1932

Abstract

The recent fusion of network science and neuroscience has catalyzed a paradigm shift in how we study the brain and led to the field of brain network analysis. Brain network analyses hold great potential in helping us understand normal and abnormal brain function by providing profound clinical insight into links between system-level properties and health and behavioral outcomes. Nonetheless, methods for statistically analyzing networks at the group and individual levels have lagged behind. We have attempted to address this need by developing three complementary statistical frameworks—a mixed modeling framework, a distance regression framework, and a hidden semi-Markov modeling framework. These tools serve as synergistic fusions of statistical approaches with network science methods, providing needed analytic foundations for whole-brain network data. Here we delineate these approaches, briefly survey related tools, and discuss potential future avenues of research. We hope this review catalyzes further statistical interest and methodological development in the field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-statistics-040522-020722
2024-04-22
2024-05-07
Loading full text...

Full text loading...

/deliver/fulltext/statistics/11/1/annurev-statistics-040522-020722.html?itemId=/content/journals/10.1146/annurev-statistics-040522-020722&mimeType=html&fmt=ahah

Literature Cited

  1. Albert PS, Shen J. 2005.. Modelling longitudinal semicontinuous emesis volume data with serial correlation in an acupuncture clinical trial. . J. R. Stat. Soc. Ser. C 54:(4):70720
    [Crossref] [Google Scholar]
  2. Anderson MJ. 2001.. A new method for non-parametric multivariate analysis of variance. . Austral. Ecol. 26:(1):3246
    [Google Scholar]
  3. Bahrami M, Laurienti PJ, Shappell HM, Dagenbach D, Simpson SL. 2022a.. A mixed-modeling framework for whole-brain dynamic network analysis. . Netw. Neurosci. 6:(2):591613
    [Crossref] [Google Scholar]
  4. Bahrami M, Laurienti PJ, Simpson SL. 2019a.. A MATLAB toolbox for multivariate analysis of brain networks. . Hum. Brain Map. 40::17586
    [Crossref] [Google Scholar]
  5. Bahrami M, Laurienti PJ, Simpson SL. 2019b.. Analysis of brain subnetworks within the context of their whole-brain networks. . Hum. Brain Map. 40:(17):512341
    [Crossref] [Google Scholar]
  6. Bahrami M, Lyday RG, Casanova R, Burdette JH, Simpson SL, Laurienti PJ. 2019c.. Using low-dimensional manifolds to map relationships between dynamic brain networks. . Front. Hum. Neurosci. 13::430
    [Crossref] [Google Scholar]
  7. Bahrami M, Simpson SL, Burdette JH, Lyday RG, Quandt SA, et al. 2022b.. Altered default mode network associated with pesticide exposure in Latinx children from rural farmworker families. . NeuroImage 256::119179
    [Crossref] [Google Scholar]
  8. Barbey AK. 2018.. Network neuroscience theory of human intelligence. . Trends Cogn. Sci. 22:(1):820
    [Crossref] [Google Scholar]
  9. Barttfeld P, Uhrig L, Sitt JD, Sigman M, Jarraya B, Dehaene S. 2015.. Signature of consciousness in the dynamics of resting-state brain activity. . PNAS 112:(3):88792
    [Crossref] [Google Scholar]
  10. Bassett DS, Bullmore ET. 2009.. Human brain networks in health and disease. . Curr. Opin. Neurol. 22:(4):34047
    [Crossref] [Google Scholar]
  11. Bassett DS, Wymbs NF, Porter MA, Mucha PJ, Carlson JM, Grafton ST. 2011.. Dynamic reconfiguration of human brain networks during learning. . PNAS 108:(18):764146
