Another direction in which there is much in common with condensed
matter physics is the use of lattice gauge theories, which put quarks on a 
lattice. This approach was introduced to problems of high energy 
physics by Wilson (26), and allows use of computational methods 
analogous to those used for spins on a lattice. One may use scaling 
theory to see how the parameters of the theory vary when for example, 
the energy per unit length of string is held fixed while the lattice constant 
is varied. Wilson has given an introductory review of scaling in an 
article in Scientific American (2). One of the main problems is to see how 
to go from one limiting region to another, from asymptotic freedom to 
strong coupling, to understand how quarks are confined. 

There is currently considerable interest in a more general super
unification that combines weak, electromagnetic, and strong forces into 
the same symmetry group, again spontaneously broken by Higgs fields. 
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Considerable use is made in high energy physics of topological quantum 
numbers. It may be that conserved or nearly conserved quantities such 
as charge, lepton number, and baryon number depend on topological 
numbers. The basic particles then would be soliton singUlarities in the 
vacuum. 

The structure of the world is exceedingly complex. Our present 
understanding is comparable to the knowledge that the Ginzburg-Landau 
theory gave of superconductivity when there was no understanding of 
the underlying microscopic theory. The problem is something like, 
although much more complex than, understanding the underlying 
structure of superfluid 3He from measurements of the properties of the 
liquid made in the superfluid world. That the atoms that make up the 
liquid have a simple structure in spite of the very complex properties 
in the superfluid phase gives hope that the basic structure of the world 
we live in may also be relatively simple if it can be deciphered into its 
basic components. 

10 CONCLUDING REMARKS 

We have briefly reviewed some common themes that apply to a variety 
of physical phenomena in solids, quantum fluids, nuclear matter, and the 
structure of elementary particles. For example, in two-dimensional 
systems dislocation melting of solids, destruction of superflow in He II 
films, phase transitions in planar spin systems, and the transition from 
insulating to conductive behavior in a Coulomb plasma all have a common 
origin: the onset of the breaking of pairs of defects or charges of 
opposite sign. Line defects in three-dimensional systems, quantized vortex 
lines or flux lines, and dislocations account for similarities of behavior 
in superconductors, liquid crystals, and, it is hoped, color confinement of 
quarks. 

Low temperature phases may be described by order parameters and 
have lower symmetry than the Hamiltonian describing the system, a 
familiar example being ferromagnetism. The ordered-state superfluids 
break Galilean invariance in such a way that one must specify the 
superfluid velocity in order to define the states accessible to the system. 
In superconductors the broken symmetry is that of gauge invariance. 
Similar breaking of symmetry gives massive gauge fields in particle 
physics. 

It has been possible to give only a sampling of the vast literature of the 
many topics discussed briefly in this chapter. In only a few cases has the 
original literature been cited. We have referred to reviews and to recent 
references in which citations to earlier literature may be found. 
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