1932

Abstract

This review uses as a vehicular example the jet-flame configuration to examine some phenomena that emerge in nonpremixed gaseous combustion as a result of the interaction between the temperature-sensitive chemical reaction, typical of combustion, and the convective and diffusive transport. These include diffusion-controlled flames, edge flames and their role in flame attachment, triple flames and their role as ignition fronts, and strain-induced extinction, including flame-vortex interactions. The aim is to give an overall view of the fluid dynamics of nonpremixed combustion and to review the most relevant contributions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-010814-014711
2015-01-03
2024-06-11
Loading full text...

Full text loading...

/deliver/fulltext/fluid/47/1/annurev-fluid-010814-014711.html?itemId=/content/journals/10.1146/annurev-fluid-010814-014711&mimeType=html&fmt=ahah

Literature Cited

  1. Amantini G, Frank JH, Bennett BAV, Smooke MD, Gomez A. 2007. Comprehensive study of the evolution of an annular edge flame during extinction and reignition of a counterflow diffusion flame perturbed by vortices. Combust. Flame 150:292–319 [Google Scholar]
  2. Bilger RW. 1988. The structure of turbulent nonpremixed flames. Proc. Combust. Inst. 22:475–88 [Google Scholar]
  3. Bilger RW, Pope SB, Bray KNC, Driscoll JF. 2005. Paradigms in turbulent combustion research. Proc. Combust. Inst. 30:21–42 [Google Scholar]
  4. Buckmaster JD. 1996. Edge flames and their stability. Combust. Sci. Technol. 115:41–68 [Google Scholar]
  5. Buckmaster JD. 2002. Edge-flames. Prog. Energy Combust. Sci. 28:435–75 [Google Scholar]
  6. Buckmaster JD, Peters N. 1986. The infinite candle and its instability: a paradigm for flickering diffusion flames. Proc. Combust. Inst. 23:1829–36 [Google Scholar]
  7. Burke SP, Schumann TEW. 1928. Diffusion flames. Ind. Eng. Chem. 20:998–1004 [Google Scholar]
  8. Carpio J, Iglesias I, Vera M, Sánchez A, Liñán A. 2013. Critical radius for hot-jet ignition of hydrogen-air mixtures. Int. J. Hydrog. Energy 38:3105–9 [Google Scholar]
  9. Carpio J, Prieto J. 2014. An anisotropic, fully adaptive algorithm for the solution of convection dominated equations with semi-Lagrangian schemes. Comput. Methods Appl. Mech. 273:77–99 [Google Scholar]
  10. Carpio J, Sánchez-Sanz M, Fernández-Tarrazo E. 2012. Pinch-off in forced and non-forced, buoyant laminar jet diffusion flames. Combust. Flame 159:161–69 [Google Scholar]
  11. Cha MS, Ronney PD. 2006. Propagation rates of nonpremixed edge flames. Combust. Flame 146:312–28 [Google Scholar]
  12. Chamberlin DS, Rose A. 1948. The flicker of luminous flames. Proc. Combust. Inst. 1–227–32 [Google Scholar]
  13. Chen LD, Roquemore WM. 1986. Visualization of jet flames. Combust. Flame 66:81–86 [Google Scholar]
  14. Chen LD, Seaba JP, Roquemore WM, Goss LP. 1988. Buoyant diffusion flames. Proc. Combust. Inst. 22:677–84 [Google Scholar]
  15. Chung SH. 2007. Stabilization, propagation and instability of tribrachial triple flames. Proc. Combust. Inst. 31:877–92 [Google Scholar]
  16. Cuenot B, Poinsot TJ. 1994. Effects of curvature and unsteadiness in diffusion flames: implications for turbulent diffusion flames. Proc. Combust. Inst. 25:1383–90 [Google Scholar]
  17. Daou J, Liñán A. 1998. The role of unequal diffusivities in ignition and extinction fronts in strained mixing layers. Combust. Theor. Model. 2:449–77 [Google Scholar]
  18. Dimotakis PE. 2005. Turbulent mixing. Annu. Rev. Fluid Mech. 37:329–56 [Google Scholar]
  19. Dold JW. 1989. Flame propagation in a nonuniform mixture: analysis of a slowly varying triple flame. Combust. Flame 76:71–88 [Google Scholar]
  20. Dold JW, Hartley LJ, Green D. 1991. Dynamics of laminar triple-flamelet structures in nonpremixed turbulent combustion. Dynamical Issues in Combustion Theory PC Fife, A Liñán, FA Williams 83–106 New York: Springer [Google Scholar]