    [Crossref] [Google Scholar]
  12. Bhamidi S, Chakraborty S, Cranmer S, Desmarais B. 2018.. Weighted exponential random graph models: scope and large network limits. . J. Stat. Phys. 173::70435
    [Crossref] [Google Scholar]
  13. Blackburn B, Handcock MS. 2023.. Practical network modeling via tapered exponential-family random graph models. . J. Comput. Graph. Stat. 32:(2):388401
    [Crossref] [Google Scholar]
  14. Burdette JH, Laurienti PJ, Espeland MA, Morgan AR, Telesford Q, et al. 2010.. Using network science to evaluate exercise-associated brain changes in older adults. . Front. Aging. Neurosci. 2::23
    [Google Scholar]
  15. Caimo A, Gollini I. 2020.. A multilayer exponential random graph modelling approach for weighted networks. . Comput. Stat. Data Anal. 142::106825
    [Crossref] [Google Scholar]
  16. Cao M, Wang JH, Dai ZJ, Cao XY, Jiang LL, Fan FM, et al. 2014.. Topological organization of the human brain functional connectome across the lifespan. . Dev. Cogn. Neurosci. 7::7693
    [Crossref] [Google Scholar]
  17. Chaddock-Heyman L, Weng TB, Kienzler C, Weisshappel R, Drollette ES, et al. 2020.. Brain network modularity predicts improvements in cognitive and scholastic performance in children involved in a physical activity intervention. . Front. Hum. Neurosci. 14::346
    [Crossref] [Google Scholar]
  18. Chang C, Keilholz S, Miller R, Woolrich M. 2018.. Mapping and interpreting the dynamic connectivity of the brain. . NeuroImage 180:(Pt. B):33536
    [Crossref] [Google Scholar]
  19. Dai T, Guo Y. 2017.. Predicting individual brain functional connectivity using a Bayesian hierarchical model. . NeuroImage 147::77287
    [Crossref] [Google Scholar]
  20. Deuker L, Bullmore ET, Smith M, Christensen S, Nathan PJ, et al. 2009.. Reproducibility of graph metrics of human brain functional networks. . NeuroImage 47:(4):146068
    [Crossref] [Google Scholar]
  21. Durante D, Dunson DB. 2018.. Bayesian inference and testing of group differences in brain networks. . Bayesian Anal. 13:(1):2958
    [Crossref] [Google Scholar]
  22. Edwards LJ, Simpson SL. 2014.. An analysis of 24-hour ambulatory blood pressure monitoring data using orthonormal polynomials in the linear mixed model. . Blood Press. Monit. 19:(3):15363
    [Crossref] [Google Scholar]
  23. Erhardt EB, Allen EA, Wei Y, Eichele T, Calhoun VD. 2012.. SimTB, a simulation toolbox for fMRI data under a model of spatiotemporal separability. . NeuroImage 59:(4):416067
    [Crossref] [Google Scholar]
  24. Ginestet CE, Fournel AP, Simmons A. 2014.. Statistical network analysis for functional MRI: mean networks and group comparisons. . Front. Comput. Neurosci. 8:. https://doi.org/10.3389/fncom.2014.00051
    [Crossref] [Google Scholar]
  25. Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, et al. 2008.. Mapping the structural core of human cerebral cortex. . PLOS Biol. 6::147993
    [Crossref] [Google Scholar]
  26. Hayasaka S, Laurienti PJ. 2010.. Comparison of characteristics between region-and voxel-based network analyses in resting-state fMRI data. . NeuroImage 50::499508
    [Crossref] [Google Scholar]
  27. Hilger K, Ekman M, Fiebach CJ, Basten U. 2017.. Intelligence is associated with the modular structure of intrinsic brain networks. . Sci. Rep. 7:(1):16088
    [Crossref] [Google Scholar]
  28. Honari H, Choe AS, Pekar JJ, Lindquist MA. 2019.. Investigating the impact of autocorrelation on time-varying connectivity. . NeuroImage 197::3748
    [Crossref] [Google Scholar]
  29. Hugenschmidt CE, Mozolic JL, Tan H, Kraft RA, Laurienti PJ. 2009.. Age-related increase in cross-sensory noise in resting and steady-state cerebral perfusion. . Brain Topogr. 21:(3–4):24151
    [Crossref] [Google Scholar]
  30. Hunter DR, Goodreau SM, Handcock MS. 2008a.. Goodness of fit of social network models. . J. Am. Stat. Assoc. 103:(481):24858
    [Crossref] [Google Scholar]
  31. Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M. 2008b.. ergm: A package to fit, simulate and diagnose exponential-family models for networks. . J. Stat. Softw. 24:(3):129
    [Crossref] [Google Scholar]
  32. Hunter DR, Krivitsky PN, Schweinberger M. 2012.. Computational statistical methods for social network models. . J. Comput. Graph. Stat. 21:(4):85682
    [Crossref] [Google Scholar]
  33. Karwa V, Petrović S, Bajić D. 2022.. DERGMs: degeneracy-restricted exponential family random graph models. . Netw. Sci. 10:(1):82110
    [Crossref] [Google Scholar]
  34. Kenett YN, Betzel RF, Beaty RE. 2020.. Community structure of the creative brain at rest. . NeuroImage 210::116578
    [Crossref] [Google Scholar]
  35. Lehmann BC, Henson RN, Geerligs L, White SR. 2021.. Characterising group-level brain connectivity: a framework using Bayesian exponential random graph models. . NeuroImage 225::117480
    [Crossref] [Google Scholar]
  36. Liu L, Ma JZ, Johnson BA. 2008.. A multi-level two-part random effects model, with application to an alcohol-dependence study. . Stat. Med. 27:(18):352839
    [Crossref] [Google Scholar]
  37. Lurie DJ, Kessler D, Bassett DS, Betzel RF, Breakspear M, et al. 2020.. Questions and controversies in the study of time-varying functional connectivity in resting fMRI. . Netw. Neurosci. 4::3069
    [Crossref] [Google Scholar]
  38. McArtor DB, Lubke GH, Bergeman CS. 2017.. Extending multivariate distance matrix regression with an effect size measure and the asymptotic null distribution of the test statistic. . Psychometrika 82::105277
    [Crossref] [Google Scholar]
  39. Meunier D, Achard S, Morcom A, Bullmore E. 2009.. Age-related changes in modular organization of human brain functional networks. . NeuroImage 44:(3):71523
    [Crossref] [Google Scholar]
  40. Mokhtari F, Akhlaghi MI, Simpson SL, Wu G, Laurienti PJ. 2019.. Sliding window correlation analysis: modulating window shape for dynamic brain connectivity in resting state. . NeuroImage 189::65566
    [Crossref] [Google Scholar]
  41. Moussa MN, Steen MR, Laurienti PJ, Hayasaka S. 2012.. Consistency of network modules in resting-state fMRI connectome data. . PLOS ONE 7:(8):e44428
    [Crossref] [Google Scholar]
  42. Moussa MN, Vechlekar CD, Burdette JH, Steen MR, Hugenschmidt CE, Laurienti PJ. 2011.. Changes in cognitive state alter human functional brain networks. . Front. Hum. Neurosci. 5::83
    [Crossref] [Google Scholar]
  43. O'Malley AJ. 2013.. The analysis of social network data: an exciting frontier for statisticians. . Stat. Med. 32:(4):53955
    [Crossref] [Google Scholar]
  44. Parente F, Frascarelli M, Mirigliani A, Di Fabio F, Biondi M, Colosimo A. 2017.. Negative functional brain networks. . Brain Imaging Behav. 12::46776
    [Crossref] [Google Scholar]
  45. Petersen SE, Sporns O. 2015.. Brain networks and cognitive architectures. . Neuron 88:(1):20719
    [Crossref] [Google Scholar]
  46. Rashid B, Arbabshirani MR, Damaraju E, Cetin MS, Miller R, et al. 2016.. Classification of schizophrenia and bipolar patients using static and dynamic resting-state fMRI brain connectivity. . NeuroImage 134::64557