  21. Dowling AP, Morgans AS. 2005. Feedback control of combustion oscillations. Annu. Rev. Fluid Mech. 37:151–82 [Google Scholar]
  22. Faraday M. 1861. Chemical History of a Candle London: Griffin, Bohn & Co. [Google Scholar]
  23. Fendell FE. 1965. Ignition and extinction of initially unmixed reactants. J. Fluid Mech. 21:281–303 [Google Scholar]
  24. Fernández E, Kurdyumov V, Liñán A. 2000. Diffusion flame attachment and lift-off in the near wake of a fuel injector. Proc. Combust. Inst. 28:2125–31 [Google Scholar]
  25. Fernández-Tarrazo E, Liñán A. 2002. Flame spread over solid fuels in opposite natural convection. Proc. Combust. Inst. 29:219–25 [Google Scholar]
  26. Fernández-Tarrazo E, Sánchez AL, Liñán A, Williams FA. 2006a. A simple one-step chemistry model for partially premixed hydrocarbon combustion. Combust. Flame 147:32–38 [Google Scholar]
  27. Fernández-Tarrazo E, Vera M, Liñán A. 2006b. Liftoff and blowoff of a diffusion flame between parallel streams of fuel and air. Combust. Flame 144:261–76 [Google Scholar]
  28. Friedlander SK, Keller KH. 1963. The structure of the zone of diffusion controlled combustion. Chem. Eng. Sci. 18:365–75 [Google Scholar]
  29. Gaydon AG, Wolfhard HG. 1953. Flames: Their Structure, Radiation, and Temperature London: Chapman & Hall [Google Scholar]
  30. Hermanns M, Vera M, Liñán A. 2007. On the dynamics of flame edges in diffusion-flame/vortex interactions. Combust. Flame 149:32–48 [Google Scholar]
  31. Higuera FJ. 2002. Flame spread along horizontal solid fuel cylinders. Proc. Combust. Inst. 29:211–17 [Google Scholar]
  32. Higuera FJ, Liñán A. 1996. Flow field of a diffusion flame attached to a thick-walled injector between two coflowing reactant streams. J. Fluid Mech. 329:389–411 [Google Scholar]
  33. Jiang X, Luo KH. 2000. Combustion-induced buoyancy effects of an axisymmetric reactive plume. Proc. Combust. Inst. 28:1989–95 [Google Scholar]
  34. Katta VR, Carter CD, Fiechtner GJ, Roquemore WM, Gord JR, Rolon JC. 1998. Interaction of a vortex with a flat flame formed between opposing jets of hydrogen and air. Proc. Combust. Inst. 27:587–94 [Google Scholar]
  35. Katta VR, Roquemore WM. 1993. Role of inner and outer structures in transitional jet diffusion flame. Combust. Flame 93:274–82 [Google Scholar]
  36. Kioni PN, Rogg B, Bray KNC, Liñán A. 1993. Flame spread in laminar mixing layers: the triple flame. Combust. Flame 95:276–90 [Google Scholar]
  37. Kurdyumov V, Fernández-Tarrazo E, Liñán A. 2002. The anchoring of gaseous diffusion flames in stagnant air. Aerosp. Sci. Technol. 6:507–16 [Google Scholar]
  38. Lee BJ, Chung SH. 1997. Stabilization of lifted tribrachial flames in a laminar nonpremixed jet. Combust. Flame 109:163–72 [Google Scholar]
  39. Li SC, Gordon AS, Williams FA. 1995. A simplified method for the computation of Burke-Schumann flames in infinite atmospheres. Combust. Sci. Technol. 104:75–91 [Google Scholar]
  40. Libby P, Williams FA. 1994. Turbulent Reacting Flows London: Academic [Google Scholar]
  41. Liñán A. 1961. On the internal structure of laminar diffusion flames Tech. Rep. OSR/EOAR TN 62-24, INTA, Madrid [Google Scholar]
  42. Liñán A. 1963. On the structure of laminar diffusion flames Aeronaut. Eng. Thesis, Calif. Inst. Technol., Pasadena [Google Scholar]
  43. Liñán A. 1974. The asymptotic structure of counterflow diffusion flames for large activation energies. Acta Astronaut. 1:1007–39 [Google Scholar]
  44. Liñán A. 1991. The structure of diffusion flames. Fluid Dynamical Aspects of Combustion Theory M Onofri, A Tesev 11–29 Harlow, UK: Longman Sci. Tech. [Google Scholar]
  45. Liñán A. 2001. Diffusion-controlled combustion. Mechanics for a New Millennium H Aref, JW Phillips 487–502 Dordrecht: Kluwer Acad. [Google Scholar]
  46. Liñán A, Crespo A. 1976. An asymptotic analysis of unsteady diffusion flames for large activation energies. Combust. Sci. Technol. 14:95–117 [Google Scholar]
  47. Liñán A, Fernández-Tarrazo E, Vera M, Sánchez AL. 2005. Lifted laminar jet diffusion flames. Combust. Sci. Technol. 177:933–53 [Google Scholar]
  48. Liñán A, Orlandi P, Verzicco R, Higuera FJ. 1994. Effects of nonunity Lewis numbers on diffusion flames. Studying Turbulence Using Numerical Databases V5–18 Stanford, CA: Cent. Turbul. Res. [Google Scholar]
  49. Liñán A, Williams F. 1993. Ignition in an unsteady mixing layer subject to strain and variable pressure. Combust. Flame 95:31–46 [Google Scholar]
  50. Liñán A, Williams F. 1995. Autoignition of nonuniform mixtures in chambers of variable volume. Combust. Sci. Technol. 105:245–63 [Google Scholar]
  51. Matalon M. 2007. Intrinsic flame instabilities in premixed and nonpremixed combustion. Annu. Rev. Fluid Mech. 39:163–91 [Google Scholar]
  52. Messiter AF. 1970. Boundary-layer flow near the trailing edge of a flat plate. SIAM J. Appl. Math. 18:241–57 [Google Scholar]
  53. Michaelis B, Rogg B. 2005. FEM-simulation of laminar flame propagation II: twin and triple flames in counterflow. Combust. Sci. Technol. 177:955–78 [Google Scholar]
  54. Miller JA, Pilling MJ, Troe J. 2005. Unravelling combustion mechanisms through a quantitative understanding of elementary reactions. Proc. Combust. Inst. 30:43–88 [Google Scholar]
  55. Muñiz L, Mungal MG. 1997. Instantaneous flame-stabilization velocities in lifted-jet diffusion flames. Combust. Flame 111:16–31 [Google Scholar]
  56. Nayagam V, Balasubramaniam R, Ronney PD. 1999. Diffusion flame-holes. Combust. Theor. Model. 3:727–42 [Google Scholar]
  57. Pantano C, Pullin DI. 2003. On the dynamics of the collapse of a diffusion-flame hole. J. Fluid Mech. 480:311–32 [Google Scholar]
  58. Pantano C, Pullin DI. 2004. A statistical description of turbulent diffusion flame holes. Combust. Flame 137:295–305 [Google Scholar]
  59. Peters N. 1984. Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog. Energy Combust. Sci. 10:319–39 [Google Scholar]
  60. Peters N. 1986. Laminar flamelet concepts in turbulent combustion. Proc. Combust. Inst. 21:1231–50 [Google Scholar]
  61. Peters N. 2000. Turbulent Combustion Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  62. Peters N, Göttgens J. 1991. Scaling of buoyant turbulent jet diffusion flames. Combust. Flame 85:206–14 [Google Scholar]
  63. Phillips H. 1965. Flame in a buoyant methane layer. Proc. Combust. Inst. 10:1277–83 [Google Scholar]
  64. Pitsch H. 2006. Large-eddy simulation of turbulent combustion. Annu. Rev. Fluid Mech. 38:453–82 [Google Scholar]
  65. Renard PH, Thévenin D, Rolon JC, Candel S. 2000. Dynamics of flame/vortex interactions. Prog. Energy Combust. Sci. 26:225–82 [Google Scholar]
  66. Revuelta A, Sánchez AL, Liñán A. 2002. Laminar mixing in diluted and undiluted fuel jets upstream from lifted flames. Combust. Flame 128:199–210 [Google Scholar]
  67. Rolon JC, Aguerre F, Candel S. 1995. Experiments on the interaction between a vortex and a strained diffusion flame. Combust. Flame 100:422–29 [Google Scholar]
  68. Roquemore WM, Chen LD, Goss LP, Lynn WF. 1989. Structure of jet diffusion flames. Turbulent Reactive Flows B Borghi, SNB Murthy 49–63 Berlin: Springer-Verlag [Google Scholar]
  69. Roquemore WM, Katta VR. 2000. Role of flow visualization in the development of UNICORN. J. Vis. 2:257–72 [Google Scholar]
  70. Ruetsch GR, Vervish L, Liñán A. 1995. Effects of heat release on triple flames. Phys. Fluids A 7:1447–54 [Google Scholar]
  71. Sánchez AL, Urzay J, Liñán A. 2014. The role of separation of scales in the description of spray flames. Proc. Combust. Inst. 35: In press. http://dx.doi.org/10.1016/j.proci.2014.08.018 [Google Scholar]