    [Crossref] [Google Scholar]
  47. Rubinov M, Sporns O. 2010.. Complex network measures of brain connectivity: uses and interpretations. . NeuroImage 52:(3):105969
    [Crossref] [Google Scholar]
  48. Rzucidlo JK, Roseman PL, Laurienti PJ, Dagenbach D. 2013.. Stability of whole brain and regional network topology within and between resting and cognitive states. . PLOS ONE 8:(8):e70275
    [Crossref] [Google Scholar]
  49. Saberi M, Khosrowabadi R, Khatibi A, Misic B, Jafari G. 2021.. Topological impact of negative links on the stability of resting-state brain network. . Sci. Rep. 11::2176
    [Crossref] [Google Scholar]
  50. Shappell H, Caffo BS, Pekar JJ, Lindquist MA. 2019.. Improved state change estimation in dynamic functional connectivity using hidden semi-Markov models. . NeuroImage 191::24357
    [Crossref] [Google Scholar]
  51. Shappell H, Duffy KA, Rosch KS, Pekar JJ, Mostofsky SH, et al. 2021.. Children with attention-deficit/hyperactivity disorder spend more time in hyperconnected network states and less time in segregated network states as revealed by dynamic connectivity analysis. . NeuroImage 229::117753
    [Crossref] [Google Scholar]
  52. Simpson SL. 2021.. Mixed modeling frameworks for analyzing whole-brain network data. . In Biomedical Engineering Technologies: Vol. 1, Methods in Molecular Biology, ed. A Rasooly, H Baker, M Ossandon , pp. 57195. New York:: Springer
    [Google Scholar]
  53. Simpson SL, Bahrami M, Laurienti PJ. 2019.. A mixed modeling framework for analyzing multitask whole-brain network data. . Netw. Neurosci. 3:(2):30724
    [Crossref] [Google Scholar]
  54. Simpson SL, Bowman FD, Laurienti PJ. 2013a.. Analyzing complex functional brain networks: fusing statistics and network science to understand the brain. . Stat. Surv. 7::136
    [Crossref] [Google Scholar]
  55. Simpson SL, Edwards LJ. 2013.. A circular LEAR correlation structure for cyclical longitudinal data. . Stat. Methods Med. Res. 22:(3):296306
    [Crossref] [Google Scholar]
  56. Simpson SL, Hayasaka S, Laurienti PJ. 2011.. Exponential random graph modeling for complex brain networks. . PLOS ONE 6:(5):e20039
    [Crossref] [Google Scholar]
  57. Simpson SL, Laurienti PJ. 2015.. A two-part mixed-effects modeling framework for analyzing whole-brain network data. . NeuroImage 113::31019
    [Crossref] [Google Scholar]
  58. Simpson SL, Laurienti PJ. 2016.. Disentangling brain graphs: a note on the conflation of network and connectivity analyses. . Brain Connect. 6:(2):9598
    [Crossref] [Google Scholar]
  59. Simpson SL, Lyday RG, Hayasaka S, March AP, Laurienti PJ. 2013b.. A permutation testing framework to compare groups of brain networks. . Front. Comput. Neurosci. 7::171
    [Crossref] [Google Scholar]
  60. Simpson SL, Moussa MN, Laurienti PJ. 2012.. An exponential random graph modeling approach to creating group-based representative whole-brain connectivity networks. . NeuroImage 60::111726
    [Crossref] [Google Scholar]
  61. Sizemore AE, Bassett DS. 2018.. Dynamic graph metrics: tutorial, toolbox, and tale. . NeuroImage 180::41727
    [Crossref] [Google Scholar]
  62. Smallwood J, Bernhardt BC, Leech R, Bzdok D, Jefferies E, Margulies DS. 2021.. The default mode network in cognition: a topographical perspective. . Nat. Rev. Neurosci. 22::50313
    [Crossref] [Google Scholar]
  63. Solo V, Poline J-B, Lindquist MA, Simpson SL, Bowman FD, et al. 2018.. Connectivity in fMRI: blind spots and breakthroughs. . IEEE Trans. Med. Imaging 37:(7):153750
    [Crossref] [Google Scholar]
  64. Sporns O. 2010.. Networks of the Brain. Cambridge, MA:: MIT Press
  65. Sporns O. 2018.. Graph theory methods: applications in brain networks. . Dialogues Clin. Neurosci. 20:(2):111
    [Crossref] [Google Scholar]
  66. Srivastava P, Fotiadis P, Parkes L, Bassett DS. 2022.. The expanding horizons of network neuroscience: from description to prediction and control. . NeuroImage 1::119250
    [Crossref] [Google Scholar]
  67. Stam CJ, Jones BF, Nolte G, Breakspear M, Scheltens P. 2007.. Small-world networks and functional connectivity in Alzheimer's disease. . Cereb. Cortex 17:(1):9299
    [Crossref] [Google Scholar]
  68. Székely GJ, Rizzo ML. 2009.. Brownian distance covariance. . Ann. Appl. Stat. 3:(4):123665
    [Google Scholar]
  69. Székely GJ, Rizzo ML, Bakirov NK. 2007.. Measuring and testing dependence by correlation of distances. . Ann. Stat. 35:(6):276994
    [Crossref] [Google Scholar]
  70. Telesford QK, Simpson SL, Burdette JH, Hayasaka S, Laurienti PJ. 2011.. The brain as a complex system: using network science as a tool for understanding the brain. . Brain Connect. 1:(4):295308
    [Crossref] [Google Scholar]
  71. Tomlinson CE, Laurienti PJ, Lyday RG, Simpson SL. 2022a.. 3M_BANTOR: a regression framework for multitask and multisession brain network distance metrics. . Netw. Neurosci. 7:(1):121
    [Google Scholar]
  72. Tomlinson CE, Laurienti PJ, Lyday RG, Simpson SL. 2022b.. A regression framework for brain network distance metrics. . Netw. Neurosci. 6:(1):4968
    [Crossref] [Google Scholar]
  73. van den Heuvel MP, Sporns O. 2011.. Rich-club organization of the human connectome. . J. Neurosci. 31:(44):1577586
    [Crossref] [Google Scholar]
  74. van den Heuvel MP, Stam CJ, Boersma M, Pol HH. 2008.. Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain. . NeuroImage 43:(3):52839
    [Crossref] [Google Scholar]
  75. Van Essen DC, Smith SM, Barch DM, Behrens TE, Yacoub E, et al. 2013.. The WU-Minn human connectome project: an overview. . NeuroImage 80::6279
    [Crossref] [Google Scholar]
  76. Varoquaux G, Craddock RC. 2013.. Learning and comparing functional connectomes across subjects. . NeuroImage 80::40515
    [Crossref] [Google Scholar]
  77. Wang L, Durante D, Jung RE, Dunson DB. 2017.. Bayesian network–response regression. . Bioinformatics 33::185966
    [Crossref] [Google Scholar]
  78. Wolfinger R, O'Connell M. 1993.. Generalized linear mixed models a pseudo-likelihood approach. . J. Stat. Comput. Simul. 48:(3–4):23343
    [Crossref] [Google Scholar]
  79. Xia CH, Ma Z, Cui Z, Bzdok D, Thirion B, et al. 2020.. Multi-scale network regression for brain-phenotype associations. . Hum. Brain Map. 41::255366
    [Crossref] [Google Scholar]
  80. Zhang J, Sun WW, Li L. 2018.. Network response regression for modeling population of networks with covariates. . arXiv:1810.03192 [stat.ME]
  81. Zhang Z, Allen GI, Zhu H, Dunson D. 2019.. Tensor network factorizations: relationships between brain structural connectomes and traits. . NeuroImage 197::33043
    [Crossref] [Google Scholar]
  82. Zhu H, Li T, Zhao B. 2023.. Statistical learning methods for neuroimaging data analysis with applications. . Annu. Rev. Biomed. Data Sci. 6::73104
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-statistics-040522-020722
Loading
/content/journals/10.1146/annurev-statistics-040522-020722
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error