  72. Sánchez AL, Williams FA. 2014. Recent advances in understanding of flammability characteristics of hydrogen. Prog. Energy Combust. Sci. 41:1–55 [Google Scholar]
  73. Santoro VS, Gomez A. 2002. Extinction and reignition in counterflow spray diffusion flames interacting with laminar vortices. Proc. Combust. Inst. 29:585–92 [Google Scholar]
  74. Santoro VS, Kyritsis DC, Liñán A, Gomez A. 2000a. Vortex-induced extinction behavior in methanol gaseous flames: a comparison with quasi-steady extinction. Proc. Combust. Inst. 28:2109–16 [Google Scholar]
  75. Santoro VS, Liñán A, Gomez A. 2000b. Propagation of edge flames in counterflow mixing layers: experiments and theory. Proc. Combust. Inst. 28:2039–46 [Google Scholar]
  76. Shay ML, Ronney PD. 1998. Nonpremixed edge flames in spatially varying straining flows. Combust. Flame 112:171–80 [Google Scholar]
  77. Shvab VA. 1948. The relationship between the temperature and velocity fields in a gaseous flame. Research on Combustion Processes in Natural Fuel GF Knorre 231–48 Moscow: Gosenergoizdat [Google Scholar]
  78. Simmie JM. 2003. Detailed chemical kinetic models for the combustion of hydrocarbon fuels. Prog. Energy Combust. Sci. 29:599–634 [Google Scholar]
  79. Sirignano WA. 2010. Fluid Dynamics and Transport of Droplets and Sprays Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  80. Stewartson K. 1969. On the flow near the trailing edge of a flat plate II. Mathematika 16:106–21 [Google Scholar]
  81. Sunderland PB, Quintiere JG, Tabaka GA, Lian D, Chiu CW. 2011. Analysis and measurement of candle flame shapes. Proc. Combust. Inst. 33:2489–96 [Google Scholar]
  82. Thévenin D, Renard PH, Fiechtner GJ, Gord JR, Rolon JC. 2000. Regimes of non-premixed flame-vortex interactions. Proc. Combust. Inst. 28:2101–8 [Google Scholar]
  83. Tizón JM, Salvá JJ, Liñán A. 1999. Wind-aided flame spread under oblique forced flow. Combust. Flame 119:41–55 [Google Scholar]
  84. Vázquez-Espí C. 2001. Analysis of axisymmetric laminar jet diffusion flames for small values of the stoichiometric mixture fraction. Combust. Sci. Technol. 171:1–38 [Google Scholar]
  85. Venugopal R, Abraham J. 2008. A 2-D DNS investigation of extinction and reignition dynamics in nonpremixed flame-vortex interactions. Combust. Flame 153:442–64 [Google Scholar]
  86. Vera M, Hermanns M, Liñán A. 2007. A combustion diagram to characterize the regimes of interaction of non-premixed flames and strong vortices. Proc. 3rd Eur. Combust. Meet. ECM 2007. Crete: Greek Section Combust. Inst http://www.combustion.org.uk/ECM_2007/ecm2007_papers/18-8.pdf [Google Scholar]
  87. Vera M, Liñán A. 2004. On the interaction of vortices with mixing layers. Phys. Fluids 16:2237–54 [Google Scholar]
  88. Vervisch L, Poinsot T. 1998. Direct numerical simulation of non-premixed turbulent flames. Annu. Rev. Fluid Mech. 30:655–91 [Google Scholar]
  89. Veynante D, Vervisch L. 2002. Turbulent combustion modeling. Prog. Energy Combust. Sci. 28:193–266 [Google Scholar]
  90. Westbrook CK, Dryer FL. 1981. Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames. Combust. Sci. Technol. 27:31–43 [Google Scholar]
  91. Williams FA. 1971. Theory of combustion in laminar flows. Annu. Rev. Fluid Mech. 3:171–88 [Google Scholar]
  92. Williams FA. 1985. Combustion Theory Menlo Park, CA: Benjamin Cummings, 2nd ed.. [Google Scholar]
  93. Williams FA. 2000. Progress in knowledge of flamelet structure and extinction. Prog. Enery Combust. Sci. 26:657–82 [Google Scholar]
  94. Zel'dovich YB. 1949. Teorii gorenia neperemeshannykh gazov. Z. Tekh. Fiz. 19:1199–1210 [Google Scholar]
/content/journals/10.1146/annurev-fluid-010814-014711
Loading
/content/journals/10.1146/annurev-fluid-010814-014711
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error